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Abstract

We construct an elliptic Grothendieck-Springer resolution as a simultaneous log resolu-
tion of algebraic stacks. Our construction extends earlier work from the stack of semistable
principal bundles on an elliptic curve to the stack of all principal bundles. We use elliptic
analogues of transversal slices to study the geometry of the unstable part of our resolution

in codimension < 2, and give detailed case by case calculations of the corresponding surfaces
in all types.
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Chapter 1

Introduction

Let G be a simply connected simple algebraic group over an algebraically closed field k.
Classically, the Springer theory of G is the study of various features of the additive and
multiplicative adjoint quotient maps

x4 g — g//G = Speck[g]® and x™:G — G)/G = Speck[G]“, (1.0.1)

where g = Lie(G) is the Lie algebra of G and G acts on g (resp., G) via the adjoint

representation (resp., by conjugation).

add mul

One of the most important of these features is that both y*“* and x are flat with
some singular fibres, and admit simultaneous resolutions of singularities after pulling back
along finite coverings of the targets. More precisely, there are isomorphisms g/G = t)W

and GG = T W, due to Chevalley, and commutative diagrams

_ B d}a,dd 5 B wmul
=GEx"b— g G=Gx*"B — @G
)Zaddl J{Xadd and >2muzl Jxmul (1.0.2)
t———— /W T — T)W,

where T C B C G are a maximal torus and Borel subgroup respectively, t = Lie(T") and
b = Lie(B) their Lie algebras, and W = Ng(T')/T is the Weyl group. The diagrams (1.0.2)
are called the additive and multiplicative Grothendieck-Springer resolutions. Assuming that
k has characteristic 0 in the additive case, they are simultaneous resolutions in the sense
that ¥?? and Y™ are smooth, 1244 and ™" are proper, and for all ¢ € t (resp., T'), the
morphism (y%4)~1(t) — (x*)=L({tW) (resp., (Y™ 1(t) — (x™“)~1(tW)) is a resolution
of singularites.

The adjoint quotient maps (1.0.1) and their Grothendieck-Springer resolutions (1.0.2) are
rich and interesting objects, with connections to many areas of mathematics. For example,
in representation theory, the cohomology of the fibres of 1*?? give natural representations of
the Weyl group W [S3], [S4], [S1], the multiplicative Grothendieck-Springer map ™% plays
an essential role in Lusztig’s theory of character sheaves for representations of finite groups of
Lie type [L3] (see also [BZN2, §1.3.1]), and the Belinson-Bernstein localisation theorem [BB|
relating representations of g to twisted D-modules on the flag variety G/B can be interpreted
in terms of a quantisation of the additive Grothendieck-Springer resolution [BZN1] [MN].
The Grothendieck-Springer resolutions are also of interest in algebraic geometry, as they
give a direct link between algebraic groups and du Val singularities of algebraic surfaces as
follows.

For simplicity, assume that k = C and restrict attention to the additive case. Then
[S1, §2.4] there exist closed subvarieties Z C g of dimension [ + 2, where | = dim(7T'), such
that Z is transverse to every G-orbit in g, and contains a single “subregular” element with

stabiliser group of dimension [ + 2. Given such a subregular transversal slice Z, the additive



Grothendieck-Springer resolution pulls back to a simultaneous resolution

Z
t

which is smoothly equivalent to an open set in (1.0.2) in the sense that they have a common

— 7
JXZ (1.0.3)

— W,

smooth cover, where yz is now a flat family of affine surfaces. It was shown by E. Brieskorn
[B2] that when G is of type A, D or E, x,'(0) has a du Val singularity of the same type,
the family xz is a miniversal deformation of this singularity, and Yz is a family of minimal
resolutions of the fibres of xz. This was extended to types B, C, F' and G by P. Slodowy
[S2], who showed that in these cases the singularity is again du Val, of type dual to the
unfolding of G, that (1.0.3) admits an action of the discrete folding group of order 2 or 3,
and that the deformation is miniversal among deformations respecting this symmetry.
More recently, it has been understood that many constructions from additive and mul-
tiplicative Springer theory also have “elliptic” analogues. To motivate this, note that the
adjoint quotients g/G and GG are coarse moduli spaces (in an appropriate sense) for the
stack quotients g/G and G/G. The central idea of elliptic Springer theory is to replace these
stacks with the stack Bung(E) of principal G-bundles on a smooth elliptic curve E over k.
At a basic level, this substitution is not unreasonable: for example, if we allow the
elliptic curve E to degenerate to a curve with a cusp (resp., a node), then the additive stack
g/G (resp., the multiplicative stack G/G) is naturally identified with the open substack
of G-bundles whose pullbacks to the normalisation are trivial. From a slightly different
perspective, the passage to elliptic Springer theory can be viewed as a passage from finite
dimensional groups to loop groups: if we fix a complex number ¢ € C* with 0 < |¢| < 1,
then C* /¢ is the analytification of an elliptic curve and, by an unpublished observation of

E. Looijenga, there is an isomorphism of complex analytic stacks
LG/,LG = Bun&(C* /¢”%) (1.0.4)

C*x @
(q2,9) ~ (2,9(2)9)

pr—

where LG is the group of holomorphic maps ¢: C* — G acting on itself by q¢-twisted
conjugation

(0-0)(2) = 0(2)p(2)0(qz) "

It was observed by I. Grojnowski and N. Shepherd-Barron in [GSB, §3] that the restriction
G/G — Bun@&'(C* /%) of (1.0.4) to the constant loops G C LG is in fact étale in a neigh-
bourhood of the identity. Since Bun&*(C*/q¢?) is the analytification of Bung(C* /¢%) (by
GAGA) and since the image of G/G consists entirely of semistable bundles, this identifies
an analytic neighbourhood for the identity in G/G with an analytic (étale) neighbourhood
for the trivial bundle in Bun (C*/¢%).

There are, however, some qualitative differences between the stacks g/G and G/G and
the stack Bung(E). For instance, Bung(E) is only locally of finite type, and only admits a
well-behaved coarse moduli space after restricting to the finite type open substack Bungy (E)
of semistable bundles. This coarse moduli space was studied by R. Friedman and J. Morgan
in [FM1], who identified it with the quotient Y /W, where Y = Hom(X*(T), Pic’(E)) =
PicO(E)l is the abelian variety parametrising degree 0 T-bundles on E. The semistable



coarse moduli space map Bung (E) — Y /W fits into a commutative diagram

——— S8 PSS

Bung, (E) = Bun%(E) ——— Bun{j (E)

XJ JXSS (1.0.5)

Y Y JW.

The diagram (1.0.5) has been studied by D. Ben-Zvi and D. Nadler in [BZN2] from the per-
spective of character sheaves, who showed that it shares many properties with (1.0.2). It was
also shown in [GSB, Theorem 3.11] that, over C, the analytic morphism G/G — Bung'(E)
extends to a morphism (of diagrams) from the multiplicative Grothendieck-Springer resolu-
tion to (1.0.5) that is smooth in a neighbourhood of the identity in G.

The guiding principle behind this thesis is that the semistable elliptic Springer theory
described above should extend in an interesting way to the whole of Bung(E). Our first

main result gives a precise incarnation of this principle.

Theorem 1.0.1 (Corollaries 4.5.2 and 5.5.7 and Proposition 4.5.4). There ezists an ample
W -linearised line bundle ©y on'Y, with inverse @;1, and a commutative diagram

Bung(E) —— Bung(E)

XJ JX (1.0.6)

0y /Gy —— (Y [W)/C,

which is a simultaneous log resolution with respect to the zero section of @;I/Gm i the
sense of Definition 1.0.2 below, where Y is the affine cone over Y obtained by contracting
the zero section of @;1 to a point. The preimage of the cone point under x is precisely the

locus of unstable bundles in Bung(FE).

We will call the diagram (1.0.6) the elliptic Grothendieck-Springer resolution. Unlike the
additive and multiplicative Grothendieck-Springer resolutions, the elliptic Grothendieck-
Springer resolution is not quite a simultaneous resolution, as the morphism Y fails to be

smooth over the zero section of @;1. It does, however, satisfy the following weaker property.

Definition 1.0.2. Let

(1.0.7)

&Xt

L}X
Jf

§—— 35
be a commutative diagram of algebraic stacks and let D C S be a divisor. We say that (1.0.7)

is a simultaneous log resolution with respect to D if the following conditions are satisfied.

(1) The morphisms f and f are flat, ¢ is representable, proper, surjective and generically
finite, and 7 is proper with finite diagonal.

(2) For any point s: Speck — S, the morphism f~*(s) — f~(¢(s)) is an isomorphism over
a dense open substack of f~1(q(s)).

(3) The stack X is regular, the morphism f is smooth away from D, and f~(D) is a
(possibly non-reduced) divisor with normal crossings.



Remark 1.0.3. Definition 1.0.2 is weaker than the definition of simultaneous log resolution
given in [GSB, Definition 1.1] in several important ways. First, we do not require that the
map 7: X — X be representable, but impose only the weaker condition that it have finite
diagonal. Since the diagonal is proper (by properness of 7) and the fibres of the diagonal
are the stabilisers (or automorphism groups) of points in the fibres of 7, this is equivalent
to requiring that the fibres of = have only finite stabilisers, which in characteristic 0 is the
same thing as being a Deligne-Mumford stack. Second, we allow the singular fibres of f
to have non-reduced irreducible components, and for these irreducible components to have
self-intersections. Finally, [GSB] require that the relative canonical bundle Kz g be the
pullback of Kx,g, which we do not. We have chosen to make these modifications in order
for Theorem 1.0.1 to be true. It follows from Corollary 4.5.9, Theorem 4.6.1 and Remark
6.1.12 that all of these modifications are necessary.

Theorem 1.0.1 builds on the work of S. Helmke and Slodowy [HS2] and of Grojnowski
and Shepherd-Barron [GSB]. First, a version of the extended coarse moduli space map x
was constructed in [HS2] in terms of the isomorphism (1.0.4) as follows. By a theorem
of Looijenga [L2], the affine variety ?// W is isomorphic to an affine space A'*!'. From
Looijenga’s explicit isomorphism, the ring of functions on At = 37// W can be identified
with a ring of characters of irreducible representations of LG = LG x C*, where LG is the
universal central extension 1 — C* — LG — LG — 1, and ¢ € C* acts on LG by

(q-9)(z) = ¢(qz).
So there is a map
LG/,LG = (LG x {q})/LG — (Ao = (V JyW)*n. (1.0.8)

Although our actual construction of y will be given without reference to loop groups, one
could also obtain its analytification over C by taking the quotient of (1.0.8) by the centre
C* = G C LG. Second, the stack ]/3—1\1;15;(E) appearing in (1.0.6) is the “Kontsevich-Mori
compactification” of Bun’(E) defined in [GSB], which was used in a slightly ad hoc way to
construct a sliced version [GSB, Theorem 1.2] of (1.0.6), analogous to (1.0.3), for groups of
type D5, Eg, E7 and Eg. Theorem 1.0.1 extends Helmke and Slodowy’s work by constructing
X as an algebraic (rather than analytic) morphism, and Grojnowski and Shepherd-Barron’s
work by extending the definitions of x and x to all simply connected simple groups and to
the whole of Bung(E) and Bung(E).

The proof of Theorem 1.0.1 is divided into two parts: the construction of the diagram
(1.0.6) (Corollary 4.5.2) and the proof that it is a simultaneous log resolution (Corollary
5.5.7). The main ingredient in the construction is an elliptic version of Chevalley’s isomor-
phisms g/G = t/W and G/G = T /W, which refines Friedman and Morgan’s identification
[FM1, Corollary 5.12] of the coarse moduli space of Bung (F) with Y /W.

Theorem 1.0.4 (Theorem 4.3.4). There is a certain subgroup Pic" (Y)go0a € Pic" (Y) of

the group of W -linearised line bundles on'Y and an isomorphism
Pic" (Y)good — Pic(Bung(E)). (1.0.9)

Moreover, if Lpun, s the image of Ly € PicW(Y)good under (1.0.9), then there is a canon-
ical isomorphism
H°(Y,Ly)" =5 HBung(E), Leung )-



We give the proof of Theorem 1.0.4 (as Theorem 4.3.4) in §4.3.
The fact that (1.0.6) is a simultaneous log resolution is proved in §5.5 as a fairly straight-
forward consequence of the following analogue of the Kostant and Steinberg section theo-

rems.

Theorem 1.0.5 (Theorem 5.4.6 and Proposition 5.4.13). There exists a morphism Z —
Bung(E) from an affine space Z such that the composition Z — (Y )W) /Gy, with x factors

through an isomorphism Z = 17//W Moreover, writing

Z = BUHG(E) XBHHG(E) Z)
the morphism Z — @{,l/Gm induced by X also factors through an isomorphism Z = @;1.

Theorem 1.0.5 is a mild refinement of another theorem of Friedman and Morgan [FM2,
Theorem 5.1.1], so we call it the Friedman-Morgan section theorem. The new observations
here are that Friedman and Morgan’s parabolic induction construction for the map Z —
Bung(F) can be made to give a natural lift Z — 17//W (Proposition 5.2.10), and that
Theorem 1.0.5 can be proved by computing a small part of the elliptic Grothendieck-Springer
resolution (§5.4).

Theorem 1.0.1 justifies our guiding principle that elliptic Springer theory extends to
unstable G-bundles. In Chapter 6, we also give some evidence for the assertion that this
extension is geometrically interesting. We prove that, with the exception of G = SLs,
there always exist slices Z — Bung(E) through subregular unstable bundles with very nice
properties (Theorem 6.1.5), which are analogous to the slices appearing in Brieskorn and
Slodowy’s work on du Val singularities. For each of these slices, the elliptic Grothendieck-

Springer resolution pulls back to a simultaneous log resolution

7 —— 7

24, |

0.l — 7w

Our main results about these slices (Theorems 6.1.9 and 6.6.1) are identifications of the fibres
of xz over the zero section of @;,1 as explicit surfaces built from blowups of line bundles
over F, Hirzebruch surfaces and projective spaces at points along a embedded copies of the
elliptic curve E. Our computations recover as a special case the computation [GSB, Theorem
6.7] of Grojnowski and Shepherd-Barron in type E, and can also be used (Theorem 6.7.3) to
extend Helmke and Slodowy’s description [HS2] of the codimension 2 singularities of x~1(0)

to all simply connected groups G.

Remark 1.0.6. For technical reasons, we prove many of our main results for the rigidified
stack Bung (E)rig obtained from Bung (E) by taking the quotient of all automorphism groups
by the centre of G, rather than for Bung(E) itself. (For a more precise explanation of what
this means, see Definition 2.2.6.) The advantages of Bung(E),;, over Bung(E) are that
various automorphism groups (coming from centres of Levi subgroups) that are disconnected
in Bung(E) become connected in Bung(E),iq, and that it is easier in practice to construct
morphisms Z — Bung(E),;y. For example, the Friedman-Morgan map Y /W — Bung(E)
does not factor through a section (Y JW) /Gy — Bung(F) of the coarse quotient map, but
it does factor through a section (Y JW)/G,, — Bung(E),ig. Similarly, in Chapter 6, we
will actually work with slices Z — Bung(E),ig, some of which cannot be lifted to maps to

Bung (F) without first passing to a gerbe over Z.



Remark 1.0.7. Throughout the body of this thesis, we will work in a somewhat more
general context than in this introduction. Instead of working with a single elliptic curve
FE defined over an algebraically closed field k, we will allow arbitrary families £ — S of
smooth curves of genus 1 over a regular stack S (and work with a split simply connected
simple group scheme G over SpecZ), subject only sometimes to the restriction that E — S

have a section. The key examples that should be kept in mind are:
(1) S = Speck for k a field, and E an elliptic curve over k,

(2) S=BE’ and E = Speck, where BE’ is the classifying stack of an elliptic curve E’ over

k (this amounts to working with G-bundles on E’ up to translation), and

(3) S = My the stack of elliptic curves over SpecZ (or over some field) and E — S the

universal elliptic curve.

It should be emphasised that very little will be lost to the reader who wishes to assume that

we are in case (1) throughout.
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Chapter 2

Principal bundles on curves

In this chapter, we review some of the basic theory of stacks of principal bundles on curves.
We begin by recalling some of the abstract definitions and properties of Artin stacks in §2.1
before introducing the stack of principal bundles on a curve in §2.3. In §2.2 we discuss
gerbes under commutative group schemes and the process of rigidifying an Artin stack with
respect to a group of automorphisms. In §2.4, we give some more concrete descriptions
of stacks of principal bundles under certain unipotent groups, and in §2.5 we discuss some
general features of the stack of principal bundles under a reductive group, centering around
the notion of semistability. Finally, in §2.6 we describe some simplifications of the general
theory for curves of genus < 1.

To fix ideas, unless otherwise specified, all schemes will be locally Noetherian, and all
group schemes will be flat, affine, and of finite type.

All the results stated in this chapter are either well known or folklore, with the possible

exception of Proposition 2.6.8.

2.1 Recollections on deformation theory and Artin stacks

In this section, we recall and fix terminology for some of the basic notions from deformation
theory and the theory of Artin stacks. We stress that this is not by any means a self-
contained introduction to the subject, for which we direct the reader to one of the standard
references such as [LMB] or [02].
For the purposes of this thesis, by an Artin stack (or algebraic stack) X, we mean a
functor (i.e., a lax 2-functor)
X: Sch®” — Grpd,

where Sch is the category of locally Noetherian schemes and Grpd is the 2-category of
groupoids, such that

(1) X satisfies descent for the étale (equivalently, the fppf) topology,
(2) the diagonal A: X — X x X is representable (by algebraic spaces), and
(3) there exists a (locally Noetherian) scheme U and a smooth surjective morphism U — X.

For the sake of brevity, we will often drop the adjective “Artin” or “algebraic” and speak
simply of stacks.

Remark 2.1.1. Artin stacks naturally form a 2-category, rather than an ordinary category.
When we speak of a commutative diagram, fibre product, etc., of Artin stacks, we will always

mean a 2-commutative diagram, 2-fibre product, etc.

Definition 2.1.2. If X is an Artin stack, then a quasi-coherent (resp., coherent) sheaf on
X is a sheaf I' of O-modules on the site Sch/x of locally Noetherian schemes over X (say,
with the étale topology) such that



(1) if U € Sch/x, then the restriction Fyy of F' to the subcategory of Zariski open sets of U

is a quasi-coherent (resp., coherent) sheaf on U, and

(2) if f: U — V is a morphism in Sch,y, then the induced morphism f*Fy — Fy is an

isomorphism.

This defines full subcategories Coh(X) C QCoh(X) C Oscn,,-mod of coherent and quasi-
coherent sheaves respectively.

Remark 2.1.3. Using the fact that the categories of coherent and quasi-coherent sheaves
satisfy fpqc descent, one can show [O1, §10] that we obtain equivalent categories Coh(X)
and QCoh(X) if we replace Sch,x with the lisse-étale site of X or the étale topology on
Sch,x with the fppf or fpqc topologies.

Similarly, to any Artin stack X one can associate a derived category D(X) of complexes
quasi-coherent sheaves. There are multiple definitions of this available in the literature: to fix
ideas, we will define D(X) to be the category D!, (X) in the notation of [O1, §7]. (Another

qgcoh
good option would be to follow [GR, Chapter 3, §1], which gives the more refined structure of

a stable co-category D(X), denoted there by QCoh(X), rather than a triangulated category.)
If f: X — S is a morphism of Artin stacks, then there is an associated complex Lx,5 €
D(X) controlling the deformation theory of morphisms from S-schemes to X, called the
cotangent complex of X over S [O1, §8]. The tangent complex of X over S is the derived
dual Tx/s = (Lx;s)" = RHom(Lx/s, Ox).
The cotangent complex has the following basic functoriality properties.

Theorem 2.1.4 ([O1, Theorem 8.1)). Let f: X — S be a morphism of stacks.

(1) 1f

X —9% o x

Jf/ Jf (2.1.1)

s —h g

18 a commutative diagram of stacks, then there is a natural functoriality morphism
Lg*Lx/s — Lx//s,
which is an isomorphism if (2.1.1) is Cartesian and either f or h is flat.
(2) If g: U — X is another morphism of stacks, then there is a natural exact triangle

Lg*LX/S — LU/S — LU/X — ]LX/S[l]-

For well behaved representable morphisms, the cotangent complex can be computed

easily from more classical objects.

Proposition 2.1.5. Suppose that f: X — S is smooth and representable and thati: Y — X
is a regular embedding with ideal sheaf I. Then the Lx/g = Qﬁ(/s s the sheaf of relative
Kdhler differentials, and Ly s is given by the complex

Lyss = [I/1* -5 i*Qk 4]

concentrated in degree —1 and 0.

10



At a basic level, the connection between cotangent complexes and deformation theory
can be understood as follows. Given a point z: Speck — X (with k a field) over the point
s = f(z): Speck — S, we can define deformation functors

Xioe: Arty — Grpd and  Sjo.: Arty — Grpd,

by setting
Xloc(A) = Hom(spec A, X) X Hom(Spec k,X) {.’E}

and
Sloc(A) = Hom(SPeC A, S) X Hom(Spec k,S) {S}

for A € Arty, where Arty is the category of local Artinian rings with residue field k. In
the following proposition, we write Lyx,s, = Lz*Lx/,s for the derived pullback of Ly,g to
Speck.

Proposition 2.1.6. We have the following.

(1) If V is a finite dimensional k-vector space, then ExtO(ILX/S@, V) and Ext_l(LX/S@, V)
are canonically isomorphic respectively to the set of isomorphism classes and the auto-

morphism group of any object in the groupoid
XlOC(k S V) X Stoc(k@V) {S},

where the product on k @V is defined by (a,u)(b,v) = (ab,av + bu) and we also write
s for the image of s € Sioc(k) under the morphism Sioe(k) — Sioc(k & V) given by
a+— (a,0).

(2) If B — A is a surjection in Arty with kernel V. C B satisfying mgV = 0 (mp the

maximal ideal of B), then there is a canonical “obstruction” function
ob: Xloc(A) X S1oe(A) Sloc(B) — Eth(LX/S,am V)

such that § € Xioc(A) X s,,,(4)S10c(B) is in the image of the natural functor from Xjoc(B)
if and only if ob(§) = 0.

Remark 2.1.7. Note that if Lx,g is perfect, then Exti(]LX/S’m, V)=H" (Tx/s.)®V.

Remark 2.1.8. Proposition 2.1.6 shows that we can identify Ext ™ (Lx/s,2,k) = H! (Tx/s,2)
with the Lie algebra of the kernel of the homomorphism Autx (z) — Autg(s), where we write
Auty (y) for the automorphism k-group scheme of a k-point y in a stack Y.

Remark 2.1.9. The connection between the cotangent complex and deformation theory
outlined above can be made much sharper in the framework of derived deformation theory,
where the cotangent complex can be characterised as the unique complex corepresenting
some functor. The statements of Proposition 2.1.6 are the most straightforward consequences

of this sharper statement that can be seen in the underived world.

For many stacks of interest, the cotangent and tangent complexes are very difficult to
compute. However, in these cases there is often a much simpler and more natural com-
plex approximating the tangent complex closely enough to retain the deformation theoretic
properties of Proposition 2.1.6.

Definition 2.1.10. If f: X — S is a morphism of stacks, a tangent-obstruction complex
for X over S is a complex T € D(X) together with a morphism (Lx,g)¥ — T such that the

(derived) cokernel has vanishing cohomology in degrees < 0.

11



We can also speak of tangent-obstruction complexes T, € D(Speck) at x: Speck — X
by replacing Lx,s with Lx/s, in Definition 2.1.10.

If T is a tangent-obstruction complex for X over S, then the vanishing condition im-
plies that for any point x: Speck — X and any k-vector space V', the induced morphism
Exti(LX/S,x, V) — HY(T,) ® V is an isomorphism for i = 0, —1 and injective for i = 1. So
Proposition 2.1.6 holds with H*(T,) ® V in place of Exti(]LX/S,m, V).

The following proposition follows easily from the above discussion and the fact that the

tangent complex of a smooth morphism of stacks is perfect of amplitude contained in [—1, 0].

Proposition 2.1.11. Assume that f: X — S is locally of finite presentation. Then f
is smooth at x: Speck — X if and only if f has a tangent-obstruction complex T, at x
with HY(T,) = 0 for i # 0,—1. Moreover, for any such tangent-obstruction complex, the

morphism Tx /g o — Ty must be an isomorphism in D(Speck).

Remark 2.1.12. While tangent-obstruction complexes appear somewhat unnatural at first
sight, they have a natural interpretation in the context of derived algebraic geometry: in
practice, interesting tangent-obstruction complexes for a stack X are almost always the

tangent complexes of some non-trivial (but natural) derived thickenings of X.

2.2 Gerbes and rigidification

At many points throughout this thesis, we will encounter stacks in which all automorphism
groups naturally contain a common commutative subgroup, which we will either wish to
remove or use in subsequent constructions. In this section, we review some useful theory for
working with these structures.

Recall that if X — S is a morphism of stacks and G — S is a group scheme over S,
then a G-torsor or principal G-bundle on X is a morphism ¢ — X equipped with a right
G-action on £ over X such that there exists an fppf surjection U — X and a G-equivariant
isomorphism U xg & = U xg G. The classifying stack of G is the algebraic stack BG = BgG

representing the functor
Stk‘/’g — Grpd
X — {G-torsors on X}.
It is easy to see that giving a morphism BsG — X is equivalent to giving a morphism
x: S — X (the image of the trivial torsor S x G) equipped with a homomorphism G =
Auty (S x G) — Autx (x) of automorphism group schemes over S.

If G — S is a commutative group scheme, then the classifying stack BG is a (commu-
tative) group stack over S with identity given by the map S — BG classifying the trivial
torsor, and group operation given by

m: BG xg BG — BG
(&n) —E®n

where, for ¢ and 1 G-torsors over some S-stack U, £ ® 1 is the G-torsor given by
Ean=Ex%n=(Exun)/G,

where G acts on & Xy 1 by the formula (x,y) - g = (zg,yg~ '), and the action of G' on
¢ ® n is induced by the action on either factor & or 7 in the product. Using the general

theory of group objects in a 2-category, one can therefore define to notion of an action of
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BG on an S-stack X. While the general definition of an action of a group stack is somewhat

complicated, in the special case of BG it reduces to the following simple structure.

Definition 2.2.1. Let X — S be a morphism of stacks, and let G — S be a flat commutative
group scheme of finite type. An action of BG on X over S is a morphism a: X xgBG — X
of stacks over S, equipped with a 2-isomorphism making the diagram of S-stacks

X —— X xsBG

idx J
a

X

commute, where the top morphism is the canonical quotient map classifying the trivial

G-torsor on X.

Remark 2.2.2. If s: U — S is an S-scheme, a morphism U xg BG — X over S is the
same thing as a point « € X(U) over s € S(U), together with a homomorphism Gy —
ker(Aut y () — Autg(s)) of group schemes (or group algebraic spaces) over U. Using this
fact, an action of BG on X is the same thing as a collection of homomorphisms Gy —
ker(Aut y () — Autg(s)) for every X-scheme z: U — X compatible with base change.

More generally, an action of a group stack H on X consists of an action in the sense of

Definition 2.2.1, together with a choice of 2-isomorphism making the diagram

axid

Xx¢HxgH —— X xgH

Jidxm Ja (221)

XxgH ——— X

commute, which is required to be compatible with various other 2-isomorphisms in a precise
way. For H = BG, however, there is a unique such 2-isomorphism, automatically compatible,
given by the obvious identification of the two homomorphisms Gy xy Gy — ker(Aut y (z) —
Autg(s)) for every x: U — X as in Remark 2.2.2.

Given the notion of an action, one can define torsors under group stacks just as for group
schemes. If G is a commutative group scheme, then torsors under the group stack BG have

a special name.

Definition 2.2.3. If G — S is a flat commutative group scheme of finite type and X — S
is any stack over S, then a G-gerbe on X is a morphism of stacks £ — X equipped with an
action of BG on & over X, such that there exists a smooth (equivalently, fppf) surjection
U — Y such that U xy £ is isomorphic to U xg BG as stacks over U equipped with a
BG-action. Here BG acts on U xg BG via

U x5 BG xg BG "™ U x g BG.
Remark 2.2.4. There is another notion of gerbe defined, for example, in [LMB]. These
weaker objects are simply surjective morphisms U — X such that the diagonal U — U x x
U is also surjective, which in particular implies that all geometric fibres of U — X are
classifying stacks of groups. It is easy to see that any G-gerbe in our sense is a gerbe in this
weaker sense, and has the stronger property that all the automorphism groups appearing in
fibres of U — X are identified with the corresponding fibres of G — S.

Just as for actions of group schemes, there is a good theory of quotients for nice enough
actions of BG.
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Proposition 2.2.5. Assume that G — S is a flat commutative group scheme of finite type
and that we are given an action a: X xXg BG — X on an S-stack X such that for every
morphism x: U — X with U a scheme, the induced homomorphism Gy — Auty(x) is a
closed immersion. Then there exists a unique stack X,;q over S equipped with a morphism
X — X,ig such that the BG-action makes X into a G-gerbe over X,;q. Moreover, if X has
affine diagonal over S and G is an extension of a finite group scheme by a torus, then X 4

also has affine diagonal over S.

Proof. Existence and uniqueness of the stack X,;, is proved in [ACV, Theorem 5.1.5]. It
remains to check that X,;; — S has affine diagonal when X does and G is an extension of
a finite group scheme by a torus. To see this, observe that since X — X,;, is a G-gerbe,

there is a pullback square

XXSBG—>XXSX

| J

Xrig ? Xrig Xg X’l‘ig7

where the top horizontal morphism is given by natural projection on the first factor and the
BG action on the second. Since X — X, is faithfully flat, it suffices to show that this top

morphism is affine. If U is an affine scheme and U — X xg X is a morphism classifying a
pair (z,y) € X(U) xx(s) X(U) over s € S(U), then there is a pullback

Isom (2,y)/G —— U

| [

X xgBG ——— X x5 X,

where Isom,(x,y) — U is the scheme of isomorphisms = = y covering id: s = s. But G
acts freely on the affine scheme Isom,(x,y), so Isom(z,y)/G is itself affine over U since G

is an extension of a finite group scheme by a torus. This completes the proof. O

Definition 2.2.6. The stack X4 is called the rigidification of X with respect to the group
G.

2.3 Stacks of principal bundles and basic properties

In this thesis, the most important example of an Artin stack is, of course, the stack of
principal bundles on a curve, or family of curves. We define this stack in this section, and
discuss some of its most elementary properties.

Let X — S be a morphism of Artin stacks, and suppose that G — X is a group scheme,
which we will assume to be flat, affine and of finite presentation over X. Consider the
functor

Bung,g(X): (Stk/s)?” — Grpd (2.3.1)

sending an S-stack U to the groupoid of G-torsors on U xg X.

Proposition 2.3.1. Assume that X is flat, proper and representable over S. Then the
Junctor (2.3.1) is representable by an Artin stack Bung,s(X) locally of finite presentation
with affine diagonal over S.

Remark 2.3.2. In more prosaic terms, Bung,g(X) is the stack of pairs (s,{g), where s € S
and £¢ — X, is a Gg-bundle over the fibre X, of X over s.
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Remark 2.3.3. If X — S is as above, X — X' is any morphism of stacks, and G — X'
is a group scheme over X’, then Gx = X xxs G is a group scheme over X, and we will
write Bung,s(X) for the stack Bung, /s(X). Note that, for any S-stack U — S, a principal
G x-bundle on U xg X (viewing U xg X as a stack over X) is by definition the same thing
as a principal G-bundle over U xg X (viewing U xg X as a stack over X’).

Remark 2.3.4. If S = Spec k for some field k, we will often write Bung(X) = Bung,5(X).

Assume that G — X’ is a group scheme over X’ and that Y — X’ is a stack over X'
equipped with a left G-action. If X is a stack over X’ and ¢ — X is a principal G-bundle,
then we set

e xCY = (g xx YV)/G — X

on X, where G acts on £g xx/ Y by (z,v)g = (zg,9 'y) forz € ég, g€ Gand y € Y.
If G — H is a homomorphism of group schemes over X’ then ¢ x¢ H is naturally
an H-torsor, where G acts on H by multiplication on the left and H acts on {g x¢ H by

multiplication on the right. This construction defines a morphism
Bung/s(X) — BUHH/S(X). (232)

Definition 2.3.5. In the setup above, if £ — X is an H-bundle, a reduction of the structure
group of &g to G is a G-bundle ¢ — X and an isomorphism &g x& H = £y (i.e., a preimage
of &y under (2.3.2)).

If X — Y is a morphism of stacks over another stack S, we write I's(Y, X) for the stack
whose functor of points sends an S-scheme U to the groupoid of sections over U of the map
UxsgX —UxgVY;if Y — S is proper, then this is algebraic.

The following proposition is elementary and well-known.

Proposition 2.3.6. If G — H is a homomorphism of group schemes, then there is an
isomorphism
Bung;s(X) = I'guny, s (x) (Bungs(X) xs X, "/ G),

where £ is the universal H-bundle on Bung,(X) x5 X.
Remark 2.3.7. In more down to earth terms, Proposition 2.3.6 can be interpreted as says

that a reduction of the structure group of an H-bundle £y — X to G is the same thing as
a section of the map i /G = &y xT H/G — X.

Now suppose that V is a representation of G, i.e., a vector bundle equipped with a linear

G-action. Then &g X V is a vector bundle on X, called the associated vector bundle.

Proposition 2.3.8. Under the assumptions of Proposition 2.5.1, assume in addition that

G — X is smooth. Then Bung,s(X) — S has a tangent-obstruction complex given by
T = R, (65" x“ g)[1],

where g is the Lie algebra of G with G acting via the adjoint representation, {4 is the
universal G-bundle over Bung,s(X) xs X, and 7: Bung,g(X) x5 X — Bung,s(X) is the

natural projection.

Corollary 2.3.9. If G — X is a smooth affine group scheme and X — S is a proper
curve, then Bung,s(X) — S is smooth and the tangent complex ’]I‘BunG/S(X)/S is equal to

the tangent-obstruction complex of Proposition 2.3.8.
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Proof. Fix a point s: Speck — S and a G-bundle {¢ — X corresponding to a point in
Bung/s(X). Then Proposition 2.3.8 gives a tangent-obstruction complex

T(s.¢q) = RO(Xs, & x< g)[1]

for Bung,s(X) at (s,&c). Since X is a curve, H(X,, &G x%g) = 0 for i > 1, so Proposition
2.1.11 implies the claim. O

It will often be convenient to simplify Bung,g(X) using the rigidification construction
described in §2.2. Let G — X be a group scheme, and choose a closed subgroup H C
I's(X, Z(@G)) that is flat over S. Then we have a natural action

BunG/S(X) xs BH — BU.I’IG/S(X)
(Easnm) — Sa @ na,

where, for U an S-scheme, {¢ — U xg X a G-bundle and ng — U an H-bundle, we set

§a @nu = (§a xv nu)/H,

where H acts on &g Xy ny by the formula (z,y) - h = (zh,yh™!). This action corresponds
to the collection of homomorphisms Hy — Aut(€g) defined by the action

Hy xy e — &a

(h,z) — zh.

Since these homomorphisms are closed immersions, we have a rigidification Bung,s(X) —
Bung/s(X),ig with respect to H.

Remark 2.3.10. In the special case where H is the centre of some reductive group, H is
an extension of a torus by a finite commutative group scheme, so Bung, (X )iy has affine

diagonal by Proposition 2.2.5.

Remark 2.3.11. If G — S is a group scheme over S, then we have that Z(G) C I'g(X, X xg
Z(@)) is a closed subgroup, so we can rigidify Bung,s(X) = Bunx /(X)) with respect
to closed subgroups of Z(G).

2.4 Principal bundles under unipotent groups

In this section, we describe methods for studying the geometry of Bung(X) when the group
G is built from additive groups and X is a curve.
We first recall the relationship between sheaf cohomology and principal bundles under a

vector bundle (viewed as a group scheme under addition).

Proposition 2.4.1. Let mx: X — S be a proper curve over S and V a vector bundle on
X. Assume that the coherent sheaves Rimx (V) are vector bundles on S for i =0,1. Then
the rigidified stack Buny,g(X),ig with respect to H = T's(X,V) = nx (V) is isomorphic to
the total space of the vector bundle Rlmx (V) on S.

The next proposition describes how principal bundles behave under extensions of group
schemes.

Proposition 2.4.2. Let : X — S be a proper curve over S, X — X' a morphism of stacks
and let
l1—K—G—H—1 (2.4.1)

be a short exact sequence of flat affine group schemes over X'.
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(1) If the sequence (2.4.1) is split, so that G =2 K x H, then
Bung/s(X) 2 Bung/n (M xs X), (2.4.2)

where M = Bung,g(X) and K — M x5 X is the group scheme K = gunt x H K where
vt — M x g X is the universal H-bundle and H acts on K by conjugation.

(2) If K is a vector bundle contained in the centre of G then Bung,g(X) is naturally a
group stack, and Bung,g(X) is a Bung,s(X)-torsor over Bung,s(X).

Proof. In (1), if we view the right hand side of the isomorphism (2.4.2) as the stack of pairs
(€m,&x), where &y is an H-torsor and k¢ a torsor for the corresponding fibre of I, the
isomorphism sends £ € Bung,s(X) to the pair (g = ¢ x¢ H,&/H). (Note that the
action of K on {5 on the right determines an action of K = £g x& K on £g/H.) It is easy
to check that this is indeed an isomorphism of stacks.

To prove (2), observe that the action of K on G by multiplication on the right induces
an action of Bung,g(X) on Bung,s(X) over Bung,s(X) such that the induced morphism
Bung,s(X) xBung,/s(X) — Bung,g(X) XBuny, s(x) Bungys (X) is an isomorphism. Hence,
to show that Bung,g(X) — Bung,s(X) is a Bung,g(X)-torsor, it suffices to show that
Bung/s(X) — Bung,s(X) is surjective. To see this, observe that if {g — X, is an H-
bundle on a geometric fibre of X — S, then the stack quotient 5 /G is naturally a K-
gerbe over X . Since H?(X,,K) = 0, as K is a vector bundle and X, is a curve, all
K-gerbes over X, are trivial, so £y /G admits a section, and hence g is in the image of
BUHG/S(X)—)BHHH/S(X). O

Using Proposition 2.4.1 and Proposition 2.4.2, we have the following two extreme cases
for the geometry of Buny,s(X) with &/ — X a connected unipotent group scheme.

Corollary 2.4.3. Let mx: X — S be a proper curve and U — X a connected unipotent
group scheme such that T's(X,U) = {1}. Then Buny,g(X) is an affine space bundle over
S.

Proof. Fix a central series

for U. We prove by the corollary by induction on the length n.

When n = 1, this reduces to a special case of Proposition 2.4.1, so suppose that n > 1.
Then the assumptions on I/ imply that U, is a vector bundle on X such that H°(X,,U,,) =0
for every s: Speck — S. So Proposition 2.4.1 implies that Buny, /s(X) = Rimx U, is a

vector bundle over S. We have a central extension
1— U, —U—UU, — 1,

so Bung,/g(X) is a R7x U,-torsor over Bun gy y,,)/s(X). Since Buny y,),s(X) is an affine
space bundle over S by induction, so is Buny/s(X). O

Corollary 2.4.4. Let mx: X — S be a proper curve and U — X a connected unipotent

group scheme admitting a central series
{1} :unJrl CU, CU, 1 C---Clh=U

in which each quotient U; /U;+1 is a vector bundle with ]RIWX*LQ/Z/{Z-H = 0. Then the map
BI's(X,U) — Bunyg(X) classifying the trivial bundle is an isomorphism.
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Proof. For n = 1, the statement is immediate from Proposition 2.4.1. For n > 1, we have a
central extension

11— U, —U—UU, — 1,
from which it follows by Proposition 2.4.1 and induction that BI's(X,U) — Buny,s(X) is
a morphism of BI's(X,U,)-gerbes over I's(X,U/U,) = Buny,),s(X), hence an isomor-

phism as claimed. O

The stack of bundles under a connected unipotent group scheme has the following con-

venient properties.

Corollary 2.4.5. Let X — Speck be a proper curve over an algebraically closed field k and
let U — X be a connected unipotent group scheme. Then Buny(X) is connected.

Proof. By induction on the length of a central series for U, we can reduce by Proposition
2.4.2 to the case where U is a vector bundle on X. The statement in this case follows

immediately from Proposition 2.4.1. O

Proposition 2.4.6. Let X — Speck be a proper curve over an algebraically closed field k,
and let U — X be a connected unipotent group scheme. If & — X is U-bundle, then the

canonical morphism BAut(&,) — Buny(X) is a closed immersion.
Proof. Fix a central series

for Y. We prove by the proposition by induction on the length n.

For n = 0 the claim is trivial. For n > 0, we have a short exact sequence
1—U, —U—UU, — 1,

where U,, is a vector bundle on X and the claim holds for i /U,,. So Proposition 2.4.2 implies
that the fibre product
X ——  Buny(X)

T

BAut (& /04, ) —— Bungy, (X)),

is a trivial Buny, (X)-torsor over BAut(& 4, ) and hence isomorphic to Bung, (X)/Aut(&y14,,),
where & /11, = &u x"U /U,,. Since the horizontal morphisms in (2.4.3) are closed immersions,

we just have to show that the morphism
BAut(&y) — Buny, (X)/Aut(&yu,)

is a closed immersion, which reduces by Proposition 2.4.1 to showing that the orbits of
Aut(&y/u,) on the variety H Y(X,U,) are closed. But this is immediate since Aut(&;, Ju,)
acts through some algebraic group homomorphism Aut (&, ) — Buny, (X) — H X, Uy),

which must have closed image. O

One can view (2) of Proposition 2.4.2 as a part of the long exact sequence in nonabelian
cohomology applied to short exact sequences in which every term is a flat group scheme.

However, it is also useful to consider nonabelian analogues of short exact sequences
0—U—V-—F—0,

where U and V are vector bundles and F' is a torsion coherent sheaf. The following propo-

sition gives one such analogue.
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Proposition 2.4.7. Let X — S be a proper curve and let U' — U be a homomorphism of

connected unipotent group schemes over X such that

(1) U — U' is an isomorphism over an open subset of X that is dense in every geometric
fibre of X — S, and

(2) for every morphism S — S with S’ an affine scheme and every affine open V. C S'xs X,
L(V,U') is a normal subgroup of T'(V,U).

Then the stack T's(X,U/U") is a group scheme over S, and Buny,,s(X) — Bung, g(X) is
naturally o T's(X,U/U")-torsor.

Proof. To show that the stack I's(X,U/U’) is a group scheme, consider its functor of points

Fy: Stk;”:g — Grpd
S — (X", U/U),

where we write X’ = S’ xg X. Since F, satisfies fppf descent, it is determined by its
restriction to the full subcategory Cy C Stk,g spanned by the affine schemes S” over S such
that X' is itself a scheme. Moreover, F extends to a functor

FO,Zar: C(()),pZar — Grpd
(8", V S X")—T(V.uju'),

where Cp 7,y is the category of pairs (5", V C X') where S’ € Cy and V' C X’ is a Zariski open
subset. Since U’ is unipotent, every U’-torsor on an affine scheme is trivial, so whenever V

is affine we have that
r(v,u/u’y =r(v,u)/r(v,u’)

is the quotient of a group by a normal subgroup, and is hence a group. So by Zariski descent,

Fy zar and hence Fy is valued in groups, so I's (X, U /U') is a group scheme over S as claimed.

Similarly, to show that Buny.,g(X) is a I's(X,U /U’)-torsor, notice that by Proposition
2.3.6, Buny/5(X) has functor of points

. Q41.0P

F: Stk/Bunws(X

(S &u) — T(X', & /U,

) Grpd

which is again determined by the functor

. (°p
FZar . CZar

(8, &,V S X') = T(V, & /U') =T(V,&)/T(V,U'),

— Grpd

where Cz,, is the category of triples (S’,&,,V C X') where S’ is an affine scheme over S
with X’ = 8’ x5 X also a scheme, &, — X' is a U-torsor and V C X’ is an open subset. It is
clear that Fy za,(S’, V') acts naturally on Fz,,(S’, &y, V). Since § must be trivial restricted
to V when V is affine, it follows that Fy..(S’, &y, —) defines an F zar(S’, —)-torsor on X' for
fixed S’. Finally, since U’ — U is generically an isomorphism on every fibre of X — S, there
exists an affine open V' C X’ and a subset Z C V closed in X’ such that Fy za,(S’, &, —) is
trivial on any open subset of X'\ Z. So any trivialisation of Fy,, over V extends uniquely to
a trivialisation on all of X', which implies that Bung, ,s(X) — Buny/s(X) is a T's(X, U’ /U)-
torsor as claimed.

O
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2.5 Principal bundles under reductive groups and stability

We now turn to the much more subtle problem of describing the stack Bung/s(X) when G
is a reductive group, which in some sense will take up the bulk of this thesis. In this section,
we recall some of the basic theory of reductive groups, establish some notation, and discuss
the important notion of (semi)stability for principal bundles under a reductive group.

Unless otherwise specified, by a reductive group, we will always mean a split connected
reductive group scheme over SpecZ. We will fix throughout this section a proper curve
X — S over a stack S.

In the case of the simplest reductive groups, tori, the structure of Bung/g(X) is captured
by the classical theory of Picard schemes.

Proposition 2.5.1. Let T be a split torus over SpecZ with character group X*(T) =
Hom(T,G,,) = Z' and X — S a proper curve with reduced and irreducible geometric fi-
bres. Then, with respect to the subgroup H =T = Z(T), the rigidified stack of T-bundles is
given by
Buny,s(X)ig = Homg(X*(T), Pics (X)) = Pics(X)',

where Picg(X) is the relative Picard scheme of X over S. Moreover, if we fix a section
x: S — X, then there is a unique section Bung,s(X)ry — Bunp,g(X) such that the
pullback of the universal T-bundle along the map

Bunr/s(X)rig — Bung,s(X)rig x5 X — Bung/s(X) xs X
1s trivial.

Remark 2.5.2. Since Buny,s(X) — Bung,g(X),q is a T-gerbe, the section of Proposition
2.5.1 determines an isomorphism Buny,g(X) = Buny,g(X)ig x BT

In the setup of Proposition 2.5.1, the degree map Pics(X) — Z determines a degree
function

deg: Bunp,g(X) — Homgz(X*(T'), Pics(X)) — Homz(X*(T),Z) = X.(T),

where X, (T) = Hom(G,,, T is the group of cocharacters of T'. More explicitly, if & — X is
a T-bundle over a geometric fibre of X — S, then deg(é1) € X, (T) is the unique cocharacter
satisfying

(A, deg(ér)) = deg A(ér)
for all A € X*(T'), where

(— =) : X*(T) x X (T) — Z
A\ p) — Ao p € Hom(G,y,, Gy) = Z

is the natural pairing and we write A\(é7) = ér xT Zy for the line bundle on X, associated

to &7 and the 1-dimensional representation Zy on which T' acts with weight .

Definition 2.5.3. If A € X, (T), we write Bun}/S(X) C Buny,5(X) for the open and closed
substack of T-bundles of degree .

For G an arbitrary reductive group, we can use the theory for tori to define numerical
invariants of G-bundles. Observe that the reduced identity component Z(G)® of Z(G) and
the abelianisation G/[G,G] of G are tori, and that the morphism Z(G)° — G/[G,G] is an
isogeny.
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Definition 2.5.4. Let £ — X; be a principal G-bundle on a geometric fibre of X — S.
The degree of £ is the degree of the associated G/[G, G]-bundle. The slope of &g is the
image u(&a) € X (Z(G)°)q of deg & under the natural map

X.(G/[G,G]) — Xu(G/[G, Gl)g «— Xu(Z(G)°)g-

More generally, if H is any group scheme such that H/R,(H) is split reductive, we will
define the degree (resp., slope) of an H-bundle £y — X to be the degree (resp., slope) of
€4 H/ R, (H), and, given d € X, (H/(R, (H)-[H, H])) (resp., 11 € X.(Z(H/ Ry(H))*)q) we
will write Bunjlq/S(X) (resp., Bun‘;{/S(X)) for the open and closed substack of Bung,g(X)
of H-bundles of degree d (resp., slope u).

Remark 2.5.5. The terminology “degree” and “slope” can be justified as follows: for G =
GL,, we have GL,/|[GL,,GL,] 2 G,, and Z(GL,)° = G,, and hence natural identifications
X.(GL,/[GLy,GLy)) 2 Z and X.(Z(GL,)°)g = Q such that the degree (resp., slope) of a
GL,-bundle g1, is identified with the degree deg V' (resp., slope u(V) = deg V/rank V') of
the vector bundle V' associated to the standard representation. More generally, if G is an
arbitrary reductive group, £ — X is a G-bundle of slope p and V' is any G-representation
on which Z(G)° acts with weight \, then the associated vector bundle £ x¢ V' — X, has

slope (A, u) € Q.

Before we can go further, we need to recall some of the basic structure theory of a

reductive group G.

Definition 2.5.6. Let G be a reductive group. If U is any scheme, a Borel subgroup of
Gy = G x U is a closed solvable subgroup B C Gy, flat over U with connected fibres, such
that for every geometric point u: Speck — U, B, C G}, is maximal among closed connected
solvable subgroups of Gy. The flag variety of G is the Z-scheme F' representing the functor
Sch? — Set sending a scheme U to the set of Borel subgroups of Gy .

The flag variety of a reductive group G is always a connected projective Z-scheme with a
transitive action of G by conjugation of subgroups, such that the universal Borel subgroup
B C G x F is given by

B={(9,z) € GX F| gz =x}.

Since we are assuming our reductive groups are split, F' — SpecZ has a section, defining a
Borel subgroup B C G and an isomorphism

G/B 5 F
gB — gBg~ L.

In view of this isomorphism and Proposition 2.3.6, the flag variety plays an important role
in studying reductions of G-bundles to B.
Again because G is split, there is a unique split torus T over SpecZ, called the abstract

Cartan subgroup, equipped with an isomorphism of group schemes over F
B/R.(B)=B/[B,B| =T x F, (2.5.1)

where R, (H) denotes the unipotent radical of a group scheme H and [H, H] the commutator
subgroup (the normal subgroup generated by commutators ghg~th~! for g,h € H). For
any choice of Borel subgroup B C G, there is a canonical isomorphism B/R,,(B) = T given
by pulling back (2.5.1) along the section SpecZ — F classifying B. If we choose a (split)
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maximal torus 7" C B, which exists since G is split, then we therefore get an isomorphism
T" = B/R,(B) =2 T. Note that this last isomorphism depends on the choice of Borel
subgroup B containing T".

The reductive group G is completely classified by its root datum (X*(T),®,X,(T),®"),
where ® C X*(T) is the set of roots and ® C X,(T) the set of coroots, and implicitly
we are given a bijection ® — ®V, a — V. If we choose a Borel subgroup and maximal
torus T'C B C G (where we implicitly identify the maximal torus with the abstract Cartan
subgroup via (2.5.1)), the set of roots ® is simply the set of weights of T" acting on the
Lie algebra g of G. If @ € ® is a root, then the corresponding coroot " is defined by
choosing homomorphism p,: SLy — G whose derivative sends the strictly upper triangular
matrices isomorphically onto the a-weight space g, and the strictly lower triangular matrices

isomorphically onto the (—a)-weight space g_, and setting

a’(t) = pa <é t91> for te Gy,.

We will adopt the convention that the set ®_ C & of negative roots is the set of nonzero
weights of T acting on Lie(B), and let ®, = —®_ be the corresponding set of positive
roots. The root datum (X*(T),®,X,(T),®") and the sets ®, and ®_ are independent of
the choice of B and embedding T' — B.

We will write A = {oy,...,q;} € &4 and AY = {of,..., '} C @Y for the sets of
positive simple roots and coroots respectively. We also write {c1,...,w;} and {wy, ..., @)}
for the bases of (Z®Y)Y and (Z®)" dual to A and AV respectively. Note that Z® = X*(T) if
and only if the centre Z(G) is trivial, and Z®V = X, (T') if and only if G is simply connected

and semisimple.

Definition 2.5.7. Let P C G be a parabolic subgroup (i.e., a closed subgroup containing
some Borel). The type of P is the set t(P) C A of simple roots that are not weights of T'
acting on Lie(P) C g for some (hence any) choice T C B C P C G of Borel subgroup and

maximal torus contained in P.

If P C @ is a parabolic subgroup, we write Tp = P/[P, P]. Note that Tp is a torus, and

is the unique quotient of T' with character group
X*(Tp) = {X e X*(T) | (\,)) =0 for a; € A\ t(P)}.
In particular, Tp depends only on the type ¢(P).

Definition 2.5.8. If P C G is a parabolic subgroup, we say that A € X*(Tp) = Hom(P, G,,)
is dominant if (A\,a)) > 0 for all o; € ¢(P).

Remark 2.5.9. For any ¢t C A, there is a G-homogeneous projective Z-scheme F; parametris-
ing parabolic subgroups P of type ¢(P) = ¢, and fixing any such P C G we have an isomor-

phism F} 2 G/P. There is a canonical isomorphism

X*(Tp) = Pic®(G/P) = Pic® (F))

)\l—>ﬁ)\=G><PZ,\7

where Pic® denotes the group of G-linearised line bundles, which is independent of the
choice of parabolic subgroup P of type t. Our conventions are chosen so that A € X*(Tp) is
dominant if and only if the line bundle £ on G/P is nef.
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Returning to G-bundles, assume for the rest of this section that the curve X — S is

smooth.

Definition 2.5.10. Fix a geometric point s: Speck — S and a principal G-bundle (¢ —
Xs. We say that &g is stable (resp., semistable) if for every reduction p of £ to a parabolic
subgroup P C G and every dominant character \: P — G,, of P that vanishes on the
reduced identity component Z(G)®° of the centre Z(G), we have

deg(ép xF 7)) > 0 (resp., deg(ép xP 7)) >0).
We say that &g is unstable if it is not semistable.

Remark 2.5.11. By Proposition 2.3.6, the datum of a reduction £p of £ to P is equivalent
to a section of the associated flag variety bundle o: X, — &g/P = &g x©¢ Fypy, and
Ep xP 7y = U*EE\G, where L'ic = ¢ xP 7y = € x© L, is the natural line bundle on 5/ P

associated to L.

In the special case when G = GL,,, the associated vector bundle of the standard repre-
sentation gives an identification of Bungy, ,¢(X) with the relative stack of rank n vector
bundles on X. We will say that a vector bundle is stable (resp., semistable, unstable) if the
corresponding principal GL,-bundle is. We can also understand this notion more directly
in terms of vector bundles as follows.

If K is a nonzero coherent sheaf on a geometric fibre X, of X — S, then the slope of K
is deg K

HiF) = rank K’
where we adopt the convention that pu(K) = +oo if rank K = 0.

Proposition 2.5.12. Let V' be a vector bundle on a geometric fibre Xs of X — S. The
following are equivalent.

(1) The associated GL,-bundle is stable (resp., semistable).

(2) If K — V is a nonzero subsheaf, then u(F) < p(V) (resp., p(K) < u(V)).

(3) If V.= Q is a nonzero quotient sheaf, then p(Q) > u(V) (resp., u(Q) > w(V)).

(4) If U <= V is a nonzero vector subbundle, then p(U) < u(V) (resp., w(U) < u(V)).

(5) If V.— W is a nonzero quotient bundle, then (W) > pu(V) (resp., p(W) > u(V)).

Proposition 2.5.13. Let X — S be a smooth proper curve. Then the substack
Bung/S(X) C Bung,s(X)

of semistable bundles £ — X is open.

Proposition 2.5.13 is well-known. We will give a proof in §3.6 as an easy application of
the theory of Kontesevich-Mori compactifications.

In characteristic 0, semistability has very good functoriality properties under extension
of structure group and pullback along morphisms between curves. In positive characteristic,

many of these properties require a slightly stronger condition than semistability.

Definition 2.5.14. Let s: Speck — X be a geometric point and let {¢ — X be a principal

G-bundle. We say that g is strongly semistable if either k has characteristic 0, or k has

G ®")
k

characteristic p > 0 and the Frobenius twists g X are semistable G,(f ") _bundles for

all n > 0, where Gy, — chpn) is the relative p™-Frobenius for Gy = G x Speck.
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The class of strongly semistable G-bundles behaves well under extension of structure
group.
Theorem 2.5.15 ([RR, Theorems 3.19 and 3.23]). Let f: G — H be a homomorphism of

reductive groups such that f(Z(G)°) C Z(H)°, and let £ — X be a strongly semistable
G-bundle. Then the H-bundle £ x H is strongly semistable.

In particular, we have the following result concerning semistability of associated vector
bundles.

Corollary 2.5.16. Let £ — X be a strongly semistable G-bundle, and let V' be a repre-
sentation of G on which Z(G)° acts with a single weight. Then the associated vector bundle
o xCV on X, is semistable.

Let £ — X, be an unstable G-bundle. Then by definition, there exists a parabolic
subgroup P C G, a reduction £p of £ to P and a dominant character A\: P — G,, such
that the line bundle £p x¥ Zy has strictly negative degree. In fact, there is a canonical

choice of such a reduction, which is in some sense as destabilising as possible.

Definition 2.5.17. Let P C G be a parabolic subgroup with Levi factor L. We say that
€ X (Z(L)°)qg is a Harder-Narasimhan vector for P if

p = Lle(P) = @ gx,

(A,p(€L)) =0

9= @ ax,

AEX*(Z(L)°)

where

is the weight space decomposition under the action of the torus Z(L)°.

Definition 2.5.18. Let £¢ — X, be a principal G-bundle, and £p a reduction of £¢ to a
parabolic subgroup P C G with Levi factor L = P/R,,(P), then we say that the reduction
&p is canonical, or Harder-Narasimhan, if the induced L-bundle &;, is semistable and (1)

is a Harder-Narasimhan vector for P.

Theorem 2.5.19 ([B1, Theorem 7.3]). Given a G-bundle £g — X, there exists a parabolic
subgroup P C G, unique up to conjugation, and a unique Harder-Narasimhan reduction of
ég to P.

Remark 2.5.20. When G = GL,,, Theorem 2.5.19 reduces to the statement that any vector
bundle V' — X, of rank n has a unique filtration

0=V CViC---CVp=V
such that V;/V;_; is semistable for each ¢ and
n(Vi/Vo) > p(Va/Vi) > -+ > u(Vin /Vin—1).

This filtration is called the Harder-Narasimhan filtration on V.

2.6 Principal bundles on curves of genus 0 and 1

In this section, we highlight some of the special features of the theory of principal bundles
on a curve of low genus. As in §2.5, we fix a family of smooth curves X — S, now assumed
to be of genus < 1, and a reductive group G.

The first simplification of the general theory in this case is that semistability and strong

semistability coincide.
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Theorem 2.6.1 (E.g., [L1, Corollary 6.4]). Assume that X5 has genus < 1. Then every

semistable G-bundle on X is strongly semistable.

As is well known, in this case the Harder-Narasimhan reduction of a G-bundle on X

can be reduced further to a Levi subgroup of G.

Proposition 2.6.2. Assume that X, is a curve of genus g(X;) < 1, let &g — X5 be an
unstable principal bundle, and let £p — Xy be its Harder-Narasimhan reduction. Fiz a Levi
subgroup L C P (so that L — P/R,(P) is an isomorphism) and set &1, = £p xT L. Then

there is an isomorphism of P-bundles
fp = gL XL P.

In particular, the unstable G-bundle £ has a reduction to a semistable bundle for the Levi

subgroup L.

Proof. Consider the fibre Bunp(X;)e, over £ of the morphism Bunp(X,) — Bung(X;)
induced by the homomorphism P — L. By Proposition 2.4.2, we have a canonical isomor-

phism of stacks
Bunp(X;)e, = Buny(X,)

where U — X, is the group scheme U = £ x© R, (P), and L acts on the unipotent radical
R,(P) C P by conjugation. To show that {&p = & x© P, we need to show that the
corresponding U-bundle is trivial. By Corollary 2.4.4, it therefore suffices to give a central
series

{1} =Up41 CU, CUp1 C---CUL=U

in which each quotient U; /U; 1 is a vector bundle with H*(X,,U; /U;11) = 0. Let 0 < pg <
p2 < -+ < py be all the possible positive values of {(«, u(€1)) for a € @, let

{1}:Un+1gUng"'gU1:Ru(P)

be the L-invariant filtration defined by

vi= ] U

acd
(o, pu(€n)) > pi

for 1 < i < n+1, where U, = G, is the root subgroup corresponding to «, and define
U; = & xP U;. Since X, has genus g(X,) < 1, &1 is strongly semistable by Theorem
2.6.1, so for each weight A of Z(L)° acting on U; /U, 41, the vector bundle &1, x% (U; /U;41),,
associated to the A-weight space is semistable of slope (A, u(¢1)) = p; > 0 > 29(X;) — 2 by
Theorem 2.5.15. So Lemma 2.6.3 below implies that H*(X,,U; /U1 1) = 0 as required. [

Lemma 2.6.3. Let V' be a semistable vector bundle on a curve Xg of genus g such that
w(V)>2g—2. Then H'(X,,V) =0.

Proof. Assume for a contradiction that H(X,, V) # 0. Then by Serre duality, H°(X,, V' ®
Kx_) # 0, so there exists a nonzero morphism V' — Kx_. Let M C Kx_ be the sheaf-
theoretic image of this morphism. Then M is a quotient line bundle of V', so by semistability

we have
deg M = pu(M) > p(V) > 29 — 2 = deg Kx,,

which is a contradiction. O
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Remark 2.6.4. Proposition 2.6.2 implies that when X, has genus g < 1, the Harder-
Narasimhan filtration of any vector bundle V splits as V = @Z U;, where the U; = V;/V;_;
are semistable vector bundles of distinct slopes. We call such a decomposition a Harder-
Narasimhan decomposition of V. Note that the terms U, are unique, but the particular
decomposition of V' is not.

Curves of genus < 1 also have the following convenient property, which is shared by
curves of higher genus only in characteristic 0.

Proposition 2.6.5. Fiz a parabolic subgroup P C G with Levi factor L and p € X, (Z(L)°)q

a Harder-Narasimhan vector for P. Then the morphism
Bun;f/’g(X) — Bung,s(X) (2.6.1)

is a locally closed immersion, where Bun;f/"é(X) is the open substack of P-bundles such that

the induced L-bundle &;, is semistable with slope u(§r) = p.

Proof. By Theorem 2.5.19, (2.6.1) is injective on points, so it suffices to show that it is
unramified, i.e., that the relative tangent complex

T = R (64 <7 g/p)

is a vector bundle concentrated in degree 1, where 7: Bun‘}’f/’g (X)xsg X — Bun;f’;g(X) is
the projection onto the first factor, and £ is the universal P-bundle. The restriction of
€4t x P g /p to each fibre of 7 has a filtration by semistable vector bundles of negative slopes,

so H°(T) = 0. So T = H'(T)[—1] is indeed a vector bundle in degree 1 as claimed. O

Definition 2.6.6. If X — S is a family of curves of genus < 1, and £ — X is an unstable
G-bundle on a geometric fibre of X — S with a Harder-Narasimhan reduction to P C G
with slope u, then the Harder-Narasimhan locus of £g is the locally closed substack

Bun‘;f/’g(X) — Bung,g(X).

In the case of a curve of genus 1, we can also compute the codimension of the Harder-
Narasimhan loci. Note that if L C P is a Levi factor of a parabolic subgroup P C G, then
choosing a maximal torus and Borel ' C B C G such that B C P and T' C L we have an
inclusion Z(L) C T and hence a homomorphism X, (Z(L)°)g — X.(T)g and a pairing

(= =) XHT) x X (Z2(L)")o — Q.

Proposition 2.6.7. In the situation of Proposition 2.6.5 if in addition X — S is a family
of curves of genus 1, then (2.6.1) has codimension —(2p, ), where 2p € X*(T) is the sum

of the positive roots.

Proof. From the proof of Proposition 2.6.5, is suffices to show that the vector bundle H'(T)
has rank —(2p, u). But by Riemann-Roch,

rank H'(T) = —deg(ép x" g/p) == > (ap) == Y (a,u) = —(2p, )

o @
((x()j5><0 aePr
as claimed. O
Proposition 2.6.8. Let X — S be a family of smooth curves of genus 1, and let G be simply
connected and simple of rank | € Z~y. Then the locus of unstable bundles has codimension
I+ 1 in Bung/s(E).
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Proof. Since the locus of unstable bundles in Bung,g(X) is the union of the images of
Bun;s/’g(X ) — Bung,g(X) where P ranges over all parabolic subgroups containing some
fixed Borel subgroup B and p ranges over all Harder-Narasimhan vectors for P, by Propo-

sition 2.6.7, it suffices to prove that

—(2p,p) = 1+ 1

for all such P and p for which Bunf;f/”g(X ) is nonempty, with equality for some such choice

of P and p. Note that Bunf,f/’g(X) is nonempty if and only if (w;, 1) € Z for all «; € ¢(P).
Consider the case where P is a maximal parabolic of type t(P) = {a;}. Then the

conditions on p are equivalent to

wY
ez —span{l} .
H >0 <w“w;/>

S
° (2p, @)

(@i @)’

—(2p, 1) >
which by [FM2, Lemma 3.3.2] is always > [ + 1, with equality achieved for some choice of
(678

More generally, suppose that P C G is an arbitrary parabolic, choose a; € t(P), and let
L; O L be the Levi factor of the unique maximal parabolic of type {«;} containing P. Let

f € X,(Z(L;)°)g be the unique element such that (w;, i) = (w;, ). Then

wY
iez —span{—z},
K >0 <w“w;/>

so —(2p, i) > 1+ 1 as shown above. But

_<2pa/1> - - Z <Oé,/]> - - Z <Oé,/.L> < _<2p7 N>

acd acd
(o, ) >0 (o, ) >0
since
E « € Z>o-span{w; },
a€<I>+
(o, ) >0
so we are done. O
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Chapter 3

Stable maps and Kontsevich-Mori compactifi-

cations

In §2.5, we saw that reductions to parabolic subgroups P C G provide a useful tool in the
study of principal G-bundles for G a reductive group. In this chapter, we will discuss how
these methods can be refined by allowing such reductions to degenerate. That is, we will
construct a relative compactification, called the Kontsevich-Mori compactification, of the
stack of P-bundles over the stack of G-bundles.

Degenerations of this kind play an especially vital role in elliptic Springer theory. If F is
an elliptic curve and B C G a Borel subgroup, we will see that there is a proper morphism
Bun%(E) — Bung (E) with many of the good properties of the classical Springer resolution
g — g. To produce a good theory for unstable bundles, this morphism must be extended to
a proper morphism to Bung(F) using some relative compactification.

The Kontsevich-Mori compactification KM p (X)) is constructed by thinking of Bunp(X)
as the stack of pairs (£, 0), where £ — X is a G-bundle, and o: X — &5 /P is a section
of the associated bundle of partial flag varieties. One then allows the section o to de-
generate using Kontsevich’s theory of stable maps. The Kontsevich-Mori compactification
has been studied in the context of elliptic Springer theory in [GSB] and for curves of ar-
bitrary genus in [C]. It has the convenient properties that the total space KMp g(X) is
smooth, the complement of Bunp(X) is a divisor with normal crossings, and the morphism
KMp,¢(X) = Bung(X) is proper with finite relative stabilisers (and is even representable
in low codimension).

We remark that there is another relative compactification Drinp ¢(X) of Bunp(X) over
Bung(X), called the Drinfeld compactification, which is popular in the literature. It was
introduced in [BG], and is constructed by thinking of a reduction of 5 to P as a system
of subbundles inside vector bundles associated to representations of G and allowing these
subbundles to degenerate to subsheaves. The Drinfeld compactification has the advantage
over the Kontsevich-Mori that the morphism Drinp ¢(X) — Bung(X) is representable, but
the disadvantage that the total space Drinp ¢ (X) is singular.

For many of the degeneration arguments we will use, either compactification would serve
equally well. However, we have chosen to work with the Kontsevich-Mori since, for the
applications to elliptic Springer theory, smoothness is much more useful for our purposes
than representability.

3.1 Stable and prestable maps

In this section, we review the basic ideas of Kontsevich’s theory of stable maps. We begin

by recalling some definitions.

Definition 3.1.1. Let S be astack and let g,n € Z>¢. An n-pointed prestable curve of genus
g over S'is atuple (m: C — S, x1,...,x,), where m: C' — S is proper, flat and representable,
and x;: S — C is a section of 7w such that for every geometric point s: Speck — S, the
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fibre Cs over s is a reduced connected curve of arithmetic genus g, with at worst nodal

singularities, and z1(s),...,zn(s) € Cs are distinct smooth points of Cs.

Definition 3.1.2. Let m: X — S be a proper representable morphism of stacks and let
g.n € Z>o. An n-pointed prestable map to X over S of genus g is a tuple (f: C —
X,x1,...,2,) where (mo f: C — S,x1,...,x,) is a prestable curve over S of genus g.

There are obvious notions of isomorphism of prestable curves and maps, and of pullback
of prestable curves and maps along a morphism S’ — S. So given any stack S and a proper

representable morphism X — S, there are functors

M, s and M, o(X): (Stk,s)° — Grpd

g,n,8

sending a stack S’ — S over S to the groupoids of n-pointed prestable curves of genus g

over S’ and n-pointed prestable maps to X xg S’ over S’ of genus g respectively.

Theorem 3.1.3. The functors M, ,, 5 and M, ,, 5(X) are representable by Artin stacks

Mg.n.s and My n s(X) locally of finite type over S.

If S = Speck for some field k, we will sometimes write M, ,, = M, , s and N, ,(X) =
My n,s(X).

Proposition 3.1.4. The stack Mg, s is smooth over S of relative dimension 3g — 3 + n.

Proof. Letp: Speck — My, » s be a geometric point over s: Speck — S and let (C, x1,...,2,)
be the corresponding prestable curve over Speck. There is a tangent-obstruction complex
for My.,s — S at p given by

T =RI(C, Tok(—21 — -+ —an))[1]-

But Proposition 2.1.5 implies that T¢/;, is a complex supported in degrees 0 and 1 with
H'(T¢,y) torsion, so HY(T) = 0 for i > 0. So My ,.s — S is smooth at p with relative

tangent complex T. The relative dimension is given by

X(T) = —x(C, Teyn(—21 — -+ — x0))
= —deg(det(Te/p(—21 — - —xp))) +g—1
=— deg(wa}k(f:pl — =) +g—1
=39—-3+n
by Riemann-Roch. O

Definition 3.1.5. Let m: X — S be proper and representable. We say that an n-pointed
prestable map (f: C — X, x1,...,x,) over S is stable if for every geometric point s: Speck —
S, the prestable map (fs: Cs — Xs,21(8),...,2n(s)) over k has finite automorphism group.
We write

Mg.n,s(X) C Mg n,s(X)

for the open substack of stable maps.

Proposition 3.1.6. Let X — S be proper and representable and let (f: C — X, x1,...,x,)

be a prestable map to X over S. The following are equivalent.

(1) The prestable map (f,z1,...,2,) is a stable map.
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(2) The line bundle wo)s(w1+- - x,) on C is ample relative to X, where we g is the relative
dualising sheaf of C' — S.

(8) For every geometric point s: Speck — S and every irreducible component C' C C such
that C' is contracted under f, the normalisation C' either has genus > 2, has genus 1
and at least one point mapping to a node or marked point in C, or has genus 0 and at

least 3 points mapping to nodes or marked points in C.

Given a projective morphism 7: X — S and an S-ample line bundle Ox (1) on X, we

write

Mq,mS(Xv d) c Mg,n,S(X)
for the open and closed substack of stable maps (f,z1,...,z,) such that deg f*Ox (1) = d.

Theorem 3.1.7. Let m: X — S be a projective morphism of stacks and fix an S-ample line
bundle Ox (1) on X. Then:

(1) For all g,n € Z>q, the morphism Mg, s(X) — S satisfies the valuative criterion for

properness.
(2) For any d € Z, the morphism My, s(X,d) — S is of finite type, hence proper.

(3) Let U C My, 5(X,d) be the open substack of points with trivial automorphism group
scheme relative to S. Then U is quasi-projective over S. In particular, if every point of

M,

S is projective.

n,5(X,d) has trivial automorphism group scheme relative to S, then Mg, 5(X,d) —

It is often useful to consider finer restrictions on the degree of a stable map than offered
directly by Theorem 3.1.7. For example, if X — Spec k is projective and NS(X) is the group
of line bundles on X modulo numerical equivalence, then for any § € Hom(NS(X),Z), The-
orem 3.1.7 implies that the open and closed substack M ,,(X,3) € My ,(X) = Mg n 1(X)
is proper, and in particular of finite type, over Speck. However, for families X — S, the
group NS(X) may not be large enough to capture all degree information. For example,
let E — Speck be an elliptic curve over k, and consider the morphism X = Speck —
BE = S. Then X — S is a well-behaved family of smooth curves of genus 1 (and we have
that Mg, s(X) = M,,(E)/E is the stack of stable maps to E modulo translation), but
NS(X) = NS(Speck) = 0. To work around this issue, we use the following hack.

Suppose we are given a smooth surjection U — S with connected geometric fibres,
an abelian group H, and a homomorphism ¢: H — NSy (U xg X) to the group of line
bundles on U xg X modulo U-numerical equivalence. (Here we will say that two line
bundles Ly, Ly € Pic(U xg X) are U-numerically equivalent if for every geometric point
u: Speck — U and every closed curve C' C X, the restrictions of Ly and Lo to C' have the
same degree.) If s: Speck — S is a geometric point and f: C — X, is a prestable map,

then there is a well-defined homomorphism

deg(f) = deg4)(f): H — Z
h +— deg fu Ly,

where u: Speck — U is any lift of s, f,: C' — X; = X, — U Xg X the induced morphism,
and Lj € Pic(U xg X) any representative for ¢(h) € NSy (U xg X).

Definition 3.1.8. In the setup above, we call (U, $) a degree datum, and we call deg; 4)(f)
the degree of f (with respect to (U,¢)). If f € Hom(H,Z), we write My, s(X,B) C
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Mg .n,s(X) and My, s(X,8) € My, s(X) for the open and closed substacks of prestable
and stable maps of degree .

Corollary 3.1.9. Suppose that we are given X — S and a degree datum (U, ) as above,
and assume that ¢(H) C NSy(U xg X) contains the class of a U-ample line bundle on
U xg X. Then for all § € Hom(H,Z), the stack My s(X, ) is proper, and in particular
of finite type, over S.

Proof. By definition, we have

U X5 Mg,n,S(Xa ﬁ) = Mg,n,U(U XS Xaﬁ)

Since U — S is a smooth surjection, by descent for proper morphisms it suffices to show that
Mynu(U xg X,5) — U is proper. But if h € H is such that ¢(h) € NSy(U xg X) is the
class of a U-ample line bundle Oy ¢x (1), then My, (U xg X, 3) is a union of connected
components of My, (U xg X, B(h)), hence proper over U by Theorem 3.1.7. O

By construction, if f: X — Y is a morphism of proper representable stacks over S,
then there is an induced morphism M, g(X) — M, 5(Y) given by composition with
f. For each i € {1,...,n}, there is also a morphism My, 5(X) = My n_1,5(X) given by
forgetting the ith marked point. In general, these morphisms do not restrict to morphisms
Myns(X) = Mgns(Y) or My, s(X) — Myn,_1,5(X). This can be rectified, however,
using the following construction.

Definition 3.1.10. Given a prestable map (f: C — X, x1,...,x,) over S and a repre-
sentable morphism U — S, we say that a morphism g: C — U over S stabilises (f,21,...,%n)
if for every geometric point s: Speck — S and every irreducible component C’ of Cs such
that weyg(21,...,2n)|cs is not ample relative to Xy, g contracts C’ to a k-point in U,. A
stabilisation of (f,x1,...,x,) is an initial object in the category of morphisms stabilising

(f,Il, P ,.Tn).

From the definition, it is clear that the stabilisation g: C' — C of (f,z1,...,2,) is unique
up to unique isomorphism if it exists, and that the morphism f: C' — X factors as go f for

some unique morphism f: C' — X.

Proposition 3.1.11. Let (f: C — X, x1,...,x,) be an n-pointed prestable map of genus g
over S and assume that either f is non-constant on every geometric fibre of C — S or that
294+ n > 3. Then there exists a stabilisation g: C — C' of (f,x1,...,2n) such that the tuple
(f: C— X, goxy,...,q0xy,) is an n-pointed stable map to X. Moreover, the formation of
stabilisations commutes with base change.

Proof. This is proved in [BM, Proposition 3.10]. O

Remark 3.1.12. When S = Spec k, the stabilisation of a prestable map (f: C — X, z1,...,z,)
can be constructed explicitly by contracting all rational components of C contracted under

f that have at most 2 nodes and marked points combined.

Using Proposition 3.1.11, there is a canonical morphism M, ,, g(X)" — M, s(X) send-
ing a prestable map to its stabilisation, where M, , s(X)" € My, 5(X) is the open and
closed substack of maps satisfying the condition of Proposition 3.1.11. So if f: X — Y is
a morphism of proper representable stacks over S, then we get a morphism M, g(X)" —
Mg .n,s(Y) = My, s(Y) by composition followed by stabilisation, and for all i € {1,...,n} a
morphism Mg, g(X)" = My r—1,5(X) = My n_1,5(X) given by forgetting the ith marked
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point followed by stabilisation, where My, s(X)', My n s(X)” C My, s(X) are the sub-
stacks where the relevant stabilisation morphisms are defined.

By construction, for any ¢ € {1,...,n}, the morphism Mg, s(X)" = Mgy,—1,5(X)
forgetting the ith marked point fits into a commutative diagram

Cyn.s(X)" —— Cyn-1,5(X)

L

Mg,n,S(X)H —_— Mg,n—l,S(X)a

where (Cy n,5(X) = Mgns(X) xsX,21,...,2,) is the universal n-pointed stable map and
Cy.n,s(X)" the preimage of M, ,, 5(X)"”, such that the induced morphism

Cym,s(X)" — Cyn1,5(X) X, .1 s(x) Mgn,s(X)"

is the stabilisation of (Cy, 5(X)" = Mgn.s(X)” xg X, 21,...,2i—1,%Tit1,...,Tpn). Com-
posing the top arrow of (3.1.1) with the section x;: My, s(X) = Cyn.s(X), we get a
morphism

My ns(X)" — Cyn1,s(X). (3.1.2)

Proposition 3.1.13. The morphism (3.1.2) is an isomorphism.

Proof. This is [BM, Corollary 4.6]. O

3.2 Dual graphs and gluing

One very useful property of the theory of stable maps is that maps with singular domain
curves can be constructed by gluing together maps with simpler domains. In this section,
we review the combinatorics governing this construction and study its geometric behaviour
(Propositions 3.2.17 and 3.2.18) at the level of moduli stacks.

Our definitions mostly follow [BM, §1], although there are some differences in conventions

for markings of graphs.

Definition 3.2.1. A graph is a tuple 7 = (F-, V;, j+, 0, ), where F, and V are sets, j,: Fr —
F, is an involution and 9, : F — V; is a function. We call F; the set of flags (or half-edges),
V; the set of vertices, S. = {f € F; | j-(f) = f} the set of tails and E, = {{f1, f2} € E; |
J-(f1) = fa # f1} the set of edges. For v € V., we also write F(v) = {f € F, | 0;(f) = v}
for the set of flags adjacent to v. We say that vi,v9 € V. are adjacent if there exists
{f1, f2} € E. such that O.(f;) = v;. We say that 7 is connected if all vertices are equivalent

under the equivalence relation generated by adjacency.

If 7 is a graph, we will draw a diagram representing 7 as follows. For every vertex v € V,
we draw a corresponding node o. If e = {f, fo} € E,, we draw a line segment connecting
0-(f1) and 0, (f2), and if f € S; is a tail, we draw a line segment attached to 9, (f) at one

end. For example, we draw
f1 {f2.f3}

v1 v2

for the graph with V; = {vi,v2}, Fr = {f1, f2, f3}, 3-(f1) = f1, §-(f2) = f3, - (f3) = [,
a‘f(fl) = V1, 8T(f2) = v; and aT(fS) = vo.
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Definition 3.2.2. If H is an abelian group, an H-graph is a tuple (7, g, 3), where 7 is a
connected graph, and ¢g: V; — Z>¢ and 8: V; — Hom(H,Z) are functions. The degree of
(1.9, P) is
deg(t) = ) B(v) € Hom(H, Z),
veV,

and the genus of (7,¢, ) is

o) = 3 go) + IVl = B - 1.
VeV,

The main point of H-graphs is that they keep track of information about the irreducible
components of a prestable map. In what follows, if A is any finite set of size |A|, then
My a,5(X) = Mg a,4(X) and My a5(X) = Mg a),5(X) denote the stacks of prestable
and stable maps (f: C — X, (z4)aca) With points marked by A, defined in the obvious way.

Definition 3.2.3. Suppose that (U,¢: H — NSy(U xg X)) is a degree datum for a
proper representable morphism X — S, s: Speck — S is a geometric point and (f: C —
X, (24)aca) is a prestable map over Speck with points marked by A. Write C' — C for
the normalisation of C'. The dual graph of f is the H-graph 7 with V, equal to the set of
connected components of C, F, equal to the union of {z, | a € A} with the set of preimages
of nodes of C' in C, j,: F, — F, the involution fixing the marked points and interchanging
the two preimages of each node, 8, : F, — V; the map sending a point in C' to the connected
component it lies on, g: V; — Z>o the map sending a vertex v € V; to the genus of the
corresponding connected component C, of C, and 8: V; — Hom(H,Z) the map sending
v € V; to the degree degy 4 flc, -

Remark 3.2.4. If f: C' — X, is a prestable map with dual graph 7 as above, then C has
genus ¢(7) and degree deg(7).

Definition 3.2.5. Let X — S be a proper representable morphism of stacks and fix a degree
datum (U, ¢: H — NSy (U xg X)). If 7 is an H-graph, then we define stacks Mg (X, ) and
Mg(X, 1) of T-marked prestable and stable maps to X as the fibre products

§IRS()(7 T) H’UEVT mtg(v)vFT(v)vS(X’B(v))

J |

H{f17f2}€E7— X — H{f1,f2}eET X xg X

and

MS(Xv T) HUGV.,- Mg(v)vFT(v)vs(X’ﬁ(v))

J |

s e, X —— . pyen, X xs X,

where the products denote iterated fibre products over S, the bottom arrows are the natural
diagonals, and the vertical arrows on the right send a family of (pre)stable maps (p,: C, —

X, (@f)rer, ) t0 ((Po, (1) (@) Po, (£) (@ 12))) i 1. 12} e B, -
Remark 3.2.6. Morally, one should think of the stack Mg (X, 7) as the stack of prestable
maps (f: C — X, x1,...,x,) together with a partition of the irreducible components of C

into subcurves with marked points, intersections, genera and degrees labelled by 7. This

picture is partially realised by the following construction.
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Definition 3.2.7. Let p = (p,: C, = X, (2f) feF, (v))vev, be a T-marked prestable map to
X over S. If §” — S is representable then a morphism to S’ gluing p is a morphism

q= (Qv)UGV.,.3 H Cy — S/
veVr

together with a commutative diagram

(@11,13)
§ =12 Co gy %5 Co, (1)

[xe J(qaf(flwqaﬂm)

S B S xg S
for all e = {f1, fo} € E;. A gluing of p is an initial object in the category of stacks S’

representable over S equipped with a morphism to S’ gluing p.

Note that for any 7-marked stable map p as above, the morphism p = (py)vev, : [[,ey. Cov —

X is canonically a morphism gluing p. Soif ¢: ] C, — C is a gluing of p, then p factors

veV,
canonically as p = p o ¢ for some morphism

p: C — X.

Proposition 3.2.8. Assume thatp = (p,: C, = X, (7f)fer, (v))vev, i a T-marked prestable

map to X over S. Then there exists a gluing q: || Cy, — C of p such that the tuple

veV,
(p: C— X,(qoxyf)ses,)

is a prestable map to X over S of genus g(7) and degree deg(r). Moreover, the formation

of gluings commutes with base change.
Proof. This follows easily from [BM, Proposition 2.4 and Proposition 2.5]. O

Definition 3.2.9. We say that an H-graph 7 is stable if for all v € V, with S(v) = 0, we
have 2g(v) + |Fr(v)| > 3.

Proposition 3.2.8 ensures that there is a morphism
mS(Xa T) — 9'ng(‘r),S,.,S()(a deg(T)) (321)

sending a 7-marked prestable map to its gluing, which one can easily see restricts to a
morphism
MS(Xa T) — Mg(T),S7,S(X? deg(T))

if the H-graph 7 is stable. It is clear from the definitions that (3.2.1) gives a surjection
from the open substack 9% (X, 7) where all domain curves are smooth onto the subset of
prestable maps with dual graph 7. The following relation between H-graphs keeps track
of how degenerations of the domain curves in Mg (X, 7) affect the dual graph of the glued

curve.

Definition 3.2.10. Let 7 and 7’ be graphs. A contraction ¢: 7 — 7’ is a pair of functions
Yy : Ve — Vyoand 9F: Fr — F, (note the opposite directions for vertices and flags) such
that

(1) ¢y is surjective and ! is injective
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(2) the diagram

commutes,
(3) Jr Oq/JF = wF ° Jris
(4) the induced map 9°: S, — S, is a bijection, and

(5) 9y factors through a bijection (V;/ ~) — V,/, where ~ is the equivalence relation
generated by 8, () ~ 9, 0 j,(f) for [ € Fy \ §F (Fyr).

If v: 7 — 7/ is a contraction and v’ € V,» we write »~1(v') for the (automatically
connected) graph with V10, = Vit (v'), Fy1y ={f € Fx | 0:(f) = v'}, Op-1(v) =

a7'|F1/)_1(“,) and jw—1(7j/) defined by

Jr (), 3 G (f) € Fy—rwy,

Jp=1 (v’ (f) =
v 1 otherwise,

for f € Fy-1(,). Note that ¥ defines a bijection Sy—1(,) = Frr (v').

Remark 3.2.11. Intuitively, one should view a contraction 1 = (¢y/,%¥): 7 — 7/ as a map
contracting the edges in F; \ 1% (F,) and identifying their endpoints.

Definition 3.2.12. Let H be an abelian group, and let 7 and 7" be H-graphs. A contraction
: 7 — 7' is a contraction of the underlying graphs such that for all v € V,» we have
B(v') = degy~t(v') and g(v') = g(v~1(v")), where we view ¢~ 1(v') C 7 as an H-graph by
restriction of g and 3 from V. to Viy-1(,).

Given X — S, a degree datum (U, ¢: H — NSy (U xg X)) and a contraction ¢: 7 — 7/,

the gluing morphisms

H gﬁg(v)vFT(U)vS(XHB(U)) — gﬁg(v’),s
v€V¢,—1(,U/)

S(X7 B(U/)) = 9:ng(v’),FT/('L}’),S’()Q ﬁ(vl))

wil(ﬂ/)’

fit together to define a morphism
Py Me(X, 1) — Mg (X, 1),

which, just as for (3.2.1), restricts to a morphism Mg(X,7) — Mg(X,7’) if 7 is a stable
H-graph. It is easy to see that if ¢»: 7 — 7/ and ¢': 7/ — 7" are contractions, then we
have canonically (¢’ 0 9). = (¢')« 0 9., where composition of contractions is defined in the

obvious way.

Remark 3.2.13. If 7/ is an H-graph with one vertex and no edges, and ¥: 7 — 7’ is a
contraction, then we have Mg (X, 7") = My, s, 5(X,deg(7)), and 1, agrees with (3.2.1).

Definition 3.2.14. Let 7 be an H-graph, let p = ((p,: Cy — X, (Tf) feF, (v)))vev, be a
7-marked prestable map, and let 7, denote the dual graph of the prestable map (p,: C, —
Xs,(x)fer, (). The dual graph of T is the contraction ¢,: 7, — 7, where 7, is H-graph
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with vertices V-, = [[,cy. V., flags Fr) = [1,cy. Ir,s Or, = [lev, Onys dryt Fry = Iy
defined by

e, (f), A f ¢ Sr,

Jr(f), if f€Sr, = Fr(v),

for f € F,,, v € V;, and the functions 5 and ¢ are inherited from the functions on V;, for

v € V; in the obvious way. The contraction v, is defined by (¢,)y (v') = v forv" € V;, C V. |
and ) (f) = x5 € F,, for f € Fr(v) and v € V.

j‘l’p(f) =

Remark 3.2.15. The dual graph 7, of a 7-marked prestable map p is nothing but the dual
graph of the gluing of p.

We make the following observation.

Lemma 3.2.16. Suppose that ¢: 7 — 7' is a contraction of H-graphs. Then for any
7'-marked prestable map p = (pyr: Cor — X, (¥f)fer,, (v))vev,, over a geometric point
s: Speck — S, the groupoid of k-points of the preimage 1, (p) is isomorphic to the set of
contractions T, — T over 7', where T, — 7' is the dual graph of p. Moreover, the subset of
T-marked prestable maps in 1, *(p) with smooth domain curves corresponds to the subset of

contractions T, — T that are isomorphisms (i.e., bijections on both vertices and flags).

Proposition 3.2.17. Let v¢p: 7 — 7’ be a contraction of H-graphs. Then the morphism
e Mg(X, 7) — Mg (X, 1)
s finite and unramified.

Proof. First note that we can assume without loss of generality that F, \ % (F,.) consists of
a single edge e = {f1, f2}, since all contractions are compositions of contractions with this
property. In this case, there is a pullback square

M (X, T) L Ms(X,7')

| J

M (X, (") —— My, w).5(X, B)),

where v' = ¥y (0-(f1)) = ¥v(0-(f2)) € V. It therefore suffices to prove the claim when 7
has exactly one edge and 7’ has a single vertex and no edges.

We first show that 1, is unramified. Since 1), is locally of finite type, it suffices to show
that it is formally unramified at every geometric point of Mg (X, 7).

Suppose that s: Speck — S is a geometric point and that p = (p,: C, — X, (%) fer, (v))vev,
is a 7-marked stable map to X over Spec k with gluing (p: C' — X, (2¢)ses. ), and consider
the morphism

M7 10c — Mt 1oc, (3.2.2)

of functors from the category Arty of Artinian local rings with residue field k£ to the 2-

category of groupoids, where

M 10c(A) = Hom(Spec A, Ms (X, 7)) XHom(Spec k.ms(X,7)) 1P}

and
EIRT/JOC(‘A) = HOm(Spec Aa S):TIS()Q T/)) X Hom(Spec k,Ms (X,7')) {ﬁ}
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There is a Cartesian diagram
9)t‘r,loc I 9Jt7",loz:
gr,e — Qea

where for A € Arty, D, .(A) is the groupoid of flat deformations of the augmented complete
s, = k[zp] and Ry, = (’)CQT<f2),wf% & Ekfxys,] and ©.(A) is the
groupoid of flat deformations over A of the local ring Re = Oc o, = klzys,, x5, ]/ (xfxy,).

local rings Ry, = Oc,

But a straightforward deformation theory computation shows that the morphism ®, . — D,
has a tangent-obstruction complex T = k[—1], and is hence formally unramified. So (3.2.2)
is formally unramified, and hence so is 1),.

We next show that 1), satisfies the valuative criterion for properness. Let R be a complete
discrete valuation ring with fraction field K, and suppose we are given Spec R — S, a
prestable map p = (f: C — Xg,(vf)ses,,) over Spec R and a 7-marked prestable map
Prx = ((fo,x: Cox = Xk, (Ty)fer, (v))vev, over Spec K with gluing g : HUE‘/T Cyx —
Ck. First note that qx defines a collection of stable maps to Ck, and that any extension
of px to a T-marked prestable map over Spec R with gluing p defines an extension of this
collection of stable maps to C over Spec R. So the uniqueness part of the formal criterion for
properness follows from the corresponding property for stable maps to C. For the existence
part, again by the formal criterion of properness of stable maps to C, after replacing R with
a finite extension if necessary, we can extend gx to a 7-marked stable map ¢ = (g,: C,, —
C,(Zy)fer, (v))vev, over Spec R, and the composition with f: C'— Xpg produces a T-marked
prestable map p = (py: Cy = X, (Ty)fer, (v))vev, to Xg. The gluing of ¢ is a stable map
to C that is an isomorphism over Spec K, and hence an isomorphism on all of Spec R, so we
deduce that p is the gluing of p.

Finally, by Lemma 3.2.16, the groupoids of points of all geometric fibres of v, are finite
sets with no automorphisms. Since 9, is unramified and in particular relatively Deligne-
Mumford, v, is therefore representable. Moreover, since 1), satisfies the valuative criterion
for properness, it is universally closed. So if U — Mg (X, 7’) is a morphism from a scheme
and z € U, since 1, () is finite we can find a finite type open V C Mg (X, 7) Xog(x,r) U
containing v (). Setting

U/ = U\ﬂ'(gﬁs(X,T) XS)’)?S(X,T’) U\V),

for 7: Ms(X,7) Xong(x,7) U — U the natural projection, we have that U’ C U is open
and contains x and that ¢, 1(U’) C V is of finite type. So the morphism 1, is of finite
type (hence of finite presentation since everything is locally Noetherian). So . is proper,

representable and quasi-finite, hence finite. O

In the following proposition, we write zm;,n’s(x, B) € My.n.s(X,B) and M;’n,S(X, B) C
My .n.5(X, B) for the open substacks of (pre)stable maps where the domain curve is smooth,

and MG (X, 1) C Mg(X,7) and MG(X,7) C Mg(X,7) for the preimages of

H MG (), F, (v),5 (X B(V)).

veV,

Proposition 3.2.18. Let 7 be an H-graph. For any contraction of H-graphs ¥: 7/ — T,
the morphism
ML(X,7")/Aut, (7)) — Ms(X,7) (3.2.3)
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induced by V. is a locally closed immersion, and the morphism

I 2me(x,7)/Aut,(7) — Ms(X, 7) (3.2.4)

T/ =T
is bijective on geometric points, where the coproduct is taken over all isomorphism classes
of H-graphs with a contraction onto 7. Moreover, if the image of ¢: H — NSy(U xg X)
contains the class of a U-ample line bundle and the H-graph 7 is stable, then the morphism
[T Me(x,7')/Aut, (v') — Ms(X,7) (3.2.5)

T!—=T
1$ also bijective on geometric points, where the coproduct is now taken over all isomorphism

classes of stable H-graphs with a contraction onto 7.

Proof. Fix a geometric point p = ((py: Co — X, (Ty)fer, (v)))vev, of MY(X,T) over
s: Speck — S. Then Lemma 3.2.16 implies that, up to isomorphism, there exists a unique
contraction 1: 7 — 7 of H-graphs such that p is in the image of ¢*|§)ﬁ%(x’7/), where we
take 7/ to be the dual graph of p, and that Aut,(7') acts freely and transitively on the
fibre 1, 1(p). This implies that (3.2.4) is bijective on geometric points, and that (3.2.3) is
a locally closed immersion since v, is finite and unramified. Finally, to show that (3.2.5) is
bijective on geometric points, we note that under the hypothesis on the degree datum, the
dual graph of a 7-marked stable map is stable, and that for 7’ stable, a prestable map in
ME(X,7') is stable if and only if its image under 9, is stable. O

Remark 3.2.19. We stress that the decomposition (3.2.4) is in general weaker than a
stratification: it is not necessarily the case that the closure of one term is a union of others.
However, we will see that in good cases (e.g., Propositions 3.3.7 and 3.4.13) we do have such

a stratification.

Corollary 3.2.20. Let R be an integral local ring, Spec R — S a morphism, and p a
prestable map over Spec R. Then there exists a contraction T — 7', where T s the dual

graph of the geometric special fibre of p and 7' the dual graph of the geometric generic fibre.

Proof. Since the geometric generic fibre of p has dual graph 7/, the generic point of Spec R

is in the image of the morphism
Ms(X,7") XM, 0 s, 5(Xdeg(r)) SPec R — Spec R. (3.2.6)

Since (3.2.6) is finite by Proposition 3.2.17, it is therefore surjective. So by Proposition
3.2.18, there exists a contraction of H-graphs ¢: 7" — 7/, a 7"-marked prestable map ¢ in
MG (X, "), and an identification of the geometric special fibre of p with the gluing of 1. (g).
In particular, 77 is identified with the dual graph 7, so 1) defines a contraction 7 — 7’ as

claimed. O

Corollary 3.2.21. Assume that T is a stable H-graph with Aut(t) = {1}. Then the gluing
map
MS(Xa T) — Mg(T),S7,S(X? deg(T)) (327)

is a closed immersion if and only if for all contractions stable H-graphs 7" with M§(X, ") #

(0, there is at most one contraction ¥ : 7" — T.

Proof. By Proposition 3.2.17, (3.2.7) is a closed immersion if and only if it is injective on
points. By Proposition 3.2.18, this is equivalent to requiring that

T Msx.7) | /Aut(r') — M§(X,7')/Aut(r")

YT =T
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is a bijection for all stable H-graphs 7" with M°(X,7’) # () such that there is some contrac-
tion 7/ — 7. But this is clearly equivalent to the condition in the statement, so the corollary
follows. N

3.3 Prestable degenerations

In this section, we study degenerations of the identity in the stack of prestable maps to
a curve. These will form the domain curves for the Kontsevich-Mori compactifications of

sections of flag variety bundles.

Definition 3.3.1. Let X — S be a prestable curve over S of genus g(X). We say that a
prestable map f: C'— X is a prestable degeneration if the stabilisation of f is the identity
idx: X — X. We write Degg(X) C M (x),5(X) for the substack of prestable degenerations.

Proposition 3.3.2. The stack Degg(X) is an open and closed substack of My(xy s(X).

Proof. Note that there is a Cartesian square

Degg(X) —— My(x),s(X)’

o

{idx }
S al My(x),s(X),

where the vertical morphism on the right is the stabilisation morphism. The section S —
Mgy(x),5(X) classifying the stable map idx: X — X is an open immersion, since idx is
an open point in IMy(xy g(X) with trivial automorphism group scheme, and closed since
My(x),s(X) — S is separated by Theorem 3.1.7. So the pullback square (3.3.1) implies that
Degg(X) = My(x),s(X) is an open and closed immersion, so we are done. O

Lemma 3.3.3. Let f: C — X be a prestable degeneration over S. Then the morphism
Ox = RfO¢ is a quasi-isomorphism.

Proof. By base change, it suffices to prove the lemma in the case when S = Speck for k£ an
algebraically closed field. By induction on the number of irreducible components of X, we
can reduce to the case where f is the morphism contracting a single rational component C
of C onto a point x € X. Writing u: X,, = Spec @X@ — X for the canonical morphism
and f,: C, = C xx X, — Spec X,,, it suffices by faithfully flat descent to show that the
morphism O = v*Rf,O¢c = Rf,,O¢, is a quasi-isomorphism.

If X is smooth at z, then there is a decomposition C,, = X,, UP}. and an exact sequence
0 — O¢, — 1.0x, @j*OPi — 0, — 0,
where ¢ and j are the inclusions. So we have an exact triangle
Rfu,Oc, — Ox, ® Op — O — Rf,,,Oc¢, [1],

from which the claim follows.

Conversely, if x € X is a node, then we have decompositions X,, = X; U, X2 and
Cu=X1Ugyp ]P’i Ug,z X2, where IE”,Ic is glued to X7 at p € ]P’i and to X, at q € IP’}C. So we
have an exact sequence

0 — OCu — il*OXl @ 22*0X2 @]*Opi — OP @ Oq — 07
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where 41,42 and j are the inclusions of the irreducible components of C),, and hence an exact

triangle
Rfu*Ocu — ill*OXl %) i/Q*OXQ &b Oz — Oz S7] Om — ]Rfu*ocu,[l]a

where ¢} and ¢ are the inclusions of the irreducible components of X, and the claim also
follows in this case. O

If X — S is a smooth curve, then there is a degree datum (U, ¢) for X over S, where
U=Xand ¢: Z — NSy(U x5 X) = NSx(X xg X) given by ¢(d) = d[O(Ax/s)], where
Ax/g — X xg X is the diagonal. Note that O(Ax/g) is an ample line bundle on X x5 X.

Lemma 3.3.4. Assume X — S is a smooth curve of genus g and let (U, ) be the degree
datum defined above. Then we have

Degg(X) = My s(X,1) C My 5(X)
as open substacks.

Proof. It is clear from the definitions that Degg(X) C My s(X, 1). For the reverse inclusion,
assume that s: Speck — S is a geometric point and f: C' — X is a prestable map of genus
g and degree 1 with respect to (U, ¢). Then the stabilisation f: C — X, is a stable map of
degree 1 and genus g, so, since X is smooth, the normalisation of C' has a unique component
mapping isomorphically to X, all other components are rational and contracted to points
in X,, and the dual graph of C is a tree. Stability of f then implies that there are no
rational contracted components, so f is an isomorphism, which proves that f defines a point
in Degg(X). O

Lemma 3.3.5. Let X — S be a smooth curve over S of genus g, endowed with the degree
datum (U, ¢) above. If T is any Z-graph of degree 1 and genus g, then the following are
equivalent.

(1) The stack MY(X,T) is nonempty.
(2) The stack Mg(X,T) is nonempty.

(8) There exists a unique vertex v € V, with B(v) # 0, and this unique vertex satisfies

g(v) =g.

Proof. The implication (1) = (2) is clear. We prove (2) = (3) = (1).

Assume (2) is satisfied. Then there exists a 7-marked prestable map p = ((p,: C, —
X, (7f)ser, (v)))vev, over a geometric point s: Speck — S. So B(v) = deg(p,) > 0 for
all v € V,, and hence there exists v € V; with S(v) = 1 and B(v') = 0 for v # v (since
deg(7) = 1). So p,: C,, = X has degree 1, so there must exist an irreducible component of
C', mapping isomorphically to X. So g(v) > g, from which we deduce that g(v) = g, since
g(v) < g(7r) = g. So (3) is satisfied.

Now assume that (3) is satisfied. Then S(v) = deg(7) = 1, and the dual graph of 7 is
a tree with g(v') = 0 for v' € V; \ {v}. If 7 has a single vertex, then for any geometric
point s: Speck — S and any distinct k-points (zf)scgs. of X, the tuple (idx, : X5 —
X, (zf)fes,) defines a point of M (X, ) over s, so Mg (X, 7) # 0. If 7 has more than one
vertex, then choosing a leaf v’ # v, we have an isomorphism

mg‘(Xv T) = Wg(Xv T,) XX m&l,S(X’ 0) = gﬁ%(Xv Tl) XS 9ﬁ8,175’
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where 7/ is the Z-graph with V., = V. \ {v}, Frr = F; \ F;(v), 0 = O-|F,, and

jT(f)’ if .]T(f) € FT’ .

f, otherwise.

jT’(f) =

So Mg (X, 7') is nonempty by induction on the number of vertices, and hence so is M (X, 7).
So (1) is satisfied. O

Convention 3.3.6. If 7 is a Z-graph (of genus g) satisfying the equivalent conditions of
Lemma 3.3.5, we will represent the functions g: V, — Z>¢ and §: V; — Z using a filled
circle ® for the unique vertex v with S(v) = 1 and g(v) = g and empty circles o for the

remaining vertices v’ with g(v’) = B(v’) = 0. So, for example, the graph
o——e—0

is the dual graph of a degeneration with one component mapping isomorphically to X, and

two rational components mapping to different points of Xj.

In the following two propositions we assume X — S is a smooth curve over S and write
f:C — Degg(X) xg X for the universal prestable degeneration, 7m: Degg(X) xg X —
Degg(X) for the natural projection, and D C Deggy(X) for the closed substack of prestable
degenerations with singular domain curve. We also write Degg(X)S! C Degg(X) for the
open substack of prestable degenerations such that the domain curve has at most one node,
CSl = 77171 (Degy(X)S!) and DS = D N Degg (X)L,

Proposition 3.3.7. Assume that X — S is a smooth curve over S. Then we have the
following.

(1) The stack Degg(X) is smooth over S.

(2) The closed substack D C Degg(X) is a reduced divisor with normal crossings relative
to S.

(8) For every n > 0, the open stratum Degg(X)™ of points where D is locally isomorphic

to an intersection of n coordinate hyperplanes in an affine space is given by
Degs(X)™ = [ Mms(X, 7)/Aut(r),

where the coproduct is over Z-graphs T satisfying the equivalent conditions of Lemma

3.3.5 with S =0 and |E.| = n.

(4) For every Z-graph T satisfying the equivalent conditions of Lemma 3.3.5 with S; = 0,
we have

M (X, 7)/Aut(r) = | M(X,7)/Aut(r),
T/ =T
where the closure is taken in Degg(X) and the union is over all isomorphism classes
of Z-graphs satisfying the equivalent conditions of Lemma 3.3.5 such that there exists a
contraction 7" — T.

Proof. The proof follows similar lines to the proofs of [DM, Corollary 1.9 and Theorem 5.2].
Fix a geometric point s: Speck — S corresponding to a prestable map p: C — X, and
consider the deformation functors

©l057 Sloc: Artk: — Gl"pd
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given by

gloc(A) - Hom(Spec A, QegS(X» X Hom(Spec k,Degg (X)) {p: C— Xs}a
and

Sloc(A) = Hom(SpeC A7 S) ><Hom(SpeC k,S) {S}a

where Arty is the category of Artinian local rings with residue field k£, and Grpd is the 2-
category of groupoids. Let {z1,...,2,} C C(k) denote the set of nodes, and for each 4, let ®;
denote the functor sending A € Arty to the groupoid of flat deformations of the completed
local ring R; = O¢, = k[yi, zi]/(yi2:) over A. We claim that the natural morphism

n
gloc — Sloc X ng
i=1

is formally smooth.

To see this, first note that by deformation theory of schemes and of local rings, it is
enough to show that the kernel in the derived category of k-vector spaces of the natural
morphism

To,./5. — D To,
1

has vanishing H7 for j > 0, where

(Yi zi)

To,./s.. = RI(C,Teyx,[1]) and To, = Tg,/i[l] = [R; ® R; Ril,

where we have used the identification of R; with k[y;, z;]/(yizi) to write out the tangent
complex of R; explicitly as a complex in degrees —1 and 0. The cohomology vanishing

reduces easily to the claim that

H'(Ts,,/s,,) = H'(C,T¢/x,) — H(C,H'(Tc)) = P H'(To,)

is surjective, which is equivalent to the vanishing of H?(C, K), where
K =ker(To x, = H'(Tc)[-1]) = [¢.Ta(~N) — p"Tx,]

is a complex on C in degrees 0 and 1, where ¢q: C — C is the normalisation of C' and
N C C is the divisor of preimages of nodes of C. But, using Lemma 3.3.3 to conclude that
Rp,Oc = Ox,, we have

RI(C, K) = RI(C', Tz (—N')) @ H(Nx, Tx,

N1

which manifestly has vanishing H?, where C' C C is the union of rational components
contracted under p, N’ = NNC’ and Nx = N N X, is the intersection of N with the unique
connected component of C' mapped isomorphically to X under p.

Now the product H;L:l ©, is formally smooth, with a miniversal formal deformation given
by

0 t,...,tl, iy Zi
(ok[[tl,...,tn]] _, ol n Yi Z’]]) :
i=1 n

(yizi —ts) =1,.,
where o, is the complete regular local ring with residue field &k defined in [DM, p. 79]. It
follows that Degg(X) — S is formally smooth at p, so (1) follows.

To prove (2), choose any formally smooth morphism Spf A — Spf ox[t1,...,t.] X @,

D0c sending the closed point to the natural base point, with A a complete Noetherian local
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ring with residue field k. Then we have a formally smooth morphisms Spec A — Degg(X)
and Spec A — Spec 0g[t1, .. .,t,] X S corresponding to a prestable degeneration ps: Cy —
X 4 with closed fibre p and isomorphisms

A A[[yiaziﬂ
Oc, g =2 —222
Ca,z; (yz% — ti)

as A-algebras. In particular, we have D Xgeg,(x) Spec A is the locus ¢1 ---t, = 0, which
is a divisor with normal crossings relative to S. So this proves (2). This also shows that
the stratum Degg(X )(") is the locus of prestable degenerations with exactly n nodes, from
which (3) follows as well.

To prove (4), we first note that Corollary 3.2.20 implies that

Mg (X, 7)/Aut(r) € | M(X,7)/Aut(r).

T'—=T

To prove the reverse inclusion, suppose that w: 7/ — 7 is a contraction satisfying the
conditions of (4) and that the prestable degeneration p chosen above is in the image of
MG (X, 7")/Aut(7") — Degg(X), i.e., that p has dual graph 7’. If we choose the labelling of
the nodes of C' so that x; 1, ;42,...,x, are the nodes corresponding to the edges contracted
by 1, then the morphism

Spec A/(t1,...,t;) — Spec A — Degg(X)
factors through a morphism to Mg (X, 7), such that the restriction to

Spec A/(tr, ..., t)tih, .-ty "]

(which is nonempty since Spec A — Specog[t1,...,t,] X S is formally smooth) factors
through MY (X, 7) C Mg(X, 7). So pisin the closure of the image of MY (X, 7) — Degg(X),
which proves (4). O

Proposition 3.3.8. Assume that X — S is a smooth curve over S. Then we have the

following.
(1) The stack C is smooth over S.
(2) The preimage of D in C is a reduced divisor with normal crossings relative to S.
(8) The preimage of D in C decomposes as
7~ YD) = D' UExc
where Exc C C is the locus of points around which f: C — Degg(X) xg X is not an
isomorphism, and D' is the proper transform of 7~*(D) under f.

(4) The morphism flo<i: CS' — Degg(X)=! x5 X is the blowup at the image f(ExcS') of
the divisor ExcS! = Exc N C=', and the projection Degg(X) xg X — Degg(X) maps
f(Exc=') isomorphically onto D=!.

Proof. To prove (1) and (2), first note that it suffices to check each property after pulling back
to a formally smooth neighbourhood of every geometric point. So fix a prestable degeneration
p: C'— X, over a geometric point s: Speck — S and a k-point x: Speck — C — C.

If « is a smooth point of C, then the morphism 7o f: C — Degg(X) is smooth at z, so
(1) and (2) hold in a neighbourhood of by Proposition 3.3.7. So assume that z = z; is a
node.
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Keeping the notation of the proof of Proposition 3.3.7, let Cj,.: Arty — Grpd be the
functor given by
Cloc(A) - Hom(SpeC A,C) ><Hom(Spec k,C) {J)}

We show that
Cloc — Sioe X Dj X H@i
i#]
is formally smooth as follows, where CD; is the functor sending A € Arty to the groupoid of
flat deformations R; of R; = O¢ ., over A equipped with an augmentation homomorphism
Rj — A restricting to x at the special fibre. By a similar argument to the proof of formal
smoothness of D, — [[;—, D; in Proposition 3.3.7, we reduce to showing that H?(C, K') =
0, where
K' = ker(Tp,y, — H'(T0)[-1)),

where T, = ker(Te — Telq) and T = ker(T, — p*Tx,). A direct local computation
shows that H°(T;) = H%(T¢), from which it follows easily that K’ = K = ker(T¢,x, —

HY(T¢)[—1]), which we already showed had vanishing H? in the proof of Proposition 3.3.7.
There is a commutative diagram

Spfﬂk[[tl,...,tj_l,Uj,Uj,tj+1,...,tn]] _— CD; X Hi#j Dz — Cloc
Spfﬂk[[tl,...,tj_l,tj,tj_;,_l,...,tn]] _— H?:l Dz — Qloc

where, in the leftmost square, the horizontal arrows are formally smooth, the left vertical
arrow is given by t; — u;v;, the bottom arrow is the miniversal deformation in the proof of
Proposition 3.3.7, and the top arrow is given on the ’D;—factor by the algebra

Ok[[tl, cee ,tjfl,Uj,Uj,thrl, .. ~tn7ijzjﬂ
(y52j — u;v))

Ok[[tl, e ,tjfl,'l.l/j,’l)j,thrl, .. tn]]

b

with augmentation sending y; to u; and z; to v;. In particular, ’D; X Hi# D, is formally
smooth, so this proves that (1) holds near x. Moreover, if we write
Y = Spf Ok[[tl, ey U, Uy ,tn]] X@;Xl—li#j D, Cloc
and
7 = Spfok[[tl, . ,tj, e ,tnﬂ Xni@i ©l067

then choosing versal deformations Spf A — Z and Spf B — Y xz Spf A, we have a commu-

tative diagram

S x Specog[ti,. .., uj,vj,...,t,] ¢—— SpecB —— C
J{ J [ﬂ'of
S x Specog[t1,...,tj,...,tn] ¢——— Spec A —— Degqy(X)

where the horizontal arrows are all formally smooth. Since D X geg(x) Spec A is the divisor
ty---t, = 0, it follows that f~17=1(D) x¢ Spec B is the divisor ¢; - - “tj_1uvitipr -ty = 0,
which proves that (2) holds near z. So (1) and (2) hold everywhere on C.

The claim (3) follows immediately from the fact that f: C — Degg(X) xg X is a repre-
sentable morphism between smooth stacks over S that is an isomorphism outside the divisor
fir=Y(D).
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Finally, to prove (4), observe that it suffices to check the claims after pulling back to
any atlas of Degg(X)S!. It is straightforward to check that the morphism A} xg X —

Degg(X)S! given by the prestable map
Blioyxsa(Ag xs X x5 X) — Ay x5 X xg X

gives such an atlas, where Bl denotes the blowup at the given substack, and A = Ax/s C
X xg X denotes the diagonal. The claims of (4) are now obvious by construction after
pulling back to this atlas.

O

3.4 Kontsevich-Mori compactifications

In this section, we introduce the long awaited Kontsevich-Mori compactifications of the stack

of principal bundles under a parabolic subgroup of a reductive group.

Definition 3.4.1. Let G be a reductive group, P C G a parabolic subgroup, X — S a
smooth proper curve of genus g over a stack S, and {4 — Bung /5(X) x5 X the universal
G-bundle. The Kontsevich-Mori compactification of Bunp,g(X) is the fibre product

KMp,g/s(X) = My Bung, s (x) (68" /P) Xon, «(x) Degs(X).
If p € X.(Tp) =X, (P/[P, P)), we write

KM#

P7G/S<X) C KN[P,G/S(X)

for the open and closed substack of stable maps o: C — 4"/ P such that deg o* £ (£4") =
(A, py for all A € X*(Tp), where £,(£4) is the line bundle £, (£4) = ¢4 x© Zy on
/P,

Remark 3.4.2. In more down to earth terms, the Kontsevich-Mori compactification is
the stack of tuples (s,€q,C,0), where s € S is a point of S, {¢ — X, is a G-bundle,
C' is a prestable curve, and o: C — &g/P is a stable map such that the prestable map
C — £a/P — X, is a prestable degeneration of X,. Note that if we take s to be defined
over an algebraically closed field k, then C' = X,U|J, C; has a unique irreducible component
mapping to a section of {5 /P — X, and a number of rational components C; = IP’,lC mapping
into fibres of the G/P-bundle /P — Xj.

Remark 3.4.3. Note that the partial flag variety bundle fg”i/P = f}‘;’” x @ Fypy —
Bung,s(X) x5 X and the line bundles L(E4n%) = ¢4 xY L depend only on the type
t(P) of P up to canonical isomorphism, and hence so do the Kontsevich-Mori compactifica-
tions KM;,G/S(X>'

The degree datum of Lemma 3.3.4 for X — S has the following analogue for £&" /P — S.
Let U = Bung/g(X) xs X and define

¢: X*(Tp) ® Z — NSy(U XBung,s(x) 4"/ P)

by
d(A, d) = [p*Lr(4™)] + dlg" O(Axys)],

uni

where p: U XBung 5(X) &6 /P — £4" /P is the natural projection, ¢ is the morphism
U XBung,s(X) /P — U xg X =Bung,s(X) xs X xg X — X x5 X,

and Ax/s € X Xg X is the diagonal divisor.
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Lemma 3.4.4. With respect to the degree datum (U, ) above, we have
KM};D,G/S(X) = MSLS(Xv (:u7 1))a
where we identify Hom(X*(Tp) & Z,Z) with X.(Tp) & Z in the usual way.
Proof. This is an immediate consequence of Lemma 3.3.4 and the definitions. O
Proposition 3.4.5. In the situation of Definition 3.4.1, the morphism
KM;;’,G/S(X) — BUHG/S(X)
is proper with finite relative stabilisers.

Proof. Let (U, ¢) be the degree datum of Lemma 3.4.4. If we choose A € X*(Tp) so that
Ly € Pic(G/P) is ample, then

o0 1) = P LA(EE™) ® 4" O(Axys)] € NSu(U Xpung, s x) €6/ P)

is the class of a U-ample line bundle. So the claim follows by Corollary 3.1.9 and Lemma
3.4.4. O

Definition 3.4.6. Let s: Speck — E be a geometric point, {¢ — FEs a G-bundle and
0: C — &g/P a stable map. We write [0] € X, (Tp) for the projection of the degree
deg,¢)0 € Xu(Tp) © Z to the first factor, where (U, ) is the degree datum of Lemma
3.4.4. We will often abuse terminology slightly and refer to [o] as the degree of o.

Proposition 3.4.7. The morphism
KMp g/s(X) — Degg(X)

is smooth.
Proof. The stack KMp ¢ /g(X) is an open substack of

Bungpeg (x)(Degs(X) X5 X) XBung, o x) (€) BUP/Deg (x) (C),
where C — Degg(X) xg X is the universal prestable degeneration of X. Since

Bunp/@egs(x)(C) — Degg(X)
is smooth, it therefore suffices to show that the morphism
Degs(X) xs Bung/s(X) = Bungpeg, (x)(Degg(X) x5 X) — Bungpeg, (x)(C) (3.4.1)

defined by pullback of G-bundles is smooth. We in fact show that (3.4.1) is étale. By
deformation theory for G-bundles, it is enough to show that if s: Speck — S is a geometric
point, f: C' — X is a prestable degeneration, and £ — X is a principal G-bundle, then

the canonical morphism
RL(X, éq x© g) — RI(X,, Rf.O0c @ (g X 9)) = RT(C, f*(¢a x“ g))
is a quasi-isomorphism. But this holds by Lemma 3.3.3, so we are done. O

Corollary 3.4.8. The stack KMp g,5(X) is smooth over S, and contains Bunp,(X) as a
dense open substack.
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Proof. Proposition 3.3.7 shows that Degg(X) is smooth over S and that the open immersion
S — Degg(X) classifying the identity idx: X — X is dense. So the claim now follows
from Proposition 3.4.7 and the natural identification of Bunp,s(X) with the stack of tuples
(s,€q,0), where s € S, £ — X, is a G-bundle and o: X, — £¢/P is a section. O

Propositions 3.3.7 and 3.4.7 imply that the complement of Bunp,s(X) in KMp 5/5(X)
is a divisor with normal crossings relative to S. In order to study this divisor in more detail,
we recall the following facts about stable maps to partial flag varieties.

Recall that there is a homomorphism
¢': X*(Tp) = Pic%(G/P) — Pic(G/P) = NSspecz(G/P) = X*(T3°),

which is surjective after tensoring with Q. Here T°¢ C T is the subtorus of the abstract
Cartan T with cocharacter group Z®" C X, (T'), and T3¢ is the quotient of T°¢ and subtorus

of Tp with character group
X*(T5) = {\ € X¥(T°°) | (N, ) = 0 for o; € t(P)}.

With U’ = SpecZ, the homomorphism ¢’ defines a degree datum (U’,¢’) for G/P over
SpecZ.

Proposition 3.4.9. Let P C G be a parabolic subgroup and let y € X.(Tp). The morphism
Mo)l(G/P, /,L) — G/P X mo)l (342)

given on the two factors by evaluation and forgetting the map to G/ P is smooth of relative
dimension (2pp, ), where 2pp € X*(Tp) C X*(T) is the sum of all positive roots that are
not roots of P. In particular, the morphism My1(G/P,pu) — G/P is smooth of relative
dimension (2pp, ) — 2.

Proof. To prove that (3.4.2) is smooth of the required relative dimension, note that there is a
tangent-obstruction complex for (3.4.2) given at a 1-pointed stable map (f: C — (G/P), x)
defined over an algebraically closed field k by

T =RI(C, f*Tg p(—2)).

Since T/ p is generated by global sections and C'is rational, we have Hi(C, [*Tg/p(—x)) =0
for i > 0, so (3.4.2) is smooth, and T is its relative tangent bundle at (f,z). By Riemann-
Roch, the relative dimension is

deg(f*Tg p(—)) +rank f*Tg/p(—x) = deg [T /p = (2pp, 1)
as claimed. O

Proposition 3.4.10. Let o; € A be a simple root of G and B C G a Borel subgroup. Then

the morphism
Movl(G/B,O[;/) — G/B,

given by evaluation at the marked point is an isomorphism, and
Mo1(G/B, o) = Mg ,(G/B, o).

Proof. Let P be the minimal parabolic containing B with ¢(P) = A\ {«;}. Note that the
morphism 7: G/B — G/P is a family of smooth curves of genus 0 and that the identity
G/B — G/B defines a stable map to G/B over G/P with degree ;. We claim that this
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is the universal stable map of genus 0 and degree o, so that G/P = My(G/B,«;"). The
proposition then follows by Proposition 3.1.13 and the fact that all the domain curves are
smooth.

To prove the claim, suppose that U is any scheme and f: C' — U x G/B is a stable map
over U of genus 0 and degree . For every line bundle £, on G/P, we have deg f*m*L, =0

on the fibres of C' — U. So, since G/P is projective, the morphism
¢ —G/B— G/P

factors through a unique morphism U — G/P, and the morphism C' — U x¢g,p G/B is a
genus 0 stable map of degree 1 to a smooth curve of genus 0 over S, hence an isomorphism.
So (m: G/B — G/P,id: G/B — G/B) is the universal stable map to G/B as claimed.

O

Lemma 3.4.11. Let k be an algebraically closed field and let T be a stable X*(Tp)-graph of
genus 0. Then My ((G/P)k,7) # 0 if and only if for allv € V., we have B(v) € X, (T5)>0 C
X« (Tp), where

Xe(T5) 0 = {1 € Xu(TF) | (@i, p) >0 for all oy € t(P)}.

Proof. First suppose that My ((G/P)g,7) # (. Then for all v € V,, there exists a stable
map (py: Cy = (G/P)k, () er, (v)) over Speck of degree 3(v). So by definition of degree,
B(v) is the image of p € X, (T§°) under the inclusion

X, (T}°) = Hom(NS(G/P), Z) — Hom(X*(Tp), Z) = X,.(Tp),

where (A, p) = degpi Ly for A € X*(T°). Moreover, for all o; € ¢(P), we have (w;, u) > 0
since the line bundle £, on G/P is nef. So B(v) € X, (T5%)>0 as claimed.
Conversely, suppose that 5(v) € X, (T5%)>o for all v € V.. Then we can find a contraction
7/ — 7 where 7’ is a stable X*(Tp)-graph of genus 0 such that 3(v') € {0}U{a) | a; € t(P)}
for all v € V.. Since Proposition 3.4.10 implies that there exists an n-pointed stable map
of genus 0 and degree ) through any point in (G/P) for any «; € t(P) and any n > 0,
it follows by induction on the number of vertices of 7 that My ((G/P)g,7’) # @, and hence
that My((G/P)k,7) # 0 as claimed.
O

Lemma 3.4.12. Let 7 be a stable X*(Tp) ® Z-graph of genus g such that the underlying
Z-graph 1o has degree 1. Then MBunG/S(X)(Eg,m/P, 7) # 0 if and only if 1o satisfies the
equivalent conditions of Lemma 3.3.5 and for everyv € V, with (v) € X.(Tp) C X, (Tp)DZ,
we have B(v) € X (T5%)>0 C X (Tp).

Proof. Tt is clear from Lemmas 3.3.5 and 3.4.11 that if MBunc/S(X)(gg"i/P, 7) # () then the
claimed conditions must be satisfied. For the converse, assume that 7 satisfies the conditions
of Lemma 3.3.5 and that for every v € V; with f(v) € X, (Tp) we have (v) € X, (T3°)>o0.
We prove that Mpun,, 4 ( X)(fg”i /P, 7) is nonempty by induction on the number of vertices
of 7.

If 7 has a single vertex v, then we have 5(v) = (1, ) for some p € X, (Tp). Choose any
geometric point s: Speck — S, any Tp-bundle &7, on X of degree p, and any lift of {7, to
a P-bundle ép — X,. Then setting £¢ = €p x© G and choosing distinct points xy € X, for
[ €S-, we have a T-marked stable map (o: X; — &a/P, (xf) fcr, ), where o is the canonical
section defined by the reduction &p.
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If 7 has more than one vertex, then since the underlying graph of 7 is a tree, we can
choose a leaf v € V; with 8(v) € X, (T5)>0. Then writing 7 and 71 for the graphs with
Vi ={v}, Fry = Fr(v), Vy = Vo \ {v} and F; = F; \ F;(v), we have a Cartesian diagram

MBunG/S(X)(fqéni/P7 T) — MBunG/S(X) (gg:nl/P7 Té) = 557” x ¢ MO,\S,\(G/Paﬂ(’U))

J |

MBunG/S(X)(fqéni/Pv T{) gnl/Pa

where Mpung, 5 (x)( uni /P 1) # () by induction and the right vertical arrow is surjective by

Lemma 3.4.11. S0 Mpuy,, ¢ (x) (4" /P,7) # 0 and we are done. O
Proposition 3.4.13. Let X — S be a smooth curve over S. We have the following.

(1) The gluing morphism

[T M, o) (€47 /P.7)/Aut(r) — KM p gy (X)

T

is a bijection on points, where the coproduct is taken over all stable X*(Tp) @ Z-graphs
T with S; = 0 satisfying the conditions of Lemma 3.4.12.

(2) For every stable X*(Tp) @ Z-graph T as above, we have

Mlg\unc/s(X) (é“gnz/P’ T)/AUt(T) = U M]gunG/S(X) (gg’ni/P7 T/)/AU't(T/)7

where the union is over all stable X*(Tp) ® Z-graphs T’ satisfying the conditions of

Lemma 3.4.12 such that there exists a contraction 7" — 7.

Proof. The claim (1) follows immediately from Proposition 3.2.18 and Lemma 3.4.12. To
prove (2), note that by Corollary 3.2.20, it suffices to show that

Mg yng, o) (€& /P T) [ Aut(T) © Mg, oy (€87 P,7) [Aut()

for all appropriate 7/ with a contraction 7 — 7. Fix such a 7/, a contraction 1: 7 — 7 and a

geometric point p’ in Mgunc/s(x)(fgm/P, 7'). Writing ¢ : 7, — 70 for the contraction of the
underlying Z-graphs, and pj € Degg(X) for the image of p’, from the proof of Proposition
3.3.7, (4) it is clear that there exists a complete discrete valuation ring R and a morphism
po: Spec R — Mg(X, 1) such that the generic fibre factors through MM (X, 7p) and the
closed fibre is (o)« (p}). Since there is a Cartesian diagram

HTI MBUHG/s(X)(géni/P7 Tl) — KMP,G/S(X)

J |

Ms (X, 70) Degs(X),

where the coproduct is over all stable X*(Tp) @ Z-graphs with underlying Z-graph 79, the
morphism Mgy, o (x)(E&"/P,7) — Ms(X, 1) is smooth by Proposition 3.4.7. So we
can lift py to a morphism p: Spec R — MBunG/S(X)(fgm/P, 7) with closed fibre p’ and
generic fibre factoring through Mlgunc/s( X)(fg”i /P, 7). So the gluing of p’ is in the closure
of Mgunc/s(x)( uni /P 7)/Aut(r) and we are done. O

We have the following corollary of Proposition 3.4.13, where for A\, ' € X, (Tp) we write
N <At A= XN e X (T5)>0-
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Corollary 3.4.14. A G-bundle £ — X is in the image of KM?’,G/S(X) — Bung,s(X) if
and only if there exists a reduction of £ to a P-bundle of degree X' < \.

Proof. Tt is immediate from Proposition 3.4.13 that the restriction of a stable map o: C —
éc/P in KM?‘D’G /s(X) to the irreducible component mapping isomorphically to X defines
a reduction of {¢ to a P-bundle of degree A’ < A. Conversely, if such a reduction exists,
then the proof of Lemma 3.4.12 shows that we can complete the corresponding section of
¢a/P — X, to a stable map in KM;GVS(X). O

Convention 3.4.15. If a X*(T")@Z-graph 7 is the dual graph of a stable map in KM p /5 (X)
with respect to the degree datum of Lemma 3.4.4, we will draw 7 by labelling each vertex

v of the underlying Z-graph (drawn according to Convention 3.3.6) with the projection of
B(v) € Xu(Tp) @ Z to X, (Tp).

For A € X, (T%)4 = Xu(T5)>0 \ {0}, write DY'5 C KM*;,’G/S(X) for the locally closed

substack of stable maps with dual graph 7§ given by

In other words, DY’ is the image of Mgunc/s(x)(gg”i/P, ) — KM%

PG/S
DY p for the closure of DY’} in KM}, (X)), and

(X). We write

D= |J Dip
AEXL(TE) +
Note that Proposition 3.4.13 implies that D% is equal to the complement of Bun’;,/s(X) -
KM‘;D’ G/ 5(X) since every stable X*(T’p) @ Z-graph with more than one vertex appearing in
KM’;G/S(X) admits a contraction onto 74’ for some A € X, (T5°) .

Proposition 3.4.16. We have the following.

(1) The closed substack D', C KM;,G/S(X) is a divisor with normal crossings.

(2) If M,...,Am € X (T5%) 1 are distinct elements and j1,...,Jm € Zso, then the open
stratum where D' is locally the intersection of j; branches of Dy, p fori=1,...,m is
given by

J1. \Im o uni
(D)) = T M o) (€477 P, ) /At (7)

where the coproduct is over all stable X*(Tp) @ Z-graphs T satisfying the conditions of
Lemma 3.4.12 such that there are exactly j; contractions T — Tf\i foreachi=1,...,m,
and no contraction T — 7 for X ¢ {\1,..., An}.

Proof. The claim (1) is immediate from Propositions 3.3.7 and 3.4.7.

To prove (2), fix a geometric point p in the open stratum Dggn) C D where DY is
locally isomorphic to an intersection of n coordinate hyperplanes in an affine space, let 7
be the dual graph of p, and write p’ for the 7-marked stable map with gluing p. Then by
Proposition 3.3.7, (3), the graph 7 has exactly n edges. Writing E, = {ey,...,e,}, for every

i =1,...,n there exists a unique ;) € X,(T%°)4 and a contraction ¢;: 7 — Tﬁfm such that
e; is the unique edge not contracted under ;. So there are Aq,..., A, € X, (TF)+ and
J1s--+5Jm € Z~g, unique up to reordering, such that 7 has exactly j; contractions onto T)I\LZ_
for each 7 and no contractions onto 7§ for A ¢ {A,..., A\ }. So it suffices to show that p
lies in the stratum (D‘Ié)(’\{l""\']r‘ﬂ") where j; branches of DY p, intersect for i =1,...,m.
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From the proof of Proposition 3.3.7 (3), there exists a complete Noetherian local ring A
and formally smooth morphisms py: Spec A — Degg(X) and Spec A — Specog[t1, ..., tn] ¥
S over S such that p~1(D) is the locus ¢; ---t, = 0, and for each i = 1,...,n, we have a

commutative diagram

Spec A; @, Ms(X, (Tf\‘(i))o)

T

Specd — 2, Degq(X),

where A; = A/(t;), (T;\L(i) )o is the Z-graph underlying Tf(i) and (p;)o maps the locus [ [, t; #
0 into MZ(X, (Tﬁf(i))o) and the closed point to the the gluing (¢;)o, (p() of the image pj of
P’ in Mg (X, 79) with respect to the contraction (¢;)o: 79 — (T)P\L(i))o underlying ;.

Since the diagram

Mpung, s (x) (€4 / P, Tfm) —_— KM!;’,G/S(X)

| |

Ms (X, (Tf(i) Jo) ———— Degg(X)

realises MBunG/S(X)(ﬁgm/R Tﬁf(i)) as a connected component of the fibre product, Proposi-
tion 3.4.7 ensures that, after replacing Spec A with some formally smooth cover if necessary,

the diagram (3.4.3) lifts to a diagram

Spec A; . MBuIIG/s(X)(glém/P’ Tﬁ‘l(i))

| J

Spec A ————— KM}, o(X),

such that p sends the closed point to p and p; sends the closed point to the gluing of p’
under ;. So in particular p sends the locus Hj# t; # 0 into D;’\(i), and we conclude that p

lies in (D‘F‘,)(Ail"'A%'L) as claimed. O

3.5 Blow down morphisms
An important feature of the Kontsevich-Mori compactification is the existence of a morphism
KMpg/s(X) — Bung, /s(X)

extending the natural morphism Bunp,g(X) — Bung, ;s(X). In this section, we define this
morphism and study some of its basic properties.

For simplicity, we will assume that the base stack S is regular. Since any family of
smooth curves of genus g is pulled back from one over the smooth Z-stack 97, one can
carry through these constructions for a general base S, if desired, by pulling back from this
universal base.

Let T be a split torus over SpecZ, and let &4 — Bunr,peg,(x)(C) be the universal
T-bundle, where f: C — Degg(X) Xg X is the universal prestable degeneration of X. By
Proposition 3.3.8, there is an open substack U = (Degg(X) x5 X)\ f(Exc) C Degg(X) xg X
whose complement has codimension 2, such that morphism f~(U) — U is an isomorphism.

Since S is regular, so is Bung,peg, (x)(C) X5 X, so the restriction of £ to

Bungpeg (x)(C) Xoegs (x) [ (U) = Bungmeg (x) (C) Xegg(x) U C Butigpeg, (x)(C) x5 X
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extends uniquely to a T-bundle BI(£") on Bung)peg, (x)(C) X X since T is a torus. The
T-bundle BI(£4"%) determines a morphism

BITZ BunT/@egS(X)(C) — BunT/S(X)'

Definition 3.5.1. In the setup above, we call the morphism Bl the blow down morphism
for T. If P C G is a parabolic subgroup of a reductive group G with associated torus
Tp = P/[P, P], we define the blow down morphism for P to be the composition

Bl
Blp: KMps(X) — Bung, peg, (x)(€) —2+ Bung, /s(X).

The blow down of a T-bundle can also be described in terms of its associated line bundles.

Lemma 3.5.2. Let A € X*(T) be a character. Then
A(BI(EF™)) = det RfA(ér), (3.5.1)

where det denotes the determinant of a perfect complex, and by abuse of notation we write

[ Bung/meg, (x)(C) Xmegy(x) € = Bung/meg,(x)(C) x5 X
for the pullback of the morphism f: C — Degg(X) xg X.

Proof. Since BunT/@CgS(X)(C) X g X is regular, this follows from the fact that both sides of
(3.5.1) agree when restricted to Buny,peg,(x)(C) X®egq(x) U- O

Proposition 3.5.3. The morphism
Bl Buny;peg,(x)(C) — Degg(X) x5 Bung,s(X)
is €tale.

Proof. The claim for general T reduces easily to the case where T' = G,,. In this case, we

need to show that the morphism of tangent complexes

Rp*Rf*O[l] = TBunGm/Ecgs(X)(C)/Qegs(x) — BI}TBun@,m/S(X)/S = Rp*O[l] (352)

is a quasi-isomorphism, where p: Bung,, /peg,(x)(C) X5 X — Bung,, /peg4(x)(C) is the pro-
jection onto the first factor and f: Bung,, /megq(x)(C) Xmegq(x)C = Bung,, /megq(x)(C) x5 X
is the pullback of the universal morphism as above. From the description of Bly from Lemma
3.5.2, it follows that (3.5.2) is obtained by pushing forward the morphism

Tr

Rf.O[1] = Rf.End(L)[1] — RHom(Rf. L, Rf.L)[1] = O1] (3.5.3)

on Bung,, /peg . (x)(C) X 5X, where L is the universal line bundle on Bung,, /peg (x)(C) X Deg s (X)
C. But since Rf,O = O, and (3.5.3) is an isomorphism on an open substack whose com-
plement has codimension 2, it is necessarily an isomorphism everywhere. So (3.5.2) is a
quasi-isomorphism as claimed. O

Corollary 3.5.4. Let P be a parabolic subgroup of a reductive group G. Then for any

A € X, (Tp), the blow down morphism Blp restricts to a smooth morphism
KMp ¢/5(X) — Bung,s(X)

extending the natural morphism Bung/S(X) — Bun%/S(X).
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Proof. Note that Blp restricts to the canonical morphism Bunp,s(X) — Bung,,s(X) by
definition, and hence sends P-bundles of degree A on C to Tp-bundles of degree A on X since
Bunp,s(X) € KMp g s(X) is dense. It remains to show that Blp is smooth. By Proposition
3.5.3 and Proposition 3.3.7 (1), the only thing left to check is that the composition

KMP,G/S(X) — Bunp/gegs(x) (C) — BunTp/fDegS(X) (C)

is smooth. The first morphism is étale since it is the pullback of the étale morphism
Bung/s(X) x5 Degg(X) — Bung/meg,(x)(C). Smoothness of the second morphism re-
duces to the fact that for every prestable degeneration g: C' — X, and every P-bundle {p
on C, we have

HY(C,ép xF [p,p]) =0 fori>1,

where p = Lie(P). O

We conclude this section with the following observation about the connection between

the blow down morphism and gluing.

Proposition 3.5.5. Let p € X, (Tp) and A € X, (T5%)4+. Then there is a commutative

diagram

Maung, s (x) (68" /P, TY) KMA]LD,G/S(X)
J{ JBIP
_ Bl id —
KMY 3 6(X) xg X —5 Buny 74(X) xg X —— Bunf, (X)),

where the vertical morphism on the left is given by the natural forgetful map

MBung/S(X) (glCL?nl/Pa T;) — Mg7l,BunG/s(X) (Eg‘nz/P7 (,u - >\a 1))

composed with the map forgetting the marked point and stabilising on the first factor and
evaluating at the marked point and composing with the natural map to X on the second, and
the horizontal morphism on the bottom right is given by (&, ) — &r @ MO(x)).

Proof. The two morphisms

MBunG/S(X)(ggni/Pa T;f) — Bun/,

TP/S(X)

ung

classify Tp-bundles on MBunG/S(X)(SG /P, 7{) xs X with an isomorphism ¢ outside the

section
MBung/s(X)(ggnZ/Pa Tf) - MBung/s(X)(ggnl/Pa Tf) Xs X

given by evaluation at the marked point on the genus g domain curve and projection from
£4ni/P to X. Since both T-bundles have degree  on every fibre, it follows that ¢ extends
to a global isomorphism, which gives the 2-isomorphism making the diagram commute. [

3.6 Applications to Bung

In this section, we give some basic applications of the theory of Kontsevich-Mori compacti-
fications to the structure theory of Bung,g(X) for a reductive group G. We begin with the
proof that the locus of semistable bundles is open (Proposition 2.5.13).
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Proof of Proposition 2.5.13. Let Py, ..., P, denote the maximal parabolics of G with types
t(P;) = {a;}. Call a character A € X, (Tp,) primitive if it is not a positive multiple of
another character, and let A; € X*(P;) be the unique primitive nonzero dominant characters
vanishing on Z(G)°. The natural homomorphism

X*Zg&) — X,(G/[G, G)])

is surjective with finite kernel, and for every ug € X.(Tp,)/Z«y, there is a unique lift
i € X, (Tp,) such that (N\;, ) < 0 and p is maximal among lifts with this property with
respect to the partial order of Corollary 3.4.14. Corollary 3.4.14 then implies that for every
w € X, (G/[G, G)), there exist finitely many g1, ..., in; € Xi(Tp,) such that the image of

cs(X)

H KM’;,j/S(X) — Bun”.
j=1
is equal to the locus of G-bundles {¢ — X, admitting a section o: Xy — £ /P; of degree
w' satisfying (\;, 1’y < 0. So the locus of semistable bundles in Bung/S(X) C Bung,g(X)

is equal to the complement of the image of

I n;
1111 KM 4(X) — Bungg(X).
i=1j=1
Since this morphism is proper and hence has closed image, openness of semistable bundles
follows.
O

Proposition 3.6.1. Assume that G is a reductive group such that the semisimple group
(G, G] is simply connected. Then for any p € X.(G/[G,G]), the morphism Bun’é/S(X) -5

has connected fibres.

Proof. Since the statement concerns only geometric fibres of Bung,s(X) — S, we may
assume without loss of generality that S = Speck for some algebraically closed field k. We
will also fix a Borel subgroup B and maximal torus T C B.

First, observe that since G is connected and reductive and k is algebraically closed,
[BS, §8.6] shows that any G-bundle £ — X is trivial at the generic fibre, so there exists a
section X — £ /B since X is a curve and £z /B is proper. So the morphism Bung(X) —
Bung(X) is surjective.

Now suppose that £ and ng are G-bundles on X of the same degree pu € X,.(G/[G, G]).
We need to show that {¢ and ng belong to the same connected component of Bung(X).
To see this, choose B-reductions &g and np of ¢ and ng of degrees A1, A2 € X,(T'). Since
[G, G] is simply connected, we have a short exact sequence

0 — Z®Y — X, (T) — X,(G/[G,G]) — 0

and hence Ao — A1 € Z®V. So there exists A € X,(T') such that A\; < X and Ay < A
Therefore, £ and 7 are both in the image of the morphism

KM3 ¢ (X) — Bung(X)

by Corollary 3.4.14. But KM%G(X) is connected, since its dense open substack Bun7(X)
is by Proposition 2.4.2 and Corollary 2.4.5, so £ and ng belong to the same connected

component as claimed. O
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Remark 3.6.2. The same proof shows that the morphism Bunz\;/S(X) — BunE\G/[GG])/S(X)

has connected fibres when [G, G| is simply connected.

Remark 3.6.3. When the derived group [G,G] is not simply connected, one can show
that the degree of a Borel reduction of £ modulo Z®" depends only on £g. The proof of
Proposition 3.6.1 then shows that this invariant in X, (7')/Z®" singles out the connected

components of Bung(X) in the general case.

Proposition 3.6.4. Assume that [G,G] is simply connected and X — S is a family of
smooth curves of genus < 1, let P C G be a parabolic subgroup containing a Borel subgroup
B, and let A € X,(T) be such that {(a,\) > 0 for all & € @4 such that « is a root of P.
Then the morphism

KM)J%’,G/S(X) — KME\D,G/S(X)

is surjective, where X' is the image of X in X, (Tp). In particular, any degree A\ P-bundle on
a geometric fibre of X — S has a reduction to B of degree < \.

Proof. For simplicity, we can assume without loss of generality that S = Speck for k an
algebraically closed field. We also fix a maximal torus 7' C B.

We first remark that by the assumption on A, for a generic T-bundle of degree A\, we have
that &7 xT p/b is a direct sum of nontrivial line bundles of nonnegative degree, and hence
HY(X, &7 xT p/b) = 0, where p = Lie(P) and b = Lie(B). So the morphism Buny(X) —
Bun?‘; (X) is smooth at the point £ = &7 xT' B for such a T-bundle.

Hence, there is a nonempty open subset U C Buny(X) such that the morphism U —
Bunf.él (X) is smooth. Since smooth morphisms are open, we conclude that the image of
KMg’G(X) — KMj\piG(X) contains an open substack. Since Corollary 2.4.5 and Proposition
3.6.1 imply that KM?‘;/,G(X) is smooth and connected and KM%G(X) — KMj\:éG(X) is
proper, we deduce that KM%G(X) — KM?.EZG(X) is surjective as claimed. O

3.7 Bruhat cells for parabolic bundles

Let G be a reductive group and P, P’ C G parabolic subgroups containing a Borel B and
maximal torus 7' C B. The Bruhat decomposition

G/P = 11 PwP'/P’ (3.7.1)
weWp\W/Wp,

into P-orbits is an important tool in the study of the partial flag variety G/P’. Here w
ranges over any fixed set of double coset representatives for the Weyl groups Wp = Wy, and
Wpr = Wi of the Levi factors L C P and L' C P’ inside the Weyl group W = Ng(T')/T of

G. In this section, we study the natural cells in the stack

Bunp/s(X) XBung,s(x) Bunpr/s(X)

coming from the decomposition (3.7.1) for X — S a smooth curve.
It will be convenient for us to have a standard set of double coset representatives. Define

Wpp={weW|w o € andwa; € Py for a; € A\ ¢(P) and o € A\ ¢(P)}.
(3.7.2)

Proposition 3.7.1. The set Wgﬁp, is a complete set of coset representatives for Wp and
Wp in W.
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Proof. First notice that
W2 pr={weW | {(siw) > (w) and £(ws;) > {(w) for a; € A\ t(P) and o; € A\ t(P')},

so in particular, if w € W has minimal length among elements of WpwWp/, then w € ng, pr-
So every double coset has a representative in Wg’ pr-

To prove uniqueness of this representative, assume that w € Wg pr has minimal length
in WpwWp: and that w' € WpwWp N ng/. Then we can write

/
w = 8§ "84, WS~ S5,

where a;, € A\ t(P) and o, € A\ t(P’) for each k, and s;, ---s;,, and s;, ---s;, are
reduced words. We prove by induction on m + n that w = w’. If m +n = 0, then this is
clear, and if m + n > 0 we can assume without loss of generality that m > 0. Choose any

reduced word w = sg, - - - s, for w. Since w' € WP p.,
4 f— . . ... . DEEY . ... . . DY . DY . ... . = : !
l(w') = £(sq, 84, Sipm Sk SkpSj1 Sjn) < {(si, Sim Sk Sk, 531 Sjn) = L(sy,w").

So by the deletion property for Coxeter groups, reducedness of s;, ---s;, , Sk, -+ sk, and
84, -+ 8j,, and the minimality of the length of w in its double coset, there must exist an

index j, such that

/ o~
w :SiQ...SiWLSkl...Skpsjl...sjq...

— SiQ .. .Simwsjl .. .gjq .. 'Sjn'
So w’ = w by induction. O
We remark that the coset representatives W2 = Wg) g have the following nice property.

Proposition 3.7.2. Ifw € W2, then LNwBw~' = LN B, and hence LNB C LNwP'w™!.

Proof. Note that since w™la; € @, for all a;; € A\ ¢(P), we have that «; is a root of wBw ™1
for all a; € A\ ¢(P), and hence LN B C LNwBw~!. Since LNwBw~! is a Borel subgroup
of L, it follows that LN B = LNwBw™' as claimed. O

Let S be any stack and let X — S be a smooth curve. The partial Bruhat decomposition
on G/P’ gives a decomposition

BP xpg BP' = P\G/P' = 11 P\PwP'/P' = 11 B(PNwP'w™!)
weWP\W/WP/ U)EWP\W/WP/

into disjoint locally closed substacks, and hence a family of disjoint locally closed substacks
Bunpnypro-1/s(X) = Bunp;s(X) XBung, s(x) Bunps(X)
for w € Wp\W/Wp..
Definition 3.7.3. If w € Wp\W/Wp: and A € X, (Tp/), the associated Bruhat cell is
Cppr /(X)) = Butlprypry1/5(X) XBuny, o (x) Bunp, s (X)
C Bunp;s(X) Xpung, s (x) Bunps/s(X).

There is a natural decomposition of C’g’;, / 5(X) in terms of the degree of the associated
PnwP'w~!-bundle. In the following proposition, we write Tpn,prw-1 = (PNwP'w™t)/[PN
wP'w™, PNwP'w™?], and let

jw: TPﬂwP’w_l — TP’
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to be the natural homomorphism induced by the homomorphism
w Y (=)w: PNnwP'w™! — P’
for any choice of lift w € Ng(T) of w € W = N¢g(T)/T.
Proposition 3.7.4. The Bruhat cell C’;’;,/S(X) decomposes as a disjoint union
w,A _
CP,P’/S(X) = H Bun;mwp,w,l/s(X).
pEGL (N
Proof. There are identifications P\PwP’/P' = B(P N wP'w~"') (resp., P\PwP'/P' =
B(w='Pw N P’)) coming from the fact that P (resp., P’) acts transitively on PwP’/P’
(resp., P\PwP’) so that the stabiliser of wP’/P’ (resp., P\Pw) is P N wP'w~! (resp.,

w™tPw N P’). If we choose any lift w € Ng(T) for w, then these both lift to a transitive
action of P x P’ on PwP’ such that the stabiliser of w is

{(91,92) € P x P' | gy 'vgs = w}.
So we have an identification
P\PwP'/P" = B{(g1,92) € P x P | g "vgo = w}
lifting the two identifications above. It follows that the morphism
B(PNwPw™') = Bw 'Pwn P) — BP

is induced by the homomorphism @w~!(—)w: PNwP'w~! — P, from which the result follows
immediately. O

The decomposition P = L x R, (P) gives a description of the Bruhat cell Cg’;,/S(X) in

terms of L and R, (P). In the following proposition, if u € X.(Tprwprw-1), then we write

& and €5 pr—1 Tespectively for the universal L-bundle and L N wP'w ™! bundle on

Bunimwp/wfl/s(x) XBun,,,s(x) Bunp;s(X) xs X,

U = & xP R, (P) for the associated unipotent group scheme, Uy, = £ upprow-1 x LnwP'w™!

(Ry(P)NwP'w™t) CU, and & = £p/ L for the associated U-bundle.

Proposition 3.7.5. In the setup above, there is an isomorphism
Bun;mwplw—l/S(X) = FM(M Xs X? gu/uU))’

where

M = Bun‘L‘me,w,l/S(X) XBuny, 5 (X) Bunp,s(X).
Proof. We can have a natural identification
M= Buninwp/wflxRu(P)/s(X)'
Since
PnwP'w ' =LNnwPw ' x R,(P)NwP'w* CLNwPw*x R,(P)
is a subgroup, by Proposition 2.3.6 we have

’,,—1
Bunpff)mwp/wfl/s(X) = FM(M xg X, gLﬂwP/w_lxRu(P) x Lwbw X R (P) N)

)
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where
LNwP'w™! x R,(P)

LNnwP'w=! x R,(P)NwP'w-t
But the isomorphism R, (P)/(R,(P)NwP'w~!) = N induces an isomorphism

N =

~ LNwP'w™ xRy (P
§u/Up — ELrwprw—1x Ry (P) X P) N,

so this proves the proposition. O

Unlike the Bruhat cells for the flag variety, the cells C’;ﬁ’;/ / 5(X) do not cover the stack

Bunp/s(X) XBung, s(x) Bunp, /s (X).

However, by giving bounds on the degrees of sections of flag variety bundles, the following
proposition can often be used to show that they do cover the preimages of certain substacks
of interest in Bunp,g(X).

In the proposition below, we write

Cg,ﬁ’/S(X)ﬁP = {gp} ><BUIIP/S(X) Cg,ﬁ’/S(X)
for £p € Bunp,g(X).

Proposition 3.7.6. Let{p — X, be a P-bundle on a geometric fibre of X — S, and suppose
there exists a point in Bunp,g(X) XBung s(X) Bunél/S(X) over £p that does not lie in any
Bruhat cell. Then there exists w € W p, \ {1} and N < X such that ng’?:/S(X)ELXLP # 10,
where &, = Ep xT L is the associated L-bundle.

Proof. We can assume without loss of generality that S = Speck for some algebraically
closed field k.

The preimage of {p in Bunp(X) Xpun (x)Bunp (X) is the space of sections of the partial
flag variety bundle {ép xP G/P’ — X, and for all w € ng,P/, the preimage ng’g/(X)gp of
&p in the Bruhat cell Cg”;‘,,(X) is the space of sections of ép x¥ PwP'/P’ — X of degree
A. So the assumption of the proposition is equivalent to the assumption that we have a
section 0: X — &p x G/P' of degree A that does not factor through any Bruhat cell
&p xP PwP'/P'.

The strategy of the proof is to construct a degeneration of £p to the bundle &, x* P,
together with a degeneration of ¢ to a stable map o’: C — & x G/P’ such that the
restriction of ¢’ to the irreducible component of C' mapping isomorphically onto X factors
through some Bruhat cell. We then deduce the degree bounds by decomposing the degree
A of ¢/ into contributions from each irreducible component of C.

To construct the degeneration, first choose a cocharacter p € X, (Z(L)°) € X.(Z(L)°)qg
of the centre of L such that p is a Harder-Narasimhan vector for P, and consider the induced

action

Gp X P — P (3.7.3)

(t,p) — p(t)pp(t)~".

Since multiplication defines a G,,-equivariant isomorphism of schemes L x R, (P) = P, and
since G, acts trivially on L and with strictly positive weights on the affine space R, (P),

the morphism (3.7.3) extends uniquely to a morphism of schemes

AlxP— P, (3.7.4)
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which restricts to the morphism P — L — P over 0 € Al. Since (3.7.3) defines a ho-
momorphism G,, x P — G, x P of group schemes over G,,, by continuity (3.7.4) defines
a homomorphism A! x P — A! x P of group schemes over A!. So we get a morphism
Al x Bunp(X) — Bunp(X) extending the action of G,, on Bunp(X), and hence a G,-
equivariant morphism

A} — Bunp(X)

by restricting to A! x {{p}, which sends 1 € A} to {p and the origin 0 € A} to the P-bundle
& xI P. We write £p for the corresponding P-bundle on A} xj, X.
The action of G,, on ({p, ), viewed as a point in the stack Bunp(X) Xpune (x) Bunp, (X),

defines a morphism
(Gm“lc — A%. XBung(X) Bun;, (X) g Allc xBunc(X) KM;,ﬁGw(X).

Since KM?;,)G(X ) — Bung(X) is proper, by the valuative criterion for properness, there
exists morphism Spec R — A}, with R a complete discrete valuation ring finite over OA}C’O,
and a commutative diagram

Spec K ——— Gy — KMps (X)

| ]

Spec R A} Bung(X)

where K is the field of fractions of R. Write « € Spec R for the closed point; since k is

algebraically closed by assumption, the point z is defined over k. We also write
5: C'— Spec R x4 (€p x” G/P')

for the family of stable maps classified by the morphism Spec R — A}, X Bung (X) KM;‘D,VG(X).

We claim that the restriction 7, |x of &, to the unique component of the fibre C,, of C' —
Spec R over x mapping isomorphically to X factors through some Bruhat cell {7, x PwP’ /P’
with w € W p, \ {1}. To see this, observe that since each Bruhat cell is open in its closure,
we must have that U = o~ (£p x¥ PwP’/P') C X is open and dense for some w € Wp p,.
Since o does not factor through &p x PwP’/P’, we must also have o~ 1(¢ép xT D) # 0,
where D,, is the complement of PwP’/P’ in its closure. Since D7 = (), this in particular
implies that w # 1.

Let p: C — X be the natural morphism. Since G,, acts on the fibres of PwP’/P’ —
L/(LNwP'w™!) with strictly positive weights, it is clear that Olp-1(uy is a section of {1, x L
L/(L N wP'w™t) over U and that p~}(U), is a dense open subset of X C C,. Since
LNwP'w™! C L is a parabolic subgroup by Proposition 3.7.2, LwP’/P’' = L/(LNwP'w=')
is proper over SpecZ, hence closed in G/P’. So &,|x factors through ¢, x¥ LwP’/P' C
& xE PwP'/P" as claimed.

It remains to prove that 7,|x has degree A’ < X. To see this, note that since D,, is
proper over SpecZ and P-invariant, C' — Spec R is proper, and o~ !((p xP D,,) # 0, it
follows that 6, 1(&x x% D,,) # 0 also. So C, must have an irreducible component different
from X. So Proposition 3.4.13 now implies that the degree A’ of 7,|x is less than the degree
A of &, so we are done. O
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Chapter 4

The elliptic Grothendieck-Springer resolution

We are now ready to begin our study of elliptic Springer theory in earnest. From now on, we
fix a split simply connected simple group G over Z of rank | with maximal torus and Borel
subgroup 7' C B C G and a family F — S of smooth curves of genus 1 over a connected
regular stack S. For the sake of brevity, for any group scheme H, we will write Bunyg =
Bung,s(E), and for P C G a parabolic subgroups, we will write KMp ¢ = KMp g/s(E).
The main aim of this chapter is to construct the elliptic Grothendieck-Springer resolution

Bung ————— Bung

f{ Jx (4.0.1)

0y /Gy —— (VW) /G,

advertised in the introduction. In §4.1, we define some of the basic objects and morphisms
appearing in (4.0.1). In §4.2 we write down some technical results on extending and de-
scending line bundles and their sections in families, which we apply in §4.3 to prove the
elliptic Chevalley isomorphism relating line bundles on Bung to certain line bundles on an
abelian variety Y. In §4.4, we classify the relevant line bundles on Y and thus obtain a useful
description of the generator of Pic(Bung) via the elliptic Chevalley isomorphism. We then
pull everything together in §4.5 to construct the diagram (4.0.1). Finally, in §4.6, we show
how the methods of this chapter can be used to give explicit descriptions of the canonical

bundles of the stacks Bung and %G.

4.1 The basic objects

In this section, we define some of the objects appearing in (4.0.1) and introduce some other
useful bits and pieces of notation.

The most important definition is the following: we let liﬂlg be the Kontsevich-Mori
compactification ﬁl\l}lG = KM%yG of the stack of degree 0 B-bundles, and we let : ]/3—1\1;1G —

Bung be the canonical morphism. By Propositions 3.4.5 and 3.6.4, we have the following.

Proposition 4.1.1. The morphism : EI\I;IG — Bung is proper and surjective, with finite
relative stabilisers.

Set EEfGS = ¢~ 1(Bung), where Buny C Bung is the open substack of semistable
bundles. One pleasing property of Bung is that this coincides with the locus of stable maps
with smooth domain curve.

Proposition 4.1.2. We have ]/3—1\1;1: = BunOB as open substacks of ]§1\1;1G = KM%G.

Proof. The claim reduces easily to the following: given a geometric point s: Speck — 5,
a G-bundle {¢ — E; and a stable map o: C' — £g/B classified by a point in KM%’G, the
G-bundle £g is semistable if and only if C' — E is an isomorphism.
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Assume first that ¢ — E; is an isomorphism. Then o is a section o: Ey — £g/B
of degree 0, so we can write (g = £ xP G for some degree 0 B-bundle {5 — E, with
associated T-bundle &7 = £ xBT. Proposition 3.7.4 implies that for any standard parabolic
P CQG, Cg:;/S(ES)STXTB = () unless A = 0, so Proposition 3.7.6 shows that for any section
o: Es — &g/ P, the degree of the corresponding P-bundle is > 0. So &g is semistable.

Conversely, assume that C — FE; is not an isomorphism. Then there exists a unique
irreducible component of C' mapping isomorphically to Es, and the restriction of o to this

irreducible component defines a section of degree

[o|lg.] < [o] =0.

If £ denotes the B-bundle corresponding to o

g,: Es = £c/B, then it follows that there
exists a dominant character A of B such that

deg&p xP Zy = deg(o|p,)* £5¢ = (A o

B.]) <0,
so {¢ is unstable. O

Writing Dy = Dy , C KM%G = Bung for A € X.(T) 4, we have the following corollary
of Propositions 3.4.16 and 4.1.2.

Corollary 4.1.3. The closed substack U)\eX*(T)+ D, C BH;lG is a divisor with normal
crossings, equal to the complement of lifnzf

At various points, we will need to work with rigidified stacks of principal bundles. (See
Definition 2.2.6.) Note that since Z(G) acts trivially on any partial flag variety G/P, it
follows that we have an action KMp g x BZ(G) — KMp s satisfying the conditions of
Proposition 2.2.5, and hence a rigidification with respect to Z(G). For this and subsequent
chapters, we fix the following convention.

Convention 4.1.4. If H C @ is any subgroup containing the centre Z(G), then by Bung ;4
we will always mean the rigidified stack underlying Bunyg with respect to Z(G) C Z(H).
Similarly, if P C G is a parabolic subgroup, then KM?‘;’GMQ will denote the rigidification of
KM)I‘Q’G with respect to Z(G). We also write él\l;lg)”‘g = KM%’G,”«g.

If T" is any torus, we will also need notation for the rigidified stack of 7’-bundles on E

with respect to the whole group T".

Definition 4.1.5. Let T” be a split torus over SpecZ. If A € X*(T"), we write Y, for the
rigidification of Bun%, /s with respect to T'. If P C H is a parabolic subgroup of a reductive
group H with T" = P/[P, P], we will also write Y2 = Y} and Yp = Y. Finally, we will
write YA = Y2 = Y for the rigidification of Bun% with respect to T, and Y = Y.

Note that the blow down morphism Blg: KM%’G/S(E) — Bun{ gives a morphism
X: ]gl\l;lg —Y,
which is smooth by Corollary 3.5.4.

Remark 4.1.6. Proposition 2.5.1 shows that Y — S is the family of [-dimensional abelian
varieties

Y = Homyz(X*(T), Pic%(E)) = Pic(E)".
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4.2 Some results on extension and descent

In this section, we collect a few general results on extending line bundles and their sections
from big open substacks, and on descending line bundles along ramified Galois coverings,
which we will need in the proof of the elliptic Chevalley isomorphism. All the results here
are surely well known, but we include them in full here for completeness.

It will be convenient to package the data of line bundles and their sections as follows.
For any stack X over S, we will write Pic(X) for the category of line bundles on X. This
is a symmetric monoidal category under tensor product, which has an enrichment over
the category Osen,q-mod of sheaves of O-modules on the category of (locally Noetherian)

schemes over S defined by the formula
Hom(L,L') = x, (LY ® L)

for L, L' € Pic(X), where mx: X — S is the structure morphism. If I' is a finite group
acting on X over S, then we write Pic' (X) for the category of I-linearised line bundles on
X. This is again a symmetric monoidal category with enrichment over Ogy ,s-mod defined
by the formula

Hom(L, I') = mx. (LY @ L)
If X is proper and representable over S, then Pic(X) and Pic’ (X) are actually enriched
over the full subcategory Coh(S) C Oscn , s-mod of coherent sheaves on S.

Definition 4.2.1. Let mx: X — S be a smooth morphism of stacks, and let U C X be an
open substack. We say that U is big relative to S if for every geometric point s: Speck — S,
the complement of the open substack w5 (s) U C 75" (s) has codimension at least 2 in the
fibre 3! (s).

Lemma 4.2.2. Let mx: X — S be a smooth morphism of stacks, and let U C X be a big

open substack relative to S. Then the restriction functor
Pic(X) — Pic(U) (4.2.1)
is an equivalence of symmetric monoidal categories enriched over Osen,s-mod.

Remark 4.2.3. If we restrict to the lisse-étale site of S instead of the big site Sch,g, then

the corresponding statement is easy since every smooth chart of X is regular.

Proof of Lemma 4.2.2. We first note that since we have assumed that S is regular and 7x is
smooth, the stack X is also regular, so (4.2.1) is essentially surjective since the codimension
of U in X is at least 2. It therefore remains to prove that (4.2.1) is fully faithful as an
enriched functor, i.e., that for all line bundles L, L' € Pic(X), the morphism

Ho7rn77ic(X)(L7L/) = 7TX*(LV ® L/) — 71-U>f<((LV ® L/)|U) = Hom”Pic(U)(L‘U7L/|U)

is an isomorphism of sheaves of O-modules on Sch,g. This reduces immediately to the claim
that for every line bundle L on X and every morphism S’ — S with S’ a locally Noetherian
scheme, the morphism

pf*L — pu, (fHLlv)

is an isomorphism of sheaves on S’, where p, f, py and fy are as in the Cartesian diagrams

§xgX —L 4 x S'xqU — U
Jp Jﬂx and qu Jﬂu
g s §— .8

62



By smooth descent, we reduce to the case where S’ is Noetherian, S’ x ¢ X is a scheme, and

f*L is the trivial line bundle. The result in this case now follows from Lemma 4.2.4. O

Lemma 4.2.4. Let S’ be a Noetherian scheme, let p: X — S’ be a smooth morphism of
schemes, and let U C X be a big open subset over S’. Then the restriction map

H(X,0x) — H(U,Op) (4.2.2)
s an isomorphism.

Proof. Given a quasi-coherent sheaf F' on S’, say that F' has the unique extension property
if the morphism
H(X,p*F) — H°(U,p*F|v)

is an isomorphism. If s € S’ is any scheme-theoretic point with residue field x(s), then,
since the fibre p~!(s) is smooth over «(s), hence normal, and the complement of p~!(s) U
in p~1(s) has codimension at least 2, any vector space over k(s) = Og s/m, has the unique

extension property. It is also easy to show that, given a short exact sequence
0—F—F —F'—0,

of quasi-coherent sheaves on S’ if F' and F” have the unique extension property, then so
does F'. So inductively, we deduce that Og/ ;/m? has the unique extension property for all
n € Zsg. It follows that the morphism

H(X,,0% ) — H°(U,,05)

is an isomorphism, where X, and U, are the formal completions of X and U along p~L(s).

To prove injectivity of (4.2.2), simply observe that there is a commutative diagram

HY(X,0x) ————— H(U,Op)

| |

Hses HO(sto)?s) — Hses Ho(ﬁs’oﬁs)
such that vertical arrows are injective and the bottom arrow is an isomorphism as argued
above.

To prove surjectivity of (4.2.2), by Noetherian induction, it suffices to show that given
f € H(U,Op), if U # X then there exists an open set U’ C X properly containing U and
an extension ' € HY(U',Oy/) of f to U'.

Assume we are in the situation above, and let x € X \ U be the generic point of any
irreducible component of X \ U. We show below that there exists f € Ox , such that the
restriction to U N Spec Ox, = SpecOx, \ {x} agrees with the restriction of f. It then
follows that f is the germ at z of some f' € HO(U’,Oy) extending f to some open set
U’ C X containing z and U.

We first remark that that Spec Ox ,.\{x} is covered by affine open sets D(g) = Spec Ox »[g7}]
for g € m, but g ¢ m;Ox ,, where s = p(x) € S’. To see this, let p € Spec Ox , be a prime
ideal different from m,. If myOx , C p, then taking any g € my \ p, we have g ¢ m;Ox ,
and p € D(g). If mOx , ¢ p, choose h € myOx, with b ¢ p and any g € m, \ m;Ox .
(Note that m, # m,Ox , since U is dense in every fibre.) If g ¢ p, then p € D(g), and if
gep, theng+h ¢gm,Ox, and g+h ¢p,sope D(g+h).
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Now let f € (Ox.,2)fy. be the germ at 2 of the unique lift in H(X,, Ox.) of the image
of fin HO((/]\S,O[}S). Here (Ox . ){. denotes the completion of Ox , with respect to the
mg-adic topology. We show that in fact fe Oxq C (OX@){,\IS, and that the restriction to
any D(g) with g € m, \ m;Ox , agrees with f. Since UNSpec Ox , is covered by such D(g),
this will complete the proof.

Choose any g € my \ m;Ox ;. From Lemma 4.2.5, we have a commutative diagram of
topological rings

OX,:E — OX,:v[gil]

J |

(Oxa)n, = (Oxalg™'Da,

in which every morphism is the inclusion of a subring with the subspace topology. It follows
from [GD, Chapitre 0, Corollaire 7.3.5] that Ox , is closed in ¢g™"Ox , for all n > 0, and
hence in Ox ,[g™!], so we have

fe (OX,I)Q«LS N OX,m[g_l] =Oxz
as claimed. Since fagrees with f on D(g) by construction, this completes the proof. O

Lemma 4.2.5. In the setup of Lemma 4.2.4, fix a point x € X, set s = p(x) € S', and
assume that M C Ox , is a multiplicative set with M NmyOx , = 0. Then the localisation
morphism

iv: M Oxp — (Ox.2)m,

is injective and satisfies ig/jl(m?((’)x,gj)ms) =m"M'Ox , foralln > 0. Moreover, M~'Ox .
is separated for the mg-adic topology.

Proof. By induction on n, we can assume that
iny (MY (Ox.a)m,) Sy M~ Ox o

So by flatness of X — S’, the claim reduces to the assertion that

m?ilelOX@ _ mf:* ® ML OX,x
m?M*l(’)X@ m? ~(s) mg OX,a:

n—1 O n—1 O
N ms ®n(s) Frac X,z — ms ( X7z)ms
mn m;Ox 4 m?(Ox z)m,

s
is injective, which is clear from the fact that m;Ox , is prime (as X — S’ is smooth).

For the remaining statements, note that the above with M = {1} shows that Ox , —
(Ox.4)m, is injective, since the local ring Ox , is separated for the m,-adic topology. So iy
is also injective for any M. Since (Ox ;)m, is separated, this implies that M ~1Ox , is also
separated for the mg-adic topology. O

Remark 4.2.6. The same argument as the proof of Lemma 4.2.2 shows that Pic(X) —
Pic(U) is faithful whenever U C X is open and dense in every fibre of X — S.

Definition 4.2.7. Let f: X — Z be a morphism of smooth stacks over S, with Z connected.
We say that f is a ramified Galois covering relative to S with Galois group T if

(1) the morphism f is representable and finite, and
(2) there exists an open substack U C Z such that f~}(U) — U is an étale Galois covering

with Galois group I', and U is dense in every fibre of Z — S.
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Remark 4.2.8. Note that if f: X — Z is a ramified Galois covering relative to S, then
f is automatically flat, since it is a finite morphism between regular stacks of the same

dimension.

Lemma 4.2.9. Let f: X — Z be a ramified Galois covering relative to S with Galois group
T, and let U C Z be as in Definition 4.2.7. Then the action of T on f~1(U) extends uniquely
to an action on X over Z.

Proof. Since for any smooth (connected) chart V' — Z, the pullback V xz X — V is a
ramified Galois covering relative to S with Galois group I', by descent for morphisms of
stacks, it suffices to prove the claim in the case where Z (and hence X) is a regular affine
scheme. So we can assume Z = Spec A and X = Spec B, with A — B a finite flat extension
of regular rings, with Spec A connected. By assumption, we have Spec K ® 4 B — Spec K
a Galois covering with Galois group I', where K = Frac(A) is the fraction field of A. Since
B C K ®4 B is the subring of elements integral over A, it follows that B is preserved by
the action of I', which completes the proof. O

Definition 4.2.10. Let f: X — Z be a ramified Galois covering with Galois group I', and
let L be a I'-linearised line bundle on X. We say that L is good if for every v € T', the
morphism

g L|le) — L|X("’l)

is the identity, where X (71) C X7 denotes the open substack of points in the fixed locus X
(relative to Z) at which X7 C X has codimension < 1. We write Pic" (X)go0a C Pict (X)
for the subgroup of good I'-linearised line bundles, and Pic' (X)gooa € Pic' (X) for the

corresponding full subcategory.

Remark 4.2.11. It is important in Definition 4.2.10 that we take fixed loci relative to Z
and not S. The fixed locus X7 relative to Z is by definition the fibre product

X — X

s

x W v, X,

which is a closed substack of X since X is representable and separated over Z. Taking fixed
loci relative to S would amount to replacing Ax,z with Ax /g, which will not be a closed
immersion if X — S is not representable.

We now state our main descent result for ramified Galois coverings. For simplicity, we
have restricted to the case of line bundles, and to ramified Galois coverings in which fixed

loci intersect in high codimension.

Proposition 4.2.12. Let f: X — Z be a ramified Galois covering of smooth stacks over
S, with Galois group T'. Assume that for any v,y € T\ {1} with v # «', the intersection of
the fized loci (relative to Z) X7 N X" C X has codimension at least 2. Then the pullback
functor Pic(Z) — Pic" (X) factors through an equivalence

Pic(Z) — Pic" (X)good

of categories enriched over (’)sch/s-mod.
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Proof. We first prove that Pic(Z) — Pic" (X) is fully faithful as a functor between categories
enriched over Ogp, ; s-mod. This is equivalent to the claim that, for every line bundle L on
Z, the natural morphism

Ty L — (71'X*f*L)F

is an isomorphism of sheaves on Schg, i.e., that
H°(S' xg Z,pry L) — H°(S xg X,priy f*L)"

is an isomorphism for every morphism S’ — S with S’ a locally Noetherian scheme. By
smooth descent, we may reduce to the case where S’ x g X = SpecC, S’ xg Z = Spec B and
S’ = Spec A are all Noetherien affine schemes, and S’ Xg Z is connected. Since X — Z is

faithfully flat and pr3 L is a flat Ogpec p-module, by flat descent we have an exact sequence
0 — H"(Spec B, pryL) — H°(Spec C, pri f*L) — H"(Spec C,pr’ f*L) ®p C,
so we can reduce to showing that the morphism

CopC—C (4.2.3)

el

c1 ® cg — (c1y(e2))qyer

is injective.
If A is regular, then so is B, so writing K for the fraction field of B, we have a commu-

tative diagram
(4.2.3)

CepC D.er C

l J

Kop(CopC) —— @, KopC

where the vertical morphisms are injective by flatness of C over B, and the bottom morphism
is an isomorphism since Spec C' — Spec B is generically an étale Galois cover. So injectivity
of (4.2.3) in this case follows.
In general, using injectivity of (4.2.3) when A is a field and the argument at the start of
the proof of Lemma 4.2.4, we deduce that for every prime ideal p C A, the morphism
Cy0p, Cy — DG
yel

is injective, where Ep and ép are the p-adic completions of B and C'. Injectivity of (4.2.3)

now follows from injectivity of the vertical arrows in the commutative diagram

(4.2.3)
CepC EBweF C

J J

I, Gy @5, Cp —— I, D er Cs-

It remains to prove that the essential image of the functor Pic(Z) — Pict (X) is Pic (X)good
i.e., that every good I'-linearised line bundle L on X descends to a line bundle Lz on Z.
By smooth descent, it suffices to prove this in the case where S = Spec A, Z = Spec B and
X = Spec C are regular affine schemes, and Z is connected.
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By definition, there is a dense open subset U C Z such that f~'(U) — U is a Galois
covering with Galois group I'. So L| -1 (v) descends to a line bundle Ly on U. By Noetherian
induction, to construct Ly it suffices to prove that for any open subset V' C Z containing U
and line bundle Ly on V with f*Ly = L[;-1(y) (as I-linearised line bundles), there exists
an open V' 2 V and a line bundle Ly on V' with f*Ly+ = L[z (y1y.

Assume we are given V and Ly as above. If the codimension of Z\ V in Z is at least 2,
then since X and Z are regular there exists a unique extension Lz of Ly to V/ = Z, which
necessarily satisfies f*Lz = L. If not, then there is a point z € Z \ V of codimension 1
in Z. We claim that L|s—1(spec 0..) descends to a line bundle L, on Spec Oz .. Assuming
the claim, there is a canonical isomorphism between the restrictions of L, and Ly to the
generic point of Z. Since L, and this isomorphism must be defined over some open sets
in Z, we can glue to a line bundle Ly on some open set V" containing V and z. The
isomorphisms f*Ly = L|g-1(yy and f*L, = L|y-1(spec 0,,) agree on the generic point of Z,
so define an isomorphism f*Ly+ = L|ys where Ly is the restriction of Ly to some open
subset containing V' and z.

To complete the proof, it therefore remains to prove the claim that L[;-1(gpec 0,..) de-
scends to Spec Oz .. For brevity, write B = Oz, f~!(SpecOyz.) = SpecC and M =
L|f-1(spec0z..) (viewed as I-linearised C-module). By the general machinery of faithfully

flat descent, it suffices to show that the isomorphism
¢: @C@W?c M= @M@)C,id C

~eT ~€eT

(cy @ My )yer — (Y(Mmy) @ ¢y )ver
restricts to an isomorphism

¢:Cop M- MepC,
satisfying a cocycle condition, under the inclusions
CopM— P C®cM
yel

c@m— (c®m)yer = (1@~ (¢)m)qer
and

M®BCt—>@M®c,idC’

~ver

m®cr— (M c)yer = (cm @ 1)4er.
Since the morphism

CepCopC— P C
vy’ er

€1 ® cg ® ez — cr1y(ca)y (c3)
is injective (this follows by essentially the same argument as injectivity of (4.2.3)), the

cocycle condition for ¢’, if it exists, follows from the cocycle condition for ¢.

To show that ¢ restricts as desired, we first show that the sequence

0—CosC-@PcL P c/et-+)C) (4.2.4)

yel v,y €T

(cy)yer ¥ (€5 — ¢y )y yver

67



is exact, where « is (4.2.3). We have already shown that « is injective, so suppose that
(¢y)~er satisfies ¢, — ¢y € C(y —4')(C) for all 7,7 € I'. We will show that (¢,) is in the
image of o by showing that for every subset I'" C I" containing the identity 1 € T', (¢y) is in
the image of @ modulo the ideal

Ir = {(Clﬂvel‘ | C; =0 fory e I'"}.

We then deduce that (cy) is in the image of « by setting IV =T.

We work by induction on the size of I, For the base case, suppose that IV = {1}. Then
we have (¢y) — a(c1 ® 1) € I, so the claim holds. So suppose IV = I'" U {vy} and that
the claim holds for I C I". By the induction hypothesis, we may assume without loss of
generality that (cy) € Irv. So by assumption we have

¢ €[] Cly =70)(C).

yer”

Note that C(y —70)(C) is the ideal defining the fixed locus of vy, in Spec C. Since C has
dimension 1 and the intersections of these fixed loci have codimension at least 2 in X, it
follows that

N Ctv—)©C) =[] ¢tv—)(0).

~ver” yer”

Cryo = Z H Cy iy — ’YO)(CIW')'

i ~yeD”

So we can write

Writing
d= Z H (cr.iv(c, ) @1 —cy i@, ;) eCopC
i ~er”
we have (cy)yer — a(d) € I/, so the claim is proved by induction.
Since M is flat, tensoring (4.2.4) with M over each factor of C' in C ®p C gives a pair
of exact sequences

0—— CopM —— @, CoOeM —— @, _,cp C/Cly—+)(C) @0 M

s Jcﬁ 0"
v v

0 ——— Mp(C —— @WEFM(@CM C —— EB%W'GFM(@CJCI C/C(y—+)(C).

To prove that ¢ restricts to a morphism ¢’ as shown, it suffices to construct a morphism ¢"

as shown such that the square on the right commutes. We define ¢” by the formula

¢H((C%7’ @ My 1 )y,y7er) = (VMg q7) @ Cy 1 )yer

This is well-defined, and the condition that the necessary diagram commutes is precisely the
condition that the I'-linearisation on M is good. So ¢ restricts to a descent datum ¢’, M
descends to B, and we are done.

O

4.3 The Chevalley isomorphism

The classical Chevalley isomorphisms g/G = t/W and GJG = T /W are essential ingredi-
ents in the construction of the additive and multiplicative Grothendieck-Springer resolutions

as simultaneous resolutions, as they provide the base change maps t — g/G and T — G/JG.
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In this section, we prove an elliptic analogue of these statements, which is one of the main
results of this thesis.

One can think of the classical (say, additive) Chevalley isomorphism as an isomorphism
between the ring of regular functions on the stack g/G and the ring of W-invariant functions
on the affine variety t. So at first glance, the elliptic Chevalley isomorphism should identify
the ring of regular functions on the stack Bung with W-invariant regular functions on some
variety. However, since the coarse moduli space of semistable G-bundles is projective rather
than affine, there are not enough global regular functions on Bung to make such a statement
particularly useful. Instead, the elliptic Chevalley isomorphism that we will prove gives an
identification of Pic(Bung) with a subgroup of the group of W-linearised line bundles on the
abelian variety Y, so that the space of global sections of a line bundle on Bung is naturally

isomorphic to the space of W-invariant sections of the corresponding line bundle on Y.

Remark 4.3.1. The Weyl group W acts naturally on the torus T, and hence on the abelian
variety Y over S. Explicitly, this action is given by

sa(y) =y —a’(a(y))

for @« € ®, where we use the natural group structure on Y, and for A € X*(T) (resp.,
p € X,(T)), we write X\: Y — Pic(E) (resp., u: Pic%(E) — Y) for the morphism induced
by A\: T — G, (vesp., p: G, = T).

Definition 4.3.2. Let L be a W-linearised line bundle on Y. We say that L is good if for
every root a € @, the morphism

Sa - L|Ysa — L|Ysa

is the identity, where Y= C Y is the fixed locus of s,: Y — Y. We write PicW(Y)good C
Pic"" (Y) for the subgroup of good W-linearised line bundles, and Pic" (Y)go0a C Pic"” (V)

for the corresponding full subcategory.

Remark 4.3.3. Over the smooth locus of Y /W, the morphism Y — Y /W is a ramified
Galois covering. Definition 4.3.2 is consistent with Definition 4.2.10 over this locus, since

for w € W we have Y(f) # (0 if and only if w = s, is the reflection in some root a € ® .

Theorem 4.3.4 (Elliptic Chevalley isomorphism). There are equivalences
Pic(Bung) ~ Pic(Bung ,ig) =~ Pic"V (Y)good
of symmetric monoidal categories enriched over Osch/s—mod.

Remark 4.3.5. In more down to earth terms, Theorem 4.3.4 states that there are isomor-
phisms
Pic(Bung) = Pic(Bung, rig) = Pic" (Y)good

of abelian groups, and isomorphisms
w
7TBunG*LBunG = 7'rBunG,”'g».<LBunG,My = (TrY*L)

of sheaves of O-modules on Sch,g, compatible with tensor products, for L € PicW(Y)good
corresponding to Lpun, € Pic(Bung) and Lpun ,,, € Pic(Bung, ).

Proof of Theorem 4.3.4. We give the outline of the proof here, and fill in the details in the
rest of the section.
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First, by Lemma 4.2.2 and Proposition 2.6.8, the restriction functors
Pic(Bung) — Pic(Bungy) and Pic(Bung riy) — Pic(Bung,,,)

are equivalences of symmetric monoidal categories enriched over Oscn,s-mod. So it suffices
to prove the theorem with Bung? and Bung,,;, in place of Bung and Bung ig-

Consider the commutative diagram

ss,reg ss 0
Bung «——— Bungy —— Buny —— Y

|

Bung’mg —— Bung,

and its rigidification

—— Ss,T7eg —— S§S§

0
Bung,;y — Bung,;; — Bung,;,, —— Y

| |

ss,reg ss
BunG,m’g BunG,rigv

—— ss,reg

where Bung,"*Y C Bung and Bung C Eﬁlﬁ are the big open substacks of regular
semistable bundles (see Definition 4.3.7 and Proposition 4.3.15). By Lemma 4.2.2 again,

restriction of line bundles gives equivalences

Pic(Bung;) — Pic(Bung;"™®) and  Pic(Bung ;) — Pic(Bung 7).
ss,reg

By Proposition 4.3.14, the morphisms ]ifncvm-g — Bun

—— ss,reg ss,reg

and Bung — Bung;

ss,reg
G,rig

are ramified Galois coverings with Galois group W satisfying the hypotheses of Proposition

4.2.12 such that the Galois action covers the natural W-action on Y, so there are equivalences

ss,reg ss,reg

Pic(Bung; ") = PicW(BunG )gooa and Pic(Bung”:;qg) = ”PicW(BunGMg )good

of symmetric monoidal categories enriched over Ogcp,i-mod. But by Proposition 4.3.17 the
natural pullback functors give equivalences
—— ss,reg

Pic™” (Y)good — Pic” (Bung )good

and

. ~ ss,reg
chW(Y)gOOd — PZCW(BunGMg )goods

which completes the proof. O
Remark 4.3.6. From the proof, it is clear that the equivalence

Pic(Bung ,ig) — Pic(Bung)
of Theorem 4.3.4 is just the obvious pullback functor.

The rest of this section is concerned with proving the various propositions and lemmas
quoted in the proof of Theorem 4.3.4. We begin by introducing and studying the substack

of regular semistable bundles.

Definition 4.3.7. We say that a semistable G-bundle £ € Bung is regular if dim =1 (&g) =
0. We write Bung;""® C Bung for the open substack of regular semistable bundles. We also
write

—— ss,1€eg

Bung = = (Bung ).
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Remark 4.3.8. There is another notion of regular semistable bundle in use in the litera-
ture, namely that of a semistable principal bundle whose automorphism group has minimal
dimension [ = rank G. We will see later on (Proposition 5.5.5) that this notion agrees with

ours.

In classical Springer theory, the simplest regular elements to describe are the regular

semisimple ones. The same is true in our context.

Definition 4.3.9. We say that a point y: Speck — Y over s: Speck — S is strictly
regular if for every root a € @, we have a(y) # 0 € Pic(Y;). We write Y79 for the open

: 0,sTeg o 55:5Teg . . 0 S 8S
subset of regular points and Buny and Bung for the preimages in Buny and Bung

respectively. We call a G-bundle g € Bung strictly regular, or regular semisimple, if it lies
—— 38,sreg

in the image Bun*"™ = ¢(Bung ).

. —— §s,sT€eg 0,sreg - 3 .
Lemma 4.3.10. The morphism Bung — Buny is an isomorphism.

. —— $8,8T€g 0,s1meq X X
Proof. Since Bung — Bunj is smooth, it suffices to show that each geometric fibre
is trivial. But this is clear from Lemma 4.3.11 below, so we are done. O]

Lemma 4.3.11. Fiz a geometric point s: Speck — S and a degree 0 T-bundle &p on E
corresponding to y € Ys, and let U C R, (B) be a unipotent closed subgroup scheme that is
invariant under conjugation by T. Assume that for all « € ®_ such that a(y) =0, we have
U, C U, where U, = G, is the root subgroup corresponding to o. Then the induced bundle
morphism

Bunyry (Es)e;, — Bunpg(Ey)e,

s an isomorphism, where the subscript denotes the fibre over &1 of the natural morphism to
Bunr(Ej).

Proof. Since the statement only concerns individual geometric fibres of E — S, we can
assume that S = Speck.

Writing R and U for the group schemes & x* R, (B) and &7 xT U, we have canonical
isomorphisms

Bunpy(E)e, = Buny and Bung(FE)e, = Bung,

so it suffices to show that the natural morphism Buny — Bung is an isomorphism.
Let R,(B) = R.(B)2* O R,(B)Z2 2 --- be the filtration on R,(B) according to
root height, and UZ? = U N R,(B)Z* for all i. Then writing RZ? = &p xT R, (B)2! and

Uzt = & xT U2, we show by induction on 4 that
Bunu/uZi — BunR/RZi (431)

is an isomorphism for all ¢, and the statement then follows. Clearly this is true for i = 1, so
suppose ¢ > 1. Then we have a commutative diagram of central extensions of group schemes
on K

1 —— U2z —— UUz —— U Uzt —— 1

1 —— RZ/R> —— R/RZ —— R/RZT —— 1.

Since U=~ /UZ? and RZ1~1/R>* are direct sums of degree 0 line bundles such that =~ /if=*

contains all trivial summands of RZ*~!/R=?  the induced morphism

Bunu27‘,—1/u21‘, L> BunRzi—l/RZi

71



is an isomorphism, and by induction, the induced morphism
Bunu/u2i71 l) BunR/Rzi—l

is also an isomorphism. So Proposition 2.4.2 implies that (4.3.1) is an isomorphism as
claimed. 0

In the following lemma, for £ — E, a B-bundle and w € W, we write

Cw - {EB} ><BunB CB OB/S( )

Lemma 4.3.12. Let g — Es be a B-bundle of degree 0 on a geometric fibre of E — S,
and let £q = Eg B G be the induced G-bundle. Then the morphism

H cY — {fG} X Bung Bun% = 1/)_1(56')

weW

18 surjective.

Proof. Let &7 = ég xBT. Since Cy B/S(E)STXTB = () unless A = 0, the lemma follows from

Proposition 3.7.6. O
Proposition 4.3.13. We have ¢! (Bung ") = Bung, . and the morphism Bung, ::g —
Bung; 7 (and hence also Bungs T Bund &7 ) is an étale Galois covering with Galois

group W. In particular, every strictly regular G-bundle is regular.

Proof. We first show that Bung e, Bung’ is étale. To see this, let £ — E be the
ss,sreg

B-bundle classified by a geometric point of Bung over s: Speck — S, and observe that

the relative tangent complex at g is given by

TBunc/BunG EB (ES’ fB X g/b)

The B-module g/b has a filtration with subquotients isomorphic to g, = Z, for a € ®.
Since the associated T-bundle is strictly regular, the line bundles ¢g x P Z, are nontrivial

of degree 0, so have vanishing cohomology. So T5— = 0, which implies that 1 is

BunG/BunG (35}
étale at &g as claimed.

We next compute the fibre of 1/1 over a geometric point {¢ € Bung"*"? over s: Speck —
S. Let £p be a lift of {¢ to BunG > With associated T-bundle ér. By Lemma 4.3.12, we

have a decomposition
= H v

weWw
into locally closed subsets indexed by the Weyl group W. By Propositions 3.7.4 and 3.7.5,

we have
c* = F(Esa &/{/uw) = Bunuw X Buny {&/1}7

where U and U,, are the unipotent group schemes U = &7 xT R, (B) and U, = & xT (R, (B)N
wBw™!) on By, and & = £p/T is the U-bundle corresponding to £g. But since &7 is strictly
regular, Lemma 4.3.11 shows that Buny(Es) = Buny, (Fs) = Speck, so C* = Speck as

well. Since 1 ~1(£g) is reduced by étaleness of 1, we therefore have an isomorphism
W x Speck — 1 (&q)

sending w € W to C¥, such that the composition with ¥~!(¢g) — Y sends w € W to
Juw(y) = wly, where y = x(£g). In particular, since w™ly € Y*"°9, we have ¢~ ({g) C

—— $s,sreg . N
Bung , so this proves ¢! (Bung,*") = Bung,



. : S —— s5,57eg ss,sreq - oo
Since 1) is proper, this implies that Bung — Bung*"“ is finite étale, and hence
— ss,sT€g

so is Bung .., — Bung 7
:

Gorig - To prove that it is a Galois cover with Galois group W, we
ss,sreg

need to show that W acts on Bung,;, over Bun

ss,sTeg

Gorig 0 freely and transitively on some

58,8T€g .
— Bun’;’*"% with the

(hence every) fibre. By Lemma 4.3.10, we can identify Bun Gorig

G,rig
s8,8T€g

morphism BunOT’STeg — Bun given by inducing along our chosen embedding T — G.

,rig G,rig
Since Ng(T) acts on B(T/Z(G)) over B(G/Z(G)), it acts on BT over BG preserving the
BZ(G)-action. So we get an action of Ng(T) on Bun™*? over Bunf;*"* also preserving

. 0,sreg ss,sreg . 0,sreg ss,sreg
the BZ(G)-action, and hence on Buny ;7 over Bung; @, Since Bung’ /7 — Bung ',

is étale, the connected subgroup 7" C N¢g(7T') must act trivially, so this factors through an

action of W.

0,sreg
T,rig

point y: Speck — Y7 over s: Speck — S such that the stabiliser of y under W is trivial,

By construction, the morphism Bun — Y*7¢9 is W-equivariant. Choose a geometric

and let &7 be the corresponding T-bundle. Then ¢ ~!(é7 xT G) maps isomorphically onto
the W-orbit of y in Y, so in particular, the W-action on ¢! (é7 xT G) is free and transitive,

so we are done. O
. . ss,reg ss,reg ss,reg ss,reg
Proposition 4.3.14. The morphisms Bung — Bung and Bung ,;; — Bung’.,

are ramified Galois coverings with Galois group W satisfying the conditions of Proposition
4.2.12.

. —— 58,5T€g —— ss,reg . . .
Proof. Since Bung C Bung is dense in every fibre over S, and both morphisms

are proper and quasi-finite, hence finite, both morphisms are ramified Galois coverings with

Galois group W by Proposition 4.3.13. It suffices to check the conditions of Proposition
—— s5s,T7€g ss,reg . ——— ss,Teg ss,reg
4.2.12 for Bung — Bung ", as the claims for Bung ,;, — Bung,,;’ then follow by

descent.
We need to show that for every w,w’ € W\ {1} with w # w’, the intersection of

ss,reg . . —— 88,7 w —— 8s,17eg w/ . . .
the Bung,"“-relative fixed loci (Bung )" N (Bung )" has codimension at least 2 in

—— 5s,5T€g

every fibre over S. Observe that since Bung — Y% is W-equivariant and ¥ — S
is representable and separated, it follows by continuity that x"¢9: BunSGS’Teg — Y is also
—— ss,reg

W-equivariant. So (Bung )% C xy~1(Y¥) for all w € W, where Y% denotes the fixed
locus relative to S. Since Y is smooth and Y% N Y*' has codimension at least 2 in every

fibre, the result now follows. O

Proposition 4.3.15. The open substacks

ss,re —— 58

_ ss,req
Bung"® C Bung; and Bung =~ C Bung
are big relative to S.

The proof of Proposition 4.3.15 relies on the following construction of G-bundles that
are regular semistable but not strictly regular.

Let s: Speck — S be a geometric point, a € ® a positive root, and let y € Yy satisfy
a(y) =0 and B(y) #0 for all 8 € &, \ {a}. Then by Lemma 4.3.11 and Proposition 2.4.2,
the fibre of ]/3:1/112 — Y over y is

SS

Bung , = Bung,, = Bunry_, (Es)y = Buny_ (Es)/T.

Since H'(E,, O) = k, Proposition 2.4.1 implies that there is a unique k-point of Buny__ (Es)/T
corresponding to a nontrivial U_,-bundle. Let {7y, be the corresponding point of Bunyy_ (Es),
and let &g = &y, xTV-2 G.
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Lemma 4.3.16. Let £g be the G-bundle defined above. Then the fibre 1 (Eq) has exactly
|[W|/2 k-points. In particular, {g is reqular semistable.

Proof. Observe that since the subgroup TU_,, C G is conjugate under N (T') C G to TU_,,
for some a; € A, we can assume without loss of generality that a = «; is a simple root.
Writing §B = fTUfai x TU-

decomposition

@i B, we have {5 = £ xP G, so by Lemma 4.3.12 we get a

o) = I v
weW
into locally closed subschemes, where by Proposition 3.7.5 we can identify C" with the space

of sections of
¢ xP BwuB/B = éry_,, X"V Ry(B)/(Ru(B) NwBw™").
IfU_n, € Ry(B)NwBw™ !, ie., ifw la; € ®_, then there is a TU_,,-equivariant morphism
R.(B)/(R,(B)NwBw™) — U_,,,

so &ru_, X"V Ry (B)/(Ru(B)NwBw™") has no sections since &py_, x"V=U_o, = &y_,.
has none, and hence C* = (). If U_,, C R,(B) NwBw™!, ie., if wla; € ®,, then the

natural morphisms
BunTUﬂ” (Es)ep — BUHTRu(B)mwa—l(ES)gT — Bung(Es)e,

are isomorphisms by Lemma 4.3.11, where {7 — E5 is the T-bundle corresponding to ,
which implies that C* = Speck. Since there are exactly |W|/2 elements of W satisfying
w™la; € @, this proves the lemma. O

—— 55,T€,

Proof of Proposition 4.3.15. 1t suffices to prove the statement for Bung, 7 C BHI/lZS, the
statement for Bung,”"® C Bung then follows immediately. Since the property of being big
is defined fibrewise, it suffices to prove the claim when S = Speck for some algebraically
closed field k.
——ss,reg . -——S5S8 . .
We need to show that the complement of Bung in Bun, has codimension at least

—— 55,5T€g reg

2. Since Bung c lil/nés and Ii;nzg — Y is smooth, it suffices to show that
—— ss,Teg

Bung N (x**)71(X) is dense in (¥**)"1(X) for all irreducible components X of YV \

ysreg — Ua€¢+ Yoo, But (y**)"}(X"?) is smooth and connected, hence irreducible,
ss,reg ——— §s5,Teg

and ERG N (¥**)~1(X) is open. So it suffices to show that Bung “n (**)"H(X)
is nonempty. But there exists a € & such that the generic point y of X C Y satisfies
a(y) =0 and B(y) # 0 for all B € &, \ {a}, so this follows from Lemma 4.3.16. O

Proposition 4.3.17. We have the following.
(1) The pullback functors
Pic(Y) — Pic(Bung s, ) and Pic(Y) — Pic(Bung )
are fully faithful as functors enriched over Oscn,s-mod.
(2) The pullback functors
— ss,reg W — ss,7eg

PicV (V) — 'PicW(BunGMg ) — Pic” (Buns ) (4.3.2)

are equivalences of categories enriched over (’)gch/s-mod.
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(3) The equivalences (4.3.2) restrict to equivalences

—— ss,reg ~ —— ss,reg

PicV (V) good — PicW(BunGMg )good — ’PicW(BunG )egood -

Proof. Note that since all enriched categories in the statement satisfy flat descent on S, we
can assume without loss of generality that S is a connected regular scheme and that £ — S
has a section Og: S — F.

To prove (1), note that by Proposition 4.3.15 and Lemma 4.2.2, it suffices to prove that
the enriched functors

Pic(Y) — Pic(ﬁﬁ/nzs’rig) and Pic(Y) — ’Pz'c(BunZS)

are fully faithful. We will in fact show that

X*O = >_C"‘(QBunsz = OY

ss
BunG’N-g

as sheaves of O-modules on Schy. Fully faithfulness then follows since
Hom(Y*L1, X" La) = my XX (L' ® Lo) = 7y, (L7' ® Ly ® %, 0).

Recall that there is a universal degree 0 T-bundle &7y on Y xg E such that the
pullback to Y along Op is trivial. This induces canonical isomorphisms Bun% =Y x
BT (resp., Bun%”.g =Y x B(T/Z(@))) and ]§{1/I1SGS = Bung,y (E)/T (resp., ]§I1/nzs,”-g =
Bung,y (E)/(T/Z(G))), where R — Y X g E is the unipotent group scheme &7y x” Ry (B).

Fix a cocharacter \: G,, — T such that (a;,\) > 0 for all simple roots o; € A, and
write A(O(Og)) for the T-bundle on E induced from the G,,-bundle corresponding to the
line bundle O(Og) on E. Since the weights of T acting on R,(B) are strictly negative
linear combinations of the «;, the morphism O — O(Og) induces a morphism of group
schemes R’ = A\(O(Og)) xT R — R, which satisfies the conditions of Proposition 2.4.7 over
Y. Corollary 2.4.3 shows that Bung/,/y(E) — Y is an affine space bundle and Proposition
2.4.7 shows that Bung,y(E) = Bung/,/y(E)/U for some unipotent group scheme U =
I'y(Y xs E,R/R') on Y. Moreover, T acts on the fibres of Bung,,y(E) and U over Y’
with nonzero weights in Z<pA, so the claim follows by direct computation using the Cech
complex for the covering Bung:/y (E) — Bung vy (E) to compute the pushforward of O and
then taking T-invariants.

To prove (2), note that (1) implies that the functors

ss,reg ss,reg

PicV (V) — PicW(BunG’”-g ) and Pic" (V) — Pic” (Bung )

are fully faithful as enriched functors, and so it is enough to prove that they are essentially

surjective.
ss,sreg

. . . . —~— ss,reg - S 0,sreg
Fix a W-linearised line bundle L on Bun,; . Restricting L to Bung = Buny =

Y#7¢9 x BT and using the isomorphism
Pic" (Y7 x BT) = Pic"" (Y*") @ X*(T)" = Pic" (Y*"*9)

gives a W-linearised line bundle on Y*7¢9  which can be extended (non-uniquely) to a line

bundle Ly on Y. By construction,

L= ((x")"Lo) <Z le'Dz) ,

(0]



—— ss,reg —— 5s,5T€g

where n; € Z and D; C Bung are irreducible divisors in the complement of Bung
But it is clear from the discussion preceding Lemma 4.3.16 that for any irreducible divisor
D in Y in the complement of Y579 (y"¢9)~1(D) is nonempty and irreducible. So we must
have D; = (x"®9)~1(D;) for some divisors D; on Y, and hence L = (x"®9)*(L’), where

Now (1) implies that the W-linearisation on L necessarily descends to a W-linearisation
on L', so we have shown that Pic"V (V) — Picw(lil/ngweg) is essentially surjective. An
identical argument shows that Pic"’ (V') — Picw(ﬁl\fnzs’f;g) is essentially surjective, so this
proves (2).

To prove (3), first note that it is clear from the definitions that a W-linearised line bundle
on 1/3\11/112977::; is good if and only if its pullback to ﬁl?’reg is good. So it suffices to prove
that a W-linearised line bundle L on Y is good in the sense of Definition 4.3.2 if and only if
the W-linearised line bundle (¥"%9)*L on Ea;l?mg is good in the sense of Definition 4.2.10.

If w € W, then (];1/112;“89)“’ C (¥"%9)~L(Yv), so either w = s, for some @ € ®, or
(Bung, " )* C Bung,  has codimension at least 2. It is clear from this and the definitions
that if L is good then (x"¢9)*L is good also. Conversely, suppose that (Y"¢9)*L is good.
To show that L is good, it suffices to show that for every o« € &, and every generic point

y € Y%« of an irreducible component with codimension 1 in Y, the morphism

Sact L|(Spec(9¢,_y)50< L|(Spec©{5yy)5a

is the identity, where (9{}@ is a strict Henselisation of the local ring Oy,,. We show below

that the morphism
(Bung Xy Spec O )** = (Bung ) Xysa (Spec O )* — (Spec Ok )%= (4.3.3)
admits a section, where the fixed locus on the left is relative to Bung, from which the result
follows since (x"¢?)*L is good.
We first claim that there exists some section Spec O{l,vy — Bungsmg Xy Spec (9{}71}. To
see this, note that by Lemma 4.3.11, we have

Bun, xy Spec O{L/Vy = BunTU_a/o)h/’y (E)er /T = Bunu_a/og’y (E)/T,

where & — Spec (’)lh,,y x g E is the restriction of the universal T-bundle (trivialised along
Op)onY xg E,and U_, = &p xT U_,,. Applying Proposition 2.4.7 to the exact sequence

0 —U_o —U(Op) — O, OU_o(Op) — 0
of sheaves on Spec (’)Qy X s E, we have a morphism
OpU-o(Op) — Buny,__jon (E) — EElSGS Xy Spec (’)Qy (4.3.4)

given by the action of OLU_(Op) = Igpec on (Spec O@yy xsE,U_o(Og)/U_,) on the triv-
ial bundle. Since every line bundle on Spec Oy’y is trivial, there exists a nonvanishing sec-
tion of OU_o(Op), which gives the desired section Spec Oy, — ﬁﬁl?reg Xy Spec 0%, C
ﬁlz; Xy Spec (’){‘,’y after composition with (4.3.4). Note that this does indeed factor through

Bun?reg by Lemma 4.3.16 since the U_,-bundle at the closed point in Spec O;’,’y is non-

trivial.
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Writing g — Spec OQy x g E for the B-bundle induced by the section constructed above,
we remark that the group scheme Aut(¢p) is flat over Spec OQL,’y. To see this, note that there
is a short exact sequence

1 — H — Aut(gp) — ker(a: T = Gyn) x Spec O, — 1

of group schemes over Spec Olh@, such that the special fibre of H is G, and the generic fibre is
Gy, Since both are irreducible of dimension 1, flatness of H and hence Aut(¢p) follows since
—— ss,Te
O@yy is a discrete valuation ring. Since every fibre of Bung J Xy Spec (’){‘,’y — Spec O?,’y
contains exactly one isomorphism class of regular bundles, it follows that the canonical
morphism
—— ss,Teg h

Bgpec O?yAut(SB) — Bung Xy Spec Oy, (4.3.5)

is an isomorphism.

In terms of the isomorphism (4.3.5), the automorphism
So: Bung . xy (Spec 0y.,) — Bung,  xy (Spec ob )
sends an Aut(£g)-torsor 6 to § xAUEs) ) for some Aut(£p)-torsor 7 — (Spec O{lfﬁy)sa under
the commutative group scheme Aut({g), equipped with an additional commuting action of
Aut(¢p) on the left. Since s, is an automorphism relative to Bung, we are also given an

Aut(¢p)-equivariant isomorphism of G-bundles

g xB2ER) Eal o op e — &6 lspecop )
where £ = £gx PG, Since the group scheme Aut(£5) — Spec Oih/,y is affine and (Spec O§7y)su =
Spec O{L/Su’y is the spectrum of an Artinian local ring with separably closed residue field,
the torsor n is necessarily trivial. Fixing a trivialisation, Aut({p)-action acts on 7 on the
left through a group automorphism s,: Aut(ég) — Aut(¢g), and the isomorphism ¢ is
equivalent to a section

g': (Spec O )™ —> Aut(&c)

such that (¢')71(—)g": Aut(éc) — Aut(ég) restricts to so: Aut(ép) — Aut(ép). The
given section (Spec OF )% — Bung,  xy (Spec Oy, )* factors through (Bung, )% xy
(Spec O{}w)sa if and only if ¢’ factors through Aut(¢s) C Aut(&g). To complete the proof,
it is therefore enough to prove that Aut(ég) = Aut(ép).

Write w_l(fg) = Spec (’){‘,ﬁy X Bung %G. Then by construction there is a section
Spec (9{}7?/ — 17 1(&g) corresponding to the reduction £ of G to B whose stabiliser un-
der the natural action of Aut(¢g) is Aut(ép). The morphism ¢ ~(¢5) — Spec O{‘,,y Xs
Bung — Spec Oﬁh/,y Xg Y is Aut({g)-equivariant for the trivial action on Y, so the ac-
tion on ¥ ~1(£g) restricts to an action on ¥~ !(&g) X Spec O xsY Spec (’){’,’y. We claim
that ¥~ 1(£g) — Spec Oxh/,y Xg Y is a closed immersion. Given the claim, it follows that
™€) Xspec on xsy Spec Oy, — Spec Oy, is also a closed immersion, and hence an iso-
morphism since it has a section. So Aut(£g) must stabilise the natural section of ¥ ~*(£g),
which proves that Aut(ég) = Aut(¢g).

It remains to prove the claim that ¥~!(£g) — Spec (’)gb,’y Xg Y is a closed immersion.
Since it separates points over the special fibre by Lemma 4.3.16 and W-equivariance, it
suffices to show that the restriction to special fibres is unramified. This is equivalent to the

claim that for every % in the special fibre of 9 ~!(£¢) — Spec O{’,yy, the morphism

H(Es, €5 x" g/b) — H'(Es, t® Op,) (4.3.6)
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induced by the extension of B-modules
0—t— g/R,(b) —g/b—0

is injective. The proof of Lemma 4.3.16 shows that there exists w € W such that w™!a € &,

and &/ lies over w™ly € Y. It follows that ¢ is induced from a TU_,,-1,-bundle §ru_, ..

such that {ry_ , has nontrivial associated U_,,-1,-bundle. So writing 8 = wla, we can

identify (4.3.6) with the morphism
HY(Ey,éru_, x"V=2ug) — H'(E,,t® Og,) (4.3.7)
induced by the extension
00—t — (t+pg(sl))/u_g — ug — 0
of TU_g-modules. But we can write t =t @ 3Y(Z) so that the induced extension
0—BY(Z) —V —ug —0

is the canonical non-split one, so injectivity of (4.3.7) follows. This proves the claim, and
hence the proposition.
O

4.4 The theta bundle

In this section, we use Theorem 4.3.4 to compute Pic(Bung) by computing the group
Pic" (Y)good. The computations show that Pic" (Y )ge0a is generated by Pic(S) and a
single ample line bundle ©y. This corresponds to a canonical line bundle ©p,y,, on Bung,
which we call the theta bundle.

Definition 4.4.1. Let L be any line bundle on Y. The quadratic class of L is the function
q(L): Xu(T) — Z
A — degpico(,) (A"L)

where the degree is taken over any geometric fibre of the relative Picard scheme Pic%(E) —

S.
The following lemma motivates the terminology “quadratic class”.

Lemma 4.4.2. Let L be a line bundle on Y. Then q(L) is a quadratic form, i.e., q(L)(—=\) =
q(L)(N) for all X € X,.(T') and the map

Q(L): Xu(T) x Xu(T) — Q
O ) 3 (@(EYA+ ) — a(D)) ~ a(L) (1)
18 symmetric and bilinear.

Proof. Since ¢(L) is computed on a geometric fibre, we can assume for simplicity that

S = Spec k for some algebraically closed field k. We have
q(L)(=A) = degPico(E)(_)\)*L = degPico(E) [—1]"A"L = degPic“(E) A*L

since [—1]: Pic’(E) — Pic’(E) has degree 1.
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For the map Q(L), symmetry is obvious. Bilinearity is equivalent to Q(L)(0,0) = 0,
which is true by inspection, and the statement that for all A, u, v € X, (T') the line bundle
on Pic’(E)

A+p+) LoM+p)' L' oA+ ) L' @(u+v) L' o Lo u L@ v L

has degree 0. But this line bundle is trivial by the theorem of the cube [M, §IL.6], so we are
done. O

Remark 4.4.3. Let L be a line bundle on Y. Note that Lemma 4.4.2 implies that ¢(L)(0) =
—Q(L)(0,0) =0, and hence

1

a(L)(A) = =5 (L)X = A) = a(L)(A) = a(L)(=A)) = =Q(L)(X, =A) = Q(L)(A, A).

So the datum of the function ¢(L): X.(T) — Z is equivalent to the datum of the bilinear
form Q(L) € Hom(Sym?(X,(T)),Q). For this reason, we will often refer to Q(L) as the

quadratic class of L.

Remark 4.4.4. One might hope that the quadratic class ¢(L) determines the first Chern
class ¢1(L). This is not true in general: for example, it fails for the elliptic curve E =
C/(Z + iZ) over S = SpecC, the group G = SL3 and the line bundle L constructed as
follows. Identify PicO(E) with F and hence Y with E x E via the canonical principal
polarisation. Let P be the line bundle on E x E defining the polarisation on E, and let
L = (id, 4)* P be the pullback of P under the automorphism (id,): E x E — E x E. Then
q(L) =0 but ¢, (L) # 0.

Lemma 4.4.5. Let L be a good W -linearised line bundle on'Y'. Then Q(L) lies in the image

of
Sym?(X*(1))" < Hom(Sym”(X.(T)), Z) € Hom(Sym®(X.(T)), Q)

under the inclusion sending A € Sym®(X*(T)) to the bilinear map

X, (T) x X (T) — Z
(N 1) = OGN ) (s 1)+ (O 1) (s X

Proof. As in Lemma 4.4.2, we may assume S = Speck. Since Q(L) is manifestly W-
invariant, by elementary linear algebra, it is enough to show that if o, a;-/ € AV are simple
coroots, then Q(L)(ey, ) € 2Z and Q(L)(ayf, ) € Z.

If oy € AV, then Lemma 4.4.6 below implies that

QL) (o}, a)) = degPico(E)(az'v)*L € 2Z.

If oy € AY is another simple coroot, then invariance of ¢(L) and hence Q(L) under s; € W
implies that
L)(a), e
Q)Y ay) = QL0 oy e,
so we are done.

O

In the following lemma, we write OPiC%(E) for the origin in Pic%(E), in order to distinguish
it from the zero divisor 0. For the sake of clarity, we will also write Oy : S — Y for the

section corresponding to the trivial T-bundle.
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Lemma 4.4.6. Let L be a W-linearised line bundle on Y such that the action of W on
O3 L is trivial. Then the W -linearisation on L is good if and only if for all simple coroots

o), (o)) L = ﬂ;icg(E)L’(Qd - Opico,(m)) for some d € Z and some line bundle L' on S.

Proof. Since every reflection in W is conjugate to a simple reflection, the line bundle L is
good if and only if
S;: L|ysi — L

ysi
is the identity for all simple reflections s;.
Fix a simple reflection s;. Observe that since X.(T)g + Qa;” = X.(T)q, the morphism

f: Pic(E)@2X,(T)% x sPic%(E) = Pic%(E) Q7 (X (T)* +Zay ) — Pic%(E)®,X.(T) =Y
is an isogeny of abelian varieties over S, and fos; = ro f, where
r = (id, [-1]): PicY(E) @z X, (T)% xg Pic%(E) — Pic%(E) ®z X, (T)* x g Pic2(E).
Since r acts trivially on ker(f), it follows that
FHY™) = Picg(E) ®z X.(T)* x5 Picg(E)[2]
and so the action of s; on Llys; is trivial if and only if the action of r on

T LIpict (By@x. (T)% x s Pict (B)[2]

is trivial. Since the action of r is given by a global regular function on Pic(F)® X, (T)% x5
Pic%(E)[2], which is necessarily pulled back from a regular function on Pic(E)[2], it suffices
to check that r acts as the identity on the fibre of

Pic%(E) ®7 X, (T)* x5 Picg(E)[2] — Pic%(E) @z X.(T)*

over any section of the structure map to S. Taking the fibre over the natural origin, the
restriction of f here is o) : Pic§(E) — Y. So by Lemma 4.4.7 below, r acts as the identity
if and only if () )*L = W;iC%(E)L’(Qd + Opict (), Which proves the lemma.

O

Lemma 4.4.7. Let L be a line bundle on Picy(E) with [-1]*L = L, and let o: [-1]*L — L
be the unique isomorphism acting as the identity on the pullback of L along the section
Opicg(E): S — Pic%(E) corresponding to the trivial line bundle on E. Then o acls as the
identity on L|pico (m)j2) if and only if L = n*L' ® O(2d - Opico () for some d € Z and some
line bundle L' on S, where 7: Pic%(E) — S is the structure morphism.

Proof. The morphism o acts as the identity on L|picg (p)[2) if and only if L = f*L” for some
line bundle L on the P'-bundle P = Pg (7, O(2- Opicg(E)))V over S, where f is the canonical
morphism. But every line bundle L” on P is of the form L” = ;L' (d- f(Opic () for some
d € Z and some line bundle L on S, so f*L" = n*L'(2d - Opicy () and we are done. O

Lemma 4.4.8. Let M be a finitely generated free abelian group. Then the abelian group
Sym?(M)Y = Homy(Sym? (M), Z) is generated by

A2 Sym? (M) — Z
mn — A(m)A(n)
for X € MY, with relations
M=(=N? and A+p+v)2—A+p)? =N+ —(p+v)? + XN+ +17=0

for A, u,v € MV.
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Proof. Choose a basis eq,...,e, for M. Then Symz( ) has basis {e;; = e;e; |1 < i <
j < n}, so Sym*(M)Y has basis {ef; | 1 < < j < n}, where eu(e” 1) = 8;,#06;,:. Since
ef; = (e7)? and e}; = (e +€})* — (ef)* — (e})?, this shows that Sym?(M)V is generated by

A2 for e MV.
Now let N be the abelian group with generators [A]2 for A € MV, and relations

A= [-AP and gk = Al = o] = [t o PP [ 4+ 2 = 0 (440)

for all \, yu,v € MY. We have shown that the map N — Sym?(M)Y sending [\]? to A\? is
surjective. To show that it is injective, let P be the span of [ef;] € N for 1 <i < j < n,
where

e = [e2]? and [elj] = [e] + €)% — [el]? — [e}]?

% J

for 1 < i < j <n. The morphism P — Sym? (M)V is injective, since it has a retraction
Sym?(M)" — P
Qr— Z (e e5)[ei;]-

1<i<j<n

So it suffices to prove that P = N, i.e., that for all A € MV, [\]? € P.
Writing A = Y7 aef, a; € Z, we have tautologically that

N2 =3 (faser? + B asel, S age;

i=1 i<j
where
RO\, 1) = A+ ] = [N = [?,
for X\, u € M. The relations for N imply that R: MY x MY — N is symmetric and bilinear,

SO
n

A = Sl S was ) = e+ Y gl

=1 1<j i=1 i<j

So it remains to show that [ae}]? is in P for all i and all a € Z. We note that

R(ej,ef) = —R(ej,—e}) = =01 + [ + [—ef]? = 2[e; 7,

177

and hence that
[(a+ 1)ej]? = [aef]® + [ef] + R(ae], ef) = [ae;]* + (2a + 1)[e]]?

for all a € Z. Since [0]> =0 (set A = u = v =0 in the second relation of (4.4.1)), we see by

induction that [ae}]? = a?[ef]* € P for all a € Z, so we are done. O

Proposition 4.4.9. The homomorphism
(Q,0%): Pic" (Y)good — Sym?(X*(T)" @ Pic(S) (4.4.2)
18 an isomorphism of abelian groups.

Proof. We show that (4.4.2) is both injective and surjective.

For injectivity, suppose that L is a good W-linearised line bundle on Y such that Q(L) =
0 and O3 L = Og. To show that L is trivial, it is enough to show that L is trivial on every
geometric fibre of Y — S, since this implies by Grauert’s Theorem that L is pulled back
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from a line bundle on S. So we can assume for this part of the proof that S = Speck for
some algebraically closed field k.

We first claim that for any two simple coroots a; and o, the pullback L' = (ayf, o} )*L
of L under

(), a)): Pic’(E) x Pic”(E) — Y
is trivial. To see this, it suffices to show that (a)/)*L = O, and that L’ is trivial restricted
to every k-fibre of the second projection Pic’(E) x Pic’(E) — Pic’(E). To see the first
condition, apply Lemma 4.4.7 to the morphism

(=10 ()" L = (o )"s7L — (o))" L,

and use the fact that (o))*L has degree ¢(L)(a}) = 0. For the second, let 25 € Pic’(E) be
a k-point, and consider the restriction L/, of L’ to Pic’(E) x {z3}. Define ¢: Pic’(E) —
Pic’(E) by

o(z1) = —x1 — (i, ) ).

Then the diagram
Pic’(E) —Z— Pic’(E)

Jiw Jimz

y — % Y
commutes, where iy, is given by iy, (1) = ) (1) + o (z2). So the isomorphism s;L — L

gives an isomorphism o*L!, — L/ acting as the identity on Pic’(E)7.

But since k is
algebraically closed, (ay,a})xs has a square root in E(k), so o is a conjugate of [~1] by a
translation. So we can apply Lemma 4.4.7 to conclude that L, = O. So L' is trivial as
claimed.
To complete the proof of injectivity, we need to show that in fact L = Oy. We prove by
induction on n € Z~¢ that for all 4;,...,4, € {1,...,1}, the line bundle
L'=(a],...;a) )*L

i1 » Py

on Pic’(E)™ is trivial. We have shown this for n = 1 or 2. For n > 2, we write Pic’(E)" =
Pic’(E)"~2 x Pic’(F) x Pic’(E), and observe that by induction, the restrictions of L to
Pic’(E)"2 x Pic’(E) x {Opico ()}, Pic’(E)"~2 x {Opjeo gy} x Pic’(E) and {Opico(p) 1™ x
Pic’(E) x Pic’(E) are all trivial. So L’ is trivial as claimed by the theorem of the cube.
Setting n = [ and {i1,...,in} = {1,...,l}, we conclude that L is trivial, and hence that
(4.4.2) is injective.

To prove surjectivity, we first claim that there is a homomorphism

b Sym?(X,(T))" —> Pic(Y)
sending A? € Sym?(X,.(T))V to the line bundle
P(N?) = /\*O(OPicg(E)) ® W;O;icg(E)O(*OPicg(E))
for A € X*(T'). By Lemma 4.4.8, it suffices to check that for all A, u,v € X*(T'), we have
$(A?) = o((=N)?)
and

P(A+p+1)*)26(A+1)*) ' @o(A+1)*) T @o(u+1v)?) @A) @ d(u*) @ p(1v?) = Oy
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Since it is clear that O} ¢(\%) = Og for every A € X*(T), it suffices to check these relations
on every geometric fibre over S. The first holds since [_1]*O(Opicg(E)) = O(Opico,(r)) and
the second holds by the theorem of the cube, so the homomorphism ¢ is indeed well-defined.
By construction, it is also clear that Q(¢(P)) = P for all P € Sym*(X,.(T))V.

Assume now that P € Sym?(X*(T))"V C Sym?(X,(T))Y and L € Pic(S). We need to
find a good W-linearised line bundle L’ on Y such that Q(L’) = P and O3} L’ = L. Note
that since the homomorphism ¢ is W-equivariant by construction, the line bundle ¢(P) is
W-invariant, so w*¢(P) = ¢(P) for all w € W. We can turn this into a W-linearisation by
taking

w*: w*o(P) = ¢(P)

to be the unique isomorphism acting as the identity on O3 ¢(P). We let L' = ¢(P) @ 75 L.
It is clear that Q(L') = P and O} L' = L, so it remains to show that ¢(P), and hence L’,
is good. By Lemma 4.4.6, it suffices to show that for every simple coroot « and every

geometric point s: Speck — S, we have
(af ) ¢(P)lpicop,) = O(2d - Opico(r,))
for some d € Z. But by construction, it is clear that
(az\‘/)*d)(P)lPico(Es) = O(P(aiva Oéiv) : OPiCO(ES))

and P(a,a)) € 27 since P € Sym?(X*(T')) C Sym?(X,(T))". So ¢(P) is good, and hence
(4.4.2) is surjective as claimed. O

Proposition 4.4.9 allows us to compute the Picard group Pic(Bung). In the statement
below, we write (|) € Sym?(X*(T))W for the normalised Killing form. This is the unique
W -invariant symmetric bilinear form on X, (T") satisfying (a¥|a") = 2 for a¥ a short coroot.

Corollary 4.4.10. The Picard group of Bung is
Pic(Bung) = Z[OpBun.] ® Pic(S),
where Opun, 5 the unique line bundle satisfying
U (OBunc ) gnss = X Oy lggye: (4.4.3)

where Oy is the unique good W -linearised line bundle on'Y with Q(©y) = (|) and O30y =
Og. Moreover, there is an isomorphism of graded Og-algebras

®d _ Qd\W
@WBUHG*(_)BunG - @(T‘-Y*@Y ) .

d>0 d>0

Proof. Tt is an elementary and well-known observation that since G is simply connected and
simple, we have Sym?(X*(T))" = Z(|). So Proposition 4.4.9 gives

Pic" (Y)good = Z[Oy] @ Pic(S),
and hence Theorem 4.3.4 gives
Pic(Bung) = Z[@Bung] D PiC(S),

where Opyn,, is the image of Oy under the Chevalley isomorphism. The construction of
the Chevalley isomorphism shows that (4.4.3) is satisfied. Moreover, if L is any other line
bundle on Bung satisfying ¢*L|§EFGS = X*@y|§§lscs, then writing L as the image of a good
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W-linearised line bundle Ly under the Chevalley isomorphism, we must have Ly = Oy as
line bundles on Y by Proposition 4.3.17, and hence as W-linearised ones. So (4.4.3) indeed
characterises Opun,. Finally, the isomorphism of graded algebras follows immediately from
the fact that the Chevalley isomorphism is an equivalence of enriched symmetric monoidal

categories. O

Remark 4.4.11. Of course, Corollary 4.4.10 also holds with Bung,,;4 in place of Bung,
with the same proof.

Remark 4.4.12. When S = Spec k, Corollary 4.4.10 shows that Pic(Bung) 2 Z, recovering
a special case of a theorem of Y. Laszlo and C. Sorger [LS]. We remark that Laszlo and
Sorger’s proof is very different to ours: it uses the uniformisation of Bung by an affine

Grassmannian, rather than our method using the relation to the abelian variety Y.
We conclude by remarking on the following very basic property of the line bundle Oy .
Proposition 4.4.13. The line bundle Oy is ample relative to S.

Proof. Since Y — S is proper and flat, it suffices to prove that ©y is ample on every
geometric fibre. So we can assume for the proof that S = Speck for k an algebraically
closed field.

Since Y is an abelian variety, Y is projective over k, so there exists some ample line
bundle L on Y. The ample line bundle L' = &), .y w* L is canonically W-linearised, and
it is easy to see that the W-linearisation on L” = (L')®? is therefore good. So L” is a good
W -linearised ample line bundle on Y, and therefore a positive multiple of ©y by Proposition

4.4.9. Hence Oy is ample as claimed. O

4.5 The coarse quotient map and the fundamental diagram
In this section, we apply Corollary 4.4.10 to construct the elliptic Grothendieck-Springer
resolution as a commutative diagram

BH;]G L BunG

% JX (4.5.1)

0y /G —— (VW) /G,

and give an explicit formula for the divisor 2_1(09;1).

We first remark that by Corollary 4.4.10, there is a tautological G,,,-equivariant morphism

Ofung — Specs @D Thune, O, = Specs P (my . O9H)Y =Y JW, (4.5.2)
d>0 d>0

where Y is the cone over Y given by contracting the zero section of @;1 to S. Deleting the
zero section of @ginc and taking the quotient of both sides of (4.5.2) by G,,, therefore gives
a morphism

x: Bung — (Y JW)/Gp.

Definition 4.5.1. The morphism x above is called the coarse quotient map for Bung.

We next construct the morphism x. By construction of the elliptic Chevalley isomor-
phism, if Ly is a good W-linearised line bundle on Y and Lpyun, is its image under the

Chevalley isomorphism, then there is a functorial isomorphism

V7 LBung gz — X Ly |
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compatible with the isomorphisms TBung , LBune = (7y . Ly)". (Recall that : liﬂlg —Y
is the blow down morphism Blp composed with the rigidification map BunOT —Y.) We
therefore have a rational map of line bundles

- ’l/}*LBunG - X*LY

We prove at the end of this subsection (Corollary 4.5.9) that when Ly = 03, the rational

map ~ has divisor of zeroes and poles

> %(AM)DA.

AeXL(T) +

In particular,  is in fact a morphism of line bundles, and so defines a morphism
X: Bung — 051/G,,.

Corollary 4.5.2. The morphisms x and X constructed above fit into a commutative diagram
(4.5.1).

Proof. This follows immediately from the definitions and the functoriality of the isomor-

phism ~*%. O

Remark 4.5.3. Since the elliptic Chevalley isomorphism holds for the rigidified stack
Bung,,i4 as well, we also have a rigidified version

—— P
Bung,rijy —— Bung iy

9;1/Gm — (?//W)/Gma
of the diagram (4.5.1).

We remark that the coarse quotient map gives a GIT-style characterisation of semistable
and unstable G-bundles.

Proposition 4.5.4. Let & — E5 be a G-bundle on a geometric fibre of E — S. Then &g
is unstable if and only if x(ég) € ()?.;//W)/Gm is equal to the image of the cone point of Ys.

Proof. Write O0p C Y for the family of cone points over S and g: @;1 — Y for the tauto-

logical morphism. Since Oy is ample, we have q’l(i} \0p) = @;1 \0@;17 and by Corollary
-1 1 s

4.5.9, we have x~'(0y \0@;1) = Bung . So

XY\ 0g) W) /Cr) = 0(X (031 \ 0_1)/Gim)) = v(Bung) = Bung,
which proves the proposition. O

Proposition 4.5.5. The morphism x: %G — @;1/Gm is flat, and all fibres of the mor-
phism x: Bung — (Y /W) /Gy, have dimension —I = dim(Bung) — dim((Y /W) /Gyy).

Proof. To prove that x is flat, note that since *%: 7/’*@15111n0|Bun§; — X*@;l\Bung is an
isomorphism, and since Y is smooth by Corollary 3.5.4, hence flat, we can apply Lemma

1 1 .
Bung — Oy 1s flat, and hence so

4.5.7 to conclude that the morphism on total spaces *©
is x.
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It remains to prove that the fibres of xy have dimension —I. Fix a geometric point
x: Speck — (}7//W)/Gm over s: Speck — S and consider the fibre y~!(z). We know by
straightforward comparison of dimensions that dim x~*(z) > —I, so it suffices to show that
dim y~!(x) < —I. Since the morphism ¢: ©,'/G,, — (Y )W) /G, is finite away from the
zero section and y is flat, if = is not the image of the cone point Op , then

dimx ! (z) < dimy "'y H(z) = dimy ¢ (z) = 1

so we are done. On the other hand, if x is the image of the cone point, then x~1(x) is a
G -torsor over the locus of unstable G-bundles on E; by Proposition 4.5.4. So

dimxy ! (z) = —codimBunG(Es)Bungwtable(Es) +1=-1
by Proposition 2.6.8. O

Remark 4.5.6. We will show later on (Corollary 5.5.1) that Y /W is in fact an affine space
bundle over S, and in particular regular. Together with Proposition 4.5.5 and [E, Theorem

18.16], this imples that the coarse quotient map x is flat.

Lemma 4.5.7. Let f: Z1 — Z3 be a flat morphism of reqular stacks, let Ly and Lo be line
bundles on Z1 and Zs respectively, and let g: L1 — f*Lo be a morphism of line bundles.
If g does not vanish identically along any irreducible component of any fibre of f, then the
induced morphism of total spaces L1 — Lo is flat.

Proof. Since flatness can be checked locally on the source in the smooth topology, it suffices
to prove the lemma when Z; = Spec R; and Zy = Spec Ry, with R;, Rs regular local
rings, Ly = Og, and Ly = Op, are trivial, and f is induced by a flat local homomorphism
¢: Ro — R;. The morphism g is then given by multiplication by some element r € R;, and
the induced morphism on total spaces is the spectrum of the Rs-linear homomorphism

¢': Roly] — Raz]
Y — 7.
Since Ry [z] and Ry[y] are regular rings, by [E, Theorem 18.16], it suffices to show that every
closed fibre has dimension d = dim R;[z] — dim Ry[y] = dim R; — dim Ry. If m is a maximal

ideal of Ra[y], then writing k for the residue field of Ry and K = Ra[y]/m, we have that K
is a finite field extension of k, and

Rile] (K @, R)la]

¢’ (m) Ry [] (re —y)
Since g is flat, dim(K ®g, R1[z]) = dim(k ®g, R1) +1 = d + 1, so it suffices to show that
re —y € K ®g, R[] is neither 0 nor a zero-divisor. But this follows from the fact that g
does not vanish along any irreducible component of Spec k ®g, R1, so we are done. O

The rest of this section is devoted to proving the following theorem, and hence Corollary

4.5.9, which was used above to construct the morphism Y.

Theorem 4.5.8. Let Lpun, be a line bundle on Bung and let Ly be the corresponding good
W -linearised line bundle on'Y'. Then the rational map of line bundles v: ¥* Lgun, --+ X" Ly
induced by the isomorphism

735: 1/1* (LBUHG)|}/3\anz; L> X*LY|Bung

has divisor of zeroes and poles

- Y JAIOND

AeXL(T) +
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Corollary 4.5.9. When Ly, = Og

1
Bung’

the map v of Theorem 4.5.8 is regular, and has
divisor of zeroes

. - 1
div(y) = X (0g;1) = > 5 (A1A) D
AeX, (T)+

The key idea behind the proof of Theorem 4.5.8 is to reduce to the case of a specific
choice of line bundle Lpyn, that we can describe explicitly as the determinant of a perfect

complex. The following lemma plays an important role.

Lemma 4.5.10. Let X be an algebraic stack, let D C X be an effective Cartier divisor on
X, letU=X\D, and let i: D — X denote the inclusion. If £ is a perfect complex on D,

then the rational map of line bundles
g: Ox =det0 --- detRi,.&
induced by the quasi-isomorphism Oy = Ri.E|y induces an isomorphism
Ox(x(8)D) = det Ri,&,
where x denotes the Euler characteristic of a perfect complez.

Proof. We need to show that the divisor of zeros and poles of g is x(€)D. Since both are
local on X and additive in £ under exact triangles, it suffices to check this when & = Op.
In this case, an explicit free resolution for Ri,& is

Ri.& = [Ox(—D) — Ox],
which gives an isomorphism
Ox ® Ox(—D)Y = det Ri,£.
The map g is given by
Ox = Ox(-D)® Ox(—=D)" — Ox ® Ox(—D)" = detRi,.&,
which does indeed have divisor D = x(€)D as claimed. O

Lemma 4.5.11. Let X be a smooth stack over S, let Z C X xg E be a smooth substack
of codimension 2 mapping isomorphically to a divisor D C X wunder the first projection
pry: X xgs E— X, and let f: C — X xg E be the blowup along Z. If L is a line bundle
on C' such that L restricted to any exceptional fibre of f has degree d, then the canonical
rational map

detRpry Rf.L --+ detRpry, det Rf.L (4.5.3)

induced by the quasi-isomorphism Rf.L|xxsp\z = det RfiL|x s p\z has divisor

d(d+1)

D.
2

Proof. We first observe that if d = 0, then the claim is true since Rf, L is a line bundle and
hence (4.5.3) is an isomorphism.
For a general line bundle L, write div(L) for the divisor of (4.5.3). Consider the exact
sequence
0 — L(—Exc) — L — L|gxc — 0,
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where Exc = f~1(Z) is the exceptional divisor. The morphism Rf,L(—Exc) — Rf.L
induces a commutative diagram

det Rpry Rf.L(—Exc) ----- EINEN det Rpry Rf.L

|
|
|
|
N N

det Rpry, det Rf. L(—Exc) ——— detRpry, det Rf. L
of rational maps of line bundles, where the bottom arrow is an isomorphism since Z has

codimension 2. We deduce that
div(L(—Exc)) = div(L) + div(g).
But div(g) = div(g’), where
g Ox --- det(Rpry , Rf.L(—Exc)) ™' @ Rpry Rf.L = det Rpry, Rf.(L|gxe)

is the rational morphism induced by the quasi-isomorphism Rpry R f, (L|Exc)| x\p =~ 0. But
Rpry R f.(L|gxce) is the pushforward from D of a perfect complex with Euler characteristic
d+ 1, so Lemma 4.5.10 gives div(¢’) = (d 4+ 1)D and hence

div(L(—Exc)) = div(L) + (d 4+ 1)D.

Since L(—Exc) has degree d + 1 restricted to any exceptional fibre of f, the lemma now

follows easily by induction on the absolute value of d. O

The next lemma identifies the W -linearised line bundle on Y and quadratic form corre-

sponding to a determinant line bundle on Bung.

Lemma 4.5.12. Let V be a representation of G, and let Lpun, = det Rpry,, ., (§4" xCV),
where f“’” — Bung x g E is the universal G-bundle, and prg,, . : Bung x5 E' — Bung is the
canonical projection. Then the corresponding good W -linearised line bundle on'Y is given
by

® N O(=Opiey (1)) ™™,
AEX*(T)

and hence

q(Ly)(p)=— > dimVa(A )

AEX*(T)

- @ "

AeX*(T

for u e X, (T), where

is the weight space decomposition of V' under the action of T

Proof. We have
" Lpung = det Rprg.  ((¢7€¢") x9 V) = det Rprg, - R f*((¢7E4™) x“ V)

where prz— BunG xg E — BunG is the first projection and f: Bung x@egS(E) C —

Bung
BunG X g F is the pullback of the universal prestable degeneration of F over BunG Since the
G-linearised vector bundle V@O on the flag variety F' = G/B has a G-equivariant filtration

with associated quotients isomorphic to V) @ £ for A € X*(T'), we get an isomorphism
¢ Lpung = Q) detRprgz. RE(VA® (Ere x" Zy))
AEX*(T)

Q) (detRprg Rf.(&re xT 2)))® 4™,
AEX*(T)
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where {7.¢ is the induced T-bundle on B\u/ng XDegg(E) C. So restricting to BElSGS gives

V' Lunclgms = Q) Blh(det Rprpy (6877 xT 2,))2 9™ . (4.5.4)
AEX*(T)

where 4" is the universal T-bundle on Buny. x5 E and Blp: B’I\I;IG — Bunj. is the blow
down morphism. Now, for all A € X*(T), we have

det Rprp g (65" X7 Z)) = A" det Rprpug ()M

x4V

where M is the universal line bundle on Bun%m /s(E) xs E. But

RprBungm/s(E)*M = (RlprBungm/s(E)*M)[_H

is the pushforward of a perfect complex of Euler characteristic —1 on the Cartier divisor

OBung Lo(B) corresponding to the trivial bundle, so by Lemma 4.5.10, we have
det Rprgung ()M = O(—OBungm/S(E)) = ¢"O(=Opict,(m))

where ¢: Bun(%m/s(E) — Pic%(F) is the canonical quotient by BG,,. So (4.5.4) gives

¥ Lpunglpmy =X @) N O(=Opicy ()™ ™ g
AEX*(T)

from which the result follows immediately. O

Proof of Theorem 4.5.8. We first remark that since the truth or falsehood of the statement
is unchanged if we raise Lpun, to a nonzero power or tensor with a line bundle on S, by
Corollary 4.4.10, it suffices to prove the claim for any single Lpun., with ¢(Ly) # 0. So
choose any nontrivial representation V' of G and set

Lgung = det Rprp,,, ., (4" x° V),

as in Lemma 4.5.12. Keeping the notation from that proof, since w];;nés*(’) =7my, 0Oy = Og
by Proposition 4.3.17 (1), the rational map v must coincide up to rescaling by a nonvanishing

function on S with the rational map

® (det Rpryz, (ErexTZy))@ ™™ - ® (det Rprgz, , det Rf.(&p,exTZy))@ 4™ ™
AEX*(T) AeX*(T)
(4.5.5)

given by the quasi-isomorphisms

detRf,(érc X7 Zy)| = =Rf(Erc xT Zy)|

ss
)
Bun Bung

for A € X*(T'), where we recall that Bl}; (¢4 xT'Z)) = det Rf.(érc xT Zy) by Lemma 3.5.2
and the definition of Blg: Bung — BunOT. To complete the proof, observe that Proposition
3.4.13 implies that

(Bung)<' = | J (Bung)3'
HEXL(T)+

where
(Bung)Sl = Bung Xpeg4(m) @egS(E)Sl C Bung

is the open substack of points where the nodal domain curve C has at most 1 node, and for
1€ Xu(T)y, (Bung)$! C (Bung)=! is the open substack of stable maps with either smooth
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)=t

domain or dual graph T/(L). Since the complement of (BH;IG in BH;lG has codimension 2, it

suffices to show that for any p € X, (T)4, the restriction of (4.5.5) to (%G)gl has divisor
1 .
3 Z dim Vy(\, )2 D,,.
AEXH(T)

By Lemma 4.5.11, the map
det Rpr o, <. Rf(6rc xT7y) --» det Rpr o, <1, det Rf(€rc xT' 7y)

has divisor
A (A +1)
2 o
so taking the tensor product over all A € X*(T'), we find that the restriction of (4.5.5) has

divisor

dim V, dim V, 1 .
Z 5 A()\,u>2 + Z TAO\,LL) D, = 3 Z dim Vy (A, p)?D,,
AEX(T) AEX(T) AEX(T)

as required, since
> (dimVy)x e XH(T)W = {0}.
AEX*(T)

4.6 The canonical bundles of Bung and ]§1\1;1G

As an application of the methods used in the proof of Theorem 4.5.8, we compute the

canonical bundles Kpyn, /s = det Lpun, /s and KEEIG/S = det LEEG/S of Bung and EI\I;IG

relative to S.
The aim is to prove the following theorem. In the statement below, we write w € Pic(S)
for the line bundle

w =7 Kp/s = Tpicg(5)« Kpicg(B)/s = Obict () Kpicy (B) /5

Given (R, L) € Sym*(X*(T))" @ Pic(S), we write £L(R, L) for the line bundle on Bung
associated to (R, L) by Proposition 4.4.9 and Theorem 4.3 .4.

Theorem 4.6.1. The relative canonical bundles of Bung and Bung are given by
KBung/s = L ( > QZ’W@)dimG) =L|-2) o w®ime
acd aEd,

and

Kemgs =V°L | — Y A wfimP g0 > (=2+{p,m)Dy
acd pEXL(T)+

Lemma 4.6.2. The line bundle

Ly = ® a*o(*OPicg(E))

acd

admits a (necessarily unique) good W -linearisation.

90



Proof. We first note that s} Ly = Ly for all simple reflections s;, since
sihy = Q) 0" O(~Opigg (1)) © () “O(~Opies (1))
ac® i \{a;}
and
(—a;)"O(=Opico,(r)) = a7 O(=Opico,())-
So Ly admits a unique W-linearisation such that the action of W on O3 L is trivial. It

remains to show that this linearisation is good. For all simple coroots a;’, we have

(o )*Ly = ® (@)@ O(=Opico, () = O | = Z (@, @) ?Opico (i)

acd acd
But
Z (o, ) = Z {a,a)) = (2p,a)) =0 mod 2,
acd acd
so the W-linearisation on Ly is indeed good by Lemma 4.4.6. O

Lemma 4.6.3. There is an isomorphism
K’Degs(E’)/S = 0(72D)a
where D C Degg(E) is the locus of singular curves.

For the proof of Lemma 4.6.3, we will use the following description of the relative tangent

complex of a blow up.

Lemma 4.6.4. Let X be a stack, let Z C X be a regularly embedded closed substack of
codimension d, and let 7: X — X be the blowup of X along Z. Then there is an exact
triangle

Tg/x — RisNgyo 5 — Ri,m* Nz x — T;(/X[l] (4.6.1)

in D(X), where Exc = = 1(Z) is the exceptional divisor, i: Exc < X is the inclusion, and

Ny,v denotes the normal bundle of U in V.
Proof. Consider the exact triangle
TEXC/X — TEXC/X — ]LZ*TX/X — TEXC/X[I]

in D(Exc). Pushing forward to X and letting M be the derived kernel (cocone) of Ri, Tgye)x @
Tg/x = Ri.Li*Tg ,y gives a morphism

Ri*TExc/i( M TX/X ’ Ri*TExc/X [1]

l |

Ri*TExc/f( _— Ri*TExc/X —_— RZ’*LZ'*TX/X —_— Ri*TExc/X'[l]

of exact triangles in D(X). We claim that the composition
M — Ri*TEXC/X — R’L*]LTF*Tz/X

is an isomorphism in D(X). Given the claim, the top row of (4.6.2) can be rewritten as an

exact triangle

Ri*NExc/X[_l] — Ri*F*NZ/X[—l] — T)?/X — Ri*NExc/fO
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from which we get (4.6.1) by rotation.

Since the claim is local on X for the smooth topology, we may assume without loss of
generality that X = Spec R is an affine scheme and that Z is defined by the ideal (21, ..., 24)
where z1, ..., x4 is a regular sequence in R. Then X C X x P4~ is the closed subscheme
defined by the ideal

(2 X; —a; X, |1 <i<j<d),
where X, ..., Xy are the homogeneous coordinates of P?~!. The tangent complex T /X is
given by
Tg,x = Txxpa-1/xlx = Ng/xxpa-il;
and the bottom row of (4.6.2) is given by the exact sequence of complexes

0 i*i*TXXPdfl/Xb? e i*i*TXX]P’dfl/Xb? — 0
0 —— i Npe)x —— ixNieyxopit —— 0" Ng g ypas —— 0.

So the morpism M — Ri.L7*Ty,g is given by

M=[ Topirxls ——— M ]
J k (4.6.3)
Ri, LTz x = | 00— it Nys |,

where M’ is the fibre product

/ .
M — ’L*NEXC/XX]pd—l

l |

NX/XXIFM* ’ i*i*N)Z/Xdefl-
It remains to show that (4.6.3) is a quasi-isomorphism (and hence an isomorphism in D(X)).
Observing that the canonical map Ngye xxpe-1 — TNz x is an isomorphism, we have a

commutative diagram

0 — Txupai/x|5 M i Ngjg ——— 0

|

Lok
O e TXX]pd—l/XL)? e NX/XX]P’dfl —> 1% NX/XX]PM71 e 0

where the rightmost square is Cartesian. To show that (4.6.3) is a quasi-isomorphism, it
suffices to show that the bottom row of (4.6.4), and hence the top, is exact. But this follows

from a direct computation in local affine coordinates on P?~!, so we are done. O

Proof of Lemma 4.6.5. Let Degg(FE)<! C Degg(E) denote the locus of curves with at most

one node. Since Degg(E) is smooth and the complement of Degg(E)<" is a closed substack

with codimension 2 by Proposition 3.3.7, it suffices to prove the claim for Degg(E)<1.

The tangent complex of Degg(E)<! is

T’Degs(E)Sl = RprgegS(E)g1 *Rf*Tcﬁl/Degs(E)ﬁl XSE[1]7

92



where f: C — Degg(FE) xg F is the universal degeneration and C=1 = f~}(Degg(FE)<!). So

we have
Koegy(mysiys = det Rproeg ()<t RATes1/px soegg ()<t

Since f: CS! — Degg(E)S! xg E is the blow up along a closed substack Z of codimension
2 (mapping isomorphically to D<! under the projection pr@egS(E))7 by Lemma 4.6.4, there

is an exact triangle

Te<t/pegg(m)<ixse — lNExejcst — i*g*NZ/’}DegS(E)SlxsE - Tcil/’)DegS(E)SlxsE[l]
(4.6.5)
where Exc = f~1(Z) is the exceptional divisor, i: Exc — C=! is the natural inclusion, and
g: Exc — Z is the restriction of f. By Lemma 4.5.10, we have
det Rproeg ()<t s Rfcix Npye o<t = det(RjRp. O(Exc)|exc)
= O(x(Rp.O(Exc)|pxc) D=")
= O(x(P',0(-1))D=) = O,
where DSt = DNDegg(E)<!, j: DS — Degg(E)<1 is the inclusion, and p = Proeg (B)<1 ©
g: Exc — D=!. (Note that p is a P!-bundle.) Similarly,
det Rprgegs(E)§1*Rf*i*g*NZ/Qegs(E)SlxsE = det(Rj*Rp*g*NZ/ﬁDegs(E)SlXSE)
= O(X(Rp+g* Nz /peg, (m)<1 x5 2) D)
= O(x(P',09%)D=") = O(2D=").
From the exact triangle (4.6.5), we deduce that

Koeg,(p)<i/s = det Rproee (my<t RETe<1 jpeg s (m)<ixs 5 = O(—2D%"),
which proves the lemma. O

Proof of Theorem 4.6.1. We have

Kpung/s = det(Rprpun,, (€47 X g[1]))" = det Rprpy, . (65" x g).

By Lemma 4.5.12, we therefore have

KBung/s = £ < Z a?, (Ol*ﬁic%(E)O(OPicg(E)))(X)dimg) : (4.6.6)

acd

But there is an isomorphism
Opico (1) O(=Opict () — Opieo () Kpict, ()75 = W

given by taking exterior derivatives. So (4.6.6) gives

KBunc/S =L <_ Z a27w®diInG>

acd
as required.
For Bung, we have

= detRpre— ,Rf,(c"64" x ker(g @ Op — Tr))

Bung *

= (detRprg REO0)*' ® Q) detRpryy, JRf.(ére xT Zoa),

acd

Kga/nc/@egs(E)
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where we write f: ];1/11(; XDegg(m) C = El;;lg x g E for the pullback of the universal degen-
eration, and o: Bung Xpeg (£)C — f’ém xCF = 55’”/3 for the universal stable map to the
flag variety bundle. By Lemma 4.5.11, this is isomorphic to

i W ) det Rprg. . detRf.(érc x" Z o)

Bung
aced

1
O|- Y (= m)({(~a,p) +1)Dy
HEXL(T)+

—% * * 1
=x" | mw®® ® " O(=Opico () | ® O E E 5(—<aaﬂ>2 +{a,1))Dy |,
ac®y HEX(T) a€Py

where we use the fact that

det Rprgg Rf.O = detRprgg O = (Rlprﬁlc*O)v =7~ TpKpg =T~ w.

*
Bung * Bung Bung

By Lemma 4.6.2, the line bundle

W @ ® " O(=Opict, (1))

aed

admits a good W-linearisation, so corresponds to a line bundle on Bung, which, examining
quadratic classes and the pullback along Oy, must be

cl— Z a2, @ dim B
acd
So by Theorem 4.5.8, we get

. 1
% 2 ® dim B
Kﬁﬁc/ﬁegs(b“) =YL | — Z at,w ® O Z Z §<a,u>D#

acdy HEX(T)y a€Py

:1/)*5 N Z a2,w®dimB R0 Z (p,u)Du

acd pEXL(T)+

Using Lemma 4.6.3, we therefore get
Kigneys = Koegs(2)/5 @ K /g (B)

=y L= ) o® w0 (=2 + (p, w)) Dy,
acdy REXL(T) +

as claimed. O
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Chapter 5

Slices of Bung

In classical (say, additive) Springer theory, one has the freedom either to work with the
stack g/G, or to pull everything back to the chart g and work entirely within the world of
affine algebraic varieties. It is also very informative to study transversal slices of g, which
amounts to studying lower dimensional non-surjective charts of g/G. For example, the
section theorem of B. Kostant [K, Theorem 0.10] (and its analogue by R. Steinberg [S5,
Theorem 1.4] for the multiplicative case G/G) shows that slices of minimal dimension give
sections of the adjoint quotient map g — g/ G, and the work of Brieskorn and Slodowy uses
slices of the next lowest dimension to give Lie theoretic constructions of du Val singularities.

In the elliptic context, there is no finite-dimensional chart covering Bung to play the
role of g. However, it is still possible to construct incomplete charts, which we can use to
destackify the geometry of Bung and the elliptic Grothendieck-Springer resolution in low
codimension. We will see in this chapter and the next that this construction leads to an
analogue of the Kostant and Steinberg section theorems (Theorem 5.4.6) and to interesting
simultaneous log resolutions of families of surfaces.

Given a family of elliptic curves £ — S with origin Og: S — FE, there is an action of
E (endowed with its natural group scheme structure over S) on itself by translations, and
hence on Bung. Since we were careful in the previous chapter to allow families that do not
admit a section, we have an elliptic Grothendieck-Springer resolution (4.5.1) for the family
E' =S — BgE = S’, which is manifestly the quotient of the elliptic Grothendieck-Springer
resolution for £ — S by an action of E compatible with the action on Bung. So in some
sense this action adds nothing of interest to the geometry. Rather than working with charts

for Bung, we will therefore work with the following slightly weaker objects.

Definition 5.0.1. Assume that E — S has a section Og: S — E. A slice of Bung (resp.,
Bung ,i4) is a morphism Z — Bung (resp., Z — Bung ,4) of stacks over S, such that the
composition Z — Bung — Bung/E (resp., Z — Bung iy — Bung 4/E) is smooth.

In this chapter, we give techniques for constructing slices and apply them to give a proof
of the Friedman-Morgan section theorem (Theorem 5.4.6). We begin in §5.1 with a general
discussion of equivariant slices, which are slices endowed with some useful extra structure.
We then present the parabolic induction construction of Friedman and Morgan [FM2] in
§5.2, which gives a recipe for constructing slices of Bung out of slices for a Levi subgroup.
In §5.3 we recall M. Atiyah’s classification of stable vector bundles on an elliptic curve [A]
and use it to construct explicit slices for some Levi subgroups. We then apply this machinery
in §5.4 to give a proof of Theorem 5.4.6 using the elliptic Grothendieck-Springer resolution.
As in the classical case, the section theorem has a number of important implications for the
geometry of the coarse quotient y: Bung — (17// W)/G,, and the Grothendieck-Springer
resolution, which we give in §5.5. These implications include the fact (Corollary 5.5.7) that
(4.5.1) is a simultaneous log resolution.

Throughout this chapter, we keep the conventions and notation of Chapter 4. Unless

otherwise specified, we will also assume that the elliptic curve £ — S has a given section
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Op: S — FE and endow E with its natural group scheme structure over S for which OF is
the identity.

5.1 Equivariant slices

Let Z — Bung be a slice such that Z — S is representable. Then pulling back (4.5.1) gives
a commutative diagram

Z — 7

N

07/Gpy —— (Y W) /Gy

where Z = l?u?lc XBung £ has finite relative stabilisers over S and maps smoothly to BH;lg.
So (5.1.1) gives an approximation to (4.5.1) in which most of the stackiness in the top row
has been removed. In this section, we discuss the extra structure that is needed to remove
the stackiness in the bottom row of (5.1.1).

Definition 5.1.1. Let H be a torus, and let A € X*(H) be a nonzero character. An
equivariant slice of Bung g with equivariance group H and weight A is a commutative
diagram

Z/H —— Bung rig

—1
J{ l@mmcmm

BH —2— BG,,

where Z is a stack with H-action over .S, such that the composition Z — Z/H — Bung rig —
Bung i/ E is smooth. We will often suppress the group H from the notation and refer to

Z — Bung,,ig, or even simply Z, as an equivariant slice.

Remark 5.1.2. Unpacking the stacky formalism, the datum of an equivariant slice Z/H —

Bung,,i4 of weight A is equivalent to the datum of an H-equivariant morphism

Z — (05!

Bung rig

)% (5.1.2)

)* of the zero section of O}

where H acts on the complement (Og! Bung. i

Bung, rig through
the character \: H — G,,. Together with the rigidified version of (4.5.1), this gives an

H-equivariant commutative diagram

72 7

@{,1 —_ }Af//W,

where Z = Z X Bung.rig éﬁjng’m-g and H acts on (9;,1 and ?//W via the character \.

Proposition 5.1.3. Let Z — Bung 4 be an equivariant slice. Then the composition
—1 *
Z — (@Bunc,ﬂg) /E (513)

of (5.1.2) with the quotient by E is flat.
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Proof. Let H be the equivariance group of Z, and A the weight. Since H is a torus, hence
smooth over SpecZ, the morphism Z/H — Bung rig/E is smooth, and in particular flat.
Since the morphism

Z/H XBunc,m‘,g/E ((Ggllmcmg)*/E)/H — Z/H

is a gerbe under the flat group scheme ker(A) C H, the section defined by (5.1.3) is flat, and

hence so is the composition

Z/H — Z/H XBung, ,.y/E (Opa

Bung,rig

V'/E)H — (O, ) /E)VH.  (5.14)
So the pullback (5.1.3) of (5.1.4) is flat as claimed. O

The group action can also be useful for bounding the dimensions of automorphism groups

in an equivariant slice.

Proposition 5.1.4. Let Z — Bung iy be an equivariant slice with equivariance group H
and suppose that the smooth morphism Z — S has finite relative stabilisers and relative
dimension d. For any geometric point z: Speck — Z with corresponding G-bundle &g ., we
have

dimAut(ég,,) <d+1—dimH - 2.

Proof. Pulling back along Spec k — S if necessary, we can assume without loss of generality
that S = Speck. Let x be the image of z in Bung ;4 and 2’ its image in Bung ,;4/E. By
H-equivariance of Z — Bung 4, we have

H -z - 7 XBung,m-g/E BAUt(J}/)

So
dim Aut(z") = codimpyy,, ,.,,/p(BAut(z’)) + 1

= COdimz(Z XBUHG,MQ/E BAUt(l’l)) +1 (515)
<d+1-—dimH - z.

But we have
dim Aut(ég) = dim Aut(z) < dim Aut(z'), (5.1.6)

since Bung — Bung, 4 is a Z(G)-gerbe and Bung iy — Bung,,i4/F is representable. So
combining (5.1.5) and (5.1.6) we are done. O

Given any slice Z — Bung,ri4, equivariant or not, we can consider the pullback Z =

Z XBung,, Bulg,rig, and the divisor with normal crossings D(Z) = > \cx. (1), Da(2),

where Dy(Z) = Z X gune ... Da- Note that if Z — S is of finite type, then all but finitely
,Tig

many Dy (Z) will be empty. We remark below on a simple property of the set of nonempty

divisors.

Proposition 5.1.5. Let Z — Bung 4 be a slice, and Ay, \o € X (T) 4. If Dy, 42,(Z) # 0,
then Dy, (Z) # 0 and Dy,(Z) # 0.

Proof. We show that Dy, (Z) # 0; the statement for Dy, (Z) follows by symmetry. Choose a
geometric point z: Speck — Z over s: Speck — S with corresponding G-bundle {¢ , — Ej
and a stable map o: C' — &g /B corresponding to a point in the interior of Dy, 4x,(Z).
Then by Proposition 3.4.16, ¢ has dual graph

0 — P o
X142 =
—A1—=A2 A1t
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Replacing the rational component of C' with a chain of two rational curves of degrees A\; and

A2, we therefore also have a stable map o': C! — {g /B with dual graph

&—O0—O
—)\1—>\2 )\2 >\1

which lies in Dy, (Z) N Dx,+x,(Z). So Dy, (Z) # 0 as claimed. O

5.2 Parabolic induction

If L C L' C G are Levi subgroups and Z — Buny, ,4, is a slice (i.e., a morphism such that
Z — Bunp 4/ F is smooth), then there is a simple procedure for constructing an induced
slice Indf/(Z) — Bung/ rig. In this section, we describe this construction, study properties
of the induced slices, and show how, when L' = G, Indg(Z) = Ind%(Z) can be made into

an equivariant slice under mild assumptions on Z — Bunp, ;4.

Definition 5.2.1. Let L C L’ C G be Levi subgroups, let u € X, (Z(L)°)g and let P C L’
be the unique parabolic subgroup with Levi factor L such that —u is a Harder-Narasimhan
vector for P C L' in the sense of Definition 2.5.18. If Z — BunSLS”T’;g is a morphism of stacks,
the parabolic induction of Z to L’ is the morphism

r w
Ind; (Z) = Bunp g XBung pig 4 — BunL,ym.g

where p' € X, (Z(L')°)q is the image of p under the natural morphism X.(Z(L)%)q —
X, (Z(L))e-

Remark 5.2.2. In the situation of Definition 5.2.1, if the morphism Z — Bunp .4 factors
through Buny, then we have an isomorphism Indg(Z) = Bunp XBun, Z, and hence a

’ ! ’ ’
factorisation of Ind¥ (Z) — Bunf, ,,, as nd} (Z) — Bun, — Bunf, -

In the following proposition, we do not assume that £ — S has a section.

S8,

Lorig 18 smooth. Then so is the

Proposition 5.2.3. Assume that the morphism Z — Bun

morphism Indf,(Z) — Bun‘il,ym-g.

Proof. Since Z — Bunj’; is smooth, so is the morphism Ind? (2) = Buny i . So it
5,1

\Tig
smoothness, this is equivalent to showing that Bunp™* — Buny, is smooth. The relative

suffices to show that the morphism Bun? — Bunp/ ;g is smooth. By flat descent for

tangent complex is
T = RprBun;&‘“*( Ilé‘nl XP [//p)V

where ' = Lie(L’), p = Lie(P) and £ — Bunp* x g E is the universal P-bundle. But since
— is a Harder-Narasimhan vector for P, the vector bundle £p x P I /p has a filtration whose
successive quotients are semistable of positive slope on every fibre of Buny"* x g E — Bunp .

So T is a vector bundle concentrated in degree 0 by Lemma 2.6.3, which proves the claim. [

Corollary 5.2.4. Assume that Z — Buns** s a slice. Then IndY (Z) — Bun’ﬁl,

L,rig ,rig is @
slice.
Proof. Apply Proposition 5.2.3 to the family £’ := S — BgFE =: 5. O

A key feature of the parabolic induction construction is the existence of a natural action
of the torus Z(L),sg = Z(L)/Z(G) on Ind¥ (2).
In general, suppose that X is a stack equipped with an action a: X x BH — X of the

classifying stack of some commutative group scheme H. Then for any morphism of stacks
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m: X’ — X, there is a canonical action of H on X’ over X fitting into a commutative
diagram
X —— X'/H — X’

I -

X —— X xBH /2 X,

in which both squares are Cartesian, where the morphism X — X x BH is the quotient
by the trivial action of H on X. Explicitly, this action can be realised by using the outer
square of (5.2.1) to identify X’ with the stack of tuples (' € X',z € X, ¢: x = m(2')) and
setting (2, z,¢) - h = (¢/,x, 9o a(h)) for h € H.

Now suppose we are in the situation of Definition 5.2.1. Applying the above construction
to the action Buny, i of BZ(L),;y on Buny, ;4 inherited from the action of BZ(L) on Buny,
gives an action of Z(L),;4 on Bunp ;g over Bung i, and a morphism Bunp,ig/Z(L)yig —
Bunp,;; — Bung: ;. Pulling back along Z — Buny, 4, we get an action of Z(L),;, on
Ind} (Z) over Z and a morphism Indg(Z)/Z(L)mvg — Bun‘L‘/,

\Tig’
Remark 5.2.5. If the morphism Z — Bunj”; factors through Bunj™", then the BZ(L)-

action on Bunj, gives a morphism Indf/(Z)/Z(L) — Bun‘L‘l, and a Cartesian diagram

Ind% (2)/2(L) —— Bun”,

| |

ndf (2)/Z(L)rig — Bun, ..
Note that Ind¥ (Z)/Z(L) — Bun’, factors through Ind% (Z)/Z(L),:, if and only if the left
hand morphism above admits a section, which holds if and only if Z(L) = Z(G) x Z(L)g-

The following proposition describes the structure of the natural morphism Indg (Z)—=Z

together with the Z(L),;4-action constructed above.

Proposition 5.2.6. Assume we are in the setup of Definition 5.2.1. If Z is an affine
scheme, then there exists a (non-canonical) Z(L)y;q-equivariant isomorphism of stacks over
Z,

Indf (2) = R'pry, (€ry2(6) x"# D w),

where 1,/2(qy — Z xs E is the L/Z(G)-bundle induced by the morphism Z — Bung, .y —
Buny,z(qy, u is the Lie algebra of the unipotent radical R,(P), and Z(L)iy acts on u by
right conjugation. Hence, for any Z (not necessarily affine), the morphism Indf’(Z) — 7

is always an affine space bundle with fibrewise linear Z(L),;4-action.

Proof. Let fTL”/L;(G) — Bung .y xs E be the L/Z(G)-bundle classified by the morphism
Bung, iy — Bung z(q), and let 4" = 5%7%(0) xL/2(G) R, (P). Tt follows directly from
the construction that the BZ(L),;4-action induces the right conjugation action (z,u) - g =
(z,97'ug) of Z(L),;y on the group scheme U“". Letting §1/z(c) be the pullback of 5%’/‘%@)
to Z and U = &1,z xL/Z(G) R, (P), it follows that the action of Z(L),;, on Indg(Z) =
Buny,z is also given by right conjugation.

Let 0 < g < -+ < py, be the possible positive values of («, —u) for o € @, and let

{1}:Un+1gUng"'gU1:Ru(P)
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be the filtration defined by

U= 1] Ua

acd;,
(o, —py >

for 1 <i<mn+ 1. Letting
U =Eryz0) XM DU; C U,

we show by induction on i that each Bun(y i),z (E) is Z(L),ig-equivariantly isomorphic to
the vector bundle

R'pry.(¢n/zc) x 7D uju;) = @Rlpfz*(fL/Z(G) <2 i ),
Jj<i

where u; is the Lie algebra of R, (P);.

For i = 1, the claim is trivial. For ¢ > 1, Proposition 2.4.2 implies that each morphism

Bun i) /2(E) — Bung iy, )/2(E)

is a Z(L)rig-equivariant Bungy, , ju,)/z(E)-torsor. But U; 1 /U; = w;_1/u; as L/Z(G)-
equivariant group schemes. So by Proposition 2.4.1,

Bun, , ju)/z(E) 2 Bun, iz puyz(B) = RUprg (Eryzie) x 2D w1 /)

since
HY(Eg 0200y, X2 # D u;_q /) =0

for any geometric point z: Speck — Z over s: Speck — S, as this is the space of global
sections of a vector bundle all of whose semistable factors have negative degree. By induction,
Vi = Bungu,_,)/z(E) is a vector bundle on Z with linear Z(L),;g-action, so the Z(L),4-
equivariant torsors on it are classified by the group

HY(Vi/Z(L)rig, RMpry, (Eny2(0) /25 iy /uy))
= H'(BZ(L)yig, H(Vi, Ov;) @1o(2,0,) H' (E, 1700y x X5 w1 Jwy))
=0
since Z(L)pig is a torus and Z is affine. So we can trivialise the given torsor Z(L),;4-
equivariantly, to give a Z(L),;4-equivariant isomorphism
Bunus)/z(E) = Bunwu, ,)/2(E) Xz R'pry, (E/zc) x 7D uisa /ug)
=~ P R'pry, (Er/zc) x“ D w1 /uy),

Jj<i
as claimed. O

The next two propositions give root-theoretic formulas for the Z(L),;,-weights and di-
mension of the affine space bundle Indg (Z) = Z.

Proposition 5.2.7. If A\ € X*(Z(L)rig), then the multiplicity of the weight X in a fibre
of Indg(Z) — Z s d_x(A\, ), if (A,p) > 0 and 0 otherwise, where d_y is the number of
a € &y such that a\Z(L)MQ = -\

Proof. By Proposition 5.2.6, the multiplicity of A in Indf/(Z ) is equal to the multiplicity
in HY(E,, & x* u), where E, is any geometric fibre of E — S, {1 — Ej is a semistable
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L-bundle of slope p, and Z(L),iq acts by right conjugation on u. But this is equal to the
dimension of H(E,&r x* u_y), where

@ Gy i (A p) >0,

acP;

U= = N alzwy,,,=—A

0, otherwise,

is the A-weight space of Z(L),;, acting on u by right conjugation. But since &, x©u_j is

either 0 or a semistable vector bundle of negative slope —(\, u), it follows that

d—)\<>\mu>7 if <)\7/~‘L> > 07

0, otherwise,

dimHl(fL ><Lu_>\) = 7deg(§L ><L u_)\) =

which proves the claim. O

Proposition 5.2.8. The morphism Indg (Z) = Z has relative dimension (2pp, ), where
—2pp is the sum of all roots a € ® such that U, C R, (P).

Proof. This follows from Proposition 5.2.7 after taking the sum over all A. O

When L' = G, it is often the case that the Z(L),ig-action on Ind¥(Z) can be promoted

S8,

to the structure of an equivariant slice. The extra structure on the initial slice Z — Bun; g

required to make this happen is the following.
Definition 5.2.9. A ©-trivial slice of Buny’ i is a slice Z — Bun’}j  equipped with a

19 rig

i

trivialisation of the pullback @Bunf;“.g of the theta bundle @Buncm.

Proposition 5.2.10. Let Z — Bunj’; be a ©-trivial slice. Then there is a natural equiv-

ariant slice structure on Ind¥(Z) — Bung, g with equivariance group Z(L)yiq and weight
(=)

A key step in the proof of Proposition 5.2.10 is a computation of the action of Z(L),,
on the pullback of the theta bundle to Z. Before we give this computation, it will be useful

to introduce the following terminology.

Definition 5.2.11. Let X be a connected stack equipped with an action a: X x BH — X
of the classifying stack of a commutative group scheme H. If £ is a line bundle on X, then

weight of L is the image of £ € Pic(X) under the homomorphism
Pic(X) % Pic(X x BH) = Pic(X) & X*(H) — X*(H),
where the isomorphism above is given by
Pic(X) & X*(H) —> Pic(X x BH)
(L,A) — p* L@ (e xT Zy)
for ngy — BH the universal H-torsor.

Remark 5.2.12. It follows tautologically from the definition that whenever f: X — BG,,
classifies a line bundle £ with weight A, the diagram

XxBH ——— X

o |

BG,, x BG,, —— BG,,

commutes, where the bottom arrow is given by tensor product of line bundles.
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Proposition 5.2.13. With respect to the natural BZ(L),iq4-action, the weight of the pullback

END

S . .
Opung  0f OBung,., to Bunpfi, is given by

(=l =) € Hom(Xi(Z(L)rig), Z) = X*(Z(L)rig)-
Proof. We will in fact show that for any £ € Pic(Bung,ig), the pullback of £ to Bun7”/; - has
weight —Q(L) (1, —), where Q(L) is the quadratic class of the corresponding W-linearised
line bundle on Y. Since this statement is invariant under tensoring £ with a line bundle on
the base stack S and raising £ to a nonzero power, by Corollary 4.4.10, it suffices to show
this for a single nontrivial line bundle L.
Choose any nontrivial representation V' of G/Z(G), and set

L = det RprBunG‘MQ *(Eg/z(g) x G/2(G) V),
where {¢/7(q) = Bung, rig X s E is the G/Z(G)-bundle classified by the morphism Bung, sy —

Bung,z(g)- Then the pullback of £ to Bunj’ /i is the line bundle

Loungss, = detRDIpuzes L (€12(6) x4 V)
- ® det RprBunij;f;y*(gL/Z(G) XL/Z(G) V)\)’
AEX*(Z(L)rig)

where §1/7(q) — Bung rig xs E is the L/Z(G)-bundle classified by the natural morphism
Bung, iy — Bung (), and V = @Aex*(z(L)rig) V) is the weight space decomposition of V'
under the action of the torus Z(L),;; = Z(L/Z(G)). Pulling back along the action morphism

. SS,1 i SS,1
a: Bunp i < BZ(L)ig — Bunp ), we get

a*Rprgypeen (EL/z(G) X L2 vy

= Rprpunses w2z« ((P7EL/2(0) © 47 N2(L),4) x 112G vy

= Rprpupses Bz, (P (EL/2(0) < HZD V) @ ¢ MNz(py,s,))

L,ri

= ﬁ* (RprBunif;‘;g*(gL/Z(G) XL/Z(G) V)\)) & (j*)\(nz(L)Tig)

where p: Bunj™j < BZ(L)yig — Buny’ ) and q: Bunj™ % < BZ(L),ig — BZ(L)iy are the
natural projections, p and g are their respective compositions with the projection (Bunf;’j g%

BZ(L)rig) xs E — Bun7’li x BZ(L)ig, and nz(z),,, is the universal Z(L),;g-bundle on

BZ(L),ig. So the weight of the determinant ‘CBunSLS’r‘;g is therefore

Z X(Rprpynsen L (EL/z(0) x HIZE )N = Z dim Vi (A, ) A
AEX*(Z(L)rig) AEX*(Z(L)rig)
=-Q(L)(p, —)
as claimed, where the last equality follows from Lemma 4.5.12. O

Proof of Proposition 5.2.10. Since Indg(Z) — Bung 4 is a slice by Proposition 5.2.3, we
just need to construct an isomorphism of the pullback of @ginG g 1O md¥(2)/Z(L) iy with
the line bundle classified by

S (2)/Z(L)rig — BZ(L)rig L1 BGyy.

Since Ind¥ (2)/Z(L)yig — Z x BZ(L) 4, is an affine space bundle by Proposition 5.2.6, the
pullback of O5! , to md¥(Z)/Z(L)iy is canonically isomorphic to the pullback of its

Buncﬁﬂ
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to the zero section Z x BZ(L)g4, i.e., of the pullback of og!

.. —1
restriction @ZXIBZ( Bung. i

L)ri.q
along the morphism

Z xBZ(L)rig — Bunz‘i’r’ﬁg — Bung ig-

Since the first morphism above is BZ(L),;4-equivariant, Proposition 5.2.13 implies that
@gleZ(L)”_g has weight (x| —). But the trivialisation of the pullback to Z identifies GEiBZ(L)w
with the pullback of a line bundle on BZ(L),;4, which must be associated to the character

(11| =), so we are done. O

The following technical lemmas will come in handy for some of our explicit computations

later on.

Lemma 5.2.14. Assume that L C G is the Levi factor of a standard parabolic P~ and that
{1 is a Harder-Narasimhan vector for P~. Let Z — Bunj’);  be a slice such that Z — S has
finite relative stabilisers and is of relative dimension d, and fix a point z € Indg(Z) with
corresponding G-bundle {g .. If there exists a section of {a,./Q of degree v, where Q is any
standard parabolic with Harder-Narasimhan vector v and (Q,v) # (P, ), then

(1) there exists z' € Ind$(Z) such that the corresponding G-bundle & .o has Harder-

Narasimhan reduction to @ with degree v, and

Proof. The assumptions of the proposition imply that the stack Indg(Z ) XBung, .1y BUNG ig
is nonempty. Since Ind¥(Z) — Bung ,.,/E is smooth, the preimage Ind¥(2) X Bung g

EERY

Q,rig

S8,V

Bun of BUHQ,M‘Q/E under the morphism

Ind{ (Z) XBung,,.y BUNG iy = AT (Z) XBung ., /5 Bung,rig/E — Buny ;. /E

is dense, hence nonempty. This proves (1). Since (Q,v) # (P’, i), by uniqueness of Harder-
Narasimhan reductions, the Z(L);g-invariant locally closed substack Ind¥(Z) X Bung,rig
Bung %, € Ind¥ (Z) is disjoint from the Z(L),,-fixed locus Z C Ind¥ (Z). Since Ind¥ (Z) —
S has finite relative stabilisers, Ind¥ (2) XBung, .1, BUNG g — S is therefore flat of relative

dimension at least 1, and hence has codimension at most
dimg Ind¥(Z) — 1 = (2pp, p) +d — 1.

But this codimension is equal to the codimension —(2p,v) of Bung,; /E in Bung, e/ E, so
we have
—(2p,v) < 2pp,p) +d—1=—(2p,p) +d — 1,

which proves (2). O
Lemma 5.2.15. Let Z — Bunf’r‘:g be a morphism, and assume that Z is connected. Then

the set Tnd$ (Z)* of points z € Ind$ (Z) such that the corresponding G-bundle is unstable is
connected.

Proof. Tt follows easily from Proposition 5.2.6 that for any z € Indf(Z ), the closure of the
Z(L),ig-orbit of z has nonempty intersection with Z. The claim now follows immediately
from the fact that Ind¥ (Z)* is closed and Z(L),,-invariant and contains Z. O
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5.3 Stable bundles under Levi subgroups

In this section, we give an explicit description of the stack of stable L-bundles of fixed degree
when L C G is a Levi subgroup all of whose simple factors are of type A. These results
form the base case for constructing slices of Bung and of more complicated Levi subgroups
using parabolic induction.

For this section, we will not assume that £ — S necessarily has a section.

We begin with the following explicit description of the relevant Levi subgroups. Let t C A
be a set of simple roots, and let L be the Levi factor of the standard parabolic subgroup of
type t. Then L is the split reductive group scheme with root datum (X*(T), ®;, X..(T), D),
where ®; C @ is the set of roots that are linear combinations of «; for ; € A\¢. The Dynkin
diagram of L is obtained from the Dynkin diagram of G' by deleting the nodes corresponding
to elements of t. We will assume that the connected components of the Dynkin diagram of
L are all of type A.

The reductive group L can be described directly in terms of the following data. First,
write mp = mo(A \ t) for the set of connected components of the Dynkin diagram of L.
For each component ¢ € mg, write n. for the number of nodes in ¢, and choose a labelling
Oc,1,---50cp, of the nodes of ¢ so that a.; is adjacent to ;41 for 1 < i < n.—1. For
each oy € t adjacent to a node of ¢, let a.;, . be the unique node adjacent to ay, and for

each oy, € t not adjacent to any node of c, set iy . = n. + 1. Finally, write

_ < vy _<acvik‘c’a>c/>7 if ik,c < N,
Mmg,c = —Z<acﬂ-,ak> =
i=1

0, if ik,c =n.+ 1,
for ¢ € mg and oy, € t.

Proposition 5.3.1. Assume we are in the setup above. Then there is an isomorphism

L L> {((AC)CETFO? ()‘k)ozket) € H G(an+1 X H Gm det Ac = H /\ZLkYC(nC-i_l_ik’C)}

cemo ap€t ap€t
(5.3.1)

with the property that for each ay € t, the character wy of L is given by (5.3.1) composed
with the projection ((Ac)ceror (Nj)ajet) = Ak

Proof. Since both sides of (5.3.1) are split reductive groups over SpecZ, it is enough to
specify an isomorphism between their root data.
The root datum (Mo, Wo, My, ¥y) of [[,cro GLn.+1 % [1,, s Gm is specified as follows.

The weight lattice is
My= @@z o P Zuws.

cEmg ap€t

The roots and coroots ¥y and ¥y are determined by requiring that
{Bc,j =€cj—€cjt1|c€mandl < j<n.} C M

be a set of positive simple roots for ¥q, and that

Voo x *
cj = Ccj T Ce i+l

where {e.; | 1 < j < nc+ 1} is the standard basis for Z™*!, and e} ; € My’ satisfies

L if (¢,5") = (¢.4),

and  (wg, e ;) = 0.
0, otherwise,

(eer jrrer i) =
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The root datum (M, ¥, MV, ¥V) is given by setting
My

M =
Z-span { Z?:? €cj — Zaket Mp,c(Ne + 1 — ik c)wi ‘ ce wo}

)

setting ¥ to be the image of ¥y in M, and setting ¥V C MV to be the preimage of ¥y
under the injection M"Y < M. Note that M is indeed a lattice, so this is the root datum
of a connected reductive group.

We define an isomorphism of (M, ¥, MV, ¥V) with the root datum (X*(7T'), ®;, X.(T), ®)

via the isomorphism
¢: X (T) = MY

Vv * *
Qe,j 7 €cj ~ vl
ne+1

) — wi + Z Z M cCp iy
c€mo j=ig,o+1
for ¢ € mp, 1 < j < n. and oy, € t, where wy € M satisfies (e.;,w;) = 0 and (Wi, wj) =
Ok k. It is clear by inspection that ¢ is a well-defined homomorphism of free abelian groups
such that the dual is surjective. Since MY and X,(T') have the same rank, ¢ is therefore
an isomorphism. To prove that ¢ defines an isomorphism of root data, it is enough to show
that ¢: X, (T) — MY sends af; to 8Y; and that ¢*: M — X*(T) sends f.,; to a.; for all

c € myand 1 < j <n.. This is easily checked by direct calculation, so we are done. O

Next, we state a version of Atiyah’s classification [A] of stable vector bundles on an

elliptic curve, adapted to our context.
Theorem 5.3.2. Let r > 0 and d be coprime integers. Then the determinant morphism
det: Bungs’Ldr — Pick(E) (5.3.2)

from the stack of semistable vector bundles on E of rank r and degree d to the Picard variety
of degree d line bundles on E is a G,,-gerbe, where BG,, acts on Bun‘gﬁ through the centre
G, = Z(GL,) in the usual way. If E — S has a section, then the gerbe (5.3.2) is trivial.

Remark 5.3.3. If V — FEj is a vector bundle on a geometric fibre of £ — S whose rank and
degree are coprime, then it is easy to see that semistability, stability, and indecomposability
of V' are all equivalent. Moreover, if the rank and degree are not coprime, then V is never
stable.

Proof of Theorem 5.5.2. Since the claim is local on S for the fppf topology, we can assume
without loss of generality that £ — S has a section Og: S — FE.

We prove the theorem by induction on r. We first observe that for r = 1, the determinant
map is a G,,-gerbe by definition of the Picard scheme. It is trivial since there is a BG,,-

equivariant morphism
O*E. BIIIIS&d = BllIld — BsG,,, = S x BG
: GL; Gm SYm m-

Now suppose r > 1 and that the theorem is true for all smaller r. Observe that for any

d € Z, there is a commutative diagram

ss,d ~ ss,d+r
BunGLT E— BunGLT

detJ Jdet (533)

Pick(E) —~— Pickt"(E)
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where the horizontal arrows are the isomorphisms given by tensoring a vector bundle (resp.,
line bundle) with O(Og) (resp., O(rOg)), and the top one is BG,,-equivariant. So we may
assume without loss of generality that 0 < d < r.

LetV — Bunésﬁ X g E be the universal vector bundle, and let p: Bungs}i xsE — Bunzfjfi
denote the projection to the first factor. Consider the canonical exact sequence of coherent

d
sheaves on Bung;; xs E,

0—p'p.(V) —V —V —0.

Since V is a family of semistable vector bundles on E of slope strictly less than 1, it follows
that the cokernel V' is itself a vector bundle, which is a family of indecomposable and
hence semistable bundles by [A, Lemma II.15]. This construction defines a BG,,,-equivariant
morphism

ss,d ss,d

Bung; — Bung; | (5.3.4)

over Pic‘é(E). By induction on r, to complete the proof of the theorem, it suffices to show
that (5.3.4) is an isomorphism.
We construct an inverse to (5.3.4) as follows. Let U — Bunscsﬁ_d X s E be the universal
vector bundle. By Serre duality, there is a canonical morphism in the derived category
U — pRp.(U) © 4" Kpys[1] = 5" (0a(0) © 75 )1, (5.3.5)

GL,

where q: Bungs’L‘i Xs E — E is the projection to the second factor, my  ss.a : Bung‘s’L‘f — S

GL,
is the structure morphism, and w € Pic(S) is the line bundle defined in §4.6. The morphism
(5.3.5) corresponds to an extension

waw) — U —U—0

GL,

0 —p*(p.(U) @7

such that the induced connecting homomorphism p.(U) — Rlp,p* (p.(U) ® T yeena @) 1S an
GL,

isomorphism. So by [A, Lemma I1.16], U’ is a family of semistable vector bundles on E, and

hence defines a morphism
ss,d ss,d

BunGLr_d — BunGLT7

which is manifestly inverse to (5.3.4). O

As an aside, we remark that in the case d = 1, the gerbe (5.3.2) is trivial even when
E — S does not have a section.

Proposition 5.3.4. For any r € Z~g, the G,,-gerbe
det: Bung}i — Picg(E)
is trivial.

Proof. Tt suffices to construct a BG,,-equivariant morphism

Buny; — BGy,. (5.3.6)
Since the universal vector bundle V;. — Bunzfilr X g I is a family of semistable vector bundles
of degree 1, by Lemma 2.6.3, it follows that p.(V}.) is a line bundle on Bungs’Llr. This defines
the desired morphism (5.3.6). The corresponding section Pick(E) — BunsGsilr is the unique
section such that the pullback of p,. (V) is trivial.

O
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Combining Proposition 5.3.1 and Theorem 5.3.2 gives the following description of the

stack of stable L-bundles. In what follows, for ¢ € my, we write

Ae = Z Mp.c(Ne +1— i), € X*(L).

ap €t

Theorem 5.3.5. Let L C G be a Levi subgroup as above, and let p € X.(L/[L, L]) be such
that for all ¢ € o, (Ae, p) and n. + 1 are coprime. Then the natural morphism

(@k)apet: Bunp™* — H Picfgwk’m (E) (5.3.7)

ap€t
is a Z(L)-gerbe, where the product is taken in the 2-category of stacks over S.

Proof. By Proposition 5.3.1, we can identify Bun;”" with the fibre product

S8,
_—
BllIlL Hc€7r0

J Jdet (533)

(k1) (Ac,1)
Haket BunGm _ Hcem BunGm
So, writing
B . {wg,u) 58,(Ae 1)
X = H PICS (E) cheﬂo PiC(SAcM)(E) H BunGan+1
ap€Et cETo
and

X' = H Picgw’“’m(E) chewo Picle ) (k) H Buné;i:’mv

ap€t cEmg

we have a Cartesian diagram

SS, 1

Bun}™ —— X

|

(k1) /
Hak €t BunGm X

where, by Theorem 5.3.2, X, X’ and []
[ 1, e Gm-gerbes respectively over [[

et Bu11é;jzk“> are [.cr, Z(GLn11); [Ieen, Gm and

- (@)
ag€t Picg

with respect to the homomorphisms in the Cartesian diagram

(E), and the morphisms are equivariant

BZ(L) E— BHcewo Z(Gan+1)

Tk

Blla,ct Gn ———— Bll.cr, Gm-

It follows that (5.3.7) is a Z(L)-gerbe as claimed. O

5.4 Regular unstable bundles and the Friedman-Morgan section
theorem

In this section, we introduce regular unstable bundles, and use them to prove the elliptic

analogue of the Kostant and Steinberg section theorems.
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Definition 5.4.1. Let o; € A be a simple root. We say that «; is special if «; is a long
root, the connected components of the Dynkin diagram of A\ {«;} are all of type A, and o
meets each such component at an end vertex. We call a principal bundle £p for a parabolic
subgroup P C G special if P is the standard maximal parabolic of type {a;} with a; € A

special, and £p has slope —w) /(w;, @,’).

Proposition 5.4.2. Let £ — E be an unstable G-bundle on a geometric fibre of E — S.

The following are equivalent.

(1) The Harder-Narasimhan reduction of £ is special.

(2) dim Aut(ég) =1+ 2.

(3) dim Aut(ég) <1+2.

(4) The Harder-Narasimhan locus of & has codimension | + 1.
(5) The Harder-Narasimhan locus of £ has codimension <1+ 1.

Proof. 1t is clear that (2) = (3) and (4) = (5). We complete the proof by showing that
B)=0B)=(1)=(4) and (1) = (2).

Fix once and for all a Harder-Narasimhan reduction £p of g, where P is a standard
parabolic and let © = u(€p) be the slope of {p. Then the codimension of the Harder-
Narasimhan locus of &5 is —(2p, ) by Proposition 2.6.7, and

dim Aut(g) = dim Aut(€p) = dim Aut(€1) — (2p, ),

where &7, = £p xT L is the associated bundle for the Levi factor L of P.
Assume (3). Then, since dim Aut(£z) > dim Z(L) > 1, the codimension of the Harder-

Narasimhan locus of &g is
—(2p, p) = dim Aut(§g) —dim Aut(§) < (1+2)—1=1+1,

which proves (5).

Now assume (5). The arguments of Proposition 2.6.8 show that there exists i =
—nw, [{w;,w;) for some n € Z-o and some «; € A such that —(2p, u) > —(2p, i), with
equality if and only if P is of type {«a;} and pu = fi. So we have

n A2 ) —(2p, 1) < —(2p,p) <1+ 1.
(@i, @)
But [FM2, Lemma 3.3.2] implies that this is the case if and only if «; is special and n = 1,
and that both inequalities above are in fact equalities in this case. This implies that the
Harder-Narasimhan reduction £p is special, so (1) holds.

Now assume (1), i.e., that p is special. Then by [FM2, Lemma 3.3.2] again, the codi-
mension of the Harder-Narasimhan locus of {¢ is —(2p, u) =1+ 1, so (4) holds. Moreover,
by Theorem 5.3.5, dim Aut(£;,) = 1, so we have

dim Aut(ée) =1 — (2o, 1) =1+ 2,
and (2) holds as well. This completes the proof of the proposition. O

Definition 5.4.3. Let {¢ — E, be an unstable G-bundle on a geometric fibre of £ — S.
We say that &g is regular if it satisfies the equivalent conditions of Proposition 5.4.2.
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The next proposition uses Theorem 5.3.5 to classify regular unstable bundles up to

translation.

Proposition 5.4.4. Assume that E — S has a section Og: S — FE, fiz a special root
a; € A and let p = —w /(wi,@). Then Buny’/; — Picg'(E) and Bunj™ /E — S are
Z(L)yig-gerbes, and there exists a unique section S — Bun‘f’;;’ég lifting the section Og: S —

E = Picg' (E) such that the pullback of the theta bundle Opun, ., to S is trivial.

Proof. Applying Theorem 5.3.5 to E — S and to the family £’ := S — BgE =: §’, we have
that
Bun}>* — Picg!(E) = E

and

Bunj™"/E = Bunj, (E') — Picg! (E') 2 E' = §

are Z(L)-gerbes. Taking the quotient by BZ(G), we deduce that Bunj™/; — Picg'(E) and
Bunj™ /E — S are Z(L).ig = Z(L)/Z(G)-gerbes as claimed.

To construct the section S — BunsL‘i’T’gg, note that since (—p|—): Z(L)rig = Gy is an
isomorphism, the pullback of the theta bundle defines a BZ(L),;4-equivariant morphism

S X pic!(E) Bunf’r‘jg — BG,, 2 BZ(L);ig
by Proposition 5.2.13. Since the source is a Z(L),ig = Gp,-gerbe over S, it follows that there

is a unique section such that the pullback of ©pun,,,,, is trivial as claimed.
O

Fix a special root o; € A and let u = —w@,’ /(w;, @,’), as above, and assume that £ — S

S8,
L,rig

with Bunj™/ — Bunj’); /E is a section of a Z(L),ig = Gy,-gerbe, and is hence smooth.

has a section Og. Then the composition of the section S — Bun of Proposition 5.4.4

Since the pullback of the theta bundle to S is trivial, Z — Bung ;4 is an equivariant slice
with equivariance group Z(L),;; and weight (| —) by Proposition 5.2.10. We therefore
have a G,,-equivariant commutative diagram

7 — 7
XZJ JXZ
0 — VW
as in Remark 5.1.2.

Remark 5.4.5. Note that if the section S — Bunj”/j factors through Bunj™", then the
slice Z constructed above factors through a morphism Z — Bung. However, even when this
happens, this morphism will not necessarily be a slice unless S x Z(L) — S is smooth, i.e.,

unless S — SpecZ avoids all primes at which Z(L) is non-reduced.

Theorem 5.4.6 (Friedman-Morgan section theorem). In the setup above, the composition
Nzi 2 Ok, )T — VW
is a Gy, -equivariant isomorphism. In particular, the rigidified coarse quotient map

x: Bung iy — (?/W)/Gm

admits a section.
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Theorem 5.4.6 is originally due, in a slightly different form, to Friedman and Morgan
[FM2, Theorem 5.1.1]. We give a different proof to theirs below, relying on a computation
of the pullback Z = Z XBung, rig E;Dc;m'g of the elliptic Grothendieck-Springer resolution to
the slice Z.

The first step is to identify those Dy(Z) C Z that are nonempty, where we recall the
notation Dy (Z) from §5.1.

Lemma 5.4.7. Assume A € X, (T)+ and X\ # o). Then D\(Z) = 0.

Proof. Assume for a contradiction that there exists A € X, (T') 4+ with A # o and Dy (Z) # 0.
Since A # «, there exists a; € A such that (w;, A) > 0 and

/! _ <w37)‘> w\/#ﬂ

M = M
<wj7w;‘/> !

’

Since Dx(Z) # 0, it follows that Z XBung .., Bung?;nig, and hence Z Xpung, ., Bunp, ;. is
nonempty, where P; is the standard maximal parabolic of type {c;}. Lemma 5.2.14 implies
that (2p, 'y < (2pu) =1+ 1, contradicting [FM2, Lemma 3.3.2], so we are done. O

Lemma 5.4.8. The morphism Z — @{,1 is representable, separated, of finite type, and flat
of relative dimension 0. For all A € X, (T), the morphism Dx(Z) — Y is representable,

separated, and étale.

Proof. First note that Lemma 5.4.7 implies that no point of Z can have nontrivial auto-
morphism group relative to Z. So Theorem 3.1.7 implies that Z — Z is representable and
projective. In particular, Z , DA(Z),Y and @{,1 are all representable, separated and of finite
type over S, so the morphisms Z — @;1 and Dy(Z) — Y are necessarily representable,
separated and of finite type as well.

Next, observe that since Y — S is projective and Oy € Pic(Y') is ample relative to S, the
action of E on the pair (Y, Oy ) is trivial relative to S, since it must be trivial on the sheaf
of graded algebras @, 7Ty*9§8;d as E is an elliptic curve. So we have canonical isomorphisms
Y/E2Y xgBgE and @;1/E = @;1 X g BgE. So the morphism Z — @{,1 factors as

Z — (p*eg!

Bungyng

)*/E — 0y /E = 03" xg BsE — 03! (5.4.1)

Since Z is an equivariant slice of Bung 44, Proposition 5.1.3 implies that Z — (@];nc,m-g )*/E
is flat, and hence so is the pullback Z — (w*@gincymg)*/E along : %Gﬂg — Bung, rig-
So by Proposition 4.5.5, the composition (5.4.1) is flat. By Proposition 5.2.8, Z has dimen-
sion (2pp+, ) = —(2p, ) = 1 + 1 relative to S, where PT is the unique parabolic subgroup
with Levi factor L for which —p is a Harder-Narasimhan vector. (Note that PT contains
the Borel subgroup spanned by positive root subgroups.) Since ]§II/HG7”'9 — Bung ;g is
generically finite, Z must also have dimension [ 4 1 relative to S. Since @;1 has dimension
[+ 1 relative to S, the flat morphism Z — @;,1 must have relative dimension 0 as claimed.

Similarly, the morphism
7 — Bung ig/E — (Y x5 Degg(E))/E =Y x5 Degg(E)/E

is smooth. Since the boundary divisor D C Degg(E) is a reduced divisor with normal
crossings relative to S, the closed substack D(Z) = Z Xpegg(E) D = Z XY xsDegs(E)/E
(Y xs (D/E)) is a reduced divisor with normal crossings relative to Y. Since Z — Y has
relative dimension 1, the irreducible components Dy (Z) of D(Z) are therefore disjoint and

smooth of relative dimension 0, hence étale, over Y. O
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Recall the notation Y of Definition 4.1.5.

Lemma 5.4.9. There is an isomorphism
B _0‘;/ Buns* ~ onz}/ Buns$#
un; g Xpgugt Bunp™ — " Xpiegt () Bung
and hence an isomorphism
—aV
k2
BuanB’m-g XBunt . Bun
sending an L N B-bundle to its associated T-bundle and L-bundle.

Proof. Using the isomorphism of Proposition 5.3.1, the claim reduces easily to Lemma 5.4.10
below. O

In the following lemma, we write
Q= {(ap,g)1<p.g<n € GLn [ apq =0 if p <min(g,r)} € GLn,

for 1 <r < n Forl < i < n, we write e; € X*(Tign) for the character sending a
diagonal matrix to its ith entry, and we write {ef,...,e;} € X, (Tign) for the basis dual to
{er, . ent. X € X (Tqn), we will also write A for its image in X, (T ).

Lemma 5.4.10. Letn > 0 and 1 <r <n. Then the morphism

—er s,—1 —er ss,—1
BunQ; XBungl Bung; © — Y, ; X pics ! (B) Bung; (5.4.2)
is an isomorphism, where the morphisms Yéne; — Picg'(E) and Bunésizl — Picg'(E) are
both given by the determinant.

Proof. For the sake of brevity, we will write

—en\ss _ —e;, ss,—1
(Bung,")** = Bun,, X Bungl Bung; -

We prove the claim by induction on r. For r = 1, the claim is true since Q} = GL,, and
—er e —1
Yon" = Picg (E).
Next, suppose that » = 2. In this case, we construct an inverse to (5.4.2) as follows.

Let V — Y_;" Xpics!(B) Bunéf};l x g E be the pullback of the universal vector bundle on
Bun; ' xg E and let M,, — Yc};’t X piezi(m) Bungp, ' Xs B be the pullback of the degree

0 line bundle on YQ_;:L X g FE associated to the character e;. Writing p: YQ_;; Xpicz!(EB)

s85,—

BunGLn1 xXsg E — Yfge: X pics ! (E) Bunésinl for the projection to the first two factors, we
have that N = p,(M,, ® V) is a line bundle since M., ® V" is a family of semistable vector
bundles of degree 1. By semistability of V', we therefore have a natural exact sequence

0—V —V -—M,p"N' —0, (5.4.3)

where M., ® p* N~ is a line bundle fibrewise of degree 0 and V"’ is a vector bundle of rank
n — 1 and degree —1. The exact sequence (5.4.3) defines a degree —e} reduction to Q% of
the pullback of the universal GL,-bundle, and hence a morphism

—e ss,—1 —en\ss
You" Xpicst(p) Bungy, — (Bung,")*,

which is easily shown to be inverse to (5.4.2). This proves the claim for r = 2.
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Finally, assume that r > 2 and the lemma holds for all smaller . We need to show that
the outer square in the commutative diagram
e, ss,—1

(Bung," )™ —— (Bunéiz )* ——— Bungj

r—

T T -

Yo Youo Picg'(E)

is Cartesian. Since the rightmost square is Cartesian by induction, it suffices to show that
the leftmost suqare is Cartesian.

Observe that there is a surjective homomorphism @7'_; — GL,_,12 given by forgetting
the first 7—2 rows and columns, such that @} C Q' is the preimage of QS_H'Z CGLy—rya.
Since the morphism

Bunéi;‘ — BuméaniT+2

—1

sends (Bunéff‘ )* to Bunzf'i;;+2 by [A, Lemma II.15], we therefore have a diagram

r—

—e e, .. —€,_ .
(Bung™)™ ——— (Bunf %)™ —— YO T

J | |
(Buné?_‘l)ss _ BungELL_H _ Picgl(E)

in which the leftmost square is Cartesian. Since the rightmost square is also Cartesian by

induction, the outer square is also. This is also the outermost square in the diagram

(Buné;’t )5 YQ*;Z Y—;f;:;z
(Bung:" )** Yoro Picg ' (E).

It is easy to see that the rightmost square in this diagram is Cartesian and hence so is the

leftmost square. But this coincides with the leftmost square of (5.4.4), so we are done. [

Proposition 5.4.11. The morphism D,y(Z) — Y is an isomorphism.

S8,

Proof. Since the claim is local on S, we can assume for convenience that S — Bunj rig

factors through Bunj™", and hence that Z — Bung ,i4 factors through Bung.
Since every domain curve parametrised by a point in Dy (Z) has dual graph Tgy, by

Proposition 3.4.13 there is an isomorphism
Da!(z) = M%(fG/Bngy) = Mlo,LZ(fG/Ba (_aiva 1)) X¢q/B M&l,Z(fG/B, (a;/70))a

where £ — Z X g E is the G-bundle classified by Z — Bung. Proposition 3.4.10 implies
that the evaluation morphism M 1,z ({c/B, (o) ,0)) — &¢/B is an isomorphism, so we have

a canonical identification

Doy (Z) = My, 4(éa/B,(—a,1)) = E xs Bung i XBung ., Z- (5.4.5)
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Vv
Observe that Proposition 5.1.4 and 5.4.2 show that the morphism Bungojfig XBung,rig 4 —
Z must factor through the natural G,,-fixed section S — Z. So we have

v v
—oy —a)
BunB,rlig XBUUG,rr-ig Z = BunBﬂ‘lig XBUHG,Mg S’

W

where the morphism S — Bung 4 factors through the section S — Bun3”/

5.4.4.
Let P C G be the standard parabolic subgroup with Levi factor L, and consider the

of Proposition

locally closed Bruhat cells

4 \%
w w,—a; -y
cY = CP,B/S,rig(E) XBunP,rig S - Buang XBunGY”.g S,

4
w,— oy

0
for w € Wp, where Cp'p /¢ 0

(E) € Bunp,ig XBung.,., BUNB,rig is the rigidification of the

w,fa;/

P13 (E) C Bunp Xpun., Bunp defined in §3.7. Then Proposition
3.7.6 and Lemma 5.4.7 imply that

locally closed substack C

Bun];’o;’jg XBung,rig O = U cv.
wewy
Assume that w € W2 with C* # (). Then there exists a geometric point s: Speck — S
with corresponding L-bundle (7, — E, and a section o7,: E, — & x© L/(L N B) of degree
L] = —wa) € ®Y. Since £ has slope u, we must have (w;,[0r]) = —1 and hence
[or] € @Y C X,.(T)-. Since [o] is the degree of the section

o By -2 & x* L)(LNB) — ¢, x* G/B,

Lemma 5.4.7 implies that we must have [o7] = —a). So w € W2 and wa) = a), which

implies that w™!(®Y) = ®Y, and hence w = 1. So C* = 0 for w # 1, and hence the closed
immersion

C' s Bung®t, Xpung..., S (5.4.6)
is surjective on geometric points. Since D, v (Z) is étale over Y, hence reduced, Bun;)a;i g XBung, i

S is reduced as well, so (5.4.6) is an isomorphism. But by Lemma 5.4.9,

4 %
1_ T ~ oy _
Cc" = Buan}B’m-g XBunz,rig S—Y XPiCEI(E) {O( OE)},

is an isomorphism, where the morphism y-o' Picgl(E) is induced by the character
@;: T — Gy So by (5.4.5) and Proposition 3.5.5, we can identify the morphism D,y (Z) —
Y with the isomorphism

E xg Yﬁaiv XPicgl(E) {O(—OE)} —Y

which completes the proof of the proposition. O

Corollary 5.4.12. The morphism Y, (0g-1) — Og—1 =Y is an isomorphism, where 0g-1
Y Y Y
denotes the zero section of @;1.
Proof. Since Z is a slice of Bung g, Corollary 4.5.9 implies that
o 1
F0ep) = Y 3 NDA2).
AeXL (T)+

Applying Lemma 5.4.7, this simplifies to
__ 1
XZl(O(—);l) = 5(052/ ‘a;/)Da;/(Z) = DQV(Z)

The claim now follows from Proposition 5.4.11. O
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Proposition 5.4.13. The morphism Z — @;,1 is an isomorphism.

The idea behind the proof of Proposition 5.4.13 is to use the G,,-action on Z and @{,1

to reduce to Proposition 5.4.11. The key tool is the following technical lemma.

Lemma 5.4.14. Suppose that f: X — X' is a proper representable G, -equivariant mor-
phism of stacks and that X} C X' and Xo C f~1(X{) are closed substacks satisfying the

following conditions.
(1) Xo = f~1(X]) set-theoretically.
(2) Gy, acts trivially on the closed substacks X{, and Xo.

(3) There exists a G, -equivariant retraction X' — X|, so that X' is an affine space bundle

over X, on which G, acts with positive weights.
(4) The induced action of G,, on the normal cone Cx,/x has a single nonzero weight.

Then there is a unique Gy, -equivariant isomorphism X = Cx, x over X sending Xo C X

to the zero section via the identity and inducing the identity on normal cones.

Proof. We first remark that since G,, acts on Cx,,x with a single nonzero weight, every
Gm-equivariant automorphism of Cx  /x that acts as the identity on Xy and the normal
cone of Xy in Cx,,x is (canonically 2-isomorphic to) the identity. So uniqueness follows.

The idea behind the proof of existence is to show that the deformation to the normal
cone is trivial. We do this by first compactifying, so that we are in a position to apply the
Grothendieck existence theorem, and then showing that the deformation is trivial infinites-
imally.

First note that by the uniqueness just shown, we can reduce the proof of existence by
descent to the case where X{; = Spec A for some Noetherian ring A. Again using uniqueness
and fpqc descent for morphisms of separated algebraic spaces, it suffices to show that the
desired isomorphism exists after base change along the fpqc morphism Spec A[t][t~}] —
Spec A.

Let C' — Spec A[t] and C" — Spec AJt] denote the deformations to the normal cone of

Xp in X and X, in X’ respectively. Then there are canonical inclusions
X0 Xspeca Spec A[t] — C,  and X} Xspec 4 Spec A[t] = Spec A[t] — C”.
Define compactifications
C = ((CxAM\(XoXsgpec aASPec A[t]x{0}))/G,,  and  C’ = ((C"xA")\(Spec A[t]x{0})) /G,

where G, acts on C and C’ over Spec A[t] via the action induced from the action on X
and X', and G,, acts on A! via the usual weight 1 action. Then C’ — Spec A[t] is an affine
space bundle on which G,,, acts with positive weights, and hence C’ — Spec A[t] is a bundle
of weighted projective spaces, and in particular proper. We also have that C — C’ factors
as

C—C xx X —C',

where the first morphism is a closed immersion, hence proper, and the second morphism
is proper by assumption on f. So C — (' is proper, and hence so are C — C’ and
C — Spec A[t]. We also write

CXO/X = ((CXO/X X AI) \ (XO X {0}))/Gm =C X Spec A[t],t—0 Spec A,
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and observe that C'XU /x — Xy = Spec A is also proper. Note also that we have divisors
at infinity (Cx,/x \ X0)/Gm € Cx,/x and (C'\ Xo Xgpeca Spec A[t])/G,, € C whose
complements are canonically isomorphic to Cx,,x and C' respectively.

We claim that there is a unique G,-equivariant isomorphism C”" = Cx, /X XSpec A
Spf A[t] of formal stacks over Spf A[t] acting as the identity on Xy Xgpec 4 Spf A[t] and
on the normal cone of Xy Xgpec a4 Spf A[t] in both sides. Given the claim, this extends to
an isomorphism between proper formal stacks C" = C 'Xo/X Xspec A SPf A[t], and hence an
isomorphism C X gpec A[g Spec A[t] = Cx, /X Xspec ASpec A[t] by the Grothendieck existence
theorem. Since this isomorphism identifies the divisors at infinity and since the restricted
deformation to the normal cone C' — Spec A[t,t~!] is canonically trivial, it restricts to give

the desired isomorphism
X Xspec 4 Spec A[t] [til] =~ Cx,/x Xspeca Spec A[t] [til].

To prove the claim, it is enough to prove existence and uniqueness of isomorphisms
Cn = Cx,/x Xspeca Spec A[t]/(t") for all n > 0 with the desired properties, where C,, =
C Xgpec afy) Spec A[t]/(t"). Uniqueness is clear. Letting U = Spec Ry be any affine étale
chart for X (note that X is an algebraic space since f is representable), we have an affine
étale chart

OXD/X X X, U= SpeC@Rd
d>0

for Cx,/x, which lifts to a canonical G,,-equivariant affine étale chart

V. = Spec @ R, 4
dez

for C,, since C,, is a nilpotent thickening of Cx,/x, where the gradings are induced by the
G,p-action. From the flatness properties of the deformation to the normal cone, we deduce
that the map U Xgpec 4 Spec A[t]/(t") = Spec Ro[t]/(t") — V,, induces an isomorphism
Ry = Rylt]/(t"), that R, 4 = 0 for all d < 0, and that @, R, 4 is generated by R, o and
Ry, 4y, where dy = min{d > 0 | Ry # 0} is the single weight of G,,, acting on Cx,/x. So
V,, is canonically identified with the normal cone of U Xgpec 4 Spec A[t]/(t™) in V,,. But this
is in turn canonically isomorphic to Cx,/x Xx, U since the normal cone is constant in the
deformation to the normal cone. By uniqueness of this identification, it glues over all étale

affine charts of Xy to give the desired isomorphism C,, = Cx,/x Xspec 4 Spec A[t]/(t"). O

Proof of Proposition 5.4.13. Applying Lemma 5.4.14 to the morphism Z — Z, we deduce
that Z is G,,-equivariantly isomorphic to a line bundle over Dyv(Z) =Y. So by Corollary
5.4.12, Xz: Z — @;1 is a morphism of line bundles over Y such that the preimage of the
zero section is the zero section, and is therefore an isomorphism.

O

Proof of Theorem 5.4.6. Let Z557¢9 C Z and Z*%79 C Z denote the preimages of Bung
in Z and Z respectively. Since the morphism Z — Bung ,;,/FE is smooth and Z — S is
surjective, Propositions 4.3.14 and 4.3.15 imply that Z$7¢9 — Z557¢9 ig a ramified Galois
cover relative to S with Galois group W, and that Z°%79 C Z and Zssreg C 758 =

X' ((©31)*) are big relative to S. So, since Z and ?//W are affine over S, there is a
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commutative diagram

Z55 — Spec 5., O ——— Spec(m gm0y, O)Y ——— Z

kz LZ J{z LXZ
7Y —— SpecTg-1)e O —— Spec(w(@;l)**(’))w —~ LYW,

where the vertical arrows are isomorphisms by Proposition 5.4.13, and the horizontal arrows
marked are isomorphisms either by construction or by ramified Galois descent for regular

functions. So xz is an isomorphism, which completes the proof of the theorem. O

5.5 Applications of the Friedman-Morgan section theorem
In this section, we give some applications of the Friedman-Morgan section theorem.

Corollary 5.5.1 (cf., [L2, Theorem 3.4]). The quotient )A///W is an affine space bundle over

S, on which Gy, acts linearly and with positive weights.

Proof. This is immediate from Theorem 5.4.6 since the claim holds for the slice Z — S by
Proposition 5.2.6. O

Corollary 5.5.2. The coarse quotient map x: Bung — (}A/'//W)/Gm is flat.

Proof. Since ()7// W)/G,, is smooth over S, hence regular, this follows from Proposition
4.5.5. O

Theorem 5.4.6 also has applications to the theory of regular semistable bundles. We first
note the following properties of the G-bundles arising from regular slices.

Proposition 5.5.3. Let Z — Bung iy be as in Theorem 5.4.6, let z: Speck — Z be a
geometric point not fized under the Gp,-action, and let {g . — Es be the corresponding G-
bundle. Then the G-bundle £g . is reqular semistable in the sense of Definition 4.3.7, and
dim Aut(ég ) = L.

Proof. We can assume for simplicity that S = Speck.

Since z does not map to the image 0 of the cone point in }A’//W, &a,» is semistable by
Proposition 4.5.4. Since the morphism Z — Z can be identified with @;1 — EA///W, it is
finite over z, so dim¢~!({g,.) = 0 and &g . is regular.

To show that dim Aut({c ) = I, let « be the image of z in Bung ,;4, and let 2’ be its
image in Bung rig/E. By Lemma 5.5.4 below, any translate of « is isomorphic to z, so the

E-action on Bung ;4 restricts to an action on BAut(z) with quotient BAut(z'). So we have
dim Aut(z) = dim Aut(z) + 1 = dim Aut(ég..) + 1.

Since the morphism Z — Bung ,/E is smooth and Bung,,;,/E has dimension —1, the
locally closed substack
]B%Aut(x') XBUHG,MQ/E Z— 7

has codimension dim Aut(z’) — 1 = dim Aut(g ). But it is clear from Theorem 5.4.6 that

this is simply the G,,-orbit of z, which has codimension [, so we are done. O

Given a point y: Speck — Y over s: Speck — S, we write

Uy= [ U< Ru(B).
a€Ed_
a(y)=0
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Note that the group scheme &7 xT Uy on Ejy is canonically isomorphic to U, x E, once we
fix a trivialisation of the associated T,-bundle, where T}, is the torus with character group
7Z®,, ®, = {a € ® | a(y) = 0} and &7 is the T-bundle corresponding to y. We also write

Uy/[Uy7 U’y] = HaeAy U—a-

Lemma 5.5.4. Fiz a geometric point s: Speck — S and a semistable G-bundle £ — Es.
Then any translate of & is isomorphic to &g .

Proof. For ease of notation, we may as well assume that S = Speck. We need to show
that for any z: Speck — E, we have t}&qc = g, where t,: E — F is the translation by x.
Since &g is semistable, there exists a B-reduction {g of £ of degree 0. We will show that
trép = {p as B-bundles.

Writing &7 = &g xB T for the associated T-bundle, and y € Y for the point classifying
&7, by Lemma 4.3.11, we have that g reduces canonically to a T'U,-bundle {7y, . Moreover,
we have t & 2 &7 since &1 has degree 0 (this follows from translation invariance for degree 0
line bundles). Fixing such an isomorphism and a trivialisation of the associated T,-bundle,
and hence an isomorphism &r xT U, = E x U, as above, we have that the U,-bundle
t:éru, /T is the image of the Uy,-bundle {7y, /T under the homomorphism

HY(E,U,) - H(E,U,) - H'(E,U,),

where the second morphism is induced by some element ¢ of 1" acting on U, determined by
our choice of isomorphism t5{r = &p. Since the translation action of E on H(E,U,) is
trivial, since H!(E,U,) is an affine variety, the morphism ¢ above is the identity. It follows
that t;6ru, = &ru,, and hence 136 = g as claimed. O

The next result is the analogue of [S6, §3.7, Theorem 2| for elliptic Springer theory.

Proposition 5.5.5. Let {g € Bung be a semistable G-bundle on a geometric fibre Es of
E — S. Then dim Aut(ég) > I, and the following are equivalent.

(1) The bundle g is regular.
(2) dim Aut(ég) = 1.

(8) For any degree 0 reduction g of g to B with associated T-bundle & corresponding
toy €Y, the associated £ xT R, (B)-bundle £g/T is induced from a Uy-bundle with

nontrivial associated U_q-bundles for a € A,.

(4) For some degree 0 reduction g of g to B with associated T-bundle {r corresponding
toy €Y, the associated ér xT R, (B)-bundle £g/T is induced from a Uy-bundle with
nontrivial associated U_n-bundles for o € A.

Moreover, there is a unique G-bundle satisfying the above equivalent conditions in every
geometric fibre of x*°: Bungs — Y JW.

Proof. Since the statement only concerns individual G-bundles on geometric fibres of E — S,
we may assume for simplicity that S = Spec k for k some algebraically closed field, and that
{c — FEs = F is defined over k.

To show that dim Aut({g) > [, fix any reduction £ € ]il/ngs of &5 to a B-bundle of
degree 0, and write &7 = £g xB T. Note that Aut(£p) is a closed subgroup of Aut(¢g), so
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dim Aut(g) > dim Aut(€p). Moerover, there is a commutative diagram

—~— 88

BAut({p) — Bung

|

BAut(¢ép) — Bun).

where the top and bottom horizontal arrows are locally closed immersions of codimension
dim Aut(¢p) and dim Aut(&r) respectively (since both target stacks have dimension 0), and
the right hand vertical arrow is smooth. It follows that dim Aut(ég) > dim Aut(¢p) >
dim Aut(é7) = 1.

To prove the equivalence of (1), (2), (3) and (4), we first remark that by Lemma 4.3.11,
for every degree 0 B-bundle £ with image y € Y, the associated &7 xT R, (B)-bundle &5 /T
reduces canonically to U,,.

It is clear that (3) = (4). We show that (4) = (2) = (3) and (4) = (1) = (3).

Assume (4) holds, and let £y, be the reduction of {g/T" to U,. Observe that the set
of Uy-bundles ny, such that the induced G-bundle 7¢ is regular with dim Aut(ng) = [ is
open, and nonempty by Proposition 5.5.3 and the existence of reductions to U, remarked
above. So we can find ny, with these properties such that all the associated U_,-bundles
are nontrivial for o € A,. We will show that {¢ = 7¢, from which we can deduce (1) and
(2), as well as the uniqueness statement of the proposition.

First, observe that A, is a set of positive simple roots for the root system ®, = {a €

® | a(y) = 0}. In particular, the homomorphism

T — Gpr =T,

t— (a(t))aen,

is surjective, with kernel K, of dimension | — |A,|. So T = Aut({r) acts transitively on

the subset of points in ] HY(E,U_,) with nonzero projection to each factor. So,

aEA,
acting by automorphisms of {7 if necessary, we may assume that 7y, xY U, /|U,,U,] =
v, xYv U, /IU,,U,]. To prove nu, = &y, and hence ng = &g, it will suffice to show that

the diagram

BAut(ny,) Bung,

J J (551)

BAut(ny, x Uy U,/ Uy, Uy]) — Buny, /v,.v,]

is a pullback.
Observe that, since K, acts trivially on U, by definition, it also acts trivially on Buny,,
so Buny, /T is a K,-gerbe over Buny, /T,. Since Buny, /T" embeds into Bun% as the fibre

over y € Y, we therefore have
| = dim Aut(ng) > dim Aut(ng) > dim Aut(ny, ) +1 —[A,]

and hence dim Aut(ny,) < |A,|. But since the top and bottom arrows of (5.5.1) are locally
closed immersions of codimensions dim Aut(ny,) and dim Aut(ny, x% U, /[U,,U,]) = |A,]|
respectively and the right vertical morphism is smooth, we have that dim Aut(ny,) > |A,],
and hence dim Aut(ny,) = [Ay|. So the locally closed immersion of BAut(ny,) into the
pullback induced by (5.5.1) has codimension 0. But since U, and U,/[U,, U,] are unipotent,
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this is actually a closed immersion by Proposition 2.4.6, hence an isomorphism since the
pullback is smooth and connected. This completes the proof that (4) = (1) and (4) = (2).
We prove (1) = (3) via the contrapositive. Assume that (3) is false, and choose a degree
0 reduction g with with associated T-bundle {7 corresponding to y € Y induced from {7y, ,
and o € A, such that the associated U_,-bundle &y _, is trivial. The space C* of sections
of
érv, X"V BsoB/B = &y, x Y Ry(B)/(Ru(B) N sa Ru(B)sa)

embeds as a locally closed subscheme of =1 (£g). But the image of U_,, in R, (B)/(R.(B)N

SaRy(B)sqa) is TU,-invariant, so gives a closed immersion
&v_. = ExU_q — &ru, X" Ry(B)/(Ru(B) N saRu(B)sa)

and hence a locally closed immersion A,ﬁ — (% < (&), from which we deduce
dimy~1(&g) > 0. So &g is not regular.

Finally, to prove that (2) = (3), note that any reduction {7y, € Buny, /T C Bun% of a
bundle {¢ with dim Aut({g) = | must satisfy dim Aut(éry,) < 1. So

BAut (gTUy) — BunUy /T

is a locally closed immersion of codimension < 0, hence an open immersion. Since Buny, /T
is irreducible, this open substack meets the open substack of points with nontrivial associated
U_q-bundles for all « € Ay, so &7y, itself must have nontrivial associated U_,-bundle, and
we are done. O

As the terminology suggests, the regular semistable and regular unstable G-bundles
can be grouped together into a single open substack of Bung. In what follows, we define

Bungg C Bung to be the union over all open substacks U C Bung such that the morphism

b U) — U X5 ywy/c, O /Gm (5.5.2)

is an isomorphism.

Proposition 5.5.6. The open substack Bung? C Bung is dense in every geometric fibre of

x: Bung = (Y )W) /Gy, and big relative to S.

Proof. Let {a1,...,an} C A denote the set of special roots, and let Zy,...,Z, be the
corresponding regular slices of Bung,,iy. Let U C Bung be the preimage in Bung of
the union of the images of Z; — Bung,4/E. Note that this is open since each Z; —
Bung rig/E is smooth. By Proposition 5.4.13 and Theorem 5.4.6, it is clear that (5.5.2)
is an isomorphism, so U C Bung?. Note that U contains all regular unstable bundles by
construction and that Propositions 5.5.3 and 5.5.5 imply that U also contains all regular
semistable bundles, so the same is true for BunTGeg .

We first show that for every x € (}7//W)/Gm, X '(z) NBung? is dense in x~!(x). For
x not in the zero section of Y /W — S, this is clear since Proposition 5.5.5 implies that
x"'(z) N Bung? is open and nonempty, and that x~!(z) is irreducible. For z in the zero
section, note that since ¥ /W is regular, the inclusion {z} < Y /W is a local complete
intersection morphism. So by Corollary 5.5.2, x~!(z) is a local complete intersection stack,
hence of pure dimension. Since x~!(x) is the locus of unstable bundles on some fibre of £ —
S, Bung;? meets every irreducible component of x ™! (z) by construction, so Bung? Ny~ (z)
is dense in xy ~!(z) as claimed.

Finally, notice that Bung, " C Bung?, and the complement of Bung; in Bung has

codimension at least 2, so Bung? C Bung is big by Proposition 4.3.15. O

119



Corollary 5.5.7. The elliptic Grothendieck-Springer resolution

mg # Bung

XJ( J{X
Oy /G —— (V)W) /Gy,
and its rigidification are simultaneous log resolutions in the sense of Definition 1.0.2.
Proof. Tt is enough to prove the claim for the non-rigidified diagram: the statement for
rigidification follows immediately by descent along the gerbe Bung — Bung 4. For the
non-rigidified diagram, condition (1) of Definition 1.0.2 holds by Propositions 4.1.1 and 4.5.5

and Corollary 5.5.2, condition (2) holds by Proposition 5.5.6, and (3) holds by Corollaries
3.5.4, 4.1.3 and 4.5.9. O

We also have the following useful result on connectedness of elliptic Springer fibres.
Proposition 5.5.8. Let f denote the morphism
I B\H;IG — Bung XS )W) /G @;1/Gm.
Then f.O = O and f has connected fibres.
Proof. We first remark that since the morphism 03'/G,, — (Y JW)/G,, is a finite type

morphism between regular stacks, it is necessarily a local complete intersection morphism.
Since yx is flat, we deduce that the stack

—1
BU.IIG X(?//W)/(Gm @Y /Gm
is a local complete intersection stack, hence Cohen-Macaulay. Proposition 5.5.6 implies that

the open substack of the target Bung,? X (@ W) /Gom @{,l/Gm is big, and necessarily regular

since ]§I1;1G is. So Bung X (@ W) /Com @;I/Gm is normal by Serre’s criterion and we must
have f.O = O. So by Zariski’s connectedness theorem [O1, Theorem 11.3], f has connected
fibres, so we are done. O

Corollary 5.5.9. Let P C G be a standard parabolic subgroup with Levi factor L, let
1€ Xo(Z(L)°)q be a Harder-Narasimhan vector for P, let Zo — Buny’/i  be a ©-trivial
slice such that Zy — S has connected fibres, and let Z = Indg(Zo) — Bung,rig be the

corresponding equivariant slice. Then the morphism D(Z) — 'Y has connected fibres.

Proof. Since the diagram
DZ) —— Z X w 0@;1

| |

7 — s I xo

—1
vyw Oy

is a pullback modulo non-reducedness and since Proposition 5.5.8 implies that the bottom

arrow has connected fibres, the top arrow
D(Z)— Z X9 w 09;1 (5.5.3)
also has connected fibres. But
Z %y yw Ogpt = X7'(0) xs Ogot — Xz (0) (5.5.4)

manifestly has connected fibres. Since both morphisms (5.5.3) and (5.5.4) are proper and
surjective, it follows that the composition D(Z) — Y has connected fibres as claimed. O
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Chapter 6

Subregular unstable bundles

In the previous chapter, we saw how slices through regular unstable G-bundles could be used
to construct sections of the coarse quotient map x: Bung g — (?//W)/Gm In this chapter,
we use slices through slightly more unstable bundles to probe the geometry of the unstable
locus x~1(0) and the elliptic Grothendieck-Springer resolution ﬁl;lc,m'g in codimension 2.
More precisely, given a subregular unstable bundle ¢ (see Definition 6.1.1), we construct
an explicit equivariant slice Z — Bung ;4 meeting the orbit of {¢ under translations in a
single point, such that yz: Z — }7// W is a family of surfaces over S with a simultaneous
log resolution

7 ——— 7

)*(ZJ sz (6.0.1)

oyl —— YW

We give explicit descriptions of the normal crossings varieties )Zgl(y) for y € 0@;1 in all

cases, and deduce descriptions of the variety X;(O) and its singularities.

Remark 6.0.1. Although we have used the word “variety” in the above discussion, it must
be confessed that in type B the slice Z is not representable over S, but has finite relative

stabilisers. In all other cases, however, Z and Z are honest varieties over S.

The results presented here extend the work of Helmke and Slodowy [HS2], who com-
puted the codimension 2 singularities of x~1(0) in types A4, D and E, and of Grojnowski and
Shepherd-Barron [GSB], who gave a less explicit description of the sliced elliptic Grothendieck-
Springer resolution (6.0.1) in type E only.

The outline of this chapter is as follows. In §6.1, we review the definition and classification
of subregular unstable G-bundles, and state our main general theorems on existence of well-
behaved subregular slices (Theorem 6.1.5) and the behaviour of the associated simultaneous
log resolutions (6.0.1) (Theorem 6.1.9). In §6.2, we write down some computations of certain
Bruhat cells for parabolic subgroups of GL,,, which we use in the proof of Theorem 6.1.9
in §86.3-6.4. We give the proof of Theorem 6.1.5 in §6.5. In §6.6 we give case by case
descriptions of )Zgl(y) fory € 0@;1’ which refine Theorem 6.1.9. Finally, in §6.7, we illustrate

in some examples how to use Theorem 6.1.9 and the results of §6.6 to identify the singularities
of x,(0).
6.1 Classification and overview

In this section, we review Helmke and Slodowy’s classification of subregular unstable bundles,
and summarise our main results about the behaviour of the Grothendieck-Springer resolution

near them.

Definition 6.1.1. Let s: Speck — S be a geometric point and let {¢ — E; be an unstable
G-bundle. We say that g is subregular if dim Aut({g) =1+ 4.
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In the following theorem, if s: Speck — S is a geometric point, L C G is a Levi subgroup,
and &7, is a semistable L-bundle on E; of slope p € X, (Z(L)°)q, then we say that &y, is
regular if its automorphism group has minimal dimension among all automorphism groups

of semistable L-bundles on E of slope p.

Theorem 6.1.2. Let s: Speck — S be a geometric point and let g — Es be an unstable
G-bundle. Then either {g is regular and dim Aut(ég) = [+ 2, or dim Aut(§g) > 1+ 4. If
&c has Harder-Narasimhan reduction p to a standard parabolic P with Levi factor L, and
associated L-bundle &, of slope u, then &g is subregular if and only if £, is reqular semistable
and (G, P, u) satisfies one of the following conditions.

(Type A1) G is of type Ay, t(P) = {a1} and (w1, p) = —2.

(Type A) G is of type A; for 1 > 1, t(P) = {a;,aj41} for some i with 1 < i < I, and
(@i, ) = (@ig1, 1) = —1.

(Type B) G is of type B; for 1> 3, t(P) = {ay_2} and {(w;_a, u) = —1.
(Type C) G is of type C; for 1 > 2, t(P) = {ay_1} and {w;_1,p) = —1.

(Type D) G is of type Dy forl >4, t(P) = {«;} and {w;, u) = —1, where i € {1,3,4} if
l=4 and i =1— 3 otherwise.

(Type E) G is of type Dy, Eg, E7 or Eg, t(P) = {a;} and (w;, u) = —1, where i € {4,5}
if G is of type Dy, i € {2,5} if G is of type Eg, and i =5 if G is of type E7 or Es.

(Type F) G is of type Bz or Fy, t(P) = {as} and (w3, u) = —1.
(Type G) G is of type Ga, t(P) = {an} and {(wy,pu) = —1.

Here the labelling of the Dynkin diagrams is as in Table 6.1.

A 00— O0—0----- O0——=oO0 E: © O- - =~~~ -0
1 2 3 -1 l 1 2 3 5 l
B: O—0O----- O——C0—=0 Fy: O—O0—>=—0—0
1 2 -2 I-1 l 1 2 3 4
C;: O—0----- -O———0—=—0 Gy : o===0
1 2 -2 I-1 l 1 2
-1
D, oO——O0----- @—I—@
1 2 -3 1-2 l

Table 6.1: Labelling of the Dynkin diagrams

Proof. The theorem is a selection of statements from [HS1, Theorems 5.1 and 5.12], which are
proved there when S = Spec C. To deduce the theorem in general, note that by specialisation

we have

dim Aut(§g) = —(2p, ) + dim Aut(&) > —(2p, u) + d(L, p),
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where d(L, 1) is the dimension of the automorphism group of a regular semistable L-bundle
with slope p over C. So Proposition 5.4.2 and the statement of the theorem over C imply that
there are no unstable bundles with dim Aut({¢) = | + 3 and that the Harder-Narasimhan
reduction of any subregular unstable bundle must appear on the list above. A priori, there
may be an elliptic curve E over a field of positive characteristic such that regular semistable
L-bundles &1, on Ej of slope p have dim Aut(ér) > d(L,u), and hence G-bundles with
Harder-Narasimhan reductions on the list above that are not subregular. However, in case
(Type A;) this cannot happen since L = T, and the proof of Theorem 6.1.5 shows that
this does not happen for the other Levis and slopes on the list (see Remark 6.1.6). So the
theorem holds in all characteristics. O

Definition 6.1.3. We will say that a tuple (G, P, 1) consisting of a simply connected simple
group G, a standard parabolic P with Levi factor L, and a Harder-Narasimhan vector p for
P is a subregular Harder-Narasimhan class if &1, x© G is subregular unstable for &7, a regular
semistable L-bundle of slope p. We will say that (G, P, ) is of type Ay (resp., type A, type
B, etc.) if it satisfies (Type A1) (resp., (Type A), (Type B), etc.) of Theorem 6.1.2.

Remark 6.1.4. We stress that the type of a subregular Harder-Narasimhan class (G, P, i)
is often, but not always, the type of the group G. For example, for G of type Bs, there are
subregular Harder-Narasimhan classes of types B and F, and for G of type Dj5, there are

subregular Harder-Narasimhan classes of types D and FE.

For the rest of this chapter, unless otherwise specified we will assume that G does not

have type A;. In the following theorem, we write

1, if (G,P,pu)is of type A,B,D or E,
d= 42, if (G,P,pu)is of type C or F,
3, if (G, P,u)is of type G.

Theorem 6.1.5. Let (G, P,u) be a subregular Harder-Narasimhan class not of type A;.
Then there is a pg-gerbe ™ on the stack M1 of elliptic curves such that if the pullback
S8,

& of UM to S is trivial then there exists a O-trivial slice Zy — Bunj ', with the following

properties.

(1) The morphism Zg — S is smooth and proper with finite and generically trivial relative
stabilisers.

(2) The morphism Zy — Buny’ i /E is smooth with connected fibres.

r1g
(3) The image of Zy — Buny’ Y /E is equal to the locus of reqular semistable bundles.

4) The induced equivariant slice Z = Ind¢ Zy) — Bung 5, has relative dimension | 4+ 3
L ,Tig
over S.

We prove Theorem 6.1.5 in §6.5 by writing down explicit slices in each case of Theorem
6.1.2. Although a classification-free proof is probably possible, the explicit slices also help
us to describe interesting case-dependent features of the Grothendieck-Springer resolution

near the locus of subregular G-bundles.

Remark 6.1.6. The proof will show that Theorem 6.1.5 holds for every tuple (G, P, 1) on
the list of Theorem 6.1.2, excluding (Type A;). In the notation of the proof of Theorem

S8,

Lrig with relative dimension

6.1.2, this shows that in each case we have a slice Zy; — Bun
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I +3+(2p,p) = d(L, ) — 1 over S, and hence relative dimension d(L, ) over Bunj™); /E.

Since Zy — S has finite relative stabilisers, this shows that dim Aut({;) < d(L, u) for a

regular semistable L-bundle in all characteristics.

Remark 6.1.7. As promised in the introduction to this chapter, the slices Z — Bung,rig
of Theorem 6.1.2 meet the translation orbit of a subregular unstable bundle with Harder-
Narasimhan reduction £p to P of slope p in a single point. To see this, note that Remark
6.1.6 and the proof of Theorem 6.1.2 show that the automorphism group of the image x of
& =¢6pxPLin Bunf”r’jg/E is equal to the dimension of the fibre (Zp),, of Zy — Bunis’;’jg/E
over x. So (Zy)./Aut(z) C (Zy)s C Zs is a closed connected substack of dimension 0, where
s is the image of = in S, and is hence a single point since (Z)s has finite stabilisers.

Remark 6.1.8. We have deliberately excluded the subregular Harder-Narasimhan class of
type A; from Theorem 6.1.5. In this case, we have L =T = G, and Bun}™" = Bun@i, and
one can try to construct the desired slice Zg = S — Bunj™" by lifting the natural section
O(—20g): S — Picg*(E). The resulting map Zy — Bun;™; will be a slice as long as 2 is
invertible in Og (so that the stabiliser E[2] of a point in Picg®(E) is smooth), and can be
taken to be ©-trivial after passing to some smooth cover of S if necessary. The resulting
slice satisfies (1), (3) and (4), but the map Zy — BunSLS’;;g2 /E is a torsor under an extension
of E[2] by G, and hence has disconnected fibres.

In the next theorem, we describe the main case-independent features of the elliptic
Grothendieck-Springer resolution near the subregular Harder-Narasimhan locus defined by
(G, P, ). For a clean statement, we will introduce the following notation.

If (G, P,u) is of type A, then we set {a;,;} = {a;, 241} = t(P). Otherwise, we let
{a;} = t(P) and let a; € A be the unique special root. Theorem 6.1.2 shows that in each
case, o; is adjacent to oj. Deleting the edge joining a; and o breaks the Dynkin diagram of
G into two connected components; we write ¢ (resp., ¢1) for the component containing
(resp., cj) and ng (resp., n1) for the number of vertices in ¢y (resp., ¢1). Since ¢ is special,
the Dynkin diagram of ¢ is of type A,,. We write {qcy,1,- -, Qco,nos Qegne} © A for the
vertices of ¢y, labelled so that ag,  is adjacent to o, 41 for all & < ng and oy n, = ;.
For k < ng, we also write w,, € X*(T) for the fundamental dominant weight associated
to e,k € A, and for ko < ng + 1, we write 8, for the section

Op: Y — Y xg Pic%(E)

(vaj(y) - wz(y) - wco,l(y))v if k= 13
Yyr— (y7wj(y) - wz(y) - wco,k(y) + wco,kfl(y))a if 1 <k S no,
(yvo)a if k=n0—|—1

Theorem 6.1.9. Assume that (G, P, ) is not of type A1, let Zy — Bunj’ ), be any ©-

trivial slice satisfying the conditions of Theorem 6.1.5, and let Z = Indg(Zo) — Bung g

be the induced equivariant slice. Then we have the following.

(1) We have
)221(0@;,1) = dDay(Z) + DaJY (Z) + Doz;”raj\./ (Z)a

where each divisor is connected and smooth over Y, and d = %(aiv o)) = —(a;, ) is

the number defined before Theorem 6.1.5.

(2) Each fibre of the morphism Daytay (Z) = Y is isomorphic to the Hirzebruch surface
Fy_1.
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(8) There is a sequence of ng + 1 morphisms
Dajv (Z) = Dn0+2 — Dn0+1 — e —> D1

over Y Xg Z such that Dy is a line bundle over Y xg Pic%(E) and Dyy1 — Dy, is the
blowup along the section 0x: Y — Y Xg Pic%(E) C Dy, of the proper transform of the

zero section of Dy.

(4) The divisors Doy (Z) and Dy (Z) intersect along the proper transform of the zero section
Y xg Pic%(E) < Dy (Z), and the induced map

Doy (2) N Doy (Z) — Picg(E)

sends a stable map with two rational components of degrees o and a]V meeting E in

points ' and x to the difference x — x' € Pic%(E).
(5) The divisors Doy (Z) and Daiv+aj(Z) intersect along a ruling of Fg_;.

(6) The divisors Dqy (Z) and Daytay (Z) intersect along the exceptional divisor of the final
blowup in Dajv(Z), which appears in each fibre Fq_1 of Daiv_m]v (Z) =Y as a curve of

self-intersection 1 — d.
We give the proof of Theorem 6.1.9 in §6.3 and §6.4.

Remark 6.1.10. The statement of Theorem 6.1.9 leaves completely open the identity of the
family of surfaces D, v (Z) — Y, and the behaviour of the contraction )221(0@;1) — x5 (0).
In fact, these both depend drastically on the subregular Harder-Narasimhan class. We give

case-by-case descriptions in Theorem 6.6.1 and Theorem 6.7.3.

Remark 6.1.11. In [GSB, Theorem 6.7], it is argued that in type E, the fibre over 0 € Y
of D,y (Z) — Y contains a chain of t + 1 curves 3¢, , ¢ isomorphic to P! that are
contracted under the morphism to Z, where 8 = D,y (Z)oN Daiera]v (Z)pand 0 <t <1—1.
Using Theorem 6.1.9, we can identify these curves with strict transforms of the exceptional
divisors of the blowups Dyv(Z)o — (Dng+1)o — +++ — (D1)o. This shows in particular
that t = ng = [ — 4, resolving the ambiguity in [GSB]. Theorem 6.1.9 also gives an explicit

description of how the configuration of curves changes as we vary the point in Y.

Remark 6.1.12. As for Theorem 6.1.5, we have excluded type A; from Theorem 6.1.9
because the elliptic Grothendieck-Springer resolution in this case behaves very differently
to the other types, as we now explain. Assume for simplicity that S = Speck for k some
algebraically closed field of characteristic not 2. Then the slice Z — Bung rig = Bungr, rig
of Remark 6.1.8 is the space Z = Ext'(O(20g), O(—20g)) of extensions

0 — O(—20g) — V — O(20g) — 0.

A negative degree reduction of such an SLs-bundle to B corresponds to a subbundle L C V
where L is a line bundle of positive degree, necessarily 1 or 2, so we deduce that the unstable

locus )221(0@;1) decomposes as a divisor with normal crossings
X7'(0g_1) = Day(Z) +4Ds2ay (2)

by Corollary 4.5.9. By Proposition 3.4.16, the section of degree —2ay corresponding to
O(20g) CV = O(-20g) ® O(20g) lifts to points in the self-intersection of D,y (Z), so
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the divisor D,v(Z) is not smooth over S. Even worse, we can lift this section to a stable

map with dual graph

Vv A\
ay Qg

\4
—2a

and automorphism group Z/2, so Z — Z is not even representable in this case.

6.2 Some Bruhat cells for unstable vector bundles

In this section, we write down some auxiliary results on Bruhat cells for parabolic reductions
of certain unstable vector bundles. These results form the basis for identifying the blowups
in Theorem 6.1.9 and for identifying the divisor D,y (Z) in many examples.

Fix an integer n > 0, and let R,, C GL,, be the standard parabolic subgroup

Ry = {(apq)1<p,g<n € GLy | apq =0 for ¢ > max(p,n — 1)}

* % - *x 0
* % --- *x 0
* % - *x 0

of type {8n—1}, where, in the notation given just before Lemma 5.4.10, we write §; =
e; —eiy1 € X (Tgn) = 2", 1 <i < n— 1, for the simple roots of GL,,. Note that —ej is a

Harder-Narasimhan vector for R,,. For 1 < k < n, we consider the stack

n _ y—¢n N —e;,
Xp =Y, n XY&;" KMQQ,GLn XBungl Bung’

where we recall that
Qy = {(ap,g)1<pg<n € GLy | ap 4 = 0 for p < min(q, k)}

is the standard parabolic subgroup of GL,, of type {81, ..., Sr—1}. Note that since —ej is a
Harder-Narasimhan vector for R,,, X is a locally closed substack of Y, " x yooh KME)?G L

n QQ ;) n
by Proposition 2.6.5.

The aim of this section is to decompose X} into Bruhat cells (Proposition 6.2.1) and to
describe the behaviour of the cells under the natural morphisms X! ; — X' (Proposition
6.2.7).

For1<k<n,we W&“Qg and \ € X*(TQZ")’ we write

WA ~w,A ss,—e]
C = CRH,QZ/S(E) XBung, Bung’ 7,

where Cg;),\QL’/S(E) is the Bruhat cell of Definition 3.7.3. For 1 < p < n —1, let w, €

War, = S, be the cyclic permutation
wp=(Mm,n—1,...,p+1,p) =5p_18p—2-"-5p

and let w, = 1 be the identity, where Wgy, is the Weyl group of GL,, and s; = (i,i + 1)
is the reflection in the root 5;. We write
Yq;;" Xy—en C’;:p’ie", if (k,p) # (n,n),

GLpn _ on
Ck,p - k

Oyt xg B, it (k,p) = (n,n),
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forl<k<nandl<p<korp=n.

Proposition 6.2.1. For 1 < k <n, there is a decomposition

n __ GL,, GL,
xp= U oiruads
1<p<k

into disjoint locally closed substacks.
We break the proof of Proposition 6.2.1 into several lemmas.

Lemma 6.2.2. Assume that £p, — Es is a semistable Ry, -bundle on a geometric fibre of
E — S of degree —e} and that o: Es — &g, xB GL, /Q" is a section of degree A < —e.
Then X € {—el, —e:_,}.

Proof. The section o corresponds to a complete flag
0=V, - V-1 C--Q Vo=V,

where V is the vector bundle associated to the GL,-bundle &gr, = &g, xB* GL,, such
that V;_1/V; is a line bundle of degree (e;,\) for i = 1,...,n. Since &g, is the Harder-
Narasimhan parabolic of £gr,, V has Harder-Narasimhan decomposition V= M @ U,
where U is a semistable vector bundle of rank n — 1 and degree —1 and M is a line bundle
of degree 0. In particular, any quotient bundle of V has slope > —1/(n — 1), so we deduce
that .

(e1 4+ e, A) =degV/V; > n;—zl (6.2.1)
fore=1,...,n—1.

Since A < —e’ by assumption, we have
n—1
A=—e; =Y dipy
i=1
for some d; € Zxo, where 8 = ef —e} ;. Applying (6.2.1), we have d; =0 for 1 <i <n—2

and d,,_1 € {0,1}, which implies the lemma. O

Lemma 6.2.3. Assume that w € W, . and A € X (Tgn) with C* # 0 and X < —ej,.
Then

(w,A) € {(1, —eq,_1)} U{(wp, —ep) [ 1 < p < n}.

Proof. First note that by Lemma 6.2.2, we know that A € {—e}, —e}_;}. Moreover, we have
from the definition (3.7.2) that

W]%n,Qn ={we S, |w @) <w i+ forl1<i<n—1}={w,|1<p<n}
Since Q) € GL,, is the standard Borel subgroup, the homomorphism

Jut XulTay) = X (Tr,n0z) = Xe(Trynwapu-1) — Xu(Toy)

is the isomorphism given by w™!.

So by Proposition 3.7.4 there exists a semistable L,,-
bundle &, — E on a geometric fibre of £ — S of degree —ej, where L, = GL,_1 x G,
is the standard Levi factor of R,, and a section or: Es — &1, /(L, N Q) of degree wA. In

particular, since e, € X*(Ly,), (en,wA) = (e,, —€]) = 0 and wA is the degree of a section

Ey 75 &0, /(LN Q) < &p, x* GLn /Qyr.
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If A\ = —e} and w = wy, then

_62717 if p<mn,

WA =
—ey, if p=n,
so from the above discussion we must have p € {1,...,n —1}. If A = —e}_;, on the other
hand, then
—ef_,, if p<n—1,
WA= § —ek, if p=n-—1,
—er_q, it p=mn,

so the above discussion and Lemma 6.2.2 imply that p = n. Combining these two cases
gives that (w, \) is in the desired set. O

n’

U v = Bungn X Bung

0
U’GWR”,Q:}

Lemma 6.2.4. For all A € X, (Tgr) with A < —e},, we have

.
ss,—e

1 Bungy’ .
L"L n

Proof. Assume for a contradiction that this fails for some A < —e. Then by Proposition
3.7.6 there exist w € W2 .\ {1} and X' < X such that Cw>" 2 (). So Lemmas 6.2.2 and
6.2.3 imply that A’ = —ey and A € {—e;, —e};_;}. But this contradicts \' < A so we are
done. O

Lemma 6.2.5. Let 1 <k <n. Then
W8, qp = {wy | 1< p <k} U{wa}

and
—er ss,—e] w,—ey,
Bungn® XBung,, Bung = | | Cy . (6.2.2)

0
wEWRn,QE

Proof. From the definition,

ngmQZ ={we WI%le{ w(i) <w(@+1)fork<i<n—1}={w,|1<p<k}U{w,}

as claimed. Next, note that by Proposition 3.6.4, the natural morphism
—e;, —ey,
KMgar, — KMgrar,

is surjective. So any geometric point of Bung;l" XBungr, Buns;;_el lifts to a point of
n . ,

*
no

Buné‘gn XBungy,, Bun‘;;’:el for some A < —ef, and hence A\ € {—eX,—eX_;} by Lemma

6.2.2. So by Lemma 6.2.4, the morphism

w,A w,—e —er ss,—e]
H cyt — H Cy — Buan XBungy, Bung’
0 0
wEWg, qn WEWE, ap
)‘e{_e:17_e:1—1}

is surjective, which proves (6.2.2). O

Proof of Proposition 6.2.1. Suppose first that k¥ < n. Then Proposition 3.6.4 and Lemma
6.2.2 imply that

—ey ss,—e] —e ss,—ej
KMQZ?GLn XBungy, Buan = BunQZ" XBungr, Buan ,
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since —e;, and —ej, _; have the same image in X.(Tgr ). So we have the desired decomposition
of X}! into locally closed substacks by Lemma 6.2.5.
On the other hand, if ¥ = n, then Proposition 3.2.18 implies that we have a decomposition

X — MO - (fum « Bn GLn/QZ’ (—6;:, 1)) U M]‘; as, (gum « Bn GL, /Qm B_V )

n —e¥
1,0,Bun np. an

since, by Lemma 6.2.2, T_f:" is the only stable X*(Tgn ) @ Z-graph of the correct degree and
n—1 "
genus such that the corresponding space of marked stable maps is nonempty. By Proposition

3.4.10 and the definition of Tﬁv -marked stable maps we can rewrite this as

. ss,—ef)

n __ —e
Xl = (BunQ%" XBungy, Bung’

—en 1 ss,—e]
" U (BunQ% XBungy, Bung’ xs E),

which decomposes further as the desired decomposition

xp=J cflrucgh

1<p<n
by Lemmas 6.2.3 and 6.2.4. O

From the proof of Proposition 6.2.1, it is clear that C,?{;" C X, is the locus of stable
maps with a single rational component of degree 3,/_; in the relevant fibre of the flag variety

bundle, and that the natural projection
Cotm = O U xgE— E (6.2.3)

takes such a stable map to the point on E meeting the rational curve. There is also a

morphism
CER™ =Y X piazt gy Bunpy ™ — Yo Xy Y — Pick(B) = B (6.24)
(,9) — en(y) — enly).

Lemma 6.2.6. The natural projection (6.2.3) is equal to the composition of (6.2.4) with
the natural morphism C’ﬁﬁ” — C’Sﬁ".

Proof. This follows by direct calculation. O

For 1 <p < n, we let
GLn GLn
My C Oy,

be the closed substack given by the fibre product

MGt — Ol

| |

et QGL" o
YQ:" L YQn " xg F,

where the morphism C; , — E is (6.2.4), and the morphism YQ_;; — YQ;;; x s Picg(E) is
given by
o5t : Yc;jn — YC;;n x s Pick(E) = Yo" x5 E

y— (Y, ep(y) — en(y)).

129



Proposition 6.2.7. For all1 < k < n, the morphism X}, | — X} restricts to isomorphisms

GL, _~ GL, GL, _~ GL,
Ok:Jrl,n Ckm and CkJrl,p Ok,p

for 1 < p <k, and a morphism

GL, GL, GLy ~ ~GLn
Citly — Mo C O = O,

that identifies C’,?ff’k with the total space of a line bundle over M,?L".

We will prove Proposition 6.2.7 at the end of this section using Propositions 3.7.4 and
3.7.5 to compute the relevant Bruhat cells in terms of reductions of L,-bundles to L, N
wpQpw,* and sections of the associated Ry(Ry)/(Ry(Rn) NwpQpw,')-bundles. The first
step is to identify the parabolics L, N pr};”w;l.

Lemma 6.2.8. Suppose that 1 <k <nand1 <p<k. Then L, N prﬁwzjl C L, is the
standard parabolic with type

t(Ln N prZwljl) = {517 e aﬁk—?}v

so L, N pr’k?wp_l is identified with QZ:% X Gy, under the natural identification L, =
GLn,1 X Gm

Proof. First observe that since w, € Wg_ o, we have
L,NnQr=1L,N prpr_l CL,N prpr_l,

so Lp Nw,Qpw, ! is indeed a standard parabolic subgroup of L,,. The type follows by direct

computation. O

In order to compute the degrees of the L, Nw,Qw, L_bundles of interest, we need to

describe the homomorphism
TLﬁpr',’:wlTl . TQLL XGom, TRn (625)

induced by ju,: w, ' (—)wy: Ly N wpQw, ' — QF on the first factor and the inclusion
L,N prpr’l C L, C R, on the second. (Here the maps to G,, in the fibre product on
the right hand side are given by the determinant e; + - -+ ey,.)

Note that if 1 < p < k, then by Lemma 6.2.8, the character lattices are given by

X(Ty rwp@puyt) = B Zei ®Zlen—1+ -+ + en1) © Zen,
1<i<k—2

X*(Tgp)= P Zei®Zler+--+en) and X*(Tw,)=Z(er+ -+ en1) ® Zey.
1<i<k—1

The cocharacter lattices are therefore given by

Xy gpuyt) = B Zej @Ze;,,  Xu(Tgp)= @ Ze @ Ze,
1<i<k—1 1<i<k—1

and
X*(TR, ) = Ze} & Ze},.

as quotients of X, (Tqn).
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Lemma 6.2.9. Ifp < k, then (6.2.5) factors as an isomorphism onto Tqp sending e,y to
e;, followed by the section (id,Vkp): Tor — Tor Xg,, Tr,, where vy p: Tor — Tr, is the

homomorphism given on cocharacters by

. e, Jfor i#p,
'Yk,p(ei )= N .
er, for i=np.
Proof. Using the fact that the natural diagram

—1

Xi(Tqp) ———— Xu(Tqr)

Lo

X.(T 1) s X, (Tap)

LpNw,Qpwy
commutes, the claim follows by direct computation. O

The situation for p = n is also very simple.
Lemma 6.2.10. The canonical morphism Ty, nqp — Tor Xg,, Tr, ts an isomorphism.

Proof. The character lattice of Ty, nqp is given by

X*(Tr,nqp) @ Ze; ®Z(eg+ -+ epn_1) ® Zey,
1<i<k—1

and hence the cocharacter lattice is

Xi(Tr.nqp) = @ Ze; @ Ley, © Zey,.
1<i<k—1

The claim now follows by inspection. O

We deduce that the degrees of the parabolic reductions appearing in the Bruhat cells are

given as follows.

Lemma 6.2.11. If p < k or p =n then the morphism

GL, ;
Ck,p BunLnﬂpr"

—1
EWp

(6.2.6)

factors through

76
Bun,K ™' C Bun .
LnﬂwPkap - Ly ﬂprkwp

Proof. First suppose that (k,p) # (n,n). By Proposition 3.7.4 and our restriction on the
degrees of the L,-bundles, the bundles in the image of (6.2.6) have degrees mapping to
(—ey, —ei) € Xu(Tqp X6, Tr,) under (6.2.5). By Lemmas 6.2.9 and 6.2.10, this homomor-
phism is injective and sends —e’_; to (—el, —e7), so the claim follows.

On the other hand, suppose that (k,p) = (n n). Then the degrees of bundles in the
image of (6.2.6) must map to (—ef_;,— X«(Tor xg,, Tr,) under (6.2.5). Since this

is an isomorphism by Lemma 6.2.10 and sends —ek 4 to (—e —e7), the claim follows in

n—17

this case as well.

O
Lemma 6.2.12. If p < k or p =n, then the natural morphism
—en_1 ss,—ey —en_q —et
BunLnﬂprzwzjl XBunZZI BunL" - YL nNwp QY wp1 XYL_,: Bu L (627)

18 an isomorphism.

131



Proof. Lemmas 6.2.8 and 6.2.13 show that we have a pullback

—en_ ss,—e] €n_1 ss,—1
Bun ! X _ex Bun}” ™" ——— Bun X Bun
LrLﬂprkwp BunL:1 Ln QyZ 11 BunG 1 GL
“na X Bunss’ el Y o "Thx o Bunis !
Cer _ -
LpNw,Qrwy, 1 YL,, 1 QZ 11 Picg (E) GL, >
so the claim follows immediately from Lemma 5.4.10. O

Lemma 6.2.13. Let p: H — H' be a surjective homomorphism of reductive groups and let
Py C P, C H be parabolic subgroups. For any X\ € X, (T,-1(p,)), the natural diagrams

A A
Bunj 1 (p)) Bunp,

| |

A A A
(P1) XYP)\fl(pz) Bunp71(p2) —_— YP1 XY}§\2 ]3111”1132

A
Yp,1

and

A A
KM 1 (py) 1 KM}, g/

| |

A A A A
Y -1(Py) nyl(PQ) KMp*I(PQ),H E— YPl XYF>>\2 KMPZ,H’

are pullbacks, where we also write X for its images in Xu(T,-1(p,)), Xu(Tp,) and X.(Tp,).

Proof. The statement follows easily from the fact that

A _ A A A _ A A
Bunpfl(Pl) = Bunpl XBun;},2 Bunp71(P2), Ypfl(P1) = YPI XY}g‘\Q Ypfl(PQ)

and
A A A
KM by, = KMp, g Xy, KMy -
O
Lemma 6.2.14. If p < k <n, then the morphism
n :L 1 58,—e €, 58,— ex GL,L n
YQn XY(;; (BunL,mpr"w,, XBun;f Buny, 1) — Y, ><P1071(E)Bun =070 =X
(6.2.8)

induced by the inclusion L, ﬂpr *1 C L, factors through an isomorphism onto MGL
Here the morphisms to PICS (E) in the fibre product in the right hand side of (6.2.8) are
both given by the determinant.

Proof. First note that by Lemma 6.2.12 and Lemma 6.2.9, we have isomorphisms

—e* —e¥ ss,—el
Yo X —ex (Bun, " 1 X_ _er Buny 7t
Qr YQZ” ( LnﬂprZ’wpl Bu]ﬂLn1 Rn )
—er ss,—ej
LYo nt 1 X_ —er Bunj, Tt
n YQ,’: ( anprprl YRnl R, )a
: AU —et
_>YQn XYc;nC (YQn ><YR_C BunR ),
n

132



where g, maps to Y5 ™' via the homomorphism k. So we can identify (6.2.8) with the
closed immersion
—ey ss,—e] —er ss,—ej
YQ2 X et Bung' ' — YQZ Xpic!(B) Bung' 7,
Rp
where the morphism Y5 YH?:I is the composition of Y, " Y;Z with ~y ,. Chasing
through the various definitions now shows that the source of this morphism is precisely

MEL", so we are done. O

We next identify the L, N w,Qpw, '-variety Ry(Rn)/(Ru(Rn) N wpQpw, ). In the
following lemma, we write Uy, for the L, Nw,QFw, L_representation induced by the homo-
morphism

L NwpQiw, ' = Qp1 X Gpy — Q21 — GLyy,
given by deleting the last row and column and the first p — 1 rows and columns.
Lemma 6.2.15. If p < k, then there is an L, N prszjl—equz'variant isomorphism
R, (Ry)/(Ru(Ry) N prngl) = Ukv)p ® Ze,, - (6.2.9)

Proof. If B is a root of R, (R,,), then Ug C R, (R, ) maps injectively into R, (Ry,)/(Ryu(Ry)N
prﬁwzjl) if and only if w;lﬁ is not a root of @}. In particular, this implies that 3 is a
negative root and w,, 13 is a positive root, and hence that

/8 €Y= {7ﬂn—1a 7571—1 - ﬂn_Q, ceey 767,’_1 — 5n—2 B Bp}7

and
wy ' B € {Bn1+ B2t + B Bzt By B}
Note that if 5 € ¥, then Ug C R, (P), and w;lﬁ is not a root of @}, so X is precisely the
set of roots appearing in Ry (Ry)/(Ry(Ryn) NwpQpw, ).
It is clear from the above that Ry (Ry)/(Ry(Rn) NwpQpw, ') is isomorphic to an Ly, N
wpQpw, Lrepresentation. The isomorphism (6.2.9) follows by inspection of the weights of
this representation. O

Proof of Proposition 6.2.7. If k < n — 1, then there is a pullback

*

GLn, “fn-1 ss,—e}
N _
Ok—H,n BunLnﬂQQ+1 xBuIlef BunL”
CPLn ¥ o % .. Bun, ", x . Bun®> ™4
k,n Qs nygn LnnQf X pyny i L, -
But since
—e, —en_1 Y_e; 1
x 1 _
Yop!, Xvgen Yeanap = Yinap,,
k

this implies that Cffln — C’,?,LL is an isomorphism by Lemma 6.2.12. If K = n — 1, then

since L, NQr = LN Q7 _,, there is instead a pullback

n—1y

*
Cn—1

GL
L
Cn,n YVQZ Xg E

| Jz

—_ * —e
Clln Y Y,

n—1,n Qn

*
n—1
Yo

n—1
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where the vertical arrow on the right is induced by the isomorphism of tori

TQZ X GWL — TQZ XTQZ—l TQZ
(t1,t2) — (8181 (t2),t1).

So CFLn — CYLr s also an isomorphism.

If Kk <mnand 1l < p <k, then Proposition 3.7.5 and Lemma 6.2.14 show that C’,S':ﬁ" is

the relative space of sections of

Mo X Ln R QEwy ! Fu(P) — MSn g E
P R,(P) Nw,Qiwy ! P ’

where 7y, , is the pullback of the universal L, N w,Qpw, L_bundle under the map

—en
MGEn — Bun, "t
p LpNw, QP wy

coming from Lemma 6.2.14. If £ < n — 1, then by Lemma 6.2.15, we can therefore identify
the morphism C,? +L1’fp — C’,?_; ™ with the morphism

L,Nw,QYw- ' 77V L,Nnw,QPw-t 77v
Tpy (Met1,p X PR Ui p @ Ze,) — Tpu(Mkp X rRRY s Uy, @ Ze,, ),

where mp: MPGL” xg E — MI?L” is the natural projection. But this is the pushforward
of a surjective morphism between families of stable vector bundles of degree 1 (since both
vector bundles are naturally degree 1 quotients of stable vector bundles of degree 1), and
is therefore an isomorphism as claimed. We can also identify the morphism C’,ffﬂk — Crn
with the morphism

L.N mTwsl v GL GL, GL,
Wp*(nkJrLP X WPk Uk+1,p ®Zen) — Mp " Cl,n" =C

kn

which factors as a line bundle over MpGL” as claimed. O

6.3 Computing the divisor Dajv (Z2)

In this section, we prove parts (3) and (4) of Theorem 6.1.9.

Throughout this section, we will suppose that we are in the setup of Theorem 6.1.9, i.e.,
that (G, P, 1) is a subregular Harder-Narasimhan class not of type A;, and that we are given
a ©-trivial slice Zyp — Bunj}; satisfying the conditions of Theorem 6.1.5, for L C P the
standard Levi subgroup. Writing Z = Indg(Zo), note that Proposition 5.4.2 implies that
—(2p, 1) > 1+ 2, and Proposition 5.2.8 implies that dimg Zy — (2p, u) = dimg Z =1+ 3, so
in particular dimg Zy < 1.

Lemma 6.3.1. Assume that z € Z\Zy and that the corresponding G-bundle g . is unstable.

Then &g, is reqular unstable.

Proof. Since z € Z\ Zy is not fixed under the Z(L),;,-action, Proposition 5.1.4 implies that
dim Aut(ég ) <1+ 3.

So &¢ .. is regular as claimed by Theorem 6.1.2. O

Lemma 6.3.2. For A € X,(T)4, we have D\(Z) # 0 if and only if X € {o/, o}, o +af}.
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Proof. For simplicity, we can assume without loss of generality that S = Speck for k an
algebraically closed field and hence that Zy is connected. We first show that Dy (Z) £ 0
and Doy (Z) # 0.

If (G, P, ;1) has type A, then y is the image of —a;” — o) under the homomorphism
Xu(T) — Xu(Z(L)°)q and (o, @) +af) < 0 for all « € &, a root of P. So by Proposition
3.6.4, the morphism v

KM% ™ — KM ¢

is surjective. In particular, for every z € Zj, there exists a section of {g, . xL P/B C
€. x* G/B with degree —Xg < —a —a)/. So we must have Dy,(Z) # 0, and hence
Doy (Z) # 0 and Doy (Z) # 0 by Proposition 5.1.5.

On the other hand, if (G, P, u) does not have type A, then u is the image of —a; in

X.(Z(L)°)qg, and (o, ) <0 for o € 4 a root of P. So
KM% — KMb

is surjective by Proposition 3.6.4, so we deduce that Daiv(Z) # (). TFor Day (Z), note

that since o; € A is the unique special root, Proposition 5.4.2 implies that the Harder-
—aY
Narasimhan locus Bun;s’ 9 C Bung is dense in the locus of unstable G-bundles, where

Q is the standard parabolic with #(Q) = {a}}. So Bunz;”;ga’v XBung.,iy Z 7 0, and hence
Doy (Z) # 0 by Proposition 5.4.11.

Conversely, suppose that A € X, (T) and that Dy(Z) # 0. Then for any ap € A
with corresponding maximal parabolic Py, there exists a point in Z and a section of the
corresponding G/Py-bundle with degree v, = —(wy, \)/(wk, @) )w) (the image of X in

X«(Tp,)). So by Lemma 5.2.14 and [FM2, Lemma 3.3.2], we must have

(2p, @)
<’Iﬂk, w}:;/>

(l+ 1)<wk,/\> < <wl~ca)‘> = _<2p7 Vk> < _<2puu> <l+3.

So

o~
w

< —<2
<wk,)\>_l+1< s

since { > 1. So (w, A) =0 or 1 for all k.

Now assume for a contradiction that there exists A € X, (T)4 \ {o, ), af + o} } such
that Dy (Z) # 0. Since the divisor D(Z) = )251(09;1) is connected by Corollary 5.5.9, we
can choose A so that D)(Z) has nonempty intersection with one of D,y (Z), Doy (Z) or
Daytay (Z). Choose a point in such an intersection over z € Z, and let —\ € X, (T)_
denote the degree of the corresponding stable map restricted to the irreducible component
of genus 1. Then we have Dy (Z) # 0, N’ > X and X' > o for some «, € {e;,a;}. By
the bound proved above, we must have (wy, A) = 1 for some oy € A\ {a;,a;}, and hence
N > oy +ay. So by Proposition 5.1.5, we have Doy oy (Z) # 0 and Doy (Z) # 0.

Assume first that G is not of type A. Since D,y (Z) # (), there exists 2 € Z and a section
of &g,/ B with degree —ay/, and hence a section of & ./ Py with slope —w)/ /{wy, @) ). So
by Lemma 5.2.14, there exists 2z’ € Z such that {g .- has Harder-Narasimhan reduction to
Py, with slope —w)/ /(wy,w)/). Since P, # P, we have 2’ € Z\ Zy. So {g,» is regular by
Lemma 6.3.1, which contradicts Proposition 5.4.2 since «y is not special.

Assume on the other hand that G is of type A. We have k ¢ {i,i+ 1} and r € {i,i+ 1}
such that Da¥+QX(Z) # 0. So there exists z € Z and a section of {; ./ P, of slope v €
X (Z(Lyk)°)q satistying (w,,v) = (wg,v) = —1, where P, ;, C G is the standard parabolic
of type {a,,ar} and L, its standard Levi factor. But v is a Harder-Narasimhan vector

for P, ), so by Lemma 5.2.14, there exists z’ € Z such that &g .- has Harder-Narasimhan
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reduction to P, with slope v. Since P, # P, we have z € Z \ Zy, so {g . is regular
unstable by Lemma 6.3.1, which again contradicts Proposition 5.4.2.

So Dx(Z) = 0 for A ¢ {o, 0}, + )}, and Day(Z), Doy (Z) # 0. This implies

that Daiv+ajv(Z) # 0, for if this were not the case, we would have D,y (Z) N Dajv(Z) =0
by Proposition 3.4.16 and hence )221(0@;1) would be disconnected, contradicting Corollary
5.5.9. 0

Given a torus 77 and a cocharacter A € X, (T”), there is a natural morphism
Y xg B — Yy =Y, (6.3.1)
(r @) — &0 @ A(O(x)).

We will repeatedly make use of this in what follows.
Lemma 6.3.3. There are isomorphisms

Doy (Z) = My z(écyzc) /79 G/B, (—a) 1)) (6.3.2)
and

Doy (2) = M1z (a2 X979 G/B, (=aj, 1)), (6.3.3)

where £ z(q) — Z X5 E is the G/Z(G)-bundle classified by the morphism Z — Bung, g —
Bung,z (@), and we use the degree datum of Lemma 3.4.4 in the notation for spaces of stable

maps. Moreover, the isomorphisms commute with the maps to'Y given by
Mg z(Ecz6) x4 D GIB, (—a) 1)) — Y™ xg B —Y

and
M, z(¢c/zc) <979 G/B, (o), 1)) — Y~ xg E—Y,

where the first morphism in each composition is given on the first factor by forgetting the
marked point and applying Blg and on the second factor by evaluation at the marked point

followed by projection to E, and the second morphisms are given by (6.3.1).

Proof. We prove the claims for D,y (Z); the proofs for Day (Z) are identical.
By Propositions 3.2.18 and 3.4.13, D,y (Z) is the image of the gluing morphism

Mz(€c/zc) x4 GIB,10) — Z = Mio,zEc/z@) x4 G/B,(0,1)). (6.3.4)

By Lemma 6.3.2, the stable X*(T) ® Z-graphs 7 admitting contractions 7 — Taoy such that
Mz(¢G/z(c) xC€/%) G/B,T) # 0 are as follows.

<l
-

\ '

In particular, any such 7 has a unique contraction onto Tg_v, so Corollary 3.2.21 implies that

(6.3.4) is a closed immersion, and hence that

Day(2) = Mz (Ecy2(0) X7 G/B,70y).
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By definition of Tgy—marked stable maps, there is therefore a Cartesian diagram

D, (2) Mo,z Gz ¥/ 9 G/B, (o ,0))

i

| |

M1, z(¢c 7 x9% 9 G/B, (—a) 1)) ————— &ayz(0) x9/# (D G/B.

But the vertical arrow on the right can be identified with the morphism
€az(6) XD Mo1(G/B, o)) — €gz(q) x4 D G/ B,

and is therefore an isomorphism by Proposition 3.4.10. So the vertical arrow on the left
gives the desired isomorphism (6.3.2). Commutativity with the maps to Y follows from the
construction and Proposition 3.5.5. O

We can now construct the sequence of blow downs of Da]v (Z) promised in Theorem
6.1.9 (3). For 1 < k < ng, let P, C G be the standard parabolic with type t(Py) =
ANA{acy by s Qegno b = A\ {Qco ks - - - s Qegmg—1, i}, and let P, 11 = B. Then for 1 < k <
no + 1, we define

Di=Yg" x__ov KMp G 0 XBung iy Z X5 E

Yp,

Vv
~ %
=Y XYp, (KMPk,G,rig XBung, rig Z xg E)v

where the morphism to Yp, in the last fibre product is given by the composition

a Blp —aY (6.3.1)
J k J
KMPk,G/S,rig XBunG)Tig A XsE——%YPk XSE—>YPk~

There is a morphism
Doy (Z) — Dpgr1 = Mg z(€c/2(6) X% D G/ Py, (=) 1)) xs E (6.3.5)

over Y, given in terms of the isomorphism of Lemma 6.3.3 by forgetting the marked point
and stabilising on the first factor, and by evaluating at the marked point and composing with
the projection to E on the second factor. For 1 < k < ng, the projection G/Pxy1 — G/ Py
also induces a morphism

Dyy1 — Dy (6.3.6)

over Y. We show later (Propositions 6.3.11 and 6.3.17) that the morphisms (6.3.5) and
(6.3.6) are blowups along explicit loci. The first step towards formulating and proving these
propositions is Proposition 6.3.4, which shows that Dy Xz Zj is controlled entirely by the
subgroup P;.

In what follows, for 1 <k <ng+1,w € WIO;.’Pk and X € X, (Tp, ), we write

w,A _ w,A
Cp " (Zo) = ORP,C/S(E)N‘g XBunp, .y 20 & Bun;;k,rig XBung, iy 40

and C"(Zy) = Cp (Zo)- (Recall that Ppys1 = B.)

Proposition 6.3.4. The natural inclusion L/(L N Py) = P/(PN Py) — G/P; induces an
1isomorphism

v v V_ Vv v

—a) —aj - - —aj ~ —aj
Bun;p, iy XBung .y Zo = Bunpqp i XBunp,., Zo — KMp, & 00 XBung, iy 20 (6.3.7)

and hence isomorphisms

\2 Vv \2 Vv
—(XJ _(X'i —(XJ ~ —(XJ
KM, p s ig XBuny g B o, g XBunpiy Z0 — KMp % i XBung, 0y Z0, (6.3.8)

for 1 <k <ng+1, where L; C P, is the standard Levi subgroup.
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Proof. The isomorphism (6.3.8) is obtained from (6.3.7) by noting that for {pnp, — Es a
P N Pi-bundle over a geometric fibre of E — S, the preimage of the canonical section of
€PﬂP1 x PNy G/Pl — FE under fpmpl x PNk G/Pk — gPﬁPl x PPy G/Pl is

Epnp, X Py Py 2 Epp, xPTPY Ly /(L 0 By).

To prove that (6.3.7) is an isomorphism, first note that it can be identified with the
locally closed immersion

1,—aY —aY —aY
Cp, ™ (Z0) — Bunp iy XBung i, 20— KMp G g XBung i, Zo- - (63.9)
Since both sides are reduced, it is therefore enough to show that (6.3.9) is surjective.
To see this, note that Lemma 6.3.5 below and Proposition 3.7.6 imply that the morphism

A A
H cv (ZO) BunB,rig XBung, rig Zy

wEWD 5NW1,

A:—wil(a;/-l-a}/)

—aV —aY
is surjective for all A < 704}/. Since the morphism KM Baé — KM Pl%G is also surjective by
of

Proposition 3.6.4, and maps sections coming from C"*(Zy) to 0113’17 (Zp), surjectivity of
(6.3.9) now follows. O

Lemma 6.3.5. Assume that w € W%B, A< —af and CYMNZy) #0. Then w € Wy, and

A=—w oy +af) e {-a),—a) — )}, where Ly C P, is the standard Levi subgroup.

Proof. Tt is immediate from Lemma 6.3.2 that A € {—a}, —a;" — ' }. By Proposition 3.7.4,
if C**(Zy) # 0, then there exists a geometric point z: Speck — Z over s: Speck — S
and a section oy, : Eg — &1, /(LN B) of degree wA € X, (T'). Since &1, . has slope p, we must
have

(wl,w)\> = <w2,u> =—1.

Since A and hence wA is a coroot, we therefore have w\ € ®¥ C X, (T)_. Since composing
o, with the inclusion &1, , /(LN B) — £,/ B defines a section of degree w, we deduce that
D_yx(Z) # 0, and hence that w € {—«a}/, —a} —aj }.

If wA = —ay, then w™'ay € ®Y, so w = 1 since w € Wp 5. So A = —a;, contradicting
A < —aj. So we must have wA = —a — o)/, and in particular w™' (o) + o) € @Y.

If (G, P, 1) is not of type A, then w™"(y)) € ®Y for oy, # c; (since w € W 5 and t(P) =
{ai}) so Lemma 6.3.6 implies that w € Wp,. If (G, P, p) is of type A, then w™! (o)) € ®Y
for ag, # ay,04. If wil(a;/) € ®Y then w € Wy, by Lemma 6.3.6 again. Otherwise, we
must have w™!(a}’) € ®Y and hence

w6{8i+18i+2-~-8k|i<k‘§l}

by Lemma 6.3.6. But this implies that A = w™ (= — o) = w™' (- — ;) = —a)

K2 (s

contradicting A < —a}, so we are done. O

Lemma 6.3.6. Let (M, ¥, MY, ¥V) be a root datum with Weyl group W(¥), and let T C ¥
be a complete set of positive simple roots. Let §; € I' be a simple root, and let ¢ € mo(I'\{5;})
be a connected component of the Dynkin diagram of T'\ {B;} of type A, such that B; is
adjacent to one end of c. Let Bcq,...,Ben €' denote the nodes of c, labelled so that . is
adjacent to Be k41 for all k and B.n is adjacent to B;, and let

S = {we W) | w B € WY for all B € T\ {Bon} and w™(BY, + BY) € WY},
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Then
Y ={1}U{scnScn-1-""Sck | 1 <k <n}

where sc, € W(U) is the reflection in the root e

Proof. First note that an easy inspection shows that
{1} U {Sc,nsc,nfl ccSek | 1 < k < n} - 27

so it suffices to prove the reverse inclusion.

We prove the claim by induction on n > 1. Suppose that w € ¥. Then either w =1 or
w™!B.,, € U_. In the second case, we see that (s.,w)™ 18’ € UY for B € T\ {fen—1} and
(Semw) M (BYp 1 + BYn) € WY if n > 1. So either n =1 and w € {1,5¢,}, or n > 1 and by
induction we have

SenmW € {Sen—1"Sek | 1 <k <n-—1}

and hence

w e {1} U{senSen—1--Sck | 1 <k <n}

This proves the lemma.

Proposition 6.3.7. There exists a surjective homomorphism
pp;: Pl — GLno—i-l

such that PEB(Rno—H) =PNP and ;01_311( 2oty = Py for 1 <k <mng+1, and such that the

induced map T'=Tp, ., — ngii s given on cocharacters by

X* (T) — X* (TQ'rL0+1)
no+1
a(\,‘/o,k > €} — €hi1
\ *
@ = Cno+1
oy — 0, if oy & {aeg 1, Qg ngs 5 )
Proof. Since the Dynkin diagram A \ ¢(P;) has exactly one connected component of type
A, Proposition 5.3.1 gives an embedding

L1 — GLng—i—l X (Gr;lnl (6310)

Let pr, be the composition of (6.3.10) with the projection to the first factor, and let pp,
be the composition of pr, with the quotient P, — Li. The remaining claims can now be

checked routinely using the explicit isomorphism of Proposition 5.3.1. O

Returning to the study of the divisors Dy, Propositions 6.3.4 and 6.3.7 give a morphism

A\ Vv \

v —a —aY —aV

—a J i J

Dy xz Zo — Y% X oo KMp, AP, 1y rig XBuni, rig BUpAp, iy

P
—el ss,—ej
, o+1 »—€1 _ ynotl
YQ:gii X 76;‘121{—1 KMQZ’O+1,GL,LO+1,rig xBunGLnO+1 Bu Rug+1 = “Tkyrig
Q0

where, in the notation of §6.2, X,?(ﬁgl is the rigidification of X;"*™! with respect to the image

of Z(G) in Z(GLyy41) under pp,. Moreover, Lemma 6.2.13 shows that there is a sequence
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of pullback squares

no+1
DkJrl Xz Z() _— Xk+1,7‘ig

I |

no+1
Dy xz Zog —— X0t

for 1<k<ng. For1<k<mnp+land1l<p<£korp=ng+1, we define

GLng+1

C}c,p = (Dk Xz Z()) XXnO+1 Ck,p,m’g .

k,rig

Proposition 6.3.8. For 1 < k <ng+ 1, there is a decomposition

Dy = (Dk Xz (Z\ZO)) U U Ck,p Uck,no+1

1<p<k

into disjoint locally closed substacks.

Proof. This follows immediately from the definitions and Proposition 6.2.1. O
CLng1

By construction, the morphism C1 ny+1 — Cy,, 07 factors through a morphism

—aV GLpg+1 _ GLpg+1
Cling+1 — Y 7% % —ehot1 (01,7104-1 xs E)=Y XYQnU+1 (Cl,7lo+1 xs E),
Qn0+1 no+1
no41
. GLn0+1 . . . 76:.04»1
where the morphism C ,, V7" XsE — YQn0+1 is given by the natural morphismtoY , "2/ x5
’ ng+1 ng+1

E composed with (6.3.1). Composing with the morphism (6.2.4) gives a morphism
Climgt1 — Y x5 E x5 E—Y xgPic%(E) (6.3.11)
(Y, 21, 02) —> (y, 02 — 21)
over Y.

Remark 6.3.9. From the definitions, Cp 41 no+1 € Dny+1 can be identified with the locus
of stable maps with one rational component of degree ). By Lemma 6.2.6, the composition
of (6.3.11) with Cy 4+1,no+1 — C1,no+1 sends a point in Cp41,n,4+1 Over € E to z — 2’ €
Pic%(F), where 2/ € F is the point where E meets the rational component.

For 1 <p<mng+1, welet
Mp g Cl,n0+1

be the closed substack given by the fibre product

M, ——— Ci no+1

J me

Y — " 4 v xg Pic%(E),
where 6, is defined as in §6.1.
Proposition 6.3.10. For all 1 < k < ng, the morphism (6.3.6) restricts to isomorphisms

Dii1 Xz (Z\ Zo) — D, Xz (Z\ Z0);,  Cri1mo+1 — Cring+1  and Cri1p — Cryp
for 1 < p <k, and a morphism
Crs1,p — My € Crmg+1 = Cling+1

that identifies Cy1,1 with the total space of a line bundle over M.
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Proof. Chasing through the definitions, we have

Mk: = Cl,no+1 X GLypgt1 MkGLnoJrl.
1,ng+1
So by Proposition 6.2.7, it remains to show that
Dy xz (Z \ Zo) — Dy Xz (Z \ Zo) (6312)

is an isomorphism. By Lemma 6.3.1, every G-bundle in the image of Dy Xz (Z \ Zp) is
regular unstable, necessarily with Harder-Narasimhan reduction to the parabolic @ of type
t(Q) = {a;} by Lemma 5.4.7. So the morphism to Bung ,;, factors through

—aY
Dy %z (Z\ Zy) — Bung, ;. — Bung,rig-

The argument of the proof of Proposition 5.4.11, together with the observation that KM;YCJ; —
—aY
KM P:JG is surjective for all £ by Proposition 3.6.4, shows that we have isomorphisms

\%

Dk Xz (Z \ ZO) =Y Xka (Bun;;ri{Pk,rig X iy

oY Bunz;”ri ? XBung.riy (£ \ Zo) X5 E)

J g9
BunM,rig

for all k, where M is the Levi factor of (). So Proposition 5.3.1 and Lemma 5.4.10 show

that (6.3.12) is an isomorphism as claimed. O

Proposition 6.3.11. The morphism (6.3.5) is the blowup of Dp,+1 along the closed substack
MnoJrl g Cng+1,n0+1 g DnoJrl'

Proof. First notice that by Proposition 3.1.13, we can identify (6.3.5) with the pullback of
morphism ,

KMp & rig XDegs () C — KMp & ;0 X5 E (6.3.13)

\%

along the map D, 11 — KM];iléﬂ_ig X g E. Since every stable map parametrised by a point
in D, 41 has a domain curve with at most 1 node, it therefore follows from Proposition
3.3.8 (4) that (6.3.13) is the blowup at the image of the locus of points where stabilisation
is not an isomorphism. But from Remark 6.3.9 it is clear that this locus is M, +1, so we

are done. 0
Lemma 6.3.12. The stacks Dy, are all smooth of relative dimension 2 over Y .

Proof. Since KM;EJVGMQ XBung..i, £ X5 E is smooth over YP_;X’y x g I/, and hence over Yp,,
the stacks Dy are all smooth over Y. Moreover, Propositions 6.3.10 and 6.3.11 imply that
Doy (Z) — Dy is birational for all k, so Dy has relative dimension 2 over Y since Doy (Z)
does. (Note that the flat morphism x: Z — Y /W has relative dimension 2 by construction.)

O
Lemma 6.3.13. The morphism (6.3.11) is smooth with connected fibres.
Proof. From the construction and Lemma 6.2.13, we have
—a\/ 70‘;/70‘;
Cimgt1 =D1 Xz Zyg=Y "% XY,QJV BuanPh”-'g XBung, i Zoxs E.
Py

There is an isomorphism

Y Xy, Yiap, — Y xg Picg(E) (6.3.14)

(y1,y2) — (Y1, @i(y2) — @i(y1)).
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Chasing through the definitions of the various morphisms involved, we deduce that there is

a pullback

(6.3.11)

Cino+1 Y xg Pic%(E)

. . |

—o) —a —a) —a! (6.3.1)
BunLﬂPl,riJg XBunL,,.ig Z() Xg E— YLﬂP1 7 Xg FE Ymel,
where the morphisms Y x g Pic%(E) — Ypnp, is the composition of the inverse to (6.3.14)
with the natural projection.
It therefore suffices to show that the composition f of the first two morphisms in the

bottom row is smooth with connected fibres. Note that the morphism

—aY

Vv
o
Yinp, 7 XsE—Yrnp

\4
—a)

—aY
naturally identifies Yznp, with the quotient (Y7 p, “ x5 E)/E by the diagonal action of
FE by translations. So we can identify f with the composition of the middle vertical arrows

in the diagram

LoV —aY
i J
BunLﬂPl,rig ><Bunf rig Zyxg B — Z

] 6.3.15
prig X5 B)/E —— Bunf ., /E ( )

Vv Vv
—a) —a} —a
, -
Bun;p, iy Xs E (Bun,
\

i |

YLN;VI’“JY xg B ———— (YL}“P;‘XJ‘v xs E)/E.

The vertical arrow on the left in (6.3.15) is smooth, and has connected fibres since the
semisimple part of L N Py is simply connected. The vertical arrow on the right in (6.3.15)
is smooth with connected fibres by assumption. Since both squares are Cartesian, and the
horizontal arrows in the square on the left are faithfully flat, it follows that both vertical
arrows in the middle are smooth with connected fibres, and hence so is their composition f.
O

Lemma 6.3.14. The morphism (6.3.11) is an isomorphism.

Proof. Observe that the cell

\%

—aV
Cno+1,no+1 Cc Dn0+1 = KMB’GJ’M"Q XBung, rig Z Xs E

is equal to the locus of singular domain curves, and is therefore a divisor in D,,,4+1 flat over
Y. Since D, 41 — Y has relative dimension 2 by Lemma 6.3.12, Cy, 41,no+1 — Y therefore
has relative dimension 1. So by Lemma 6.3.13, (6.3.11) is a smooth proper morphism with
connected fibres and finite relative stabilisers between smooth stacks of the same dimension
over S. Since Cp+1,no+1 — S is representable over the dense open substack where Zy — S
is representable, 50 is Cyy 4 1.mp41 — Y X5 Picd(E). Since Y x g Pick(E) — S has irreducible
fibres, (6.3.11) is therefore surjective, so by Lemma 6.3.15 below, it is an isomorphism as

claimed. 0
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Lemma 6.3.15. Let X and X' be stacks that are smooth and of the same dimension over
S, and let f: X — X' be a smooth surjective proper morphism with connected fibres and
finite relative stabilisers. Assume that there exists some open set U C X that is dense in

every fibre of X — S such that f|y is representable. Then f is an isomorphism.

Proof. First note that f|y: U — X’ is étale and representable with connected fibres, and
hence an open immersion. Moreover, the morphism X x x» X — X is smooth with connected
fibres, so the preimage of U under either projection is dense. So the diagonal X — X x x/ X,
which is finite by assumption, is an isomorphism over the dense open subset U, and hence
surjective. Since X x x X is smooth over S, and hence normal, it follows that X — X x x/ X
is an isomorphism. Since f is smooth and surjective, by flat descent it follows that f: X —

X' is also an isomorphism as claimed. O
Proposition 6.3.16. The stack D1 is isomorphic to a line bundle over
Clingt1 2 Y x5 Picd(E).

Proof. Propositions 6.3.8, 6.3.10 and Lemma 6.3.14 together imply that C} p,+1 = D1 Xz
Zy is a Cartier divisor on D;. Moreover, choosing any cocharacter of the torus Z(L),,
whose negative is a Harder-Narasimhan vector for the parabolic P opposite to P, we get
compatible actions of G,, on Z and D; acting trivially on Zy and Dy Xz Zy, such that G,,
acts on the fibres of the affine space bundle Z — Zy with positive weights. Since the normal
cone of Dy Xz Zy in D is a line bundle and G, acts nontrivially on it, G,, acts on it with

a single nonzero weight. So the proposition follows from Lemma 5.4.14. O

Proposition 6.3.17. For 1 < k < ng, the natural morphism D1 — Dy s the blowup
along My,.

Proof. Propositions 6.3.8 and 6.3.10, and Lemmas 6.3.14 and 6.3.12 imply that Dyy1 — Dy
is a projective birational morphism between smooth stacks of relative dimension 2 over Y
that is an isomorphism outside the section Y = M}y C Dy, such that the fibres of D11 — Dy
over points in My, are irreducible curves. Moreover, Proposition 6.3.16 implies that D; — Y
is representable, and hence so is Dy — Y. So by Lemma 6.3.18 below, Dy11 — Dy, is the
blowup along M}, as claimed. O

Lemma 6.3.18. Let U be a reqular stack, let X — U and X' — U be smooth representable
morphisms of relative dimension 2, and let f: X — X' be a projective morphism over U.
Suppose that there exists a section g: U — X' such that f~1(X'\ g(U)) — X'\ g(U) is an
isomorphism, and such that every fibre of f over a point in g(U) is an irreducible curve.
Then f is the blowup of X' along g(U).

Proof. Since the claim is local in the smooth topology on U and in the étale topology on
X', we can reduce to the case where X’ — U is a smooth morphism of schemes with U
connected and regular.

First note that the underlying reduced scheme D of the exceptional locus f~1(g(U)) is an
integral closed subscheme of codimension 1 in a regular scheme, and hence a Cartier divisor.
Since X and X’ are smooth over U and f is an isomorphism outside D, we therefore have
Kxu = f*Kx/jy(nD) for some n > 0. If k is any field and u: Speck — U is a k-point, we
have D|x, = m,C, for some m, > 0, where C,, C X, is the irreducible curve contracted

under f, and hence, by adjunction

—2 < deg K¢, = (myn + 1)C2.
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Since C2 < 0, we deduce that m, = n = 1, C2 = —1, deg K¢, = —2, and hence that C,
is a smooth rational curve. In particular, by Castelnuovo’s theorem, f,: X, — X/, is the
blowup at g(u).

We next prove the claim in the case where U = Spec R for some discrete valuation ring
R. If n: Spec K — U is the generic point and u: Speck — U the closed point, we have
shown that on the open generic fibre, f,: X, — X{7 is the blowup along g(n), and hence we

get an isomorphism
he X\ fHg(w) == X'\ 7 H(g(u))

over X', where 7: X’ — X’ is the blowup of X’ along g(U). Since f is projective and
is an isomorphism outside D, it follows that either D or —D is f-ample. Since D -C, =
(C2)x, = —1, it follows that —D is f-ample. But h is an isomorphism in codimension 1
between regular schemes projective over X', h(D\ f~1(g(u))) = 7= *(g(U)) \ 7~ 1(g(u)), and
—m71(g(U)) is f-ample, so

X 5 Projx, @ f.0(—dD) = Projx, @ m.0(—dr ' (9(U))) <— X',
d>0 d>0

which proves that X is the blowup as claimed.

Now consider a general connected regular U, let m: X’ — X’ be the blowup along g(U)
as before, and let X C X xx/ X’ be the closure of X'\ g(U). We claim that X — X
is an isomorphism. To see this, it suffices to show that X = Xis quasi-finite, since it
is proper and birational and X is normal. If not, then there exists a curve C in X, for
some u: Speck — U, say with k algebraically closed, that is contracted under the map
to X. Since X, = X/ over X/, it follows that C' cannot be contained in the closure of
X’ \ g(u). Choose some k-point z: Speck — C,, that does not lie in this closure. Since C'
is in the closure of X'\ g(U), we can find a discrete valuation ring R with residue field k
and a morphism Spec R — X x x» X’ sending the closed point to z and the generic point
to X'\ g(U). Pulling everything back along Spec R — U, we deduce that there is a point
in the closure of X \ g(U)r in Xp xx/, X/, over the closed point of Spec R that is not in
the closure of X7 \ g(u). But since we have shown that Xp = X}, above, the closure of
X1\ g(U)g is isomorphic to Xg, so this is a contradiction. So we must have X = X as
claimed.

So the morphism f: X — X' factors through a morphism X — X’. But since this map
is an isomorphism on every fibre over U, it is therefore an isomorphism globally, and we are
done. O

Proof of Theorem 6.1.9, (3) and (4). To prove (3), apply Propositions 6.3.11, 6.3.16 and
6.3.17. To prove (4), observe that the proper transform of the zero section is the closure of
the locus of stable maps with dual graph

and is hence equal to the intersection with DaJv (Z) by Propositions 3.4.13 and 3.4.16. The
map to Pic%(E) is given as in the statement of the theorem by Remark 6.3.9. O

6.4 Computing the divisor DaieraJv (Z)

In this section, we complete the proof of Theorem 6.1.9 by computing the divisor Day+ay (2).
We will assume for this section that the hypotheses of Theorem 6.1.9 are satisfied.
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In the following proposition, for A € X, (T")+, we write
Mdh(G/B,)\) = M071(G/B,)\) XG/B SpecZ

for the stack of 1-pointed genus 0 stable maps of degree A sending the marked point to the
base point B/B € G/B.

Proposition 6.4.1. Lety: Speck — Y be a geometric point. Then there is an isomorphism
Daera;/ (Z)y = ]\4&1(6'/37 Oz;/ + Ct}/)k.

Proof. Since Lemma 6.3.2 implies that all stable X*(7") @ Z-graphs 7 admitting contractions
T = TgiVJraJV with Mz (§q/z(c) xG/Z(G) G /B, 1) # 0 have a unique such contraction, the
gluing map

Mz (¢ayz(c) X979 G/B, Tgy+ajv) — Daytay(Z) (6.4.1)

is an isomorphism by Corollary 3.2.21 and Proposition 3.4.13, where {q/7(q) — Z Xs E is
the G/Z(G)-bundle classified by Z — Bung,,iy — Bung,z(e). Moreover, every fibre of the

morphism

Mz (€6 z(q) x /%) G/B, 73w 1av) — Minz(Sc/z6) <92 G/B, (- — o), 1))
(6.4.2)
over a k-point is isomorphic to My, (G/B, oy + ) )k. But by the isomorphism (6.4.1) and
Lemma 6.4.2 below, we can identify (6.4.2) with the morphism Daytay (Z) = Y, so the

result now follows. O

Lemma 6.4.2. The morphism

M z(Eayze) X2 D G/B, (—a) —a),1)) — Y74 "% xg B — Y (6.4.3)

v \%

is an isomorphism, where the first morphism is the usual (blow down) map to Y~ on

the first factor and the map evaluating at the marked point and projecting to E on the second

factor, and the second morphism is (6.3.1).

Proof. Using Proposition 3.4.10 and the fact that each of the evalation maps My 3(G/B,0) —

G/B is an isomorphism, we deduce that the canonical morphism

Mz, (¢cyz(c) x99 G/B, 1) — My 2,(¢c/z6) X7 D G/B, (o) — af 1))

7
is an isomorphism, where 7 is the X*(T") @ Z-graph below.

o) Q::/

\ 4
T T

But Mz(¢q)z @) x G/2(G) G/B,T) is equal to the intersection of the proper transform of
Crot1mor1 =Y xsPicd(E) C D, 41 with the exceptional divisor of the blowup Doy (Z) —
Dy +1, and therefore maps isomorphically to ¥ under Dajy (Z) — Y. Since this map to Y
agrees with the one in the statement of the lemma by Proposition 3.5.5, this completes the

proof. O
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Proposition 6.4.3. Let d = —(aj,a) — 1. Then there is an isomorphism
Mg (G/B, o +aj) =Fq_
such that the closure of the locus of stable maps with dual graph

o—o—

Vv \"2
a; o

is a fibre of Fq_1 — P, and the closure of the locus of stable maps with dual graph

is a section P! — Fy_1 with self-intersection 1 — d.

An important role in the proof of Proposition 6.4.3 is played by the Schubert varieties in
G/B. Given w € W, recall that the Schubert variety associated to w is the closed subvariety

X, = BwB/B C G/B.
In what follows, we write Q;,Q; € G for the standard minimal parabolics of types t(Q;) =
A\ {a;} and ¢(Q;) = A\ {a;}.
Lemma 6.4.4. There are isomorphisms
Xois; EFa,  (resp. X5, 2F1 )

such that X, is identified with a fibre of Fq — P! (resp., the unique section P — Ty of self-
intersection —1) and Xg, is identified with the unique section Pt — Fy of self-intersection
—d (resp., a fibre of Fy — P1).

Proof. We prove the claim for X, ; the proof for X, ,, is identical after noting that

(i, o) = —1.

There is an isomorphism
SLo wBsLyspay Qj/B =Q; «B Qj/B AN Xsisj,

given by multiplication, where Bgr, C SLg is the Borel subgroup of lower triangular
matrices, and pq,: SLy — G is the root homomorphism corresponding to a;. We also
have an isomorphism of @;-varieties Q;/B = P(VV), where V is the Q;-representation

V= Ind% (Z,), and an exact sequence
0 —Zg;—a; —V —2Zg, —0

of B-representations, which splits uniquely as an exact sequence of Bgr,-representations.

So we have
X5y = SLax Ps0P(VY) = Ppi (O(—(w;, o) ))BO(—(wmj—ay, ;') = Ppr (080(—d))) = Fa.

The identifications of X, = Q;/B and X, = Q;/B under this isomorphism follow imme-
diately. 0

Lemma 6.4.5. The partial Schubert variety X, /Qi = Bs;s;Q:/Qs € G/Q; is isomorphic

to the projective cone @}1 on P! of degree d, and the morphism
Xois; — X,/ Qi (6.4.4)

is the blowup of X5, /Q; at the origin Q;/Q;.
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Proof. First note that the morphisms Bs;s;B/B — Bs;s;Q;/Q; and BsjB/B — Bs;Q;/Q;
are isomorphisms. So (6.4.4) is birational and finite outside @;/Q;, and hence an isomor-
phism outside Q;/Q; since partial Schubert varieties are always normal. Since the preimage
of Q;/Q; under (6.4.4) is Q;/B = X,,, using normality of X ,,/Q; and of ]IAD}l (note that
d < 3), we can conclude from Lemma 6.4.4 that (6.4.4) can be identified with the morphism

Fdﬁﬁbé

contracting the curve of self-intersection —d. But this is indeed the blowup at the cone

point, so we are done. O
Lemma 6.4.6. There is a Q;-equivariant isomorphism
M1 (Xs,s,/Qis ) = Qi/ B = P,
identifying the universal stable map with
Qi xP Q;/B — Xy5; — Xy, / Qi (6.4.5)

Proof. Assume that U is a scheme and (f: C' — X,,,,/Qi,x: U — C) is a 1-pointed stable
\

map over U of degree a; sending x to the base point. We need to show that there is a
unique morphism U — Q;/B such that (f,x) is the pullback of (6.4.5) and the canonical
section Q;/B = Q; x® B/B — Q; xB Q;/B.

We first claim that C' — U is smooth and that every geometric fibre of f~1(Q;/Q;) — U
is a reduced point. Since f~1(Q;/Q:) — U has a section z, it then follows that it is an
isomorphism.

To prove the claim, fix a geometric point w: Speck — U, and consider the stable map
Ju: Cu = (Xs,s,/Qi)x. Since a}/ is not the sum of two nonzero effective curve classes, it
follows that C,, is irreducible, hence smooth over Speck, and hence that f;1(Q;/Q;) is a
Cartier divisor on C,. So by Lemmas 6.4.4 and 6.4.5, f, lifts to a morphism f,: C, —
(Xs;s;)k = (Fq) such that C - X, > 0 and Cy - (dXs, + X;;) = 1. Since d > 0, it follows
that Cy - X;, = 1 and Cy - X,; = 0. In particular, f7HQi/Q:) = Cy N Xy, is a reduced
closed point on C,,, so f, 1(Q;/Q;) = Speck as claimed.

Since f~1(Q;/Q;) C C is a section of the smooth curve C — U, it is a Cartier divisor, so
by Lemma 6.4.5, f lifts uniquely to a morphism f: C' — Xs;s;- Since the above argument
shows that the composition f: C' — Xeis; = Qi xB Qj/B — Q;/B has degree 0 on every
fibre, this descends to a unique morphism U — @;/B. The induced morphism

C — U xq,/5 Qi x® Q;/B) (6.4.6)

has degree 1 on every fibre and is therefore an isomorphism. Since (6.4.6) sends the section
x to the section Q;/B — @Q; x? Q;/B (as both are the preimage of Q;/Q; C Xs,,/Q:), this

proves the lemma. O
Proof of Proposition 6.4.3. For the sake of brevity, write
M = My, (G/B, o) +af).

We first claim that M is connected. To see this, observe that B acts on M, that any B-fixed
point corresponds to a stable map factoring through X,, U X, € G/B, and that there is a
unique such pointed stable map of class o + a;-/ defined over k for any algebraically closed
field k. Since every connected component of M must have at least one B-fixed point over

every algebraically closed field, connectedness of M follows immediately.
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We now compute the closed subscheme
M’ = My (Xg,s;8, 00 +a) S M

consisting of stable maps factoring through the Schubert variety X, s, We will show that
M’ =2 T, is smooth and projective of relative dimension 2 over Spec Z, from which it follows
from connectedness of M and Proposition 3.4.9 that M’ = M.

Since Xy,s,s,/Qi = Xs,5,/Qi, by Lemma 6.4.6 we have a morphism

M — Mg:l(XsiSj/Qi7a;/) = QZ/B =Pt

sending a stable map to the stabilisation of its composition with G/B — G/Q;. The pullback

of the universal domain curve of Mgfl(Xsisj /Qi, a]V) along Xy .5, — Xs,5,/Qi is

Xoissi Xxop0,/Q0 (Qi xP Q/B) = G/B xcq, (Qi x¥ Q;/B),

which is identified with the Bott-Samelson variety X sisjs; via

Xsisj'si == Qz XB Qj XB QZ/B % G/B XG/Qi (QZ XB QJ/B)
(91,92, 93B) — (9192938, (91, 92 B)).

So we can identify M’ with the relative space of stable maps

M MJLQi/B(Xsisjsw%v + o),

where M&rl,Qi/B (Xss;8:, @ +af) is the fibre product
M(?:l,Qi/B(XSiSjSNO[;/ +af) — Qi/B

J s

\ \%
MO,l,Qi/B(XsiSjsivai +aj) —— XSiSjSm

Here o is the section defined by Q;/B = m~1(B/B) — )N(sisjsi, for m: )N(sisjsi — G/B the
natural morphism given by multiplication. By Proposition 3.1.13, we therefore have a fibre

product
M —— Q,;/B

|k

C XSiSjSi?

where C'is the universal domain curve over My g, /p(Xs;s;s;5 0 + ).

By Lemma 6.4.4, every fibre of Xsisjsj — Q;/B is isomorphic to F; = Xejs: = Qj x B
Qi/B, and af + of is the class X, + X, of the (—1)-curve plus a fibre of F; — P'.
Unpointed stable maps of class o +onV are the same things as closed subschemes with ideal

sheaf O(—X,, — Xs;) = m*L_,. So we can identify My q,/5(Xs;s;s,, @ + ) with the
Hilbert scheme Pg, /p(m.m*L,) and M’ with the closed subscheme

M' =Pg, /plkermym Ly, = 0"m*Le,),

where 7: Xsisjsi — @Q;/B is the natural projection.
It therefore remains to identify the vector bundle m.m*L,, on Q;/B = P! and the

morphism m.m*L,, — c"m*Ly, = O. It is clear from the identification Xsisjsi =

148



Qi xP Q; xP Q;/B that m,m*L, is the Q;-linearised vector bundle associated to the
B-representation
V = nd% md@Z,,.

The representation V' has rank 3, with weights w;, @; — o; and w@w; — o; — a5, and restricting
V to a Bgr,-representation via the root homomorphism p,,: SLs — @; C G, we have

V=U® Z(wifaifawa;/) =U® Zd—la

where U is the standard representation of SLo and Zg_; is the rank 1 Bgr,-module of weight
d—1. So we get
T Lo, =U @ Op1 ® O(d — 1).

Since d > 0, the kernel of
T Lo, =00000d—-1) — O =0"m"L,

must be isomorphic to O ® O(d — 1), which gives the desired isomorphism M = M’ 2 F,_;.
Finally, to identify the loci of stable maps with given dual graphs in the statement of
the proposition, notice that Proposition 3.4.10 implies that each closure is isomorphic to P*,

and that the closure of curves with dual graph

o——o0—
A\

\4
a; o

is contracted under the map to MJI(G/Q“@}/), and is hence a fibre of Fy_; — P! as

claimed. Moreover, the canonical section of Fy_; of degree 1 — d is the subscheme
Py, s(ker mym* Lo, = w,(0")*m* L) C Pg, /plker mom* Lo, — 0*m*Lg,) = M,

where o’ is the morphism Q; x?Q;/B = Q;x?BxPQ;/B — )N(sisjsi and : Q; x2Q;/B —
Q;/B is the natural projection onto the first factor. But this parametrises curves of class
o 4« containing some curve of class ), so this must be the closure of the locus of curves

with dual graph

as claimed. O

Proof of Theorem 6.1.9 (1), (2), (5) and (6). First note that (2), (5) and (6) follow imme-
diately from Propositions 6.4.1 and 6.4.3.

To prove (1), by Corollary 4.5.9 and Lemma 6.3.2, the only thing left to show is
that D,y (2), Dajv(Z) and Daiv_mjv(Z) are connected. We have shown that DQJV(Z) and
Doy tay (Z) are both connected, and that the union of their intersections with D,y (Z) is
connected. Since the normal crossings divisor D(Z) = 5(21(0@;1) is connected by Corollary

5.5.9, this implies that D,y (Z) must also be connected, so we are done. O

6.5 Constructing slices

In this section, we give the proof of Theorem 6.1.5. The proof we give here is somewhat ad
hoc, and relies on directly understanding the structure of the Levi subgroup L in each case.

We first give the construction in type A.
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Proof of Theorem 6.1.5 in type A. First note that since d = 1 in this case, the pg = p1-
gerbe &“" must be the trivial one, so we need to construct a slice without passing to a
smooth cover.

Proposition 5.3.1 gives an identification L = GL; X GL;_; so that the characters w; and
wit1 € X*(L) are identified with the determinants of the first and second factors respectively.

(Explicitly, the isomorphism is given by

GL,L' X GLl_,L' L} L - SLl+1

A 0 0
(A,B)— | 0 (detA)~ldetB 0 )
0 0 v(BY) "yt

where v € S;_; is the matrix of the permutation of {1,...,1 — i} sending j tol —i—j+1.)
Theorem 5.3.5 and Proposition 5.3.4 therefore imply that the morphism

(@i, @is1): Bunyl — Picg ' (E) x g Picg' (E)

is a trivial Z(L);s-gerbe. Note that in particular, all semistable L-bundles of slope p are
regular in this case.

By Proposition 5.2.13, the pullback of © to Bunj’} has Z(L),-weight (—u|—) €
X*(Z(L)rig). Since the corresponding homomorphism X*(Z(L),i4) — Z is surjective, it
follows that there exists a section

Picg!(E) xs Picg' (E) — Bunj™

such that the pullback of ©pung,,.,, is trivial. Since such a section is necessarily smooth,

composing it with any choice of section of
Picg'(E) x5 Picg' (E) — Picg'(E) xg Picg'(F)/E = E

gives a ©-trivial slice Zop — Bun7’; with Zg = F, such that Zy — Bun}’} /F is surjective
with fibres isomorphic to Z(L),;4, hence connected. So (1), (2) and (3) are satisfied. A simple
root-theoretic calculation shows that —(2p, ) =142, so (4) follows from Proposition 5.2.8.

So this proves the theorem in this case. O
The construction in the exceptional types E, F and G is also fairly straightforward.

Proof of Theorem 6.1.5 in types E, F' and G. In these cases, Theorem 5.3.5 shows that the
morphism

@;: Buny" — Picg' (E) (6.5.1)
is a G, = Z(L)rig-gerbe. Let Zy = S, and let & be the Z(L),;4-gerbe given by the
pullback along O(—Og): Zy — Picgl(E). By Proposition 5.2.13, the pullback of the theta
bundle defines a BZ(L),;4-equivariant morphism &’ — BG,,,, where BZ(L),;, acts on BG,,
through the homomorphism —(p|—): Z(L),ijy — G,,. So a section of &’ such that the
pullback of Opun,, ,,, is trivial is the same thing as a section of the g = ker(u| —)-gerbe
® = &' xpg,, SpecZ. The ug-gerbe is by construction pulled back from one &% on M 1,

S8,
L,rig

the section O(—Opg): Zo — Picg'(E) such that the pullback of Opun, ., is trivial.
It is immediately clear that (1) is satisfied. Letting (Bun7’/; )o be the fibre of (6.5.1)

rig

over O(—=Og): S — Picg'(E), we have that (Buny’ti )o = Buny™Y /E is a Z(L),i4-gerbe

defined in the same way, and if it is trivial then there is a morphism Zy — Bun lifting

over S = Zy and the map Zy — Bunj’; /E is a section. In particular, it is smooth with
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connected fibres, so (2) is satisfied, and surjective, so (3) is also satisfied. Finally, to prove
(4), simply note that Proposition 5.2.8 and a simple root-theoretic calculation shows that
Z =Ind¥(Zy) — Zy = S is an affine space bundle of relative dimension [ + 3. O

The construction of the slice Zy for (G, P, u) of types B, C' and D is somewhat more
complicated, and involves parabolic induction from a smaller Levi L’ C L. To prove that
this construction works, we will need to describe the Levi subgroup L in some detail. For
future reference, we do this now in all types.

Assume first that we are in types C, D, F or F. Then the connected component c;
containing a; of the Dynkin diagram with the edge joining a; and «; deleted is of type A,
and we can choose a labelling a, 1, ..., @, n, such that a., , is adjacent to ae, p+1 for each

p and «; is either ag, ,, (in types C and F') or ac, n,—1 (in types D and E).

Lemma 6.5.1. In the setup above, there is an isomorphism
L={(A,B) € GL,, x GL,, 11 | det B = (det A)?},

such that w; is identified with the character (A, B) — det A and L N B is the preimage of
the Borel subgroup Qp9 X Qﬁﬂ C GL,, x GLy,+1. Moreover, the induced map

X*(Qmi1) — X(LNB) =X"(T)

is gwen in types D and E by

W1,cq Zf k= ]_,
Wk,cy — Wk—1,c1 if 1<k<n,
e — .
Wny,er = Wni—1,c1 + @, Zf k= ni,
—TWny,c; + Wi, if k=mny+1,
and in types C' and F by
Wi,e1 Zf k= 17

€k = § Whye, — Wh—1,e; o 1 <k <nq,

7wn1761 —+ 2@1‘, Zf k’ =nN1 + 1.

Proof. Apply Proposition 5.3.1; the expressions for X* (QZiﬂ) — X*(T) follow by examining

the specific isomorphism given in the proof. O
In type G, the Levi L has a similarly simple form.
Lemma 6.5.2. Assume that (G, P, ) is of type G. Then there is an isomorphism
L5 {(\A) €G,, x GLy | det A = )3} (6.5.2)

such that wy is identified with the character (A, A) — X\ and L N B is the preimage of the
Borel subgroup G, x Q3 C G,, x GLy. Moreover, the induced morphism

X*(Q3) — X*(LN B) = X*(T)
sends the characters ey and ey to wo and 3wy — wsy respectively.

Proof. Apply Proposition 5.3.1 again and inspect the explicit isomorphism given in the proof
to compute X*(Q3) — X*(T)). O
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The case of type B is somewhat more complicated, as the Levi subgroup L is not of type

A. In what follows, we let

GSpy = {B € GL, | B'JB = x(B)J for some x(B) € G,,},

where
0 0 0 1
g 0 0 1 0
0 -1 0 0
-1 0 0 O

Note that G'Spy is a reductive group with weight lattice X*(GSpsNQ}) = @::1 Zfi])Z(f1—
fa—f3+f4), where fy is the character sending a matrix to its kth diagonal entry, simple roots

B1 = fo— f3 and B2 = f1 — fo, and simple coroots 8Y = f5 — f5 and 8y = ff — f5+fi — fi.
In this description, x is the character x = f1 + f4 = fo + f3.

Lemma 6.5.3. If (G, P, u) is of type B, then there is an isomorphism
L =5 {(A,B) € GL;_3 x GSpy | det(A) = x(B)},

such that w; = wj_o is identified with the character (A, B) — det(A) = x(B) and LN B s
the preimage of the Borel subgroup Q;j x (GSpy N Q%) € GLi_o x GSpy. Moreover, the
induced morphism

4
X*(GSpanQY) = P Zfr — X (LN B) = X*(T)
k=1

sends f1, fo, f3 and f4 to w;, w1 — wy, wi_o — w;_1 + w; and w;_o — w; respectively.

Proof. We describe the isomorphism at the level of root data.
Write

Lo = {(A,B) e GLj_4 % GSp4 | det(A) = X(B)} CGL;_5 x G5p4.
The root datum (M, ¥, MV UV) of Lg is specified as follows. The weight lattice is

D Ze; oD, Lf,
(fi—fo—fatfofitfi-0e)

and the coweight lattice is therefore

M =

)

I—

-2 4
MY = e @zef o PLS; | (it fuX) =+ fs,0 =D (e N)
i=1 j=1

1

[ V)

3

The roots ¥ and coroots ¥V and the bijection ¥ — ¥V are determined by requiring that

{(vil1<i<lii#l-2}

be a set of simple roots, where

e —eiyr, ifi<l—2, ef — ek, ifi<il—2,
V=9 fo—f3, ifi=1-1, and 3 =1 fr— fi, ifi=1-1,
fi—f2,  ifi=l, =+ fr—fr ifi=1
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There is an isomorphism

l
¢: Xu(T) = P Zay = MY
i=1
sending o) to 7, fori # 1—2, and o), to ef_,+ f5+ f5, such that the dual ¢*: M — X*(T')
sends S; to «; for i #1—2. So ¢ defines an isomorphism of root data, which has the desired

properties by inspection. O

In view of Lemma 6.5.3, it will be useful to have a description of G Spys-bundles in terms

of vector bundles.

Definition 6.5.4. A conformally symplectic vector bundle is a tuple (W, M,w), where W
is a vector bundle, M is a line bundle, and w: A? W — M is a morphism such that the
induced morphism W — WY ® M is an isomorphism.

Lemma 6.5.5. There is an isomorphism of Bungsy, with the relative stack of conformally
symplectic vector bundles (W, M,w) on E over S, which identifies x: Bungs,, — Bung,,
with the map (W, M,w) — M.

Proof. Let V be the standard representation of GSps coming from the inclusion GSpy C
GL4. Then J defines a homomorphism of GSpy-representations J: A?V — Z,. The
isomorphism from Bunggy, to the stack of conformally symplectic vector bundles sends a
GSpy-bundle € to (€ xG5P+ V& xG5Pa 7, & xG5P4 J), O

Returning to the problem of constructing slices in types B, C and D, let P’ C L be the
standard parabolic of type t(P') = {«y}, and L' C P’ its standard Levi subgroup. In types
C and D, let pr: L — GL,, 1 be the composition of the isomorphism of Lemma 6.5.1 with
the projection to the second factor (where for concreteness we choose the labelling so that
O¢y ny = ), and in type B let pr: L — GL4 be the composition of the isomorphism of
Lemma 6.5.3 with the projection to the second factor and the inclusion GSpy C GLy4.

Lemma 6.5.6. Assume we are in types B, C or D. Then there is an isomorphism of Bunp:
with the stack of pairs (£, M C W), where &, € Buny, and M C W is a line subbundle of

the vector bundle W associated to &1, under the representation pr, such that the morphism

w;: Bunp: — Bung

m

1s identified with the morphism

w; (&) @ M~ in types B and D,

&L, M CW)+r—
@i (€)®2 @ MY, in type C.

In types C and D (resp., type B), if Epr corresponds to (§p, M C W) and V is the vector
bundle induced by &, under the projection L — GL,, coming from Lemma 6.5.1 (resp.,
6.5.8), then the L'-bundle p/ xP" L is semistable if and only if the vector bundles V and
W/M (resp., ker(w: W/M — det V @ MY)) are semistable.

Proof. In types C and D this is clear from Lemma 6.5.1. In type B, using Lemma 6.5.3 we
have an L-equivariant identification L/P’ = GSps/(GSps N Ry) = GL4/ Ry = P* with the

space of lines in the representation py, where we recall that

*
*
*
=)

*
*
*

0
Ry = C GLy.



The claimed isomorphism in this case now follows. To get the desired identification of the
semistable bundles, notice that the Levi factor of GSps N Ry is

A7ldetA [0 00
0 0
0 A 0 A€ GLy, A€ Gy, p 2GLy x Gy,
0 0 01X

so we have an isomorphism

Buny, = BUHGLno X Bung,, Bungr, Xs Bung

m?

such that the map Bunp: — Buny- is identified with
(€L, M C W) — (V,ker(W/M — detV @ M), M).
This now implies the claim. O

Lemma 6.5.7. Let (G, P, ) be of type B, C or D, and assume that &1, — Es is a semistable
L-bundle of slope p over a geometric fibre of E — S. Then dim Aut(&) > 2.

Proof. By Lemmas 6.5.1, 6.5.3 and 6.5.5 and Theorem 5.3.2, it suffices to show that if W
is a semistable vector bundle of degree —2 and rank 2r (resp., (W, M,w) is a conformally
symplectic vector bundle with W semistable and deg M = —1), then dim Aut(W) > 2 (resp.,
dim Auwt(W, M, w) > 2).

In the first case, observe that if U and U’ are nonisomorphic semistable vector bundles of
degree —1 and rank r, then U® (U’)" is a vector bundle of degree 0 with HY(E,U® (U')V) =
0, and hence H(E,U ® (U')Y) = 0 also. It follows that the morphism

ss,—1 ss,—1 s8,—2
BunGLT X BunGLT —>BunGL2T

U,U)— Ua U

is étale at (U,U’) if U % U’. Since the locus of vector bundles W in Bunscfi;d2 with
dim Aut(W) < 2 is open, it is either empty or dense. So by openness of étale mor-
phisms, if it is nonempty, then there exists such a bundle W = U & U’ with U % U’.
But Aut(W) = Auwt(U) x Aut(U’) = G, X G, for such bundles, so this is a contradiction
and we are done in this case.

The proof for conformally symplectic bundles is similar. Consider the Levi subgroup

GLyx G, = 17 = ) [ AoA) o | o
" 0 Y

0 1
Jo = :

Given (U, M) € Bungs’L;l X5 Bunaﬂ corresponding to an L”-bundle &7, with U 2 UV @ M,

we have that

AeGLQ,)\eGm},

where

Epn x gep, V' CUY @ (UY @ M)oU® (UY @ M)Y

is a degree 0 vector bundle on E, with HO(E, &1 x =" gsp,/I") = 0 and hence H* (E, £pn x ="
gsp, /") = 0 also, where gsp, = Lie(GSp4) and " = Lie(L"”). So we conclude that the mor-
phism

Buny — Bun(_;};p4

154



is étale at (U, M).

Since the locus of conformally symplectic vector bundles (W, M,w) in Bunifé;i with
automorphism group of dimension < 1 is open, it is either empty or dense. If it is nonempty,
then by openness of étale morphisms we can find such a bundle of the form W = UoUY @ M
as above. But dim Autggp, (W) = dim Aut(U) x dim Aut(M) = 2, so this is a contradiction

and the lemma is proved. O

Proof of Theorem 6.1.5 in types B, C and D. Let ' € X,(Z(L'))p be the unique vector
with (o, ') = —1 and {(w;, ') = 0. Then Theorem 5.3.5 shows that the morphism

(@i, @1): Bunj", — Picg'(E) x5 Pic}(E)

is a Z(L')ig-gerbe. Let & be the Z(L'),;4-gerbe on S given by pulling back along the
section
(O(~0g),0): S — Picg' (E) x5 Pic}(E).

The pullback of the theta bundle gives a BZ(L’),;4-equivariant morphism &” — BG,,
where BZ(L'),;, acts through the homomorphism (—p'|—), so we get a ker(y'|—)-gerbe
&' = 6" xpg,, SpecZ. Let & be the rigidification of &’ with respect to @,’(G,,). Then & is
aker(y' | —)/@) (Gy,) & pg-gerbe, pulled back from a gerbe " on M 1, and if it is trivial
then we have a BG,,-equivariant morphism BgG,, — Buni‘f’f:; ’ (with BG,, acting through
w)’) lifting the section (O(—Og), O) such that the pullback of the theta bundle is trivial.
Define

ZO = Indé/(ESGm) \]BSGm — Buni,rig’

and observe that the pullback of ©pun, ., to Zo is also trivial since Zy — BsG,y, is an affine
space bundle.

Type | o € ®p, with (o, 1) <0 | (o, ) | (@, w))
-y —% -1
B -1 — o -3 -1
-1 — 20y —1 -2
c —oy -2 -1
—q —% -1
D —Qp_g — o -2 -1
—Qpg — 1 — Oy —3 -1

Table 6.2: Roots of L with {(«, p') <0

We now check that Zj satisfies the conditions of Theorem 6.1.5. Since the claims are

local on S, we can assume for convenience that the section BsG,, — Bunj ", . lifts to a

morphism S — Bunj " " and that the line bundle on E associated to this section via the

character wo; is trivial. Note that in this case, we have a natural identification
Zp =2 (Ind},(S) \ S)/Gp.

First, the roots a € & with (a, ') < 0 are given in Table 6.2, along with the values
of (v, i’y and (@, w)’). Using Propositions 5.2.6 and 5.2.7, it follows that Ind%,(S) — S is
an A2-bundle on which G,, acts with weight 1 in types C' and D, and weights 1 and 2 in
type B. So Zy — S is a P(1,2)-bundle in type B and a P!-bundle in types C and D. In

particular, (1) is satisfied.
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We next show that Zg — Bunf ,,  factors through Bunj’; . Note that Table 6.2 shows
S.

1
that —p’ is a Harder-Narasimhan vector for P’ C L, so IndL,(S) =Bun ¥, X e
’ L P’rig BunL,”.
,Ttg

So Lemma 6.5.6 shows that &7, is in the image of Ind¥,(S) if and only if V is semistable of
determinant O(—Op) and there exists a nonvanishing section of W ® O(dOg) such that the
vector bundle

W/O(—dOg), in types C' and D,

ker(W/O(—(dOg) — O), in type B,

is semistable. Here V and W are as in the statement of Lemma 6.5.6, and

1, in types B and D,
2

d:
, in type C

is as in the statement of the theorem. The bundle £, is in the image of Ind¥,(S) \ S if and
only if O(—dOpg) — W can be chosen not to admit a retraction. Suppose that £, is such a
bundle and that &, is unstable; we deduce a contradiction in each type.

In type B, W is an unstable conformally symplectic vector bundle of rank 4 and degree
—2, so there exists a quotient W — N where N has slope < —1/2. Replacing N with
coker(NY ® O(—Og) — W) if necessary, we can assume that N has rank < 2. Since any
vector bundle of rank 2 and slope < —1/2 surjects onto some line bundle of negative degree,
we can therefore assume without loss of generality that N is a line bundle. Examining
slopes, we see from semistability of U that W — N does not factor through W/O(—0Og),
and hence that O(—Opg) — N is nonzero. So O(—Og) — N must be an isomorphism since
deg N < deg O(—Opg), and we therefore have a retraction W — O(—Opg) = N. Since this is
a contradiction, we are done in this case.

In type C, W is an unstable vector bundle of rank 2 and degree —2, so there exists a
quotient W — N where N is a a line bundle of degree < —1. Examining slopes, we see that
W — N does not factor through W/O(—20g) and hence that O(—20g) — N is nonzero.
So O(—20g) — N must be an isomorphism since deg N < deg O(—20g), and we therefore
have a retraction W — O(—20p) = N. Since this is a contradiction, we are done in this
case as well.

Finally, in type D, W is an unstable vector bundle of rank 4 and degree —2, so there
exists a quotient W — N where N is a semistable vector bundle of slope < —1/2. Examining
slopes and using semistability of W/O(—Og) and of N, we see that W — N does not factor
through W/O(—0Opg) and we again get a retraction W — N =2 O(—Opg). So we have shown
that &7, must be semistable in all cases.

We next show that the morphism Zy — Bun’ /E is smooth with connected fibres,
which proves (2) and that Zo — Bunj’/ is a ©-trivial slice. Write (Bunj™")o for the fibre
of w;: Bun}>* — Picg' (E) over O(—Og) and (Bun’f;,)gs = Bun’;,/, XBunt (Bunj™)o. Then

Lemma 6.5.6 gives an open immersion

(Bun’f;,)gs Q ]P)(BHDSLS‘M)O’R'*(Wuni & O(dOE)),
where we write W¥" for the universal bundle on (Bunj™*)¢ x s E induced by the represen-

tation pr, of L and 7: (Bun}™")g xs E — (Bunj™"), for the natural projection. Moreover,

’

Zy X(Bunfﬁg)o (BunSLS’“)O — (Bun‘lﬁ,,)gs

is a Gy, = Z(L)yig/w)’ (G, )-torsor over the open substack where the associated L’-bundle is

semistable. This shows in particular that Zo X gunss y, (Bunz™*)o — (Bunj™")o is smooth
,Tig
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with connected fibres of dimension 2, and hence that the same is true for Zy — (Bunj”! g)o =
Bunj™; /E as claimed.
To prove (3), first observe that since Zy — S has finite relative stabilisers, any L-bundle

in the image of Zy — (Bunj™2 )o C Bunj™ can have automorphism group of dimension

L,rig L,rig
at most 2, and is hence regular by Lemma 6.5.7. For the converse, note that since every
regular semistable L-bundle is a translate of one in (Bunj™*)g, it suffices to show that any

regular semistable bundle in (Bunj>*)y is in the image of (Bunp,*)y — Bun, and hence in

S8,
L,rig*

the image of Zy — Bun

Suppose then that £;, — E is a semistable L-bundle in (Bun}”")q over s: Speck — S
that is not in the image of (Bunsﬁ,’“l)o. We show in each type that dim Aut(£;,) > 2 so &,
is not regular.

In type B, in the notation of Lemma 6.5.6, we have that for every nonzero morphism
v: O(—Og) — W, the vector bundle U, = ker(W/O(—Og) — O) is unstable. (Note
that W is semistable of rank 4 and degree —2, so any such morphism is a subbundle.)
Using semistability of W, the Harder-Narasimhan decomposition of U, must be of the form
U,=N,® N;/ ® O(—Og), where N, is a line bundle of degree 0 on E; and the preimage
of N, in W is the unique non-split extension N, of N,, by O(~Og). By Proposition 2.6.5 it
follows that we have a morphism P, = PH?(E,,W ® O(Og)) — Pic’(E,) sending v to the
isomorphism class of IV,. Since there are no non-constant morphisms from ]P’,lC to any elliptic
curve over k, we deduce that N, = N and N; = N’ are independent of v. So every nonzero
morphism O(—Opg) — W factors through a Lagrangian subbundle N’ C W. Choosing any

such morohism gives an exact sequence
0— N —W — (N) ®0(-0g) — 0.

Since dim Hom(O(—0g),N’') = 1 and dim Hom(O(—0Og), W) = 2, we can choose another
homomorphism O(—Opg) not factoring through the given N’; and hence get another La-
grangian morphism N’ < W, which must map N’ isomorphically onto (N')¥ @ O(—Og).

So the above exact sequence splits, and we have
W =N oN,

where both summands are Lagrangian. In particular, W and hence &; carries a faithful
action of Spa, so dim Aut(£r) > 2 as claimed.

In type C, we have that every nonzero morphism v: O(—20g) — W must vanish at some
unique point ., € E;. So again we have a morphism P} = PH?(E,, W @ O(—20g)) — E;
sending v to x,, which must be constant. So z, = z is independent of 7, and every
morphism O(—20g) — W therefore factors through a subbundle O(z — 20g) C W. Since
W is semistable of trivial determinant, choosing any two linearly independent morphisms
gives an isomorphism W = O(x — 20g) ® O(z — 20g). So SLs acts faithfully on W and
hence on &y, and dim Aut(£z) > 2 as claimed.

In type D, we have that U, = W/O(—Og) is unstable for every nonzero morphism
v: O(=Og) — W. (Note that again any such v must be a subbundle since W is semistable
of slope —1/2.) Since W is semistable, one sees that the Harder-Narasimhan decomposi-
tion of U, must be of the form U, = N, @ det(N,)" ® O(—OFE), where N, is a rank 2
semistable vector bundle of degree —1. Again by Proposition 2.6.5, we get a morphism
P: = PHO(E,,W ® O(Og)) — Pic™!(E;) sending 7 to the isomorphism class of det(N.,),
which again must be constant. So det(N,), and hence N, = N are independent of ~,

and every nonzero morphism O(—Opg) — W factors through the kernel of some surjection
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W — N. Choosing two linearly independent morphisms O(—Opg) — W therefore gives
amap W — N @ N, which one easily sees must be an isomorphism. So again SLy acts
faithfully on W fixing the determinant, and hence on £, which proves that dim Aut(&y) > 2
in this case as well.

Finally, to prove (4), simply note that Proposition 5.2.8 implies that Z — Zj is an affine
space bundle of relative dimension —(2p, u) =1+ 2, so Z — S has relative dimension [ + 3
as required. O

6.6 Computing the divisor D,v(2)

In this section, we give case-by-case computations of the divisors D,y (Z) for the slices
Z = nd¥(Z,) constructed in the previous section. We summarise the results of these
calculations in Theorem 6.6.1 below.

For the statement of the theorem, we let

n1+ 1, in type A,
N={n;—1, intype F,
ny, otherwise.

We let 0y : Y — Y x5 Pick(FE) be the section 0y (y) = (y,0), and for 1 < k < N, we let
0,.:Y =Y xg Pic%(E) be the section given in type A by

(v, —@i(y) + wit1(y) + @ (y)), it k=1,

01, (y) =
(y, —wi(y) + @is1(y) + T—pt1(y) — @i-p42(y)), f 1<k<I—i+1=N-1,

and in types B, D and E by

(ya al—l(y))v in type Ba
0, (y) = S (Y, u—2(y) + - + a—i(y)), in type D,
(Y, ar(y) + ary1(y) + -+ az(y)), intype E.

(Note that N =1 in types C, F and G.)
Theorem 6.6.1. Assume that (G, P, ) is not of type A1. Then we have the following.

(1) There is a sequence of N morphisms

D,v(Z)= Dy, — Dy — -+ — D}

i

overY x g Z such that D} is a family of smooth surfaces overY containing Y stic%(E)
as a closed substack, and D), — Dj is the blowup along the section 0;,: Y — Y xg
Picd(E) C D), of the proper transform of Y x s Picy(E) C Dj.

(2) The intersection Dyyv(Z) N Daiv+ajv(Z) is the exceptional divisor of the final blowup.

(3) The intersection Doy (Z) N Doy (Z) is the proper transform of Y x g Picy(FE), and the
identification of Doy (Z) N Day (Z) with Y x g Pic%(E) given here agrees with the iden-
tification given by Theorem 6.1.9.

(4) The stack DY is a line bundle over Y x g Picy(E) in type A, and the fibres of D} —Y
are as given in Proposition 6.6.8 in the other types.
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Remark 6.6.2. Using the methods of [GSB, Corollary 6.29], one can use Theorems 6.1.9
and 6.6.1 to deduce descriptions of all fibres of Yz: Z — @{,1 in types A, B, D and F
as follows. Assume for simplicity that S = Speck, let y € Y be any k-point with fibre
Ap €03, and let X = x,*(A}). By Theorem 6.1.9 and Theorem 4.6.1, we have

Xo = Doy (2)y + Day(Z)y + Dayiav(Z)y and Kz =43M ® O(=Day(Z) — Dav(Z)),

J

for some line bundle M on Z. Writing § = Dayyay (Z)y N Day (Z)y, we deduce that
K¢ -8 =—1. Since 8 is a ruling of the divisor DaXJra_,V (Z)y = P! x P!, which is contracted
to a point in Z, it follows that there is a morphism X — X T over Z x A! contracting the
ruling 5 of Doe;’+aJV (Z)y, where X7 is again smooth. We can then flop the strict transforms
of the exceptional divisors of (Dg11)y — (Dg)y in sequence to produce a rational map
XT =5 X~ over Z x A, such that the fibre of X~ over 0 € A! is now a normal crossings
divisor

XO_ = (Dl)y + (D§V+n0)y’

where (D' ,,, )y is the iterated blowup of (D), at the points Op, (y), One—1(y), - -, 01(y) €
{y} x Pic’(E) C (D),

The map X — A} is G,,-equivariant, where G,, = —w) (G,,) acts on A}, with weight 1
by Proposition 5.2.10, and hence the same is true for X~ — A}. Moreover, the action on
X~ is trivial on the preimage (DN yng)y of 0in Z, so Lemma 5.4.14 implies that X isa
line bundle on (va-s-no)y» and the map X = A}f is given by a section of the dual vanishing
along {y} x Pic’(E). So the fibres of X~ over nonzero points in A' are isomorphic to the
complement of {y} x Pic’(E) in (DN 4y )y~ Since X --» X~ is an isomorphism outside X,
these are exactly fibres of Yz over nonzero points in @;1 over y €Y.

In type A, since o; and a;; = a;41 play completely symmetric roles, we can use Theorem
6.1.9 to deduce a Theorem 6.6.1.

Proof of Theorem 6.6.1 in type A. Applying Theorem 6.1.9 with the vertices of the Dynkin

diagram A; labelled in reverse order gives contractions
Da;/(Z) = Dz_i_;'_g — ‘D;—’H—l — % e — ‘D/1

with the desired properties (1), (2) and (4), where to get the correct blowup loci we have
composed the identification of D) with a line bundle over Y x g Pic%(E) given by Theorem
6.1.9 with the isomorphism

Y xg Pic%(E) =Y xg Pick(E)
(y7 Q]‘) — (y7 —J)).
The two identifications of the intersection
Doy(Z) N Doy, (Z) = Mo2,z(Ec/2(c) <92 GIB, (o) — o4,1)),

with Y x g Pic%(E) are both given by taking the difference between the images in E of the
two marked points, so they agree, proving (3). O

From now on, we will assume that (G, P, ) is not of type A. In this case, we have the
following description of D,y (Z) as a space of stable maps, from which we can construct the
first blow down just as for Dy (2).
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Lemma 6.6.3. The natural morphism

My z(€y2(c) X579 L)(LNB), (=o' ;1)) — Mia z(€eyze) x99 G/B, (—ay/, 1))
(6.6.1)
s an isomorphism.

Proof. Observe that since «a; is not a special root, Lemma 5.4.7 implies that the closed

immersion

Mi1,2,(¢n)zc) " ?'9 G/B, (—a) 1)) — My1,z(¢c/2(6) x¢/7'9 G/B, (o, 1))
(6.6.2)
is an isomorphism, since the right hand side is smooth over S hence reduced, and for z €
Z\ Zy, &g, is either semistable or regular unstable, and hence £ ./ B has no sections of the
given degree. But Lemma 6.6.4 below and Proposition 3.7.6 imply that every stable map
in the left hand side of (6.6.2) factors through £r/z(a) xE/Z2(@) /(L N B), so the closed

immersion

M 1,z,(Enyzie) X7 L)L N B), (—a) 1)) < Mi,z,(E/zc) X7 9 G/B, (—a), 1))
is also an isomorphism, and we are done. O
Lemma 6.6.4. Assume (G, P, u) is not of type A, w € W%B, A< —a) and C¥NZy) # 0.
Then w =1 and X € {—a —a}}.

Proof. From the proof of Lemma 6.3.5, we have either wA = —a) and w = 1, or wA =
—a) — o) and

w € {1} U{Scy.noScomo—1""Secoke | 1 <k <mng}.
If w # 1, then this implies that A\ = —w™' (e + o)) = —ay, contradicting A < —ay. So
this proves the lemma. O

Lemma 6.6.5. The projection L/(L N B) — L/(LN Py) and the isomorphisms of Lemmas
6.3.3 and 6.6.3 induce an isomorphism

Dov(Z) =Y Xy, p Mi,z,(é0yz(c) x2/?2 9 L)(LN P, (—a) 1)),
where Py C G is the parabolic subgroup of type t(P1) = A\ {ccy, 15+ Qegng }-
Proof. First notice that the flag variety L/(L N B) splits as a product

L/(LOB) & GLoy Q% x /(LN Py),

and that —a} restricts to the cocharacter —e}, on the Borel Q)% C GL,,. Since every
stable section of {1, /7@ xL12(C) GL,, /@ of degree —e; is a genuine section, it follows
from Lemmas 5.4.10, 6.3.3 and 6.6.3 that there are isomorphisms

Dov(Z) = Mi1,z,(éLyz() <2 LI(LNB), (—a), 1))
= Mz, (Eyz2(6) X579 GLyy /QS, (=€, 1)) X 2,

0?

Mia,z,(ELyz) <9 L)(LN P, (—a), 1))

— YQi;gno Xpicg ! (E) Mi1,2,(80/2(6) xE2 L)L P, (—a), 1))

Sy X oy Mi,z,(EL/2(0) x MG LI(L AP, (—af, 1)),
LOPy

; Y XYLmPl Ml,LZo (fL/Z(G) XL/Z(G) L/(L N P1)7 (_az/v 1))5

which proves the lemma. O
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We can now construct the first blow down of D,y (Z) as follows. Observe that we have
a natural morphism

Blg,f,
Doy (2) L9, D ¥ Xy (Mo, (6 z06) X229 LILA P, (—aY 1)) x5 E)

i

v
—a)
=Y XYLmPl (KMLﬁPl,L,rig XBHHZ)MQ ZO X3 E)

where f is given in terms of the isomorphism of Lemma 6.6.5 by the morphism forgetting
the marked point and stabilising and g is given by evaluation at the marked point composed
with the projection to E on the second factor.
Let
(Di)o =Y Xviop, (BUNL b ig Xpunt . %o Xs E) C Diy
and let (D)1 = Dy \ (D’y)o- Then Propositions 3.4.10 and 3.4.13 and Lemma 6.3.2 imply
that (D'y)1 is a smooth divisor in D’y isomorphic to

\% Vv

/ ~ Ty Ty
(DN)l =Y XYmel (BunLﬂPl,rig XBUHZ’”‘Q ZO XS E XS E)’

v

where the first factor of £ above keeps track of the point of attachment of an «a;

curve.
There is a morphism
(Dy)1 — Y x5 Pic2(E) (6.6.3)

given on the first factor by the morphism (D)1 — Dy — Y and on the second by the
morphism
(D)1 — E xg E — Pic%(E)
(v, 2') — . — 2.

Proposition 6.6.6. The morphism D,y (Z) — DYy is the blowup along the preimage of the
zero section 0y of Y x s Pick(E) — Y under the morphism (6.6.3).

Proof. The proof is identical to the proof of Proposition 6.3.11. O
Lemma 6.6.7. The morphism (6.6.3) is an isomorphism.

Proof. 1t is clear from Proposition 6.6.6 and Proposition 3.4.13 that the morphism D,y (Z2) —
D’y restricts to an isomorphism

Doy (2) N Doy (2) <5 (D)
and by Remark 6.3.9 that the composition of this isomorphism with (6.6.3) agrees with the
morphism Dy (Z) N Doy (Z) =Y xg Picy(E) coming from (6.3.11). But this composition
is an isomorphism by Lemma 6.3.14 so we are done. O

The next step is to construct the family of surfaces D] over Y. Let P{ C L be the
standard parabolic subgroup of type

{au}, in types B,C, D,

aygt, in type F,

wpp = ok
{a1, 2}, in type F,

{aa},  intypeG,

and define

Di =Y xy,, (KM Zy x5 E).

—057\;/ %
. w
P{»Lﬂ‘lg BunL,rig
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Proposition 6.6.8. We have the following descriptions of D) in each type.

(1) In type B, the morphism Dy — Y Xg Zg is a P1-bundle such that the fibre of D} — Y

over a point y € Y is isomorphic to the stacky Hirzebruch surface

Pp1,2) (0O ® O()), if wi(y) #0,

(D1)y = ,
Pp1,2) (0@ O0(3)), if wi(y)=0.

(2) In types C and D, the morphism D} — Y xg Zy is a P -bundle such that the fibre of
Dy =Y over a point y €Y is isomorphic to the Hirzebruch surface

F07 Zf wl(y) 7é Oa

Dy)y =
(D) Fo, if wi(y) =0.

3) In types E and G, the morphism D' —Y xg Zy =Y is a P?-bundle.
1

(4) In type F, the morphism D} —Y Xg Zog =Y factors as a sequence of two P'-bundles
Dy — DY =Y, and the fibre over a point y € Y is isomorphic to the Hirzebruch surface

Fo, if a1(y) #0,

DY)y =
( l)y FQ, Zf Oél(y) =0.

Since Proposition 6.6.8 is local on S, we will assume for the proof and Lemmas 6.6.9
and 6.6.10 below that the initial section S — Bunj”); (resp., BsG,, — Bun7’’; ) used in
the construction of the slice Zy in types E, F and G (resp., B, C' and D) lifts to a section
S — Bun}™" (resp., S — Bunj" ). We will also write Z; = Zy = S in types E, F' and G
and Z; = Ind%,(S)\ S in types B, C and D; our assumption implies that Z, — Bunj™%,
lifts to Z; — Bunj™".

The first step in the proof of Proposition 6.6.8 is to relate D] — Y Xg Zj to the projec-
tivisation of a vector bundle. Let py, be the representation of L given by the isomorphism of
Lemmas 6.5.1 and 6.5.2 composed with the projection to the second factor in types C, D,
E, F and G, and given by the isomorphism of Lemma 6.5.3 composed with the projection
to the second factor and the inclusion GSpys C GL4 in type B. We will write W for the
vector bundle on Z; xg E induced by Z; — Bun}™" and pr,. We will also write A € X*(T')
for the character

wy, in types B,C, D,
A= q wy, intypekFE,
wsy, in type G,
and
1, in types B, D, F,
d= {2, intypeC,
3, in type G.

Lemma 6.6.9. In types B, C, D, E and G, there is an isomorphism
D} Xzo 21 Z Py oz, T(My ® O(dOg) @ W),

where m:Y Xg Z1 xg E —Y Xg Zy is the natural projection and M) is the line bundle on
Y xg Z1 xg FE classified by the morphism

Y xg 21 — Y 25 Pick(E).
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Proof. We first prove the lemma in types B, D and E. Let
X =Y xy,, (Bun;f7 Xpun, Z1 x5 E) C D) x5, Z1.
1

Then Lemmas 6.5.1 and 6.5.6 show that X is the stack of tuples (y, 2, M;;@C’)(—OE) cwW,),
where y € Y, z € Z;, My, is the line bundle on E corresponding to A(y) € Pic%(E), and
W, is the restriction of W to the fibre over z € Z;. Since the vector bundle W, is semistable
of slope < 0, any nonzero morphism M;; ® O(—0Og) — W, must be a subbundle, so we
have an isomorphism

X 2 Pyyoz,m(My®O(Og) @ W).

Since this implies in particular that X is already proper over Y x5 Z; =Y xy,, (Z1 x5 E),
1
we conclude that X = D} xz, Z; and the claim is proved.
In types C' and GG, we argue instead as follows. Observe that there is a pullback

—des -
!/ 2 88,
D1 X Z 1 —> KMQ%,GLQ xBuncL2 BunG[2

l J (664

Y x5 Z; ——— Picg(E) x5 Bunf;, Y,

d

where the bottom morphism is given by
(y,2) — (M, ® O(—=dOg), W)

and the right morphism is given on the first factor by the blow down to Tpz-bundles com-
posed with the character es. If (y,2) € Y xg Z lies over a geometric point s: Speck — S,
then any stable map to the GLy flag variety bundle P(W)') corresponding to a point in
D} Xz, Z1 over (y, z) is a closed immersion with ideal sheaf p* (M;; ®0(=d)Og)) ® O(-1),
where p: P(W)') — Fj is the structure morphism. So we deduce that

D} Xz, Z1 = Py x5 2,7+ (p" (Mx ® O(dOp)) @ O(1)) = Py s 7,7 (My ® O(dOg) @ W)
as claimed. O

The situation in type F' is similar. In this case, we let P;’ C L be the standard parabolic
subgroup of type t(P)') = {a1}, and define
D!/'=Y x__.v (KM

—a)
i
\ 7 . X Iz
i P/, L,rig Buanig
P
1

Zo Xg E)

Lemma 6.6.10. In type F, there are isomorphisms
D/ll = Pyxszlﬂ—*(Mw1 ® Wv)

and
Dll =~ PDi/ﬂ';(p*MwQ X 0(2OE) X ker(p*W — p*Mwl X ODi/(].))),

where m: Y Xg Z1 Xxg E =Y XgZy and ' D} xg Z1 xg E = Y Xg Z1 are the natural

projections, and p: DY =Y xg Zy is the structure morphism.

Proof. Recall that a; = a3 and Z; = S in this case and let

v
-« "
X=Y nyag (BllIlPlu3 XBun‘L‘ Z1 Xg E) - Dl .

1"
P
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Then Lemma 6.5.1 shows that X is the stack of tuples (y,z, W, - Mg, ,), where y € ¥
and z € Z;. Since the vector bundle W, is semistable of slope > —1, any nonzero morphism

W, — Mg, 4 is surjective, so we have an isomorphism
X = PYXSZI (T(-*(Mwl ® WV))

Since this shows that X is already proper over Y x5 Z; =Y Xy, (Z1 xg E), it follows that
X = DY, so this gives the first of the desired isomorphisms.
For the second isomorphism, there is a pullback

s55,—2

I —2e;
D —— KMQ%,GLQ XBUHEZLQ Bung;,

| -

DY ———— Picg®(E) xs Bung;;,

where the bottom horizontal morphism is classified by the pair (p* M1 ®O(—20g), ker(p*W —
p* Mg, ® Opr(1))) of line bundle and vector bundle on D xg E. Since any stable map to
the associated flag variety bundle appearing in D] is again a closed immersion, the argument

used in the proof of Lemma 6.6.9 for types C' and G gives the desired isomorphism
D] IP’DirTr;(p*MW2 ® O(20g) @ ker(p*W — p* My, @ Opy(1))).
O

Proof of Proposition 6.6.8. First observe that in types E and G, M\ ® O(dOg) @ W is a
family of semistable vector bundles of degree 3, so Lemma 6.6.9 shows that D] — Y xgZ; =
Y is a P2-bundle, which proves (3).

In types B, C and D, M) ® O((d+ 1)Og) ® W is a family of semistable vector bundles
of degree 2, so Lemma 6.6.9 shows that D] xz, Z1 =Y Xg Z; is a P!-bundle, and hence
that D] =Y Xxg Zj is also.

To complete the proof of (1), note that in type B, we have a canonical Z(L')-invariant
subbundle O(—0g) C W and a Z(L')-equivariant exact sequence

0—U—W/O(-0Op) — O —0,

where U is a family of stable vector bundles on F of rank 2 and determinant O(—Og). So
if we fix a geometric point y: Speck — Y over s: Speck — S, we have Z(L')-equivariant

exact sequences

0 — m(Mg,y) — T(Mep, y ® O(O) @ W) (6.6.5)
— MM,y ® O(0p) ® (Ws/O(=0g))) — Rl (Mg, ) — 0,

and

0 — (Mg, y ® O(Op) @ Ug) — 7y (Me, .y @ O(Op) @ (Ws/O(—0g))) (6.6.6)
— (Mg, @ O(Og)) — 0

of Z(L')-linearised vector bundles on (Z1)s. Note that m.(Mew, ,), R1Te (M, 4)s (M, 4 @
O(Og)®Uy) and 1, (M, ,®O(Og)) are each either a trivial line bundle or zero, with Z(L')-
weights f4, f4, fo = f3 and f; respectively, where we use the notation of the proof of Lemma
6.5.3. So after tensoring with the character — f; of Z(L'), Z(G) acts trivially on (6.6.5) and
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(6.6.6), so they descend to exact sequences of vector bundles on (Zy)s = (Z1)s/Gm = P(1,2).

Examining the G,,-weights, the sequence (6.6.6) descends to a sequence of the form
0—O01) — W — 0 —0.

Since any such sequence splits, we must have W’ = O @ O(1) as vector bundles on P(1,2).
If @ (y) # 0, then m. (M, ) = R'm (Mg, ) = 0, so we have

T (Mm,y ® O(OE) ® W) = 7"'*(Z\Lﬂz,y ® O(Og) @ Ws/O(-0g)),

and hence (D)), = Pp(1,2)(W') = Pp(1,2)(O ® O(1)). Otherwise, (6.6.5) tensored with — f
descends to an exact sequence

0—002) —W'—W=000(1) — 02) —0

such that (D7), = Pp(1,2)(W"). But since the kernel of any surjection O & O(1) — O(2) on
P(1,2) must be isomorphic to O(—1), this means that we must have W” = O(-1) ® 0(2),
S0
(D1)y = Pp(1,2)(0(=1) © O(2)) = Pp(1,2)(0 © O(3)).
This proves (1).
Similarly, to prove (2), note that in types C' and D we have a canonical Z(L')-equivariant

exact sequence
0— O(—dOg) — W — U — 0,

where U is semistable and Z(L') acts on O(—dOpg) and O respectively with weights

—w; + 2w;_1, in type C, wy, in type C,
en+1 = —w + (d+ Dw; = and ey =
—w; + w;_3, in type D, w;_1, in type D.

So over any geometric point y: Speck — Y over s: Speck — S, we have an exact sequence

0 — Tu(Mg,y) — Tu(Mg, , @ O(dOg) @ Wy) (6.6.7)
— T (Mw, 4 ® O(dOg) @ Us) — Rlm (Mg, ) — 0,

of Z(L')-linearised vector bundles on (Z7)s, which descends to an exact sequence of vector
bundles on P! = (Zy)s = (Z1)s/G,, after tensoring with —e;. Note that in both cases
Me, 4 @ O((d+1)Og) ® Us is a semistable vector bundle of degree 2 on which Z(L') acts
with the single weight eq, so T, (M, y @ O(d + 1)Og) ® Us) ® Z_., descends to a trivial
rank 2 vector bundle O & O on P!.

If @ (y) # 0, then 7, (M, ) = R'7 (M, ) =0, so

72 (Myy ® O((d+ 1)08) 8 Wo) © Lo, = 1u(Mimyy ® O((d+ 1)05) © Uy) @ L,

descends to OGO on P!, which together with Lemma 6.6.9 shows that (D), = Pp (O80) =

Fy. Otherwise, (6.6.7) descends to an exact sequence
0—01) —W —080—0(1) —0

such that (D7), = Pp:(W’). Since the kernel of any surjection O @ O — O(1) must be
isomorphic to O(—1), this implies that W’ = O(—1) & O(1) and hence that

(D1)y =P (O(-1) © O(1)) = Fa.
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This proves (2).

Finally, in type F', we have already constructed the morphisms D} — DY =Y =Y xgZj.
Since M, ® WV is a family of semistable vector bundles of degree 2, Lemma 6.6.10 shows
that DY — Y is a Pl-bundle as claimed. Moreover, any rank 2 degree —2 subbundle of W
is necessarily also semistable, so Lemma 6.6.10 also shows that D] — DY is a P!-bundle.

If y: Speck — Y is a geometric point over s: Speck — S, then by Lemma 6.6.10 we

have an exact sequence

0—U — q"(My,, ®0205) @ W) — ¢* (Mo, 1w,y ® O205)) @ (7')*O(1) — 0
(6.6.8)
of vector bundles on P! x E such that (D}), = Pr,U, where 7’ and g are the projections to
the first and second factors respectively. Since U is a vector bundle of rank 2 and determinant
G (M_m, 120,y @ O(20E)) @ (7')*O(-1), it follows that we have an isomorphism

U-SUY@detU =UY @ ¢ (M_, 120,y @ O(205)) @ (7')*O(-1).
So the dual of (6.6.8) gives an exact sequence
00— ¢ M_2e,1ms.y @ (7') O(=2) — ¢ (M_) 400,y @ W) @ (7')*O(—=1) — U — 0,
and hence an exact sequence

0— HO(Esv M—2w1+w2,y) & 0(72) — HO(ESv M—W1+w2»y ® WGV) & 0(71)
— (1)U — HY By, M_90, 4 mp.yy) @ O(—2) — 0.
(6.6.9)

If al(y) = 2w1(y) - wQ(y) 7é 0, then HO(Esv M—2w1+w27y) = Hl(Esv M—2w1+w27y) =0,
so (6.6.9) gives an isomorphism

(M) U = HY(Ey, Mgy 4y @ W) ® O(—1) = O(=1) & O(-1),
so (D})y = Pp:(O(—1) & O(—1)) = Fy. Otherwise, (6.6.9) gives an exact sequence
0— O(-2) — O(-1)® O(-1) — (7). U — O(-2) — 0.

Since the cokernel of the injective morphism O(—2) — O(—1) & O(—1) must be isomorphic
to O, we get (7'),.U = O(—2) & O and hence (D)), = F,. This completes the proof of (4)
and of the proposition. O

We can now prove Theorem 6.6.1 in types C, F' and G.

Proof of Theorem 6.6.1 in types C, F and G. Since LN P, = P{ and N = 1 in these cases,
Proposition 6.6.6 and Lemma 6.6.7 prove (1), and (2) and (3) are clear from the construction.

Proposition 6.6.8 shows (4), so the theorem is proved in this case. O

In types B, D and E, we still have LN P; C Pj, so we get a morphism Dy — D}. In
type D, let Py C L be the standard parabolic of type t(P5) = {a—1, 4} and in type E, let
P}, P; C L be the standard parabolics of type t(Ps) = {a1, a4} and ¢(P5) = {a1, a2, aq}.
Set

\4
/o —Qy
D, =Y XYP;C (KMP,;,L,rig XBun‘I;,'c Zy Xg E)

for 1 <k < N. Note that in each case we have a sequence of morphisms

! / /
DN—>DN71—>._>D1
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as desired.
In type B, we let pp; : P = GL,, = GL; be the representation given by the restriction
P| — GSpsN Ry of pr, to P| composed with the homomorphism

GSpys N Ry — GLo

AldetA|0 00
0
A 0 — A.
0 0
0 0 0| A

In types D and E, we let pp;: P| — GL,, be the composition
/7 PL
pp{l Pl — Rn1+1 — GLnlv

where the second homomorphism is given by deleting the last row and column. In each of
types B, D and E, we then have P}, = (pp)”1(Q}") for 1 < k < n; = N and hence a

sequence of pullback squares

—e —er
D, ——Y . x _e KM )1 .
k1 Qni Ty om Qi41:GLan, rig

Qrt1

J (6.6.10)

e*

— 76*
Dy ——— Y " x e KM} ,
k Qnt Ty o QN GLa, rig
k

by Lemma 6.2.13, where the subscript (—),;, denotes the rigidification with respect to the

image of Z(G) in Z(GLy,). Note that, in the notation of §6.2, the rigidification X;'},  of

.For1<k<ng

e*

_e* —
ni ny N ny
X" is naturally a locally closed substack of YQZl ><Y,:;1 KM QG L, rig
i

GL,

and 1 <p <k or p=ni, we write C} , C D} for the preimage of C}' "1 C X", in Dj.

Lemma 6.6.11. In types B, D and E, for 1 < k < nq, there is a decomposition

/ / ss,—1 / /
= (Dk XBunal ) BunGL ) U U Ck,p U Ok,nl
1<p<k

into disjoint locally closed substacks.

Proof. Using Proposition 6.2.1, we can reduce to showing that any unstable GL,,,-bundle

in the image of D] — Bun&anl’m. , has Harder-Narasimhan reduction to Ry, with degree
—ej, i.e., that the Harder-Narasimhan decomposition of the corresponding vector bundle U
is U = My & M, with M; a line bundle of degree 0 and Ms a semistable vector bundle of
rank n; — 1 and degree —1.

In type B, we argue as follows. Since U is a vector bundle of rank n; = 2 and degree —1,
we know that the Harder-Narasimhan decomposition of U is U = M; & My for some line
bundles M7 and M, with deg M7 < —1 and deg My = —1 — deg My > 0. Moreover, since U

is in the image of D] — Bung}%m 4+ We know that there exist exact sequences
0—U—U — N —0

and
0— Ny — W — U —0,
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where N; and Ny are line bundles of degree 0 and —1 respectively and W is a semistable

vector bundle of rank 4 and degree —2. So we have an exact sequence
0— Ny —U" — My —0

for U” C W a subbundle of rank 2. In particular, by semistability of W, we have u(U") <
—1/2, so degU"” = deg My — 1 < —1. So we must have deg My = 0 and hence U has the
desired Harder-Narasimhan decomposition.

In types D and F, we instead have an exact sequence
00— N—>W —U—0,

where N is a line bundle of degree —1 and W is semistable rank n; +1 and degree —2. Since
U is unstable, there exists a semistable quotient My of U with slope u(Msz) < —1/ny = p(U).

Since My is also a quotient of the semistable vector bundle W, it follows that

-2
M) > p(W) = .
pM) = (W) = —
This implies that
k M. 2 rank M-
0< rant 72 < —deg M, < SranR s <2,
n1 ny + 1
so deg My = —1. So we have
-2 -1 -1
W) = < =—— < uU)=—
(W) — < pu(M2) rank % () o
and hence
ny + 1

< rank My < n;.

ni+1

But since ny < 4, we have ny — 2 < ™5

, so it follows that rank My = n; — 1. So we have
an exact sequence

00— M — U — My, —0,

with M; a line bundle of degree 0, which shows that U has the Harder-Narasimhan decom-
position U = M7 @ M5 as claimed. O

Next, observe that the morphism (6.2.3) gives a morphism

Chymy — Y x5 Picg(E) (6.6.11)
given by the composition
—ay GL,
C;Ll,'nl —Y XYLmPl (YLﬁpl x e Cﬂl,nllﬂ"ig Xs E)
Qni

—Y XYLmPl (YL_O}% Xg E Xg E)
— Y Xy, p, (Yinp, x5 Picg(E)) =Y xg Picg(E),
where the last morphism is the pullback of

_av

YLmél Xg E Xs EF — YLﬁP1 Xs PICOS(E)
(y, 21, 22) ¥ (y + o) (22), 21 — 22).
Lemma 6.6.12. The closed substack C,,, ,,, € D, = D'y coincides with (DY), and the
morphism (6.6.11) agrees with (6.6.3).
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Proof. This follows directly from the definitions and Lemma 6.2.6. O

Lemma 6.6.13. For 1 < k < ny, the morphism D;H—l — D), restricts to isomorphisms

/ sS, N;
(Dk+1 XBunE;an1 rig BunGLn1 ,rig) ( k ><Buna1 -

for 1 <p <k, and a morphism Cy ., , — Cy . identifying Cy_ ;. with the total space of a
line bundle over the section 0}, of Y x g Pick(E) = Chony

Proof. Using the natural Cartesian diagram (6.6.10), the claim follows easily from Lemma
5.4.10 and Proposition 6.2.7. O

Proof of Theorem 6.6.1 in types B, D and E. By Propositions 6.6.6, 6.6.8 and Lemma 6.6.7,
the only thing left to show is that Dj_,, — Dj is the blowup along ¢) for 1 <k <n; = N.
To see this, note that Lemmas 6.6.11 and 6.6.7 imply that D, — Y is a family of smooth
surfaces, that D;  , — Dj is an isomorphism outside ¢ : ¥ — Y x g Picy(FE) < D) and that
every fibre of D; , — Dj over that section is an irreducible curve. So Lemma 6.3.18 then
shows that Dj, 41— D, is the blowup along the given section as claimed, and the theorem

is proved. O

6.7 Singularities

Theorems 6.1.9 and 6.6.1 give very explicit descriptions of the families of normal crossings
surfaces )221(0@;1) — Y. We show in this section how these results can be used to identify
the singularities of the unstable loci Xgl (0). For the sake of simplicity, we will assume always

that S = Spec k for some algebraically closed field k.

Definition 6.7.1. Let k& be an algebraically closed field, and let R be a 2-dimensional
complete local k-algebra with residue field k.

(1) We say that R has a singularity of type A if

klx,y, 2]

R

1

(2) If the characteristic of k is not 2, we say that R has a singularity of type Do, if

Elz,y, 2]

RE Gy -y

1

(3) If 5 <1 < 8, we say that R has a singularity of type E;, or a simply elliptic singularity
of degree 9 — [ if there exists a smooth elliptic curve X over k, a line bundle L on X of

degree 9 — [, and an isomorphism

R = H HO(X,L®™).
n>0

We say that a stack X over k has a singularity of type A (resp., Do, E;) at a point
x: Speck — X if there is a ring R as above and a formally smooth morphism Spec R — X
sending the closed point to x, such that R has a singularity of type A (resp., Dwo, E‘l)

Remark 6.7.2. Note that the singularities Ao, and D., are not isolated, whereas the
singularities E; are isolated.
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Theorem 6.7.3. Assume that S = Speck for k an algebraically closed field, let (G, P, u)
be a subregular Harder-Narasimhan class, not of type Ay, and let Z — Bung iy be the
equivariant slice constructed in the proof of Theorem 6.1.5. Then the stack XEI(O) C Z has

the following singularities.

(1) If (G, P, ) is of type A (but not Ay ), then then x,*(0) is a union of two line bundles

on E meeting along the zero section with singularities of type A .

(2) Assume that the characteristic of k is not 2. If (G, P, u) is of type B (resp., C, D), then
X?(O) is obtained by contracting the zero section of a line bundle on E along a degree
2 map E — P(1,2) (resp., E — P') branched over 3 (resp., 4) points. The singularities
are of type As at the non-branch points of P(1,2) (resp., P1) and of type Do at the

branch points.

(3) If (G, P, ) is of type E (resp., F, G), then x'(0) is obtained by contracting the zero
section of a line bundle on E of degree | — 9 (resp., | — 5,1 —3 = —1) to a point. The
singularity is simply elliptic of degree 9 — 1 (resp., 5—1, 3 —1).

Remark 6.7.4. The restriction on the characteristic in types B, C' and D in Theorem 6.7.3
is not essential: it will be clear from the proof that the general description of X;(O) as
a contraction of a line bundle on F is still correct in characteristic 2, and the techniques
of the proof can still be used to compute local equations for the singularities. However, in
characteristic 2 the maps £ — P(1,2) and E — P! have more complicated local equations
than in other characteristics, which depend on the precise elliptic curve E, and hence the

same is true for the singularities of x,*(0).

To prove Theorem 6.7.3, we first compute the degrees of the line bundles D; appearing
in Theorem 6.1.9 in types E, F and G.

Lemma 6.7.5. Assume we are in the setup of Theorem 6.1.9 with (G, P, ) of type E (resp.,
F, G), and fix a geometric point y: Speck — Y. Then the fibre of D1 — Y over vy is a line
bundle over Pic®(E) of degree | —9 (resp., 1 —5,1—3 = —1).

Proof. To simplify the notation, identify Pic’(E) C (D), with E. The desired degree is
equal to the self-intersection number (E?)(p,), of E on the surface (Dy),,.

First note that by Theorem 6.1.9, Dajv(Z)y is the iterated blowup of (D1), at ng + 1
points on E, so we have

(E2)(D1)y = (EQ)DQ\/(Z)y +mno + 1. (6.7.1)
Next, observe that we have

0 = ¥7"(0p.1)-E = (Do (2)+ Do (2)+ Dy yay (2))-E = d(E%) i, (21, +(E) . 2), +1.

' ©(6.7.2)
where d = (o) [}') and we have used the fact that Doy (Z)y N Doy (Z), = E and that
the exceptional curve of the final blowup Da,-v-s-aJV(Z)y N Day (Z), meets E transversely
in a single point. Since Doéjv(Z)y is the iterated blowup of the smooth surface (D7), of

Proposition 6.6.8 at N points on F, we have
(B*)p,y ) = (E*)(py), = N,
and hence (6.7.1) and (6.7.2) give

1
(E*)(py), = Fitle (E®)py), —1) +no+ 1. (6.7.3)
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To compute the self-intersection number (EQ)( D}),» note that by Theorem 4.6.1, we have
Kz12 =" Kagug 1 /Bung iy = VzM ® O(=Day (Z) — Doy (2))

for some line bundle on M on Z, where f: 7 = él\l;lg’”‘g is the natural morphism. Since

Z = A'"3 is an affine space, every line bundle on Z is trivial, so

K; = KZ/Z QY Kz = O(_DQX(Z) — Doy (2)).

J

By adjunction, we therefore have a linear equivalence
KDQy(Z)y ~ (KZ + Daiv (Z))‘Day (2)y — _Daiv (Z)y N Doe;-’ (Z)y =—FE.

So E C D,y (Z)y is an anticanonical divisor, from which it follows that E C (D7), is also
an anticanonical divisor in the blow down. So from the explicit identification of the surface

(D1)y given in Proposition 6.6.8, we have

9, in types F and G,
(B, = K2, = P

( 1)1/ (Dl)y .
8, in type F.

Substituting the values of N, ng and d into (6.7.3) in each of the different cases gives the
desired expressions for (E2)( Di)y- O

We can use similar techniques to study the morphism Y x PicO(E) — Zp in types B, C
and D.

Lemma 6.7.6. Assume that (G, P,u) is of type B, C or D. Then for any y: Speck —
Y = 0g-1, the morphism Pic’(E) = {y} x Pic’(E) C Xgl(y) — Zo has degree 2.
Y

Proof. In these cases, we have again by Theorem 4.6.1 that

KZ = ¢}Kz ® f*Ké_l\l;lG,rig/BunG‘Tig = '(/JEM ® O(_Da;/ (Z) - Doz;/ (Z))

for some line bundle M on Z, where f: Z — é:l;lg’”'g is the natural morphism. So by

adjunction, we have
Kp,y(2), = (Kz @ O(Day(2))lp,v(2), = ¥zMIp,y (2), © O(=E), (6.7.4)

where we write E = {y}xPic’(E) C Dyv(Z)y. To compute the degree of the finite morphism
E — Zj, choose a k-point z € Zj disjoint from the images of 6} (y) and the stacky point in
type B, and let F, = P} be the fibre of Dyv(Z), — Zy over z. By (6.7.4) and adjunction,
the degree is the intersection product

E- FZ = _KDu}/(Z)y . FZ = _(KDav(Z)y + Fz) . FZ = —degKFz = 2,
which proves the lemma. O

Proof of Theorem 6.7.3. We first prove (3). By construction, X;(O) is affine, and the open
subset
X}l(o)Teg — X;l(o) XBUHG,T'ig Buane,(Z‘Zg

is big. So choosing any y: Speck — 0@;17 we have

X7 (0) = Spec H(x"(0), ©) = Spec H (x7'(0)"*?, ©) = Spec H (¥ (y)"?, 0),
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where X, ()9 = X, (v) W, (x5 (0)7¢9) = x ;' (y)"*9. But by Theorem 6.1.9, Y,;'(y)"*? =
(D1)y \ E is the complement of the zero section in the negative degree line bundle L7t =
(D1)y over E = {y} x Pic’(E). So

Xz'(0) = Spec HO((D1), \ E, ©) = Spec P H(E, LE™).
n>0

Taking completions and applying Lemma 6.7.5 shows that X;(O) has a simply elliptic
singularity of the desired degree.

To prove (1) and (2), we argue as follows. First note that by Proposition 5.5.8, we have
Yy O = O, where

Wy Z— Z x?//W@{,l

is the natural morphism induced by v¢z. For y: Speck — 0@;1, we let w/Z,y: f(}l(y) —
X' (0) denote the restriction of ¢/,. We show below that Riw’zyy*(’) = 0 for ¢ > 0, which
implies, since both domain and codomain of 1}, are flat over @;1, that Ry}, .0 = O, and
hence Ry, O = O by base change.

Since Xgl(()) — Zy is affine by construction, it is enough to show that Rir,O = 0 for
t > 0, where 7: )Zgl(y) — Zp is the natural morphism. This holds by inspection for the
fibre over y € Y of the reduced normal crossings variety

D= Doziv (Z2) + DocJV (Z2) + Da[v_i_%y(Z),

from the explicit descriptions of the components given by Theorems 6.1.9 and 6.6.1, using
the fact that Rf,O = O whenever f is either a P'-bundle or the blow up of a smooth
surface at a point. This proves the claim in types A, B and D. In type C, we claim that the
morphism Rm,.Op — Rm.Op, is a quasi-isomorphism, where D= 9221(0@{/1)’ from which

the desired vanishing follows. To see this, note that we have a short exact sequence
0— O(—D)|Day(z) — Op — Op — 0,

so it is enough to show that Riﬂ*O(—DﬂDav(z)y = 0 for all ¢. From the explicit descrip-
tion of Dyv(Z), given in Theorem 6.6.1 and Proposition 6.6.8, it is enough to show that
O(=D)|p,. (z), has degree 0 on the exceptional curve 7 of the blowup and degree —1 on
every irreducible fibre of D} — Zy = P'. But since Oy is trivial on Dyv(Z),, we have a

linear equivalence
_2D|Da\/(Z)y ~ _DaJV(Z)y n Dociv (Z)y - Daiv-&-oz;-/(Z)y N Daiv (Z)y =—E-—7,

from which the claim follows by Lemma 6.7.6.
To complete the proof of (1) and (2), since 1z,,0 = O in each case and x,'(0) — Zo
is affine, we have

x5 (0) = Specy, mOp, = Specy, m.O0p,,

for any choice of y: Speck — O@;l. Using Theorems 6.1.9 and 6.6.1, it is easy to see that
mOp, = 1O(py), Xr.0p T:O(Dy),:

where we have identified {y} x Pic’(E) = Doy (Z)yNDay(Z)y with E and by mild abuse of
notation we have also written 7 for the morphisms (Dljy — Zy, (D})y = Zp and E — Z.
From the explicit descriptions of (Dy), and (D}),, it is clear that y,*(0) is obtained in type
A by gluing two line bundles as claimed, and in types B, C and D by contracting the zero
section of (D), along E — Zj.
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Let p: Speck — Zy be any point, and choose a formally smooth morphism Spec kfu] —
Zy sending the closed point to p. In type A, the completed pullbacks of m.O(p,),, mO(p1),
and 7, OF are given by k[u, v], k[u, w] and k[u] respectively, with the maps to 7,.Op given
by setting v and w to 0. So

kz,y, 2]
(zy)

R = k[u,v] X ku, w] = ,
where z = (v,0), y = (0,w) and z = u, has a type A, singularity. This proves (1).

In types B, C and D, if E — Z; is unramified over p, then by Lemma 6.7.6, the
completed pullbacks of m.Op,),, O py), and m.Op are given by kfui,vi] x k[uz, v2],
k[u] and kJuq] x k[us] respectively, where the maps to 7.Op are given by sending v, and

vy to 0 and u to (u1,us). So the ring

~ klz,y,7]

R = (k‘[[ul,iﬂ]] X k’[[’UQ,’UQ]]) XklIu1]]><k|Iu2]] k:[[uﬂ (xy)

where = (v1,0,0), y = (0,v2,0) and z = (u1,us,u), again has a singularity of type Ao,
and hence X;(O) has a singularity of type A, at p. If p is a branch point of F — Zj,
then (since we are assuming k does not have characteristic 2 in these types) the completed
pullbacks of m.O(p,),, mO(py), and m.OF are instead given by k[v,w], k[u] and k[w]

respectively, where the maps to m,Of send v to 0 and u to w?. So

klz,y, 2]
(x2y — 22)’

where z = (w,0), y = (v?,u) and 2z = (vw,0), has a singularity of type D, and hence

R = k[v,w] xp) k[u] =

X;(O) has a singularity of type Do, at p as claimed.

To complete the proof, it remains to show that £ — Zy has 3 branch points in type B
and 4 in types C and D. To see this, note that the composition with the coarse moduli
space map Zy — P! is a degree 2 morphism from a smooth elliptic curve over k to P! and is
therefore branched over 4 isolated points since the characteristic of k is not 2. So in types
C and D, E — Zy = P! is branched over these 4 points. In type B, on the other hand, one
of the branch points must be the branch point of Zy = P(1,2) — P! (i.e., the stacky point),
so E — Zj is branched over the remaining 3 points. O
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