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Abstract

New classes of random graphs have recently been shown to exhibit the small world phenomenon—ithey
are clustered like regular lattices and yet have smail average pathlengths like traditional random graphs.
Small world behaviour has been observed in a number of real life networks, and hence these random graphs
tepresent a useful modelling tool. In particular, Grindrod {Phys. Rev. E 66 {2002) 066702-1] has proposed
a class of range dependent random graphs for modelling proteome networks in bioinformatics. A property of
these graphs is that, when suitably ordered, most edges in the graph are short-range, in the sense that they
connect near-neighbours, and relatively few are long-range. Grindrog also looked at an inverse problem-—given
a graph that is known to be an instance of a range dependent random graph, but with vertices in arbitrary
order, can we reorder the vertices so that the short-range/long-range connectivity structure is apparent? When
the graph is viewed in terms of its adjacency matrix, this becomes a problem in sparse matrix theory: find a
symunetric row/column reordering that places most nonzeros close to the diagonal. Algorithms of this seneral
nature have been proposed for other purposes, most notably for reordering to reduce fill-in and for clustering
large data sets. Here, we investigate their use in the small world reordering probiem, Our numerical results
suggest that a spectral reordering algorithm is extremely promising, and we give some theoretical justification
for this observation via the maximum likelihood principle.
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1. Introduction

We consider a graph with vertices labelled vi,vs,..., vy and suppose that a directed edge con-
necting v; 10 v; exists with probability p; := f(|; ~ i[) for some suitable function . Equivalently,
regarding the graph as being defined in terms of its adjacency matrix, we consider matrices 4 = RV XV
such that, independently for each entry, a; = 1 with probability (i — iy and a; = 0 otherwise.
Such range dependent random graphs were introduced and amalysed by Grindrod [9,10]. They can
exhibit the small world phenomenon—high local clustering coupled with relatively short expected
pathlengths—that was first studied by Watts and Strogatz [28]. Many real life networks have been
found to exhibit the small world phenomenon [1,8,20,26-28], and random graphs that capture this
effect form useful models for simulation and analysis [3,6,12,13,18,21,241. Grindrod 9,10} developed
the range dependent random graph framework as a means to model the “many to many” connec-
tions that have been observed in experiments on gene to gene and protein to protein inferactions
{2,5,11,15-17].

Grindrod focussed on edge probability functions with the power law form

fly = a7, (1)

where o, 4 € (0,1] are constants. Under the natural ordering, {vy,v5,..., 05}, choosing o« =1 forces
each pair of neighbours to be connected, and the parameter 4 controls how quickly /(k) decays, that
is, how rapidly the probability of an edge reduces as a function of the distance between vertices.

Grindrod alse highlighted a fascinating inverse problem. Suppose we are given a graph, that is,
a list of vertices in arbitrary order and a list of edges, which is known, or suspected, to be well
modelied by the range dependent class. How can we reorder the vertices in such a way that the
range dependent connectivity is apparent? In the genomics data set context, such a reordering is
extremely valuable, as it reveals key information about functional relationships between genes (or
the proteins for which they code). The corresponding matrix computation problem is:

Given a sparse matrix, find a symmetric row/column permutation that forces as many nonzeros
as possible to be close to the diagonal.

The problem can be made precise by defining an objective function F: RV*N s Rt that measures
“closeness to the diagonal of elements in a matrix”. In gencral, minimizing F (PAP) over all per-
mutation matrices P is, of course, a very difficult problem in combinatoric optimization, Grindrod
outlined a heuristic approach where 7 is defined via the maximum likelihood principle. In this work
we give a preliminary investigation into the use of existing algorithms that have been designed for
related tasks in sparse matrix computation.

The basic problem that we are tackling is illustrated in Fig. 1. The lefi-hand picture shows the
nonzeros in an instance of the random graph defined by (1) with NV =200, 1 =0.9 and 2 = 1. Note
that most nonzeros are clustered towards the diagonal, but a few ‘long-range’ nonzeros have been
produced. In the right-hand picture we have randomly reordered the vertices; that is, we show the
nonzero pattern in a matrix PAP; where P is an arbitrary permutation matrix. Given the picture on
the right, our task is to find the reordering that produces something close to the picture on the left.

In the next section we introduce the reordering algorithms that are to be tested. Section 3 gives
numerical results, We interpret the results and draw some conclusions in Section 4.
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Fig. I. Partially random graph (1} with ¥ =200, 1 =09 and c = | Left original. Right with symmetric tow and columm
shuffling,

2. Algorithms
2.1. Symmerric Reverse Cuthill-McKee and Symmetric Minimum Degree

Reordering to avoid fll-in during subsequent factorizations is a classic jssue In sparse matrix
computation. The two algorithms that we consider here, Symmetric Reverse Cuthill-McKee and
Symmetric Minimum Degree are particularly popular tools, Symmetric Reverse Cuthill-McKee is
especially promising in our context, as it may be regarded as a heuristic attempt to find a reordering
that minimizes the bandwidih, max{!i — j: a; # 0}. Since these algorithms are standard, we do not
describe them here. Details can be found, for example in [22].

2.2. Spectral Reordering

An alternative reordering algorithm for sparse matrices was proposed in [4]. We note that these
ideas have been further pursued in [19.23,25]. To describe the algorithm, we assume that the matrix
4 is symmetric. The task considered in [4] is to reduce the envelope, which is defined as the number
of nonzeros, plus the number of zeros on each row that lie between nonzeros; that is Zij Jij: where
Fe RV is defined by fi;=1 if a; # 0 or if there exist J1.ja such that j, < j < jp with a; a5, # 0,
and f; = 0 otherwise. However, the algorithm. is motivated in [4] as an attempt to minimize the
two-sum

o=y
{6 fraa 701

We reproduce the argument below, as it is helpful when interpreting the numerical results, Further
Justification for the algorithm appears in 71
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Using # to denote the set of permutations of the integers {1,2,3,... N }, reordering to minimize
the two-sum means solving

: 2
R S G-xiy. (2)
{1 et}

This can be reduced to the probiem

T
mig x O, (3)

where the Laplacian matrix Q is defined by

-1 for i # j and a;; 0,
0 for 7 # j and di; = 0,
gy = P
- Z g; fori=j.
jol

Now a beuristic is introduced that makes the problem tractable, at the expense of computing a
guaranteed optimal solution. Instead of minimizing over the discrete set #, relax the problem (3) to
x € R and factor out the trivial solutions x==0 and x=e, where 0=[0,0,...,0]" and e=[1,1,....1]%.
This feads us to '

min X! O, (4)

{XERN xTe— [ixfl,=1}

which is solved by taking x to be the eigenvector x%I corresponding to the second smallest eigenvalue
of Q. Although the “sofution”, x'*!, is a real-valued vector rather than a permutation vector, we can
use the ordering of the elements in x to induce a permutation vector p € 2. So we choose a pPEF
such that p; < p; if and only if xIm < x}[‘-z]. Applying this reordering to 4 is what we mean by the
Spectral Reordering algorithm.

3. Numerical experiments
Now we give some computational results. These were generated with MATLAR (Version 6.0.0.88

(R12)) [14].7 We used MATLAR’s built-in implementations of Symmetric Reverse Cuthill-McKee
and Symmetric Minimum Degree, which are provided through symrcm.m and symmmd.m,

2Using MATLAB, The MathWorks, Inc., Natick, MA, USA. Online version.
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respectively. Typing help on these two functions produces the foltowing descriptions:

>> help symrecm

SYMRCM Symmetric reverse Cuthill-McKee permutation.
p = SYMRCM(S) returns a permutation vector p such that S(p,p)
tends to have its diagonal elements closer to the diagonal than S.
This is a good preordering for LU or Cholesky factorization of
matrices that come from ‘‘long, skinny’’ problems. It works for
both symmetric and asymmetric §.

See also SYMMMD, COLMMD, COLPERM,
>> help symmmd

SYMMMD Symmetric minimum degree permutation.
p=SYMMMD(S), for a symmetric positive definite matrix 3,
returns the permutation vector p such that S(p,p)} tends to have a
sparser Cholesky factor than S. Sometimes SYMMMD works well
for symmetric indefinite matrices too.

See also COLMMD, COLPERM, SYMRCHM.

Each experiment is presented as eight pictures. The top-left picture gives an adjacency ma-
trix computed as an instance of a range dependent random graph. The top-right picture shows a
shufiled version of the matrix. This is the data matrix to which the algorithms are applied. The
left-hand plot in the second row shows the data matrix reordered accerding -to the Symmetric Re-
verse Cuthill-McKee algorithm. The left-hand plot in the third row compares the ordering pro-
duced by this algorithm with the “correct” ordering; that is, the ordering that recovers the orig-
mal matrix. More precisely, we plot p(g;), Plgz), ... plgn), where pe P represents the original
shuffle and g€ 2 is the permutation from Symmetric Reverse Cuthill-McKee. In MATLAB this
18 plot{p(q)}. For this picture a straight line of slope +1 indicates a perfect reconstruction of
the original matrix. Because {N,N — 1, N — 2,...,1} is as good as {1,2,...,N — I,N} in terms
of identifying neighbouring vertices, a line of slope —1 is equally acceptable. Deviations from a
straight line indicate a mismatch between the original shuffling and the unshuffling that was re-
verse engimeered by the algorithm. Similarly, the remaining pictures in rows two and three give
the same information for Symmetric Minimum Degree and Spectral Reordering, respectively. Be-
cause Spectral Reordering is designed exclusively for symmetric matrices, we applied the algorithm
to the matrix B, where b; = | if and only if either ay =1 or ay =1, where 4 is the shuf-
fled data matrix. To get the right-hand picture in row two, the computed ordering was applied
to 4.

In all tests, we used the power law decay form (1) with =1 and took N =600 vertices. (Formally,
we also redefined f(0) =1, so that probabilities do not exceed 1.)
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Fig. 2. Unsymmetric, 2 =03, See text for details,

Figs. 2-4 cotrespond to the cases A =08, /=09 and 1= 0.975, respectively.

It may be argued that typical protein-protein or gene-gene interaction networks correspond to
undirected graphs, and hence to symmetric adjacency matrices. To test the algorithms on symmetric
versions of range dependent random graphs, we computed matrices according to the rule a;; =1 with
probability f(|/ —i|) and a;; = 0 otherwise for j < 7, and a;; = ay; for j > i. Corresponding results
for the parameter values used above appear in Figs. 5-7.

For each experiment, we also computed the bandwidth, envelope and two-sum of the original
matrix and the three matrices resulting from the algorithms. Tables 1-3 give the results.

4. Conclusions and observations

We draw the following points from the numerical results of the previous section.

(1) The algorithms behave similarly on symmetric and unsymmetric problems.
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Fig. 3. Unsymmetric, 4 = 0.9, See text for details.

The Symmetric Minimum Degree algorithm is not successful at recovering the original range
dependent connectivity structure in the adjacency matrix. However, it does seem to pick up
some ordering information.

Symmetric Reverse Cuthill-McKee is fairly successful at reproducing the original data matrix
for the smaller 4 values of 0.8 and 0.9; that is, for matrices where there are relatively few
long-range conmections. It is less successful for the weaker decay rate of A= 0.975, although
even in this case a lot of information is carried through.

Spectral Reordering is the most promising of the three algorithms, and makes a Very accurate
job of undoing the initial shuffling.

It is clear from the pictures, and from Table 2, that Symmetric Reverse Cuthill-McKee tends
to focus on reducing the envelope at the expense of generally shepherding all elements towards
the diagonal. In our context the original matrix may well have “outliers” that represent genuine
long-range contacts and hence should be left as such. Since the envelope is not tolerant to
outliers, it is not the most suitable basis for a reordering.

The two-sum appears to be quite a robust objective function for the range of 4 values used here,
and the relaxation from permutations in (2) to real vectors in (4) still leads to good solutions.
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Fig. 4. Unsymmetric, A= 0.975. See¢ text for details.

In several cases, Spectral Reordering pushes the two-sum below its value for the original matrix,
but produces a very similar ordering.

We point out that these preliminary results are based on single instances of range dependent graphs.
More authoritative conclusions can only be drawn from a statistical analysis based on many samples.
As mentioned in Section 1, Grindrod [9] suggested using a maximum likelihood approach i order
to obtain an objective function. Given that the correctly teordered data matrix comes from a range
dependent random graph generated by a function f, the maximum likelihood ordering, that is, the
ordering producing a matrix that has the highest probability of arising, is given by solving

max H Sl —x]) H (1 f(x —x0))

Ly 70) {1 jray =0}

Grindrod noticed that this problem can be re-written

I I f(!xi - xj[) H »
e et 3 E (] - f (= x50))
S Ul =) > J
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Fig. 5. Symmetric, £ = 0.8, See text for details.

The second product inside the braces is the probability of a null graph, that is, a graph with no
edges, and this is constant for all x € 2, Hence, the maximum likelihood ordering can be found by
solving '

f(fx,wx}-g)
mey 7m0 v

{1 jay#0}
(In practice, any edges that exist with probability 1, that is, where fY( [x; —x;])==1, would be treated
specially.) This approach has the benefit of allowing the objective function to be tuned to the data.
For example, using the class (1), values for the parameters o and A could be estimated from A.
However, (5) 18 a bard combinatorial optimization problem, in general. Grindrod [9] outlined a
hierarchical algorithm, based on iteratively improving a current guess for the best x, that can be
used to tackle the problem directly. An advantage of the two-sum objective function is that, after
relaxation to RY, it reduces to tractable numerical linear algebra. Of course, the Spectral Reordering
solution could be fed in as an initial guess to Grindrod’s direct method. In fact, the two approaches,
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two-sum minimization and maximum likelihood, are not unrelated, and understanding the connection
between them gives a useful insight into the behaviour of Spectral Reordering, as we now show.

Lemma 1. The problem of minimizing the two-sum (2) is equivalent to maximum likelihood opti-
mization (5Y with

emkl
f(k)z‘l:“éﬂ:ﬁ, 1530,1,2,... . (6)

Proof. Multiplying by 1 in (5), the max becomes a min. Taking logs and equating the objcctive
function with that in (2) gives the result. I

Lemma 1 shows that, from a maximum likelihood viewpoint, Spectral Reordering postulates an
underlying range dependency given by f in (6). As k increases, this J{k) decays faster than the
geometric rate in (1). Fig. 8 shows how f(k) in (6) for k > 1 compares with (1) using o == 1 and
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Tabie 1
Bandwidth
Original matrix Symm. Rev. C-McK Symm. Min. Deg, Spectral
A= 0.8, Unsymm. 42 31 591 41
A=10.8, Symm. 40 24 599 3
4= 0.9, Ungymm. 116 65 559 96
A=109, Symm. 78 o4 597 69
A =10.975, Unsymm. 455 284 597 442
A=1.975, Symm. 387 285 598 360

4 =10.8,0.9,0.973, as in our experiments. The vety rapid fall-off in (6) suggests that the Spectral
Reordering approach may be less successful on data where either (a) long-range connections are not
so rare or (b) long-range outliers are present due to experimental noise.
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Table 2
Envelope, scaled by 16* and rounded to 1 decimal place
Original matrix Symm, Rev. C-MeK Symm. M. Deg. Spectral
A== 0.8, Unsymm. 1.3 1.6 11.7 1.3
A=10.8, Symm. 1.3 1.6 10.7 1.3
A=09, Unsymm. 33 4.1 214 3.3
A =09, Symm. 34 4.2 12.6 3.3
A= 0.975, Unsymm, 168 19.0 33.2 16.6
A =0.975, Symm. 16.6 19.7 30.5 16.4
Table 3 )
Two-surn, scaled by 10° and rounded to | decimal place
Original matrix Symm. Rev. C-McK Symm, Min. Deg. Spectral
A =08, Unsymn. 2.7 53 15884 26
A =08, Symm. 2.7 5.1 1298.9 24
A =09, Unsymm. 21.4 52.8 53397 20.9
A=10.9, Symm, 22.5 36.3 21057 211
A= (0.975, Unsymm. 1220.6 2674.3 17025.6 12121
A=0975, Symm. 1210.5 3629.8 15922.0 1186.2
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Fig. 8. Plots of f(k) in (1) with =1, 1 =0.8,09,0975 and in (6).
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In summary, we hope that this work draws more attention to a challenging inverse problem that
appears to have direct relevance to an extremely important and timely application area. There are
many ways in which the ideas here (which themselves draw heavily on [9,10]) could be pursued.
fo particular, three key topics for reordering algorithms are

e large scale statistical testing on range dependent random graphs,

s experiments on large scale genome datasets,

o development of customized algorithms that combine ideas from graph theory, optimization, sparse
matrix theory and statistics.
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