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Abstract

We construct an elliptic Grothendieck-Springer resolution as a simultaneous log resolu-

tion of algebraic stacks. Our construction extends earlier work from the stack of semistable

principal bundles on an elliptic curve to the stack of all principal bundles. We use elliptic

analogues of transversal slices to study the geometry of the unstable part of our resolution

in codimension ≤ 2, and give detailed case by case calculations of the corresponding surfaces

in all types.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without proper acknowledgement.
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Chapter 1

Introduction

Let G be a simply connected simple algebraic group over an algebraically closed field k.

Classically, the Springer theory of G is the study of various features of the additive and

multiplicative adjoint quotient maps

χadd : g −→ g//G = Spec k[g]G and χmul : G −→ G//G = Spec k[G]G, (1.0.1)

where g = Lie(G) is the Lie algebra of G and G acts on g (resp., G) via the adjoint

representation (resp., by conjugation).

One of the most important of these features is that both χadd and χmul are flat with

some singular fibres, and admit simultaneous resolutions of singularities after pulling back

along finite coverings of the targets. More precisely, there are isomorphisms g//G ∼= t//W

and G//G ∼= T//W , due to Chevalley, and commutative diagrams

g̃ = G×B b g

t t//W

ψadd

χ̃add χadd and

G̃ = G×B B G

T T//W,

ψmul

χ̃mul χmul (1.0.2)

where T ⊆ B ⊆ G are a maximal torus and Borel subgroup respectively, t = Lie(T ) and

b = Lie(B) their Lie algebras, and W = NG(T )/T is the Weyl group. The diagrams (1.0.2)

are called the additive and multiplicative Grothendieck-Springer resolutions. Assuming that

k has characteristic 0 in the additive case, they are simultaneous resolutions in the sense

that χ̃add and χ̃mul are smooth, ψadd and ψmul are proper, and for all t ∈ t (resp., T ), the

morphism (χ̃add)−1(t)→ (χadd)−1(tW ) (resp., (χ̃mul)−1(t)→ (χmul)−1(tW )) is a resolution

of singularites.

The adjoint quotient maps (1.0.1) and their Grothendieck-Springer resolutions (1.0.2) are

rich and interesting objects, with connections to many areas of mathematics. For example,

in representation theory, the cohomology of the fibres of ψadd give natural representations of

the Weyl group W [S3], [S4], [S1], the multiplicative Grothendieck-Springer map ψmul plays

an essential role in Lusztig’s theory of character sheaves for representations of finite groups of

Lie type [L3] (see also [BZN2, §1.3.1]), and the Belinson-Bernstein localisation theorem [BB]

relating representations of g to twisted D-modules on the flag variety G/B can be interpreted

in terms of a quantisation of the additive Grothendieck-Springer resolution [BZN1] [MN].

The Grothendieck-Springer resolutions are also of interest in algebraic geometry, as they

give a direct link between algebraic groups and du Val singularities of algebraic surfaces as

follows.

For simplicity, assume that k = C and restrict attention to the additive case. Then

[S1, §2.4] there exist closed subvarieties Z ⊆ g of dimension l + 2, where l = dim(T ), such

that Z is transverse to every G-orbit in g, and contains a single “subregular” element with

stabiliser group of dimension l+ 2. Given such a subregular transversal slice Z, the additive
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Grothendieck-Springer resolution pulls back to a simultaneous resolution

Z̃ Z

t t//W,

χ̃Z χZ (1.0.3)

which is smoothly equivalent to an open set in (1.0.2) in the sense that they have a common

smooth cover, where χZ is now a flat family of affine surfaces. It was shown by E. Brieskorn

[B2] that when G is of type A, D or E, χ−1
Z (0) has a du Val singularity of the same type,

the family χZ is a miniversal deformation of this singularity, and χ̃Z is a family of minimal

resolutions of the fibres of χZ . This was extended to types B, C, F and G by P. Slodowy

[S2], who showed that in these cases the singularity is again du Val, of type dual to the

unfolding of G, that (1.0.3) admits an action of the discrete folding group of order 2 or 3,

and that the deformation is miniversal among deformations respecting this symmetry.

More recently, it has been understood that many constructions from additive and mul-

tiplicative Springer theory also have “elliptic” analogues. To motivate this, note that the

adjoint quotients g//G and G//G are coarse moduli spaces (in an appropriate sense) for the

stack quotients g/G and G/G. The central idea of elliptic Springer theory is to replace these

stacks with the stack BunG(E) of principal G-bundles on a smooth elliptic curve E over k.

At a basic level, this substitution is not unreasonable: for example, if we allow the

elliptic curve E to degenerate to a curve with a cusp (resp., a node), then the additive stack

g/G (resp., the multiplicative stack G/G) is naturally identified with the open substack

of G-bundles whose pullbacks to the normalisation are trivial. From a slightly different

perspective, the passage to elliptic Springer theory can be viewed as a passage from finite

dimensional groups to loop groups: if we fix a complex number q ∈ C× with 0 < |q| < 1,

then C×/qZ is the analytification of an elliptic curve and, by an unpublished observation of

E. Looijenga, there is an isomorphism of complex analytic stacks

LG/qLG
∼−→ BunanG (C×/qZ) (1.0.4)

ϕ 7−→ C× ×G
(qz, g) ∼ (z, ϕ(z)g)

where LG is the group of holomorphic maps ϕ : C× → G acting on itself by q-twisted

conjugation

(θ · ϕ)(z) = θ(z)ϕ(z)θ(qz)−1.

It was observed by I. Grojnowski and N. Shepherd-Barron in [GSB, §3] that the restriction

G/G → BunanG (C×/qZ) of (1.0.4) to the constant loops G ⊆ LG is in fact étale in a neigh-

bourhood of the identity. Since BunanG (C×/qZ) is the analytification of BunG(C×/qZ) (by

GAGA) and since the image of G/G consists entirely of semistable bundles, this identifies

an analytic neighbourhood for the identity in G/G with an analytic (étale) neighbourhood

for the trivial bundle in BunssG (C×/qZ).

There are, however, some qualitative differences between the stacks g/G and G/G and

the stack BunG(E). For instance, BunG(E) is only locally of finite type, and only admits a

well-behaved coarse moduli space after restricting to the finite type open substack BunssG (E)

of semistable bundles. This coarse moduli space was studied by R. Friedman and J. Morgan

in [FM1], who identified it with the quotient Y //W , where Y = Hom(X∗(T ),Pic0(E)) ∼=
Pic0(E)l is the abelian variety parametrising degree 0 T -bundles on E. The semistable
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coarse moduli space map BunssG (E)→ Y //W fits into a commutative diagram

B̃un
ss

G (E) = Bun0
B(E) BunssG (E)

Y Y //W.

ψss

χ̃ss χss (1.0.5)

The diagram (1.0.5) has been studied by D. Ben-Zvi and D. Nadler in [BZN2] from the per-

spective of character sheaves, who showed that it shares many properties with (1.0.2). It was

also shown in [GSB, Theorem 3.11] that, over C, the analytic morphism G/G→ BunanG (E)

extends to a morphism (of diagrams) from the multiplicative Grothendieck-Springer resolu-

tion to (1.0.5) that is smooth in a neighbourhood of the identity in G.

The guiding principle behind this thesis is that the semistable elliptic Springer theory

described above should extend in an interesting way to the whole of BunG(E). Our first

main result gives a precise incarnation of this principle.

Theorem 1.0.1 (Corollaries 4.5.2 and 5.5.7 and Proposition 4.5.4). There exists an ample

W -linearised line bundle ΘY on Y , with inverse Θ−1
Y , and a commutative diagram

B̃unG(E) BunG(E)

Θ−1
Y /Gm (Ŷ //W )/Gm,

ψ

χ̃ χ (1.0.6)

which is a simultaneous log resolution with respect to the zero section of Θ−1
Y /Gm in the

sense of Definition 1.0.2 below, where Ŷ is the affine cone over Y obtained by contracting

the zero section of Θ−1
Y to a point. The preimage of the cone point under χ is precisely the

locus of unstable bundles in BunG(E).

We will call the diagram (1.0.6) the elliptic Grothendieck-Springer resolution. Unlike the

additive and multiplicative Grothendieck-Springer resolutions, the elliptic Grothendieck-

Springer resolution is not quite a simultaneous resolution, as the morphism χ̃ fails to be

smooth over the zero section of Θ−1
Y . It does, however, satisfy the following weaker property.

Definition 1.0.2. Let

X̃ X

S̃ S

π

f̃ f

q

(1.0.7)

be a commutative diagram of algebraic stacks and let D ⊆ S̃ be a divisor. We say that (1.0.7)

is a simultaneous log resolution with respect to D if the following conditions are satisfied.

(1) The morphisms f and f̃ are flat, q is representable, proper, surjective and generically

finite, and π is proper with finite diagonal.

(2) For any point s : Spec k → S̃, the morphism f̃−1(s)→ f−1(q(s)) is an isomorphism over

a dense open substack of f−1(q(s)).

(3) The stack X̃ is regular, the morphism f̃ is smooth away from D, and f̃−1(D) is a

(possibly non-reduced) divisor with normal crossings.
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Remark 1.0.3. Definition 1.0.2 is weaker than the definition of simultaneous log resolution

given in [GSB, Definition 1.1] in several important ways. First, we do not require that the

map π : X̃ → X be representable, but impose only the weaker condition that it have finite

diagonal. Since the diagonal is proper (by properness of π) and the fibres of the diagonal

are the stabilisers (or automorphism groups) of points in the fibres of π, this is equivalent

to requiring that the fibres of π have only finite stabilisers, which in characteristic 0 is the

same thing as being a Deligne-Mumford stack. Second, we allow the singular fibres of f̃

to have non-reduced irreducible components, and for these irreducible components to have

self-intersections. Finally, [GSB] require that the relative canonical bundle KX̃/S̃ be the

pullback of KX/S , which we do not. We have chosen to make these modifications in order

for Theorem 1.0.1 to be true. It follows from Corollary 4.5.9, Theorem 4.6.1 and Remark

6.1.12 that all of these modifications are necessary.

Theorem 1.0.1 builds on the work of S. Helmke and Slodowy [HS2] and of Grojnowski

and Shepherd-Barron [GSB]. First, a version of the extended coarse moduli space map χ

was constructed in [HS2] in terms of the isomorphism (1.0.4) as follows. By a theorem

of Looijenga [L2], the affine variety Ŷ //W is isomorphic to an affine space Al+1. From

Looijenga’s explicit isomorphism, the ring of functions on Al+1 = Ŷ //W can be identified

with a ring of characters of irreducible representations of L̂G = L̃GoC×, where L̃G is the

universal central extension 1→ C× → L̃G→ LG→ 1, and q ∈ C× acts on L̃G by

(q · ϕ)(z) = ϕ(qz).

So there is a map

L̃G/qLG = (L̃G× {q})/LG −→ (Al+1)an = (Ŷ //W )an. (1.0.8)

Although our actual construction of χ will be given without reference to loop groups, one

could also obtain its analytification over C by taking the quotient of (1.0.8) by the centre

C× = Ganm ⊆ L̃G. Second, the stack B̃unG(E) appearing in (1.0.6) is the “Kontsevich-Mori

compactification” of Bun0
B(E) defined in [GSB], which was used in a slightly ad hoc way to

construct a sliced version [GSB, Theorem 1.2] of (1.0.6), analogous to (1.0.3), for groups of

type D5, E6, E7 and E8. Theorem 1.0.1 extends Helmke and Slodowy’s work by constructing

χ as an algebraic (rather than analytic) morphism, and Grojnowski and Shepherd-Barron’s

work by extending the definitions of χ and χ̃ to all simply connected simple groups and to

the whole of BunG(E) and B̃unG(E).

The proof of Theorem 1.0.1 is divided into two parts: the construction of the diagram

(1.0.6) (Corollary 4.5.2) and the proof that it is a simultaneous log resolution (Corollary

5.5.7). The main ingredient in the construction is an elliptic version of Chevalley’s isomor-

phisms g//G ∼= t//W and G//G ∼= T//W , which refines Friedman and Morgan’s identification

[FM1, Corollary 5.12] of the coarse moduli space of BunssG (E) with Y //W .

Theorem 1.0.4 (Theorem 4.3.4). There is a certain subgroup PicW (Y )good ⊆ PicW (Y ) of

the group of W -linearised line bundles on Y and an isomorphism

PicW (Y )good
∼−→ Pic(BunG(E)). (1.0.9)

Moreover, if LBunG is the image of LY ∈ PicW (Y )good under (1.0.9), then there is a canon-

ical isomorphism

H0(Y,LY )W
∼−→ H0(BunG(E), LBunG).
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We give the proof of Theorem 1.0.4 (as Theorem 4.3.4) in §4.3.

The fact that (1.0.6) is a simultaneous log resolution is proved in §5.5 as a fairly straight-

forward consequence of the following analogue of the Kostant and Steinberg section theo-

rems.

Theorem 1.0.5 (Theorem 5.4.6 and Proposition 5.4.13). There exists a morphism Z →
BunG(E) from an affine space Z such that the composition Z → (Ŷ //W )/Gm with χ factors

through an isomorphism Z ∼= Ŷ //W . Moreover, writing

Z̃ = B̃unG(E)×BunG(E) Z,

the morphism Z̃ → Θ−1
Y /Gm induced by χ̃ also factors through an isomorphism Z̃ ∼= Θ−1

Y .

Theorem 1.0.5 is a mild refinement of another theorem of Friedman and Morgan [FM2,

Theorem 5.1.1], so we call it the Friedman-Morgan section theorem. The new observations

here are that Friedman and Morgan’s parabolic induction construction for the map Z →
BunG(E) can be made to give a natural lift Z → Ŷ //W (Proposition 5.2.10), and that

Theorem 1.0.5 can be proved by computing a small part of the elliptic Grothendieck-Springer

resolution (§5.4).

Theorem 1.0.1 justifies our guiding principle that elliptic Springer theory extends to

unstable G-bundles. In Chapter 6, we also give some evidence for the assertion that this

extension is geometrically interesting. We prove that, with the exception of G = SL2,

there always exist slices Z → BunG(E) through subregular unstable bundles with very nice

properties (Theorem 6.1.5), which are analogous to the slices appearing in Brieskorn and

Slodowy’s work on du Val singularities. For each of these slices, the elliptic Grothendieck-

Springer resolution pulls back to a simultaneous log resolution

Z̃ Z

Θ−1
Y Ŷ //W.

χ̃Z χZ

Our main results about these slices (Theorems 6.1.9 and 6.6.1) are identifications of the fibres

of χ̃Z over the zero section of Θ−1
Y as explicit surfaces built from blowups of line bundles

over E, Hirzebruch surfaces and projective spaces at points along a embedded copies of the

elliptic curve E. Our computations recover as a special case the computation [GSB, Theorem

6.7] of Grojnowski and Shepherd-Barron in type E, and can also be used (Theorem 6.7.3) to

extend Helmke and Slodowy’s description [HS2] of the codimension 2 singularities of χ−1(0)

to all simply connected groups G.

Remark 1.0.6. For technical reasons, we prove many of our main results for the rigidified

stack BunG(E)rig obtained from BunG(E) by taking the quotient of all automorphism groups

by the centre of G, rather than for BunG(E) itself. (For a more precise explanation of what

this means, see Definition 2.2.6.) The advantages of BunG(E)rig over BunG(E) are that

various automorphism groups (coming from centres of Levi subgroups) that are disconnected

in BunG(E) become connected in BunG(E)rig, and that it is easier in practice to construct

morphisms Z → BunG(E)rig. For example, the Friedman-Morgan map Ŷ //W → BunG(E)

does not factor through a section (Ŷ //W )/Gm → BunG(E) of the coarse quotient map, but

it does factor through a section (Ŷ //W )/Gm → BunG(E)rig. Similarly, in Chapter 6, we

will actually work with slices Z → BunG(E)rig, some of which cannot be lifted to maps to

BunG(E) without first passing to a gerbe over Z.
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Remark 1.0.7. Throughout the body of this thesis, we will work in a somewhat more

general context than in this introduction. Instead of working with a single elliptic curve

E defined over an algebraically closed field k, we will allow arbitrary families E → S of

smooth curves of genus 1 over a regular stack S (and work with a split simply connected

simple group scheme G over SpecZ), subject only sometimes to the restriction that E → S

have a section. The key examples that should be kept in mind are:

(1) S = Spec k for k a field, and E an elliptic curve over k,

(2) S = BE′ and E = Spec k, where BE′ is the classifying stack of an elliptic curve E′ over

k (this amounts to working with G-bundles on E′ up to translation), and

(3) S = M1,1 the stack of elliptic curves over SpecZ (or over some field) and E → S the

universal elliptic curve.

It should be emphasised that very little will be lost to the reader who wishes to assume that

we are in case (1) throughout.
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Chapter 2

Principal bundles on curves

In this chapter, we review some of the basic theory of stacks of principal bundles on curves.

We begin by recalling some of the abstract definitions and properties of Artin stacks in §2.1

before introducing the stack of principal bundles on a curve in §2.3. In §2.2 we discuss

gerbes under commutative group schemes and the process of rigidifying an Artin stack with

respect to a group of automorphisms. In §2.4, we give some more concrete descriptions

of stacks of principal bundles under certain unipotent groups, and in §2.5 we discuss some

general features of the stack of principal bundles under a reductive group, centering around

the notion of semistability. Finally, in §2.6 we describe some simplifications of the general

theory for curves of genus ≤ 1.

To fix ideas, unless otherwise specified, all schemes will be locally Noetherian, and all

group schemes will be flat, affine, and of finite type.

All the results stated in this chapter are either well known or folklore, with the possible

exception of Proposition 2.6.8.

2.1 Recollections on deformation theory and Artin stacks

In this section, we recall and fix terminology for some of the basic notions from deformation

theory and the theory of Artin stacks. We stress that this is not by any means a self-

contained introduction to the subject, for which we direct the reader to one of the standard

references such as [LMB] or [O2].

For the purposes of this thesis, by an Artin stack (or algebraic stack) X, we mean a

functor (i.e., a lax 2-functor)

X : Schop −→ Grpd,

where Sch is the category of locally Noetherian schemes and Grpd is the 2-category of

groupoids, such that

(1) X satisfies descent for the étale (equivalently, the fppf) topology,

(2) the diagonal ∆: X → X ×X is representable (by algebraic spaces), and

(3) there exists a (locally Noetherian) scheme U and a smooth surjective morphism U → X.

For the sake of brevity, we will often drop the adjective “Artin” or “algebraic” and speak

simply of stacks.

Remark 2.1.1. Artin stacks naturally form a 2-category, rather than an ordinary category.

When we speak of a commutative diagram, fibre product, etc., of Artin stacks, we will always

mean a 2-commutative diagram, 2-fibre product, etc.

Definition 2.1.2. If X is an Artin stack, then a quasi-coherent (resp., coherent) sheaf on

X is a sheaf F of O-modules on the site Sch/X of locally Noetherian schemes over X (say,

with the étale topology) such that
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(1) if U ∈ Sch/X , then the restriction FU of F to the subcategory of Zariski open sets of U

is a quasi-coherent (resp., coherent) sheaf on U , and

(2) if f : U → V is a morphism in Sch/X , then the induced morphism f∗FV → FU is an

isomorphism.

This defines full subcategories Coh(X) ⊆ QCoh(X) ⊆ OSch/X -mod of coherent and quasi-

coherent sheaves respectively.

Remark 2.1.3. Using the fact that the categories of coherent and quasi-coherent sheaves

satisfy fpqc descent, one can show [O1, §10] that we obtain equivalent categories Coh(X)

and QCoh(X) if we replace Sch/X with the lisse-étale site of X or the étale topology on

Sch/X with the fppf or fpqc topologies.

Similarly, to any Artin stack X one can associate a derived category D(X) of complexes

quasi-coherent sheaves. There are multiple definitions of this available in the literature: to fix

ideas, we will define D(X) to be the category D′qcoh(X) in the notation of [O1, §7]. (Another

good option would be to follow [GR, Chapter 3, §1], which gives the more refined structure of

a stable∞-category D(X), denoted there by QCoh(X), rather than a triangulated category.)

If f : X → S is a morphism of Artin stacks, then there is an associated complex LX/S ∈
D(X) controlling the deformation theory of morphisms from S-schemes to X, called the

cotangent complex of X over S [O1, §8]. The tangent complex of X over S is the derived

dual TX/S = (LX/S)∨ = RHom(LX/S ,OX).

The cotangent complex has the following basic functoriality properties.

Theorem 2.1.4 ([O1, Theorem 8.1]). Let f : X → S be a morphism of stacks.

(1) If

X ′ X

S′ S

g

f ′ f

h

(2.1.1)

is a commutative diagram of stacks, then there is a natural functoriality morphism

Lg∗LX/S −→ LX′/S′ ,

which is an isomorphism if (2.1.1) is Cartesian and either f or h is flat.

(2) If g : U → X is another morphism of stacks, then there is a natural exact triangle

Lg∗LX/S −→ LU/S −→ LU/X −→ LX/S [1].

For well behaved representable morphisms, the cotangent complex can be computed

easily from more classical objects.

Proposition 2.1.5. Suppose that f : X → S is smooth and representable and that i : Y → X

is a regular embedding with ideal sheaf I. Then the LX/S ∼= Ω1
X/S is the sheaf of relative

Kähler differentials, and LY/S is given by the complex

LY/S = [I/I2 d−→ i∗Ω1
X/S ]

concentrated in degree −1 and 0.
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At a basic level, the connection between cotangent complexes and deformation theory

can be understood as follows. Given a point x : Spec k → X (with k a field) over the point

s = f(x) : Spec k → S, we can define deformation functors

Xloc : Artk −→ Grpd and Sloc : Artk −→ Grpd,

by setting

Xloc(A) = Hom(SpecA,X)×Hom(Spec k,X) {x}

and

Sloc(A) = Hom(SpecA,S)×Hom(Spec k,S) {s}

for A ∈ Artk, where Artk is the category of local Artinian rings with residue field k. In

the following proposition, we write LX/S,x = Lx∗LX/S for the derived pullback of LX/S to

Spec k.

Proposition 2.1.6. We have the following.

(1) If V is a finite dimensional k-vector space, then Ext0(LX/S,x, V ) and Ext−1(LX/S,x, V )

are canonically isomorphic respectively to the set of isomorphism classes and the auto-

morphism group of any object in the groupoid

Xloc(k ⊕ V )×Sloc(k⊕V ) {s},

where the product on k ⊕ V is defined by (a, u)(b, v) = (ab, av + bu) and we also write

s for the image of s ∈ Sloc(k) under the morphism Sloc(k) → Sloc(k ⊕ V ) given by

a 7→ (a, 0).

(2) If B → A is a surjection in Artk with kernel V ⊆ B satisfying mBV = 0 (mB the

maximal ideal of B), then there is a canonical “obstruction” function

ob: Xloc(A)×Sloc(A) Sloc(B) −→ Ext1(LX/S,x, V )

such that ξ ∈ Xloc(A)×Sloc(A)Sloc(B) is in the image of the natural functor from Xloc(B)

if and only if ob(ξ) = 0.

Remark 2.1.7. Note that if LX/S is perfect, then Exti(LX/S,x, V ) = Hi(TX/S,x)⊗ V .

Remark 2.1.8. Proposition 2.1.6 shows that we can identify Ext−1(LX/S,x, k) = H−1(TX/S,x)

with the Lie algebra of the kernel of the homomorphism AutX(x)→ AutS(s), where we write

AutY (y) for the automorphism k-group scheme of a k-point y in a stack Y .

Remark 2.1.9. The connection between the cotangent complex and deformation theory

outlined above can be made much sharper in the framework of derived deformation theory,

where the cotangent complex can be characterised as the unique complex corepresenting

some functor. The statements of Proposition 2.1.6 are the most straightforward consequences

of this sharper statement that can be seen in the underived world.

For many stacks of interest, the cotangent and tangent complexes are very difficult to

compute. However, in these cases there is often a much simpler and more natural com-

plex approximating the tangent complex closely enough to retain the deformation theoretic

properties of Proposition 2.1.6.

Definition 2.1.10. If f : X → S is a morphism of stacks, a tangent-obstruction complex

for X over S is a complex T ∈ D(X) together with a morphism (LX/S)∨ → T such that the

(derived) cokernel has vanishing cohomology in degrees ≤ 0.
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We can also speak of tangent-obstruction complexes Tx ∈ D(Spec k) at x : Spec k → X

by replacing LX/S with LX/S,x in Definition 2.1.10.

If T is a tangent-obstruction complex for X over S, then the vanishing condition im-

plies that for any point x : Spec k → X and any k-vector space V , the induced morphism

Exti(LX/S,x, V ) → Hi(Tx) ⊗ V is an isomorphism for i = 0,−1 and injective for i = 1. So

Proposition 2.1.6 holds with Hi(Tx)⊗ V in place of Exti(LX/S,x, V ).

The following proposition follows easily from the above discussion and the fact that the

tangent complex of a smooth morphism of stacks is perfect of amplitude contained in [−1, 0].

Proposition 2.1.11. Assume that f : X → S is locally of finite presentation. Then f

is smooth at x : Spec k → X if and only if f has a tangent-obstruction complex Tx at x

with Hi(Tx) = 0 for i 6= 0,−1. Moreover, for any such tangent-obstruction complex, the

morphism TX/S,x → Tx must be an isomorphism in D(Spec k).

Remark 2.1.12. While tangent-obstruction complexes appear somewhat unnatural at first

sight, they have a natural interpretation in the context of derived algebraic geometry: in

practice, interesting tangent-obstruction complexes for a stack X are almost always the

tangent complexes of some non-trivial (but natural) derived thickenings of X.

2.2 Gerbes and rigidification

At many points throughout this thesis, we will encounter stacks in which all automorphism

groups naturally contain a common commutative subgroup, which we will either wish to

remove or use in subsequent constructions. In this section, we review some useful theory for

working with these structures.

Recall that if X → S is a morphism of stacks and G → S is a group scheme over S,

then a G-torsor or principal G-bundle on X is a morphism ξ → X equipped with a right

G-action on ξ over X such that there exists an fppf surjection U → X and a G-equivariant

isomorphism U ×S ξ ∼= U ×S G. The classifying stack of G is the algebraic stack BG = BSG
representing the functor

Stkop/S −→ Grpd

X 7−→ {G-torsors on X}.

It is easy to see that giving a morphism BSG → X is equivalent to giving a morphism

x : S → X (the image of the trivial torsor S × G) equipped with a homomorphism G =

AutBSG(S ×G)→ AutX(x) of automorphism group schemes over S.

If G → S is a commutative group scheme, then the classifying stack BG is a (commu-

tative) group stack over S with identity given by the map S → BG classifying the trivial

torsor, and group operation given by

m : BG×S BG −→ BG

(ξ, η) 7−→ ξ ⊗ η

where, for ξ and η G-torsors over some S-stack U , ξ ⊗ η is the G-torsor given by

ξ ⊗ η = ξ ×G η = (ξ ×U η)/G,

where G acts on ξ ×U η by the formula (x, y) · g = (xg, yg−1), and the action of G on

ξ ⊗ η is induced by the action on either factor ξ or η in the product. Using the general

theory of group objects in a 2-category, one can therefore define to notion of an action of
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BG on an S-stack X. While the general definition of an action of a group stack is somewhat

complicated, in the special case of BG it reduces to the following simple structure.

Definition 2.2.1. LetX → S be a morphism of stacks, and letG→ S be a flat commutative

group scheme of finite type. An action of BG on X over S is a morphism a : X×S BG→ X

of stacks over S, equipped with a 2-isomorphism making the diagram of S-stacks

X X ×S BG

X

idX
a

commute, where the top morphism is the canonical quotient map classifying the trivial

G-torsor on X.

Remark 2.2.2. If s : U → S is an S-scheme, a morphism U ×S BG → X over S is the

same thing as a point x ∈ X(U) over s ∈ S(U), together with a homomorphism GU →
ker(AutX(x) → AutS(s)) of group schemes (or group algebraic spaces) over U . Using this

fact, an action of BG on X is the same thing as a collection of homomorphisms GU →
ker(AutX(x)→ AutS(s)) for every X-scheme x : U → X compatible with base change.

More generally, an action of a group stack H on X consists of an action in the sense of

Definition 2.2.1, together with a choice of 2-isomorphism making the diagram

X ×S H ×S H X ×S H

X ×S H X

a×id

id×m a

a

(2.2.1)

commute, which is required to be compatible with various other 2-isomorphisms in a precise

way. For H = BG, however, there is a unique such 2-isomorphism, automatically compatible,

given by the obvious identification of the two homomorphisms GU×UGU → ker(AutX(x)→
AutS(s)) for every x : U → X as in Remark 2.2.2.

Given the notion of an action, one can define torsors under group stacks just as for group

schemes. If G is a commutative group scheme, then torsors under the group stack BG have

a special name.

Definition 2.2.3. If G→ S is a flat commutative group scheme of finite type and X → S

is any stack over S, then a G-gerbe on X is a morphism of stacks ξ → X equipped with an

action of BG on ξ over X, such that there exists a smooth (equivalently, fppf) surjection

U → Y such that U ×Y ξ is isomorphic to U ×S BG as stacks over U equipped with a

BG-action. Here BG acts on U ×S BG via

U ×S BG×S BG id×m−−−→ U ×S BG.

Remark 2.2.4. There is another notion of gerbe defined, for example, in [LMB]. These

weaker objects are simply surjective morphisms U → X such that the diagonal U → U ×X
U is also surjective, which in particular implies that all geometric fibres of U → X are

classifying stacks of groups. It is easy to see that any G-gerbe in our sense is a gerbe in this

weaker sense, and has the stronger property that all the automorphism groups appearing in

fibres of U → X are identified with the corresponding fibres of G→ S.

Just as for actions of group schemes, there is a good theory of quotients for nice enough

actions of BG.
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Proposition 2.2.5. Assume that G→ S is a flat commutative group scheme of finite type

and that we are given an action a : X ×S BG → X on an S-stack X such that for every

morphism x : U → X with U a scheme, the induced homomorphism GU → AutX(x) is a

closed immersion. Then there exists a unique stack Xrig over S equipped with a morphism

X → Xrig such that the BG-action makes X into a G-gerbe over Xrig. Moreover, if X has

affine diagonal over S and G is an extension of a finite group scheme by a torus, then Xrig

also has affine diagonal over S.

Proof. Existence and uniqueness of the stack Xrig is proved in [ACV, Theorem 5.1.5]. It

remains to check that Xrig → S has affine diagonal when X does and G is an extension of

a finite group scheme by a torus. To see this, observe that since X → Xrig is a G-gerbe,

there is a pullback square

X ×S BG X ×S X

Xrig Xrig ×S Xrig,

where the top horizontal morphism is given by natural projection on the first factor and the

BG action on the second. Since X → Xrig is faithfully flat, it suffices to show that this top

morphism is affine. If U is an affine scheme and U → X ×S X is a morphism classifying a

pair (x, y) ∈ X(U)×X(S) X(U) over s ∈ S(U), then there is a pullback

Isoms(x, y)/G U

X ×S BG X ×S X,

where Isoms(x, y) → U is the scheme of isomorphisms x
∼→ y covering id: s

∼→ s. But G

acts freely on the affine scheme Isoms(x, y), so Isom(x, y)/G is itself affine over U since G

is an extension of a finite group scheme by a torus. This completes the proof.

Definition 2.2.6. The stack Xrig is called the rigidification of X with respect to the group

G.

2.3 Stacks of principal bundles and basic properties

In this thesis, the most important example of an Artin stack is, of course, the stack of

principal bundles on a curve, or family of curves. We define this stack in this section, and

discuss some of its most elementary properties.

Let X → S be a morphism of Artin stacks, and suppose that G→ X is a group scheme,

which we will assume to be flat, affine and of finite presentation over X. Consider the

functor

BunG/S(X) : (Stk/S)op −→ Grpd (2.3.1)

sending an S-stack U to the groupoid of G-torsors on U ×S X.

Proposition 2.3.1. Assume that X is flat, proper and representable over S. Then the

functor (2.3.1) is representable by an Artin stack BunG/S(X) locally of finite presentation

with affine diagonal over S.

Remark 2.3.2. In more prosaic terms, BunG/S(X) is the stack of pairs (s, ξG), where s ∈ S
and ξG → Xs is a Gs-bundle over the fibre Xs of X over s.
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Remark 2.3.3. If X → S is as above, X → X ′ is any morphism of stacks, and G → X ′

is a group scheme over X ′, then GX = X ×X′ G is a group scheme over X, and we will

write BunG/S(X) for the stack BunGX/S(X). Note that, for any S-stack U → S, a principal

GX -bundle on U ×S X (viewing U ×S X as a stack over X) is by definition the same thing

as a principal G-bundle over U ×S X (viewing U ×S X as a stack over X ′).

Remark 2.3.4. If S = Spec k for some field k, we will often write BunG(X) = BunG/S(X).

Assume that G → X ′ is a group scheme over X ′ and that Y → X ′ is a stack over X ′

equipped with a left G-action. If X is a stack over X ′ and ξG → X is a principal G-bundle,

then we set

ξG ×G Y = (ξG ×X′ Y )/G −→ X

on X, where G acts on ξG ×X′ Y by (x, v)g = (xg, g−1y) for x ∈ ξG, g ∈ G and y ∈ Y .

If G → H is a homomorphism of group schemes over X ′ then ξG ×G H is naturally

an H-torsor, where G acts on H by multiplication on the left and H acts on ξG ×G H by

multiplication on the right. This construction defines a morphism

BunG/S(X) −→ BunH/S(X). (2.3.2)

Definition 2.3.5. In the setup above, if ξH → X is anH-bundle, a reduction of the structure

group of ξH to G is a G-bundle ξG → X and an isomorphism ξG×GH ∼= ξH (i.e., a preimage

of ξH under (2.3.2)).

If X → Y is a morphism of stacks over another stack S, we write ΓS(Y,X) for the stack

whose functor of points sends an S-scheme U to the groupoid of sections over U of the map

U ×S X → U ×S Y ; if Y → S is proper, then this is algebraic.

The following proposition is elementary and well-known.

Proposition 2.3.6. If G → H is a homomorphism of group schemes, then there is an

isomorphism

BunG/S(X) ∼= ΓBunH/S(X)(BunH/S(X)×S X, ξuniH /G),

where ξuniH is the universal H-bundle on BunH/S(X)×S X.

Remark 2.3.7. In more down to earth terms, Proposition 2.3.6 can be interpreted as says

that a reduction of the structure group of an H-bundle ξH → X to G is the same thing as

a section of the map ξH/G = ξH ×H H/G→ X.

Now suppose that V is a representation of G, i.e., a vector bundle equipped with a linear

G-action. Then ξG ×G V is a vector bundle on X, called the associated vector bundle.

Proposition 2.3.8. Under the assumptions of Proposition 2.3.1, assume in addition that

G→ X is smooth. Then BunG/S(X)→ S has a tangent-obstruction complex given by

T = Rπ∗(ξuniG ×G g)[1],

where g is the Lie algebra of G with G acting via the adjoint representation, ξuniG is the

universal G-bundle over BunG/S(X)×S X, and π : BunG/S(X)×S X → BunG/S(X) is the

natural projection.

Corollary 2.3.9. If G → X is a smooth affine group scheme and X → S is a proper

curve, then BunG/S(X) → S is smooth and the tangent complex TBunG/S(X)/S is equal to

the tangent-obstruction complex of Proposition 2.3.8.
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Proof. Fix a point s : Spec k → S and a G-bundle ξG → Xs corresponding to a point in

BunG/S(X). Then Proposition 2.3.8 gives a tangent-obstruction complex

T(s,ξG) = RΓ(Xs, ξG ×G g)[1]

for BunG/S(X) at (s, ξG). Since Xs is a curve, Hi(Xs, ξG×G g) = 0 for i > 1, so Proposition

2.1.11 implies the claim.

It will often be convenient to simplify BunG/S(X) using the rigidification construction

described in §2.2. Let G → X be a group scheme, and choose a closed subgroup H ⊆
ΓS(X,Z(G)) that is flat over S. Then we have a natural action

BunG/S(X)×S BH −→ BunG/S(X)

(ξG, ηH) 7−→ ξG ⊗ ηH ,

where, for U an S-scheme, ξG → U ×S X a G-bundle and ηH → U an H-bundle, we set

ξG ⊗ ηH = (ξG ×U ηH)/H,

where H acts on ξG ×U ηH by the formula (x, y) · h = (xh, yh−1). This action corresponds

to the collection of homomorphisms HU → Aut(ξG) defined by the action

HU ×U ξG −→ ξG

(h, x) 7−→ xh.

Since these homomorphisms are closed immersions, we have a rigidification BunG/S(X) →
BunG/S(X)rig with respect to H.

Remark 2.3.10. In the special case where H is the centre of some reductive group, H is

an extension of a torus by a finite commutative group scheme, so BunG/S(X)rig has affine

diagonal by Proposition 2.2.5.

Remark 2.3.11. If G→ S is a group scheme over S, then we have that Z(G) ⊆ ΓS(X,X×S
Z(G)) is a closed subgroup, so we can rigidify BunG/S(X) = BunX×SG/S(X) with respect

to closed subgroups of Z(G).

2.4 Principal bundles under unipotent groups

In this section, we describe methods for studying the geometry of BunG(X) when the group

G is built from additive groups and X is a curve.

We first recall the relationship between sheaf cohomology and principal bundles under a

vector bundle (viewed as a group scheme under addition).

Proposition 2.4.1. Let πX : X → S be a proper curve over S and V a vector bundle on

X. Assume that the coherent sheaves RiπX∗(V ) are vector bundles on S for i = 0, 1. Then

the rigidified stack BunV/S(X)rig with respect to H = ΓS(X,V ) = πX∗(V ) is isomorphic to

the total space of the vector bundle R1πX∗(V ) on S.

The next proposition describes how principal bundles behave under extensions of group

schemes.

Proposition 2.4.2. Let : X → S be a proper curve over S, X → X ′ a morphism of stacks

and let

1 −→ K −→ G −→ H −→ 1 (2.4.1)

be a short exact sequence of flat affine group schemes over X ′.
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(1) If the sequence (2.4.1) is split, so that G ∼= K oH, then

BunG/S(X) ∼= BunK/M (M ×S X), (2.4.2)

where M = BunH/S(X) and K →M ×S X is the group scheme K = ξuniH ×H K, where

ξuniH →M ×S X is the universal H-bundle and H acts on K by conjugation.

(2) If K is a vector bundle contained in the centre of G then BunK/S(X) is naturally a

group stack, and BunG/S(X) is a BunK/S(X)-torsor over BunH/S(X).

Proof. In (1), if we view the right hand side of the isomorphism (2.4.2) as the stack of pairs

(ξH , ξK), where ξH is an H-torsor and ξK a torsor for the corresponding fibre of K, the

isomorphism sends ξG ∈ BunG/S(X) to the pair (ξH = ξG ×G H, ξG/H). (Note that the

action of K on ξG on the right determines an action of K = ξG ×G K on ξG/H.) It is easy

to check that this is indeed an isomorphism of stacks.

To prove (2), observe that the action of K on G by multiplication on the right induces

an action of BunK/S(X) on BunG/S(X) over BunH/S(X) such that the induced morphism

BunG/S(X)×BunK/S(X)→ BunG/S(X)×BunH/S(X) BunG/S(X) is an isomorphism. Hence,

to show that BunG/S(X) → BunH/S(X) is a BunK/S(X)-torsor, it suffices to show that

BunG/S(X) → BunH/S(X) is surjective. To see this, observe that if ξH → Xs is an H-

bundle on a geometric fibre of X → S, then the stack quotient ξH/G is naturally a K-

gerbe over Xs. Since H2(Xs,K) = 0, as K is a vector bundle and Xs is a curve, all

K-gerbes over Xs are trivial, so ξH/G admits a section, and hence ξH is in the image of

BunG/S(X)→ BunH/S(X).

Using Proposition 2.4.1 and Proposition 2.4.2, we have the following two extreme cases

for the geometry of BunU/S(X) with U → X a connected unipotent group scheme.

Corollary 2.4.3. Let πX : X → S be a proper curve and U → X a connected unipotent

group scheme such that ΓS(X,U) = {1}. Then BunU/S(X) is an affine space bundle over

S.

Proof. Fix a central series

{1} ⊆ Un ⊆ Un−1 ⊆ · · · ⊆ U1 = U

for U . We prove by the corollary by induction on the length n.

When n = 1, this reduces to a special case of Proposition 2.4.1, so suppose that n > 1.

Then the assumptions on U imply that Un is a vector bundle on X such that H0(Xs,Un) = 0

for every s : Spec k → S. So Proposition 2.4.1 implies that BunUn/S(X) = R1πX∗Un is a

vector bundle over S. We have a central extension

1 −→ Un −→ U −→ U/Un −→ 1,

so BunU/S(X) is a R1πX∗Un-torsor over Bun(U/Un)/S(X). Since Bun(U/Un)/S(X) is an affine

space bundle over S by induction, so is BunU/S(X).

Corollary 2.4.4. Let πX : X → S be a proper curve and U → X a connected unipotent

group scheme admitting a central series

{1} = Un+1 ⊆ Un ⊆ Un−1 ⊆ · · · ⊆ U1 = U

in which each quotient Ui/Ui+1 is a vector bundle with R1πX∗Ui/Ui+1 = 0. Then the map

BΓS(X,U)→ BunU/S(X) classifying the trivial bundle is an isomorphism.
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Proof. For n = 1, the statement is immediate from Proposition 2.4.1. For n > 1, we have a

central extension

1 −→ Un −→ U −→ U/Un −→ 1,

from which it follows by Proposition 2.4.1 and induction that BΓS(X,U) → BunU/S(X) is

a morphism of BΓS(X,Un)-gerbes over ΓS(X,U/Un) = Bun(U/Un)/S(X), hence an isomor-

phism as claimed.

The stack of bundles under a connected unipotent group scheme has the following con-

venient properties.

Corollary 2.4.5. Let X → Spec k be a proper curve over an algebraically closed field k and

let U → X be a connected unipotent group scheme. Then BunU (X) is connected.

Proof. By induction on the length of a central series for U , we can reduce by Proposition

2.4.2 to the case where U is a vector bundle on X. The statement in this case follows

immediately from Proposition 2.4.1.

Proposition 2.4.6. Let X → Spec k be a proper curve over an algebraically closed field k,

and let U → X be a connected unipotent group scheme. If ξU → X is U-bundle, then the

canonical morphism BAut(ξU )→ BunU (X) is a closed immersion.

Proof. Fix a central series

{1} ⊆ Un ⊆ Un−1 ⊆ · · · ⊆ U1 = U

for U . We prove by the proposition by induction on the length n.

For n = 0 the claim is trivial. For n > 0, we have a short exact sequence

1 −→ Un −→ U −→ U/Un −→ 1,

where Un is a vector bundle on X and the claim holds for U/Un. So Proposition 2.4.2 implies

that the fibre product

X BunU (X)

BAut(ξU/Un) BunU/Un(X),

(2.4.3)

is a trivial BunUn(X)-torsor over BAut(ξU/Un) and hence isomorphic to BunUn(X)/Aut(ξU/Un),

where ξU/Un = ξU×UU/Un. Since the horizontal morphisms in (2.4.3) are closed immersions,

we just have to show that the morphism

BAut(ξU ) −→ BunUn(X)/Aut(ξU/Un)

is a closed immersion, which reduces by Proposition 2.4.1 to showing that the orbits of

Aut(ξU/Un) on the variety H1(X,Un) are closed. But this is immediate since Aut(ξU/Un)

acts through some algebraic group homomorphism Aut(ξU/Un)→ BunUn(X)→ H1(X,Un),

which must have closed image.

One can view (2) of Proposition 2.4.2 as a part of the long exact sequence in nonabelian

cohomology applied to short exact sequences in which every term is a flat group scheme.

However, it is also useful to consider nonabelian analogues of short exact sequences

0 −→ U −→ V −→ F −→ 0,

where U and V are vector bundles and F is a torsion coherent sheaf. The following propo-

sition gives one such analogue.
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Proposition 2.4.7. Let X → S be a proper curve and let U ′ → U be a homomorphism of

connected unipotent group schemes over X such that

(1) U → U ′ is an isomorphism over an open subset of X that is dense in every geometric

fibre of X → S, and

(2) for every morphism S′ → S with S′ an affine scheme and every affine open V ⊆ S′×SX,

Γ(V,U ′) is a normal subgroup of Γ(V,U).

Then the stack ΓS(X,U/U ′) is a group scheme over S, and BunU ′/S(X) → BunU/S(X) is

naturally a ΓS(X,U/U ′)-torsor.

Proof. To show that the stack ΓS(X,U/U ′) is a group scheme, consider its functor of points

F0 : Stkop/S −→ Grpd

S′ 7−→ Γ(X ′,U/U ′),

where we write X ′ = S′ ×S X. Since F0 satisfies fppf descent, it is determined by its

restriction to the full subcategory C0 ⊆ Stk/S spanned by the affine schemes S′ over S such

that X ′ is itself a scheme. Moreover, F0 extends to a functor

F0,Zar : Cop0,Zar −→ Grpd

(S′, V ⊆ X ′) 7−→ Γ(V,U/U ′),

where C0,Zar is the category of pairs (S′, V ⊆ X ′) where S′ ∈ C0 and V ⊆ X ′ is a Zariski open

subset. Since U ′ is unipotent, every U ′-torsor on an affine scheme is trivial, so whenever V

is affine we have that

Γ(V,U/U ′) = Γ(V,U)/Γ(V,U ′)

is the quotient of a group by a normal subgroup, and is hence a group. So by Zariski descent,

F0,Zar and hence F0 is valued in groups, so ΓS(X,U/U ′) is a group scheme over S as claimed.

Similarly, to show that BunU ′/S(X) is a ΓS(X,U/U ′)-torsor, notice that by Proposition

2.3.6, BunU ′/S(X) has functor of points

F : Stkop/BunU/S(X) −→ Grpd

(S′, ξU ) 7−→ Γ(X ′, ξU/U ′),

which is again determined by the functor

FZar : CopZar −→ Grpd

(S′, ξU , V ⊆ X ′) 7−→ Γ(V, ξU/U ′) = Γ(V, ξU )/Γ(V,U ′),

where CZar is the category of triples (S′, ξU , V ⊆ X ′) where S′ is an affine scheme over S

with X ′ = S′×SX also a scheme, ξU → X ′ is a U-torsor and V ⊆ X ′ is an open subset. It is

clear that F0,Zar(S
′, V ) acts naturally on FZar(S

′, ξU , V ). Since ξU must be trivial restricted

to V when V is affine, it follows that FZar(S
′, ξU ,−) defines an F0,Zar(S

′,−)-torsor on X ′ for

fixed S′. Finally, since U ′ → U is generically an isomorphism on every fibre of X → S, there

exists an affine open V ⊆ X ′ and a subset Z ⊆ V closed in X ′ such that F0,Zar(S
′, ξU ,−) is

trivial on any open subset of X ′ \Z. So any trivialisation of FZar over V extends uniquely to

a trivialisation on all of X ′, which implies that BunU ′/S(X)→ BunU/S(X) is a ΓS(X,U ′/U)-

torsor as claimed.

19



2.5 Principal bundles under reductive groups and stability

We now turn to the much more subtle problem of describing the stack BunG/S(X) when G

is a reductive group, which in some sense will take up the bulk of this thesis. In this section,

we recall some of the basic theory of reductive groups, establish some notation, and discuss

the important notion of (semi)stability for principal bundles under a reductive group.

Unless otherwise specified, by a reductive group, we will always mean a split connected

reductive group scheme over SpecZ. We will fix throughout this section a proper curve

X → S over a stack S.

In the case of the simplest reductive groups, tori, the structure of BunG/S(X) is captured

by the classical theory of Picard schemes.

Proposition 2.5.1. Let T be a split torus over SpecZ with character group X∗(T ) =

Hom(T,Gm) ∼= Zl and X → S a proper curve with reduced and irreducible geometric fi-

bres. Then, with respect to the subgroup H = T = Z(T ), the rigidified stack of T -bundles is

given by

BunT/S(X)rig = HomZ(X∗(T ),PicS(X)) ∼= PicS(X)l,

where PicS(X) is the relative Picard scheme of X over S. Moreover, if we fix a section

x : S → X, then there is a unique section BunT/S(X)rig → BunT/S(X) such that the

pullback of the universal T -bundle along the map

BunT/S(X)rig
x−→ BunT/S(X)rig ×S X −→ BunT/S(X)×S X

is trivial.

Remark 2.5.2. Since BunT/S(X)→ BunT/S(X)rig is a T -gerbe, the section of Proposition

2.5.1 determines an isomorphism BunT/S(X) ∼= BunT/S(X)rig × BT .

In the setup of Proposition 2.5.1, the degree map PicS(X) → Z determines a degree

function

deg : BunT/S(X) −→ HomZ(X∗(T ),PicS(X)) −→ HomZ(X∗(T ),Z) = X∗(T ),

where X∗(T ) = Hom(Gm, T ) is the group of cocharacters of T . More explicitly, if ξT → Xs is

a T -bundle over a geometric fibre of X → S, then deg(ξT ) ∈ X∗(T ) is the unique cocharacter

satisfying

〈λ,deg(ξT )〉 = deg λ(ξT )

for all λ ∈ X∗(T ), where

〈−,−〉 : X∗(T )× X∗(T ) −→ Z

(λ, µ) 7−→ λ ◦ µ ∈ Hom(Gm,Gm) = Z

is the natural pairing and we write λ(ξT ) = ξT ×T Zλ for the line bundle on Xs associated

to ξT and the 1-dimensional representation Zλ on which T acts with weight λ.

Definition 2.5.3. If λ ∈ X∗(T ), we write BunλT/S(X) ⊆ BunT/S(X) for the open and closed

substack of T -bundles of degree λ.

For G an arbitrary reductive group, we can use the theory for tori to define numerical

invariants of G-bundles. Observe that the reduced identity component Z(G)◦ of Z(G) and

the abelianisation G/[G,G] of G are tori, and that the morphism Z(G)◦ → G/[G,G] is an

isogeny.
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Definition 2.5.4. Let ξG → Xs be a principal G-bundle on a geometric fibre of X → S.

The degree of ξG is the degree of the associated G/[G,G]-bundle. The slope of ξG is the

image µ(ξG) ∈ X∗(Z(G)◦)Q of deg ξG under the natural map

X∗(G/[G,G]) ↪−→ X∗(G/[G,G])Q
∼←− X∗(Z(G)◦)Q.

More generally, if H is any group scheme such that H/Ru(H) is split reductive, we will

define the degree (resp., slope) of an H-bundle ξH → Xs to be the degree (resp., slope) of

ξH×HH/Ru(H), and, given d ∈ X∗(H/(Ru(H)·[H,H])) (resp., µ ∈ X∗(Z(H/Ru(H))◦)Q) we

will write BundH/S(X) (resp., BunµH/S(X)) for the open and closed substack of BunH/S(X)

of H-bundles of degree d (resp., slope µ).

Remark 2.5.5. The terminology “degree” and “slope” can be justified as follows: for G =

GLn, we have GLn/[GLn, GLn] ∼= Gm and Z(GLn)◦ ∼= Gm and hence natural identifications

X∗(GLn/[GLn, GLn]) ∼= Z and X∗(Z(GLn)◦)Q ∼= Q such that the degree (resp., slope) of a

GLn-bundle ξGLn is identified with the degree deg V (resp., slope µ(V ) = deg V/ rankV ) of

the vector bundle V associated to the standard representation. More generally, if G is an

arbitrary reductive group, ξG → Xs is a G-bundle of slope µ and V is any G-representation

on which Z(G)◦ acts with weight λ, then the associated vector bundle ξG ×G V → Xs has

slope 〈λ, µ〉 ∈ Q.

Before we can go further, we need to recall some of the basic structure theory of a

reductive group G.

Definition 2.5.6. Let G be a reductive group. If U is any scheme, a Borel subgroup of

GU = G× U is a closed solvable subgroup B ⊆ GU , flat over U with connected fibres, such

that for every geometric point u : Spec k → U , Bu ⊆ Gk is maximal among closed connected

solvable subgroups of Gk. The flag variety of G is the Z-scheme F representing the functor

Schop → Set sending a scheme U to the set of Borel subgroups of GU .

The flag variety of a reductive group G is always a connected projective Z-scheme with a

transitive action of G by conjugation of subgroups, such that the universal Borel subgroup

B ⊆ G× F is given by

B = {(g, x) ∈ G× F | gx = x}.

Since we are assuming our reductive groups are split, F → SpecZ has a section, defining a

Borel subgroup B ⊆ G and an isomorphism

G/B
∼−→ F

gB 7−→ gBg−1.

In view of this isomorphism and Proposition 2.3.6, the flag variety plays an important role

in studying reductions of G-bundles to B.

Again because G is split, there is a unique split torus T over SpecZ, called the abstract

Cartan subgroup, equipped with an isomorphism of group schemes over F

B/Ru(B) = B/[B,B] ∼= T × F, (2.5.1)

where Ru(H) denotes the unipotent radical of a group scheme H and [H,H] the commutator

subgroup (the normal subgroup generated by commutators ghg−1h−1 for g, h ∈ H). For

any choice of Borel subgroup B ⊆ G, there is a canonical isomorphism B/Ru(B) ∼= T given

by pulling back (2.5.1) along the section SpecZ → F classifying B. If we choose a (split)

21



maximal torus T ′ ⊆ B, which exists since G is split, then we therefore get an isomorphism

T ′ ∼= B/Ru(B) ∼= T . Note that this last isomorphism depends on the choice of Borel

subgroup B containing T ′.

The reductive group G is completely classified by its root datum (X∗(T ),Φ,X∗(T ),Φ∨),

where Φ ⊆ X∗(T ) is the set of roots and Φ∨ ⊆ X∗(T ) the set of coroots, and implicitly

we are given a bijection Φ → Φ∨, α 7→ α∨. If we choose a Borel subgroup and maximal

torus T ⊆ B ⊆ G (where we implicitly identify the maximal torus with the abstract Cartan

subgroup via (2.5.1)), the set of roots Φ is simply the set of weights of T acting on the

Lie algebra g of G. If α ∈ Φ is a root, then the corresponding coroot α∨ is defined by

choosing homomorphism ρα : SL2 → G whose derivative sends the strictly upper triangular

matrices isomorphically onto the α-weight space gα and the strictly lower triangular matrices

isomorphically onto the (−α)-weight space g−α and setting

α∨(t) = ρα

(
t 0

0 t−1

)
for t ∈ Gm.

We will adopt the convention that the set Φ− ⊆ Φ of negative roots is the set of nonzero

weights of T acting on Lie(B), and let Φ+ = −Φ− be the corresponding set of positive

roots. The root datum (X∗(T ),Φ,X∗(T ),Φ∨) and the sets Φ+ and Φ− are independent of

the choice of B and embedding T → B.

We will write ∆ = {α1, . . . , αl} ⊆ Φ+ and ∆∨ = {α∨1 , . . . , α∨l } ⊆ Φ∨+ for the sets of

positive simple roots and coroots respectively. We also write {$1, . . . , $l} and {$∨1 , . . . , $∨l }
for the bases of (ZΦ∨)∨ and (ZΦ)∨ dual to ∆ and ∆∨ respectively. Note that ZΦ = X∗(T ) if

and only if the centre Z(G) is trivial, and ZΦ∨ = X∗(T ) if and only if G is simply connected

and semisimple.

Definition 2.5.7. Let P ⊆ G be a parabolic subgroup (i.e., a closed subgroup containing

some Borel). The type of P is the set t(P ) ⊆ ∆ of simple roots that are not weights of T

acting on Lie(P ) ⊆ g for some (hence any) choice T ⊆ B ⊆ P ⊆ G of Borel subgroup and

maximal torus contained in P .

If P ⊆ G is a parabolic subgroup, we write TP = P/[P, P ]. Note that TP is a torus, and

is the unique quotient of T with character group

X∗(TP ) = {λ ∈ X∗(T ) | 〈λ, α∨i 〉 = 0 for αi ∈ ∆ \ t(P )}.

In particular, TP depends only on the type t(P ).

Definition 2.5.8. If P ⊆ G is a parabolic subgroup, we say that λ ∈ X∗(TP ) = Hom(P,Gm)

is dominant if 〈λ, α∨i 〉 ≥ 0 for all αi ∈ t(P ).

Remark 2.5.9. For any t ⊆ ∆, there is aG-homogeneous projective Z-scheme Ft parametris-

ing parabolic subgroups P of type t(P ) = t, and fixing any such P ⊆ G we have an isomor-

phism Ft ∼= G/P . There is a canonical isomorphism

X∗(TP )
∼−→ PicG(G/P ) = PicG(Ft)

λ 7−→ Lλ = G×P Zλ,

where PicG denotes the group of G-linearised line bundles, which is independent of the

choice of parabolic subgroup P of type t. Our conventions are chosen so that λ ∈ X∗(TP ) is

dominant if and only if the line bundle Lλ on G/P is nef.
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Returning to G-bundles, assume for the rest of this section that the curve X → S is

smooth.

Definition 2.5.10. Fix a geometric point s : Spec k → S and a principal G-bundle ξG →
Xs. We say that ξG is stable (resp., semistable) if for every reduction ξP of ξG to a parabolic

subgroup P ⊆ G and every dominant character λ : P → Gm of P that vanishes on the

reduced identity component Z(G)◦ of the centre Z(G), we have

deg(ξP ×P Zλ) > 0 (resp., deg(ξP ×P Zλ) ≥ 0 ).

We say that ξG is unstable if it is not semistable.

Remark 2.5.11. By Proposition 2.3.6, the datum of a reduction ξP of ξG to P is equivalent

to a section of the associated flag variety bundle σ : Xs → ξG/P = ξG ×G Ft(P ), and

ξP ×P Zλ = σ∗LξGλ , where LξGλ = ξG ×P Zλ = ξG ×G Lλ is the natural line bundle on ξG/P

associated to Lλ.

In the special case when G = GLn, the associated vector bundle of the standard repre-

sentation gives an identification of BunGLn/S(X) with the relative stack of rank n vector

bundles on X. We will say that a vector bundle is stable (resp., semistable, unstable) if the

corresponding principal GLn-bundle is. We can also understand this notion more directly

in terms of vector bundles as follows.

If K is a nonzero coherent sheaf on a geometric fibre Xs of X → S, then the slope of K

is

µ(F ) =
degK

rankK
,

where we adopt the convention that µ(K) = +∞ if rankK = 0.

Proposition 2.5.12. Let V be a vector bundle on a geometric fibre Xs of X → S. The

following are equivalent.

(1) The associated GLn-bundle is stable (resp., semistable).

(2) If K ↪→ V is a nonzero subsheaf, then µ(F ) < µ(V ) (resp., µ(K) ≤ µ(V )).

(3) If V � Q is a nonzero quotient sheaf, then µ(Q) > µ(V ) (resp., µ(Q) ≥ µ(V )).

(4) If U ↪→ V is a nonzero vector subbundle, then µ(U) < µ(V ) (resp., µ(U) ≤ µ(V )).

(5) If V �W is a nonzero quotient bundle, then µ(W ) > µ(V ) (resp., µ(W ) ≥ µ(V )).

Proposition 2.5.13. Let X → S be a smooth proper curve. Then the substack

BunssG/S(X) ⊆ BunG/S(X)

of semistable bundles ξG → Xs is open.

Proposition 2.5.13 is well-known. We will give a proof in §3.6 as an easy application of

the theory of Kontesevich-Mori compactifications.

In characteristic 0, semistability has very good functoriality properties under extension

of structure group and pullback along morphisms between curves. In positive characteristic,

many of these properties require a slightly stronger condition than semistability.

Definition 2.5.14. Let s : Spec k → X be a geometric point and let ξG → Xs be a principal

G-bundle. We say that ξG is strongly semistable if either k has characteristic 0, or k has

characteristic p > 0 and the Frobenius twists ξG ×G G(pn)
k are semistable G

(pn)
k -bundles for

all n ≥ 0, where Gk → G
(pn)
k is the relative pn-Frobenius for Gk = G× Spec k.
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The class of strongly semistable G-bundles behaves well under extension of structure

group.

Theorem 2.5.15 ([RR, Theorems 3.19 and 3.23]). Let f : G → H be a homomorphism of

reductive groups such that f(Z(G)◦) ⊆ Z(H)◦, and let ξG → Xs be a strongly semistable

G-bundle. Then the H-bundle ξG ×G H is strongly semistable.

In particular, we have the following result concerning semistability of associated vector

bundles.

Corollary 2.5.16. Let ξG → Xs be a strongly semistable G-bundle, and let V be a repre-

sentation of G on which Z(G)◦ acts with a single weight. Then the associated vector bundle

ξG ×G V on Xs is semistable.

Let ξG → Xs be an unstable G-bundle. Then by definition, there exists a parabolic

subgroup P ⊆ G, a reduction ξP of ξG to P and a dominant character λ : P → Gm such

that the line bundle ξP ×P Zλ has strictly negative degree. In fact, there is a canonical

choice of such a reduction, which is in some sense as destabilising as possible.

Definition 2.5.17. Let P ⊆ G be a parabolic subgroup with Levi factor L. We say that

µ ∈ X∗(Z(L)◦)Q is a Harder-Narasimhan vector for P if

p = Lie(P ) =
⊕

〈λ,µ(ξL)〉≥0

gλ,

where

g =
⊕

λ∈X∗(Z(L)◦)

gλ,

is the weight space decomposition under the action of the torus Z(L)◦.

Definition 2.5.18. Let ξG → Xs be a principal G-bundle, and ξP a reduction of ξG to a

parabolic subgroup P ⊆ G with Levi factor L ∼= P/Ru(P ), then we say that the reduction

ξP is canonical, or Harder-Narasimhan, if the induced L-bundle ξL is semistable and µ(ξL)

is a Harder-Narasimhan vector for P .

Theorem 2.5.19 ([B1, Theorem 7.3]). Given a G-bundle ξG → Xs, there exists a parabolic

subgroup P ⊆ G, unique up to conjugation, and a unique Harder-Narasimhan reduction of

ξG to P .

Remark 2.5.20. When G = GLn, Theorem 2.5.19 reduces to the statement that any vector

bundle V → Xs of rank n has a unique filtration

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vm = V

such that Vi/Vi−1 is semistable for each i and

µ(V1/V0) > µ(V2/V1) > · · · > µ(Vm/Vm−1).

This filtration is called the Harder-Narasimhan filtration on V .

2.6 Principal bundles on curves of genus 0 and 1

In this section, we highlight some of the special features of the theory of principal bundles

on a curve of low genus. As in §2.5, we fix a family of smooth curves X → S, now assumed

to be of genus ≤ 1, and a reductive group G.

The first simplification of the general theory in this case is that semistability and strong

semistability coincide.
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Theorem 2.6.1 (E.g., [L1, Corollary 6.4]). Assume that Xs has genus ≤ 1. Then every

semistable G-bundle on Xs is strongly semistable.

As is well known, in this case the Harder-Narasimhan reduction of a G-bundle on Xs

can be reduced further to a Levi subgroup of G.

Proposition 2.6.2. Assume that Xs is a curve of genus g(Xs) ≤ 1, let ξG → Xs be an

unstable principal bundle, and let ξP → Xs be its Harder-Narasimhan reduction. Fix a Levi

subgroup L ⊆ P (so that L → P/Ru(P ) is an isomorphism) and set ξL = ξP ×P L. Then

there is an isomorphism of P -bundles

ξP ∼= ξL ×L P.

In particular, the unstable G-bundle ξG has a reduction to a semistable bundle for the Levi

subgroup L.

Proof. Consider the fibre BunP (Xs)ξL over ξL of the morphism BunP (Xs) → BunL(Xs)

induced by the homomorphism P → L. By Proposition 2.4.2, we have a canonical isomor-

phism of stacks

BunP (Xs)ξL
∼= BunU (Xs)

where U → Xs is the group scheme U = ξL ×L Ru(P ), and L acts on the unipotent radical

Ru(P ) ⊆ P by conjugation. To show that ξP ∼= ξL ×L P , we need to show that the

corresponding U-bundle is trivial. By Corollary 2.4.4, it therefore suffices to give a central

series

{1} = Un+1 ⊆ Un ⊆ Un−1 ⊆ · · · ⊆ U1 = U

in which each quotient Ui/Ui+1 is a vector bundle with H1(Xs,Ui/Ui+1) = 0. Let 0 < µ1 <

µ2 < · · · < µn be all the possible positive values of 〈α, µ(ξL)〉 for α ∈ Φ, let

{1} = Un+1 ⊆ Un ⊆ · · · ⊆ U1 = Ru(P )

be the L-invariant filtration defined by

Ui =
∏
α∈Φ

〈α,µ(ξL)〉≥µi

Uα,

for 1 ≤ i ≤ n + 1, where Uα ∼= Ga is the root subgroup corresponding to α, and define

Ui = ξL ×L Ui. Since Xs has genus g(Xs) ≤ 1, ξL is strongly semistable by Theorem

2.6.1, so for each weight λ of Z(L)◦ acting on Ui/Ui+1, the vector bundle ξL ×L (Ui/Ui+1)λ
associated to the λ-weight space is semistable of slope 〈λ, µ(ξL)〉 = µi > 0 ≥ 2g(Xs)− 2 by

Theorem 2.5.15. So Lemma 2.6.3 below implies that H1(Xs,Ui/Ui+1) = 0 as required.

Lemma 2.6.3. Let V be a semistable vector bundle on a curve Xs of genus g such that

µ(V ) > 2g − 2. Then H1(Xs, V ) = 0.

Proof. Assume for a contradiction that H1(Xs, V ) 6= 0. Then by Serre duality, H0(Xs, V
∨⊗

KXs) 6= 0, so there exists a nonzero morphism V → KXs . Let M ⊆ KXs be the sheaf-

theoretic image of this morphism. Then M is a quotient line bundle of V , so by semistability

we have

degM = µ(M) ≥ µ(V ) > 2g − 2 = degKXs ,

which is a contradiction.

25



Remark 2.6.4. Proposition 2.6.2 implies that when Xs has genus g ≤ 1, the Harder-

Narasimhan filtration of any vector bundle V splits as V =
⊕

i Ui, where the Ui = Vi/Vi−1

are semistable vector bundles of distinct slopes. We call such a decomposition a Harder-

Narasimhan decomposition of V . Note that the terms Ui are unique, but the particular

decomposition of V is not.

Curves of genus ≤ 1 also have the following convenient property, which is shared by

curves of higher genus only in characteristic 0.

Proposition 2.6.5. Fix a parabolic subgroup P ⊆ G with Levi factor L and µ ∈ X∗(Z(L)◦)Q

a Harder-Narasimhan vector for P . Then the morphism

Bunss,µP/S(X) −→ BunG/S(X) (2.6.1)

is a locally closed immersion, where Bunss,µP/S(X) is the open substack of P -bundles such that

the induced L-bundle ξL is semistable with slope µ(ξL) = µ.

Proof. By Theorem 2.5.19, (2.6.1) is injective on points, so it suffices to show that it is

unramified, i.e., that the relative tangent complex

T = Rπ∗(ξuniP ×P g/p)

is a vector bundle concentrated in degree 1, where π : Bunss,µP/S(X) ×S X → Bunss,µP/S(X) is

the projection onto the first factor, and ξuniP is the universal P -bundle. The restriction of

ξuniP ×P g/p to each fibre of π has a filtration by semistable vector bundles of negative slopes,

so H0(T) = 0. So T = H1(T)[−1] is indeed a vector bundle in degree 1 as claimed.

Definition 2.6.6. If X → S is a family of curves of genus ≤ 1, and ξG → Xs is an unstable

G-bundle on a geometric fibre of X → S with a Harder-Narasimhan reduction to P ⊆ G

with slope µ, then the Harder-Narasimhan locus of ξG is the locally closed substack

Bunss,µP/S(X) ↪−→ BunG/S(X).

In the case of a curve of genus 1, we can also compute the codimension of the Harder-

Narasimhan loci. Note that if L ⊆ P is a Levi factor of a parabolic subgroup P ⊆ G, then

choosing a maximal torus and Borel T ⊆ B ⊆ G such that B ⊆ P and T ⊆ L we have an

inclusion Z(L) ⊆ T and hence a homomorphism X∗(Z(L)◦)Q → X∗(T )Q and a pairing

〈−,−〉 : X∗(T )× X∗(Z(L)◦)Q −→ Q.

Proposition 2.6.7. In the situation of Proposition 2.6.5 if in addition X → S is a family

of curves of genus 1, then (2.6.1) has codimension −〈2ρ, µ〉, where 2ρ ∈ X∗(T ) is the sum

of the positive roots.

Proof. From the proof of Proposition 2.6.5, is suffices to show that the vector bundle H1(T)

has rank −〈2ρ, µ〉. But by Riemann-Roch,

rankH1(T) = −deg(ξP ×P g/p) = −
∑
α∈Φ
〈α,µ〉<0

〈α, µ〉 = −
∑
α∈Φ+

〈α, µ〉 = −〈2ρ, µ〉

as claimed.

Proposition 2.6.8. Let X → S be a family of smooth curves of genus 1, and let G be simply

connected and simple of rank l ∈ Z>0. Then the locus of unstable bundles has codimension

l + 1 in BunG/S(E).
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Proof. Since the locus of unstable bundles in BunG/S(X) is the union of the images of

Bunss,µP/S(X) → BunG/S(X) where P ranges over all parabolic subgroups containing some

fixed Borel subgroup B and µ ranges over all Harder-Narasimhan vectors for P , by Propo-

sition 2.6.7, it suffices to prove that

−〈2ρ, µ〉 ≥ l + 1

for all such P and µ for which Bunss,µP/S(X) is nonempty, with equality for some such choice

of P and µ. Note that Bunss,µP/S(X) is nonempty if and only if 〈$i, µ〉 ∈ Z for all αi ∈ t(P ).

Consider the case where P is a maximal parabolic of type t(P ) = {αi}. Then the

conditions on µ are equivalent to

µ ∈ Z>0-span

{
− $∨i
〈$i, $∨i 〉

}
.

So

−〈2ρ, µ〉 ≥ 〈2ρ,$
∨
i 〉

〈$i, $∨i 〉
,

which by [FM2, Lemma 3.3.2] is always ≥ l + 1, with equality achieved for some choice of

αi.

More generally, suppose that P ⊆ G is an arbitrary parabolic, choose αi ∈ t(P ), and let

Li ⊇ L be the Levi factor of the unique maximal parabolic of type {αi} containing P . Let

µ̃ ∈ X∗(Z(Li)
◦)Q be the unique element such that 〈$i, µ̃〉 = 〈$i, µ〉. Then

µ̃ ∈ Z>0-span

{
− $∨i
〈$i, $∨i 〉

}
,

so −〈2ρ, µ̃〉 ≥ l + 1 as shown above. But

−〈2ρ, µ̃〉 = −
∑
α∈Φ+

〈α,$∨i 〉>0

〈α, µ̃〉 = −
∑
α∈Φ+

〈α,$∨i 〉>0

〈α, µ〉 ≤ −〈2ρ, µ〉

since ∑
α∈Φ+

〈α,$∨i 〉>0

α ∈ Z≥0-span{$i},

so we are done.
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Chapter 3

Stable maps and Kontsevich-Mori compactifi-

cations

In §2.5, we saw that reductions to parabolic subgroups P ⊆ G provide a useful tool in the

study of principal G-bundles for G a reductive group. In this chapter, we will discuss how

these methods can be refined by allowing such reductions to degenerate. That is, we will

construct a relative compactification, called the Kontsevich-Mori compactification, of the

stack of P -bundles over the stack of G-bundles.

Degenerations of this kind play an especially vital role in elliptic Springer theory. If E is

an elliptic curve and B ⊆ G a Borel subgroup, we will see that there is a proper morphism

Bun0
B(E)→ BunssG (E) with many of the good properties of the classical Springer resolution

g̃→ g. To produce a good theory for unstable bundles, this morphism must be extended to

a proper morphism to BunG(E) using some relative compactification.

The Kontsevich-Mori compactification KMP,G(X) is constructed by thinking of BunP (X)

as the stack of pairs (ξG, σ), where ξG → X is a G-bundle, and σ : X → ξG/P is a section

of the associated bundle of partial flag varieties. One then allows the section σ to de-

generate using Kontsevich’s theory of stable maps. The Kontsevich-Mori compactification

has been studied in the context of elliptic Springer theory in [GSB] and for curves of ar-

bitrary genus in [C]. It has the convenient properties that the total space KMP,G(X) is

smooth, the complement of BunP (X) is a divisor with normal crossings, and the morphism

KMP,G(X) → BunG(X) is proper with finite relative stabilisers (and is even representable

in low codimension).

We remark that there is another relative compactification DrinP,G(X) of BunP (X) over

BunG(X), called the Drinfeld compactification, which is popular in the literature. It was

introduced in [BG], and is constructed by thinking of a reduction of ξG to P as a system

of subbundles inside vector bundles associated to representations of G and allowing these

subbundles to degenerate to subsheaves. The Drinfeld compactification has the advantage

over the Kontsevich-Mori that the morphism DrinP,G(X)→ BunG(X) is representable, but

the disadvantage that the total space DrinP,G(X) is singular.

For many of the degeneration arguments we will use, either compactification would serve

equally well. However, we have chosen to work with the Kontsevich-Mori since, for the

applications to elliptic Springer theory, smoothness is much more useful for our purposes

than representability.

3.1 Stable and prestable maps

In this section, we review the basic ideas of Kontsevich’s theory of stable maps. We begin

by recalling some definitions.

Definition 3.1.1. Let S be a stack and let g, n ∈ Z≥0. An n-pointed prestable curve of genus

g over S is a tuple (π : C → S, x1, . . . , xn), where π : C → S is proper, flat and representable,

and xi : S → C is a section of π such that for every geometric point s : Spec k → S, the
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fibre Cs over s is a reduced connected curve of arithmetic genus g, with at worst nodal

singularities, and x1(s), . . . , xn(s) ∈ Cs are distinct smooth points of Cs.

Definition 3.1.2. Let π : X → S be a proper representable morphism of stacks and let

g, n ∈ Z≥0. An n-pointed prestable map to X over S of genus g is a tuple (f : C →
X,x1, . . . , xn) where (π ◦ f : C → S, x1, . . . , xn) is a prestable curve over S of genus g.

There are obvious notions of isomorphism of prestable curves and maps, and of pullback

of prestable curves and maps along a morphism S′ → S. So given any stack S and a proper

representable morphism X → S, there are functors

Mg,n,S and Mg,n,S(X) : (Stk/S)op −→ Grpd

sending a stack S′ → S over S to the groupoids of n-pointed prestable curves of genus g

over S′ and n-pointed prestable maps to X ×S S′ over S′ of genus g respectively.

Theorem 3.1.3. The functors Mg,n,S and Mg,n,S(X) are representable by Artin stacks

Mg,n,S and Mg,n,S(X) locally of finite type over S.

If S = Spec k for some field k, we will sometimes write Mg,n = Mg,n,S and Mg,n(X) =

Mg,n,S(X).

Proposition 3.1.4. The stack Mg,n,S is smooth over S of relative dimension 3g − 3 + n.

Proof. Let p : Spec k →Mg,n,S be a geometric point over s : Spec k → S and let (C, x1, . . . , xn)

be the corresponding prestable curve over Spec k. There is a tangent-obstruction complex

for Mg,n,S → S at p given by

T = RΓ(C,TC/k(−x1 − · · · − xn))[1].

But Proposition 2.1.5 implies that TC/k is a complex supported in degrees 0 and 1 with

H1(TC/k) torsion, so Hi(T) = 0 for i > 0. So Mg,n,S → S is smooth at p with relative

tangent complex T. The relative dimension is given by

χ(T) = −χ(C,TC/k(−x1 − · · · − xn))

= − deg(det(TC/k(−x1 − · · · − xn))) + g − 1

= − deg(ω−1
C/k(−x1 − · · · − xn)) + g − 1

= 3g − 3 + n

by Riemann-Roch.

Definition 3.1.5. Let π : X → S be proper and representable. We say that an n-pointed

prestable map (f : C → X,x1, . . . , xn) over S is stable if for every geometric point s : Spec k →
S, the prestable map (fs : Cs → Xs, x1(s), . . . , xn(s)) over k has finite automorphism group.

We write

Mg,n,S(X) ⊆Mg,n,S(X)

for the open substack of stable maps.

Proposition 3.1.6. Let X → S be proper and representable and let (f : C → X,x1, . . . , xn)

be a prestable map to X over S. The following are equivalent.

(1) The prestable map (f, x1, . . . , xn) is a stable map.
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(2) The line bundle ωC/S(x1+· · ·xn) on C is ample relative to X, where ωC/S is the relative

dualising sheaf of C → S.

(3) For every geometric point s : Spec k → S and every irreducible component C ′ ⊆ C such

that C ′ is contracted under f , the normalisation C̃ ′ either has genus ≥ 2, has genus 1

and at least one point mapping to a node or marked point in C, or has genus 0 and at

least 3 points mapping to nodes or marked points in C.

Given a projective morphism π : X → S and an S-ample line bundle OX(1) on X, we

write

Mg,n,S(X, d) ⊆Mg,n,S(X)

for the open and closed substack of stable maps (f, x1, . . . , xn) such that deg f∗OX(1) = d.

Theorem 3.1.7. Let π : X → S be a projective morphism of stacks and fix an S-ample line

bundle OX(1) on X. Then:

(1) For all g, n ∈ Z≥0, the morphism Mg,n,S(X) → S satisfies the valuative criterion for

properness.

(2) For any d ∈ Z, the morphism Mg,n,S(X, d)→ S is of finite type, hence proper.

(3) Let U ⊆ Mg,n,S(X, d) be the open substack of points with trivial automorphism group

scheme relative to S. Then U is quasi-projective over S. In particular, if every point of

Mg,n,S(X, d) has trivial automorphism group scheme relative to S, then Mg,n,S(X, d)→
S is projective.

It is often useful to consider finer restrictions on the degree of a stable map than offered

directly by Theorem 3.1.7. For example, if X → Spec k is projective and NS(X) is the group

of line bundles on X modulo numerical equivalence, then for any β ∈ Hom(NS(X),Z), The-

orem 3.1.7 implies that the open and closed substack Mg,n(X,β) ⊆ Mg,n(X) = Mg,n,k(X)

is proper, and in particular of finite type, over Spec k. However, for families X → S, the

group NS(X) may not be large enough to capture all degree information. For example,

let E → Spec k be an elliptic curve over k, and consider the morphism X = Spec k →
BE = S. Then X → S is a well-behaved family of smooth curves of genus 1 (and we have

that Mg,n,S(X) = Mg,n(E)/E is the stack of stable maps to E modulo translation), but

NS(X) = NS(Spec k) = 0. To work around this issue, we use the following hack.

Suppose we are given a smooth surjection U → S with connected geometric fibres,

an abelian group H, and a homomorphism φ : H → NSU (U ×S X) to the group of line

bundles on U ×S X modulo U -numerical equivalence. (Here we will say that two line

bundles L1, L2 ∈ Pic(U ×S X) are U -numerically equivalent if for every geometric point

u : Spec k → U and every closed curve C ⊆ Xu, the restrictions of L1 and L2 to C have the

same degree.) If s : Spec k → S is a geometric point and f : C → Xs is a prestable map,

then there is a well-defined homomorphism

deg(f) = deg(U,φ)(f) : H −→ Z

h 7−→ deg f∗uLh,

where u : Spec k → U is any lift of s, fu : C → Xs = Xu ↪→ U ×S X the induced morphism,

and Lh ∈ Pic(U ×S X) any representative for φ(h) ∈ NSU (U ×S X).

Definition 3.1.8. In the setup above, we call (U, φ) a degree datum, and we call deg(U,φ)(f)

the degree of f (with respect to (U, φ)). If β ∈ Hom(H,Z), we write Mg,n,S(X,β) ⊆
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Mg,n,S(X) and Mg,n,S(X,β) ⊆ Mg,n,S(X) for the open and closed substacks of prestable

and stable maps of degree β.

Corollary 3.1.9. Suppose that we are given X → S and a degree datum (U, φ) as above,

and assume that φ(H) ⊆ NSU (U ×S X) contains the class of a U -ample line bundle on

U ×S X. Then for all β ∈ Hom(H,Z), the stack Mg,n,S(X,β) is proper, and in particular

of finite type, over S.

Proof. By definition, we have

U ×S Mg,n,S(X,β) = Mg,n,U (U ×S X,β).

Since U → S is a smooth surjection, by descent for proper morphisms it suffices to show that

Mg,n,U (U ×S X,β) → U is proper. But if h ∈ H is such that φ(h) ∈ NSU (U ×S X) is the

class of a U -ample line bundle OU×SX(1), then Mg,n,U (U ×S X,β) is a union of connected

components of Mg,n,U (U ×S X,β(h)), hence proper over U by Theorem 3.1.7.

By construction, if f : X → Y is a morphism of proper representable stacks over S,

then there is an induced morphism Mg,n,S(X) → Mg,n,S(Y ) given by composition with

f . For each i ∈ {1, . . . , n}, there is also a morphism Mg,n,S(X) → Mg,n−1,S(X) given by

forgetting the ith marked point. In general, these morphisms do not restrict to morphisms

Mg,n,S(X) → Mg,n,S(Y ) or Mg,n,S(X) → Mg,n−1,S(X). This can be rectified, however,

using the following construction.

Definition 3.1.10. Given a prestable map (f : C → X,x1, . . . , xn) over S and a repre-

sentable morphism U → S, we say that a morphism g : C → U over S stabilises (f, x1, . . . , xn)

if for every geometric point s : Spec k → S and every irreducible component C ′ of Cs such

that ωC/S(x1, . . . , xn)|C′ is not ample relative to Xs, g contracts C ′ to a k-point in Us. A

stabilisation of (f, x1, . . . , xn) is an initial object in the category of morphisms stabilising

(f, x1, . . . , xn).

From the definition, it is clear that the stabilisation g : C → C̃ of (f, x1, . . . , xn) is unique

up to unique isomorphism if it exists, and that the morphism f : C → X factors as g ◦ f̃ for

some unique morphism f̃ : C̃ → X.

Proposition 3.1.11. Let (f : C → X,x1, . . . , xn) be an n-pointed prestable map of genus g

over S and assume that either f is non-constant on every geometric fibre of C → S or that

2g+n ≥ 3. Then there exists a stabilisation g : C → C̃ of (f, x1, . . . , xn) such that the tuple

(f̃ : C̃ → X, g ◦ x1, . . . , g ◦ xn) is an n-pointed stable map to X. Moreover, the formation of

stabilisations commutes with base change.

Proof. This is proved in [BM, Proposition 3.10].

Remark 3.1.12. When S = Spec k, the stabilisation of a prestable map (f : C → X,x1, . . . , xn)

can be constructed explicitly by contracting all rational components of C contracted under

f that have at most 2 nodes and marked points combined.

Using Proposition 3.1.11, there is a canonical morphism Mg,n,S(X)′ →Mg,n,S(X) send-

ing a prestable map to its stabilisation, where Mg,n,S(X)′ ⊆ Mg,n,S(X) is the open and

closed substack of maps satisfying the condition of Proposition 3.1.11. So if f : X → Y is

a morphism of proper representable stacks over S, then we get a morphism Mg,n,S(X)′ →
Mg,n,S(Y )→Mg,n,S(Y ) by composition followed by stabilisation, and for all i ∈ {1, . . . , n} a

morphism Mg,n,S(X)′′ →Mg,n−1,S(X)′ →Mg,n−1,S(X) given by forgetting the ith marked
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point followed by stabilisation, where Mg,n,S(X)′,Mg,n,S(X)′′ ⊆ Mg,n,S(X) are the sub-

stacks where the relevant stabilisation morphisms are defined.

By construction, for any i ∈ {1, . . . , n}, the morphism Mg,n,S(X)′′ → Mg,n−1,S(X)

forgetting the ith marked point fits into a commutative diagram

Cg,n,S(X)′′ Cg,n−1,S(X)

Mg,n,S(X)′′ Mg,n−1,S(X),

(3.1.1)

where (Cg,n,S(X)→Mg,n,S(X)×SX,x1, . . . , xn) is the universal n-pointed stable map and

Cg,n,S(X)′′ the preimage of Mg,n,S(X)′′, such that the induced morphism

Cg,n,S(X)′′ −→ Cg,n−1,S(X)×Mg,n−1,S(X) Mg,n,S(X)′′

is the stabilisation of (Cg,n,S(X)′′ → Mg,n,S(X)′′ ×S X,x1, . . . , xi−1, xi+1, . . . , xn). Com-

posing the top arrow of (3.1.1) with the section xi : Mg,n,S(X) → Cg,n,S(X), we get a

morphism

Mg,n,S(X)′′ −→ Cg,n−1,S(X). (3.1.2)

Proposition 3.1.13. The morphism (3.1.2) is an isomorphism.

Proof. This is [BM, Corollary 4.6].

3.2 Dual graphs and gluing

One very useful property of the theory of stable maps is that maps with singular domain

curves can be constructed by gluing together maps with simpler domains. In this section,

we review the combinatorics governing this construction and study its geometric behaviour

(Propositions 3.2.17 and 3.2.18) at the level of moduli stacks.

Our definitions mostly follow [BM, §1], although there are some differences in conventions

for markings of graphs.

Definition 3.2.1. A graph is a tuple τ = (Fτ , Vτ , jτ , ∂τ ), where Fτ and Vτ are sets, jτ : Fτ →
Fτ is an involution and ∂τ : Fτ → Vτ is a function. We call Fτ the set of flags (or half-edges),

Vτ the set of vertices, Sτ = {f ∈ Fτ | jτ (f) = f} the set of tails and Eτ = {{f1, f2} ∈ Eτ |
jτ (f1) = f2 6= f1} the set of edges. For v ∈ Vτ , we also write Fτ (v) = {f ∈ Fτ | ∂τ (f) = v}
for the set of flags adjacent to v. We say that v1, v2 ∈ Vτ are adjacent if there exists

{f1, f2} ∈ Eτ such that ∂τ (fi) = vi. We say that τ is connected if all vertices are equivalent

under the equivalence relation generated by adjacency.

If τ is a graph, we will draw a diagram representing τ as follows. For every vertex v ∈ Vτ ,

we draw a corresponding node . If e = {f1, f2} ∈ Eτ , we draw a line segment connecting

∂τ (f1) and ∂τ (f2), and if f ∈ Sτ is a tail, we draw a line segment attached to ∂τ (f) at one

end. For example, we draw

v1 v2

f1 {f2,f3}

for the graph with Vτ = {v1, v2}, Fτ = {f1, f2, f3}, jτ (f1) = f1, jτ (f2) = f3, jτ (f3) = f2,

∂τ (f1) = v1, ∂τ (f2) = v1 and ∂τ (f3) = v2.
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Definition 3.2.2. If H is an abelian group, an H-graph is a tuple (τ, g, β), where τ is a

connected graph, and g : Vτ → Z≥0 and β : Vτ → Hom(H,Z) are functions. The degree of

(τ, g, β) is

deg(τ) =
∑
v∈Vτ

β(v) ∈ Hom(H,Z),

and the genus of (τ, g, β) is

g(τ) =
∑
v∈Vτ

g(v) + |Vτ | − |Eτ | − 1.

The main point of H-graphs is that they keep track of information about the irreducible

components of a prestable map. In what follows, if A is any finite set of size |A|, then

Mg,A,S(X) ∼= Mg,|A|,A(X) and Mg,A,S(X) ∼= Mg,|A|,S(X) denote the stacks of prestable

and stable maps (f : C → X, (xa)a∈A) with points marked by A, defined in the obvious way.

Definition 3.2.3. Suppose that (U, φ : H → NSU (U ×S X)) is a degree datum for a

proper representable morphism X → S, s : Spec k → S is a geometric point and (f : C →
Xs, (xa)a∈A) is a prestable map over Spec k with points marked by A. Write C̃ → C for

the normalisation of C. The dual graph of f is the H-graph τ with Vτ equal to the set of

connected components of C̃, Fτ equal to the union of {xa | a ∈ A} with the set of preimages

of nodes of C in C̃, jτ : Fτ → Fτ the involution fixing the marked points and interchanging

the two preimages of each node, ∂τ : Fτ → Vτ the map sending a point in C̃ to the connected

component it lies on, g : Vτ → Z≥0 the map sending a vertex v ∈ Vτ to the genus of the

corresponding connected component Cv of C̃, and β : Vτ → Hom(H,Z) the map sending

v ∈ Vτ to the degree deg(U,φ) f |Cv .

Remark 3.2.4. If f : C → Xs is a prestable map with dual graph τ as above, then C has

genus g(τ) and degree deg(τ).

Definition 3.2.5. Let X → S be a proper representable morphism of stacks and fix a degree

datum (U, φ : H → NSU (U ×S X)). If τ is an H-graph, then we define stacks MS(X, τ) and

MS(X, τ) of τ -marked prestable and stable maps to X as the fibre products

MS(X, τ)
∏
v∈Vτ Mg(v),Fτ (v),S(X,β(v))

∏
{f1,f2}∈Eτ X

∏
{f1,f2}∈Eτ X ×S X

and
MS(X, τ)

∏
v∈Vτ Mg(v),Fτ (v),S(X,β(v))

∏
{f1,f2}∈Eτ X

∏
{f1,f2}∈Eτ X ×S X,

where the products denote iterated fibre products over S, the bottom arrows are the natural

diagonals, and the vertical arrows on the right send a family of (pre)stable maps (pv : Cv →
X, (xf )f∈Fτ (v)) to ((p∂τ (f1)(xf1), p∂τ (f2)(xf2))){f1,f2}∈Eτ .

Remark 3.2.6. Morally, one should think of the stack MS(X, τ) as the stack of prestable

maps (f : C → X,x1, . . . , xn) together with a partition of the irreducible components of C

into subcurves with marked points, intersections, genera and degrees labelled by τ . This

picture is partially realised by the following construction.

33



Definition 3.2.7. Let p = (pv : Cv → X, (xf )f∈Fτ (v))v∈Vτ be a τ -marked prestable map to

X over S. If S′ → S is representable then a morphism to S′ gluing p is a morphism

q = (qv)v∈Vτ :
∐
v∈Vτ

Cv −→ S′

together with a commutative diagram

S C∂τ (f1) ×S C∂τ (f2)

S′ S′ ×S S′

(xf1 ,xf2 )

xe (q∂τ (f1),q∂τ (f2))

∆

for all e = {f1, f2} ∈ Eτ . A gluing of p is an initial object in the category of stacks S′

representable over S equipped with a morphism to S′ gluing p.

Note that for any τ -marked stable map p as above, the morphism p = (pv)v∈Vτ :
∐
v∈Vτ Cv →

X is canonically a morphism gluing p. So if q :
∐
v∈Vτ Cv → C is a gluing of p, then p factors

canonically as p = p̃ ◦ q for some morphism

p̃ : C −→ X.

Proposition 3.2.8. Assume that p = (pv : Cv → X, (xf )f∈Fτ (v))v∈Vτ is a τ -marked prestable

map to X over S. Then there exists a gluing q :
∐
v∈Vτ Cv → C of p such that the tuple

(p̃ : C → X, (q ◦ xf )f∈Sτ )

is a prestable map to X over S of genus g(τ) and degree deg(τ). Moreover, the formation

of gluings commutes with base change.

Proof. This follows easily from [BM, Proposition 2.4 and Proposition 2.5].

Definition 3.2.9. We say that an H-graph τ is stable if for all v ∈ Vτ with β(v) = 0, we

have 2g(v) + |Fτ (v)| ≥ 3.

Proposition 3.2.8 ensures that there is a morphism

MS(X, τ) −→Mg(τ),Sτ ,S(X,deg(τ)) (3.2.1)

sending a τ -marked prestable map to its gluing, which one can easily see restricts to a

morphism

MS(X, τ) −→Mg(τ),Sτ ,S(X,deg(τ))

if the H-graph τ is stable. It is clear from the definitions that (3.2.1) gives a surjection

from the open substack M◦S(X, τ) where all domain curves are smooth onto the subset of

prestable maps with dual graph τ . The following relation between H-graphs keeps track

of how degenerations of the domain curves in MS(X, τ) affect the dual graph of the glued

curve.

Definition 3.2.10. Let τ and τ ′ be graphs. A contraction ψ : τ → τ ′ is a pair of functions

ψV : Vτ → Vτ ′ and ψF : Fτ ′ → Fτ (note the opposite directions for vertices and flags) such

that

(1) ψV is surjective and ψF is injective
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(2) the diagram

Fτ Vτ

Fτ ′ Vτ ′

∂τ

ψV

∂τ′

ψF

commutes,

(3) jτ ◦ ψF = ψF ◦ jτ ′ ,

(4) the induced map ψS : Sτ ′ → Sτ is a bijection, and

(5) ψV factors through a bijection (Vτ/ ∼) → Vτ ′ , where ∼ is the equivalence relation

generated by ∂τ (f) ∼ ∂τ ◦ jτ (f) for f ∈ Fτ \ ψF (Fτ ′).

If ψ : τ → τ ′ is a contraction and v′ ∈ Vτ ′ we write ψ−1(v′) for the (automatically

connected) graph with Vψ−1(v′) = ψ−1
V (v′), Fψ−1(v′) = {f ∈ Fτ | ∂τ (f) = v′}, ∂ψ−1(v′) =

∂τ |Fψ−1(v′)
and jψ−1(v′) defined by

jψ−1(v′)(f) =

jτ (f), if jτ (f) ∈ Fψ−1(v′),

f, otherwise,

for f ∈ Fψ−1(v′). Note that ψF defines a bijection Sψ−1(v′)
∼= Fτ ′(v

′).

Remark 3.2.11. Intuitively, one should view a contraction ψ = (ψV , ψ
F ) : τ → τ ′ as a map

contracting the edges in Fτ \ ψF (Fτ ′) and identifying their endpoints.

Definition 3.2.12. Let H be an abelian group, and let τ and τ ′ be H-graphs. A contraction

ψ : τ → τ ′ is a contraction of the underlying graphs such that for all v′ ∈ Vτ ′ we have

β(v′) = degψ−1(v′) and g(v′) = g(ψ−1(v′)), where we view ψ−1(v′) ⊆ τ as an H-graph by

restriction of g and β from Vτ to Vψ−1(v′).

Given X → S, a degree datum (U, φ : H → NSU (U ×S X)) and a contraction ψ : τ → τ ′,

the gluing morphisms∏
v∈Vψ−1(v′)

Mg(v),Fτ (v),S(X,β(v)) −→Mg(v′),Sψ−1(v′),S
(X,β(v′)) = Mg(v′),Fτ′ (v

′),S(X,β(v′))

fit together to define a morphism

ψ∗ : MS(X, τ) −→MS(X, τ ′),

which, just as for (3.2.1), restricts to a morphism MS(X, τ) → MS(X, τ ′) if τ is a stable

H-graph. It is easy to see that if ψ : τ → τ ′ and ψ′ : τ ′ → τ ′′ are contractions, then we

have canonically (ψ′ ◦ ψ)∗ = (ψ′)∗ ◦ ψ∗, where composition of contractions is defined in the

obvious way.

Remark 3.2.13. If τ ′ is an H-graph with one vertex and no edges, and ψ : τ → τ ′ is a

contraction, then we have MS(X, τ ′) = Mg(τ),Sτ ,S(X,deg(τ)), and ψ∗ agrees with (3.2.1).

Definition 3.2.14. Let τ be an H-graph, let p = ((pv : Cv → Xs, (xf )f∈Fτ (v)))v∈Vτ be a

τ -marked prestable map, and let τv denote the dual graph of the prestable map (pv : Cv →
Xs, (xf )f∈Fτ (v)). The dual graph of τ is the contraction ψp : τp → τ , where τp is H-graph
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with vertices Vτp =
∐
v∈Vτ Vτv , flags Fτp =

∐
v∈Vτ Fτv , ∂τp =

∐
v∈Vτ ∂τv , jτp : Fτp → Fτp

defined by

jτp(f) =

jτv (f), if f /∈ Sτv ,

jτ (f), if f ∈ Sτv = Fτ (v),

for f ∈ Fτv , v ∈ Vτ , and the functions β and g are inherited from the functions on Vτv for

v ∈ Vτ in the obvious way. The contraction ψp is defined by (ψp)V (v′) = v for v′ ∈ Vτv ⊆ Vτp ,

and ψFp (f) = xf ∈ Fτv for f ∈ Fτ (v) and v ∈ Vτ .

Remark 3.2.15. The dual graph τp of a τ -marked prestable map p is nothing but the dual

graph of the gluing of p.

We make the following observation.

Lemma 3.2.16. Suppose that ψ : τ → τ ′ is a contraction of H-graphs. Then for any

τ ′-marked prestable map p = (pv′ : Cv′ → Xs, (xf )f∈Fτ′ (v′))v′∈Vτ′ over a geometric point

s : Spec k → S, the groupoid of k-points of the preimage ψ−1
∗ (p) is isomorphic to the set of

contractions τp → τ over τ ′, where τp → τ ′ is the dual graph of p. Moreover, the subset of

τ -marked prestable maps in ψ−1
∗ (p) with smooth domain curves corresponds to the subset of

contractions τp → τ that are isomorphisms (i.e., bijections on both vertices and flags).

Proposition 3.2.17. Let ψ : τ → τ ′ be a contraction of H-graphs. Then the morphism

ψ∗ : MS(X, τ) −→MS(X, τ ′)

is finite and unramified.

Proof. First note that we can assume without loss of generality that Fτ \ψF (Fτ ′) consists of

a single edge e = {f1, f2}, since all contractions are compositions of contractions with this

property. In this case, there is a pullback square

MS(X, τ) MS(X, τ ′)

MS(X,ψ−1(v′)) Mg(v′),Fτ′ (v
′),S(X,β(v′)),

ψ∗

where v′ = ψV (∂τ (f1)) = ψV (∂τ (f2)) ∈ Vτ ′ . It therefore suffices to prove the claim when τ

has exactly one edge and τ ′ has a single vertex and no edges.

We first show that ψ∗ is unramified. Since ψ∗ is locally of finite type, it suffices to show

that it is formally unramified at every geometric point of MS(X, τ).

Suppose that s : Spec k → S is a geometric point and that p = (pv : Cv → Xs, (xf )f∈Fτ (v))v∈Vτ
is a τ -marked stable map to Xs over Spec k with gluing (p̃ : C → X, (xf )f∈Sτ ), and consider

the morphism

Mτ,loc −→Mτ ′,loc , (3.2.2)

of functors from the category Artk of Artinian local rings with residue field k to the 2-

category of groupoids, where

Mτ,loc(A) = Hom(SpecA,MS(X, τ))×Hom(Spec k,MS(X,τ)) {p}

and

Mτ ′,loc(A) = Hom(SpecA,MS(X, τ ′))×Hom(Spec k,MS(X,τ ′)) {p̃}.
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There is a Cartesian diagram

Mτ,loc Mτ ′,loc

Dτ,e De,

where for A ∈ Artk, Dτ,e(A) is the groupoid of flat deformations of the augmented complete

local rings Rf1 = ÔC∂τ (f1),xf1
∼= kJxf1K and Rf2 = ÔC∂τ (f2),xf2

∼= kJxf2K and De(A) is the

groupoid of flat deformations over A of the local ring Re = ÔC,xe ∼= kJxf1 , xf2K/(xf1xf2).

But a straightforward deformation theory computation shows that the morphism Dτ,e → De

has a tangent-obstruction complex T = k[−1], and is hence formally unramified. So (3.2.2)

is formally unramified, and hence so is ψ∗.

We next show that ψ∗ satisfies the valuative criterion for properness. Let R be a complete

discrete valuation ring with fraction field K, and suppose we are given SpecR → S, a

prestable map p = (f : C → XR, (xf )f∈Sτ′ ) over SpecR and a τ -marked prestable map

p̃K = ((fv,K : Cv,K → XK , (xf )f∈Fτ (v)))v∈Vτ over SpecK with gluing qK :
∐
v∈Vτ Cv,K →

CK . First note that qK defines a collection of stable maps to CK , and that any extension

of p̃K to a τ -marked prestable map over SpecR with gluing p defines an extension of this

collection of stable maps to C over SpecR. So the uniqueness part of the formal criterion for

properness follows from the corresponding property for stable maps to C. For the existence

part, again by the formal criterion of properness of stable maps to C, after replacing R with

a finite extension if necessary, we can extend qK to a τ -marked stable map q = (qv : Cv →
C, (x̄f )f∈Fτ (v))v∈Vτ over SpecR, and the composition with f : C → XR produces a τ -marked

prestable map p̃ = (p̃v : Cv → X, (x̄f )f∈Fτ (v))v∈Vτ to XR. The gluing of q is a stable map

to C that is an isomorphism over SpecK, and hence an isomorphism on all of SpecR, so we

deduce that p is the gluing of p̃.

Finally, by Lemma 3.2.16, the groupoids of points of all geometric fibres of ψ∗ are finite

sets with no automorphisms. Since ψ∗ is unramified and in particular relatively Deligne-

Mumford, ψ∗ is therefore representable. Moreover, since ψ∗ satisfies the valuative criterion

for properness, it is universally closed. So if U →MS(X, τ ′) is a morphism from a scheme

and x ∈ U , since ψ−1
∗ (x) is finite we can find a finite type open V ⊆MS(X, τ)×MS(X,τ ′) U

containing ψ−1
∗ (x). Setting

U ′ = U \ π(MS(X, τ)×MS(X,τ ′) U \ V ),

for π : MS(X, τ) ×MS(X,τ ′) U → U the natural projection, we have that U ′ ⊆ U is open

and contains x and that ψ−1
∗ (U ′) ⊆ V is of finite type. So the morphism ψ∗ is of finite

type (hence of finite presentation since everything is locally Noetherian). So ψ∗ is proper,

representable and quasi-finite, hence finite.

In the following proposition, we write M◦g,n,S(X,β) ⊆Mg,n,S(X,β) and M◦g,n,S(X,β) ⊆
Mg,n,S(X,β) for the open substacks of (pre)stable maps where the domain curve is smooth,

and M◦S(X, τ) ⊆MS(X, τ) and M◦S(X, τ) ⊆MS(X, τ) for the preimages of∏
v∈Vτ

M◦g(v),Fτ (v),S(X,β(v)).

Proposition 3.2.18. Let τ be an H-graph. For any contraction of H-graphs ψ : τ ′ → τ ,

the morphism

M◦S(X, τ ′)/Autτ (τ ′) −→MS(X, τ) (3.2.3)
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induced by ψ∗ is a locally closed immersion, and the morphism∐
τ ′→τ

M◦S(X, τ ′)/Autτ (τ ′) −→MS(X, τ) (3.2.4)

is bijective on geometric points, where the coproduct is taken over all isomorphism classes

of H-graphs with a contraction onto τ . Moreover, if the image of φ : H → NSU (U ×S X)

contains the class of a U -ample line bundle and the H-graph τ is stable, then the morphism∐
τ ′→τ

M◦S(X, τ ′)/Autτ (τ ′) −→MS(X, τ) (3.2.5)

is also bijective on geometric points, where the coproduct is now taken over all isomorphism

classes of stable H-graphs with a contraction onto τ .

Proof. Fix a geometric point p = ((pv : Cv → Xs, (xf )f∈Fτ (v)))v∈Vτ of M◦S(X, τ) over

s : Spec k → S. Then Lemma 3.2.16 implies that, up to isomorphism, there exists a unique

contraction ψ : τ ′ → τ of H-graphs such that p is in the image of ψ∗|M◦S(X,τ ′), where we

take τ ′ to be the dual graph of p, and that Autτ (τ ′) acts freely and transitively on the

fibre ψ−1
∗ (p). This implies that (3.2.4) is bijective on geometric points, and that (3.2.3) is

a locally closed immersion since ψ∗ is finite and unramified. Finally, to show that (3.2.5) is

bijective on geometric points, we note that under the hypothesis on the degree datum, the

dual graph of a τ -marked stable map is stable, and that for τ ′ stable, a prestable map in

M◦S(X, τ ′) is stable if and only if its image under ψ∗ is stable.

Remark 3.2.19. We stress that the decomposition (3.2.4) is in general weaker than a

stratification: it is not necessarily the case that the closure of one term is a union of others.

However, we will see that in good cases (e.g., Propositions 3.3.7 and 3.4.13) we do have such

a stratification.

Corollary 3.2.20. Let R be an integral local ring, SpecR → S a morphism, and p a

prestable map over SpecR. Then there exists a contraction τ → τ ′, where τ is the dual

graph of the geometric special fibre of p and τ ′ the dual graph of the geometric generic fibre.

Proof. Since the geometric generic fibre of p has dual graph τ ′, the generic point of SpecR

is in the image of the morphism

MS(X, τ ′)×Mg(τ′),S
τ′ ,S

(X,deg(τ ′)) SpecR −→ SpecR. (3.2.6)

Since (3.2.6) is finite by Proposition 3.2.17, it is therefore surjective. So by Proposition

3.2.18, there exists a contraction of H-graphs ψ : τ ′′ → τ ′, a τ ′′-marked prestable map q in

M◦S(X, τ ′′), and an identification of the geometric special fibre of p with the gluing of ψ∗(q).

In particular, τ ′′ is identified with the dual graph τ , so ψ defines a contraction τ → τ ′ as

claimed.

Corollary 3.2.21. Assume that τ is a stable H-graph with Aut(τ) = {1}. Then the gluing

map

MS(X, τ) −→Mg(τ),Sτ ,S(X,deg(τ)) (3.2.7)

is a closed immersion if and only if for all contractions stable H-graphs τ ′ with M◦S(X, τ ′) 6=
∅, there is at most one contraction ψ : τ ′ → τ .

Proof. By Proposition 3.2.17, (3.2.7) is a closed immersion if and only if it is injective on

points. By Proposition 3.2.18, this is equivalent to requiring that ∐
ψ : τ ′→τ

M◦S(X, τ ′)

 /Aut(τ ′) −→M◦S(X, τ ′)/Aut(τ ′)
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is a bijection for all stable H-graphs τ ′ with M◦(X, τ ′) 6= ∅ such that there is some contrac-

tion τ ′ → τ . But this is clearly equivalent to the condition in the statement, so the corollary

follows.

3.3 Prestable degenerations

In this section, we study degenerations of the identity in the stack of prestable maps to

a curve. These will form the domain curves for the Kontsevich-Mori compactifications of

sections of flag variety bundles.

Definition 3.3.1. Let X → S be a prestable curve over S of genus g(X). We say that a

prestable map f : C → X is a prestable degeneration if the stabilisation of f is the identity

idX : X → X. We write DegS(X) ⊆Mg(X),S(X) for the substack of prestable degenerations.

Proposition 3.3.2. The stack DegS(X) is an open and closed substack of Mg(X),S(X).

Proof. Note that there is a Cartesian square

DegS(X) Mg(X),S(X)′

S Mg(X),S(X),
{idX}

(3.3.1)

where the vertical morphism on the right is the stabilisation morphism. The section S →
Mg(X),S(X) classifying the stable map idX : X → X is an open immersion, since idX is

an open point in Mg(X),S(X) with trivial automorphism group scheme, and closed since

Mg(X),S(X)→ S is separated by Theorem 3.1.7. So the pullback square (3.3.1) implies that

DegS(X)→Mg(X),S(X) is an open and closed immersion, so we are done.

Lemma 3.3.3. Let f : C → X be a prestable degeneration over S. Then the morphism

OX → Rf∗OC is a quasi-isomorphism.

Proof. By base change, it suffices to prove the lemma in the case when S = Spec k for k an

algebraically closed field. By induction on the number of irreducible components of X, we

can reduce to the case where f is the morphism contracting a single rational component C0

of C onto a point x ∈ X. Writing u : Xu = Spec ÔX,x → X for the canonical morphism

and fu : Cu = C ×X Xu → SpecXu, it suffices by faithfully flat descent to show that the

morphism O → u∗Rf∗OC = Rfu∗OCu is a quasi-isomorphism.

If X is smooth at x, then there is a decomposition Cu = Xu ∪P1
k and an exact sequence

0 −→ OCu −→ i∗OXu ⊕ j∗OP1
k
−→ Ox −→ 0,

where i and j are the inclusions. So we have an exact triangle

Rfu∗OCu −→ OXu ⊕Ox −→ Ox −→ Rfu∗OCu [1],

from which the claim follows.

Conversely, if x ∈ X is a node, then we have decompositions Xu = X1 ∪x X2 and

Cu = X1 ∪x,p P1
k ∪q,x X2, where P1

k is glued to X1 at p ∈ P1
k and to X2 at q ∈ P1

k. So we

have an exact sequence

0 −→ OCu −→ i1∗OX1 ⊕ i2∗OX2 ⊕ j∗OP1
k
−→ Op ⊕Oq −→ 0,
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where i1, i2 and j are the inclusions of the irreducible components of Cu, and hence an exact

triangle

Rfu∗OCu −→ i′1∗OX1
⊕ i′2∗OX2

⊕Ox −→ Ox ⊕Ox −→ Rfu∗OCu [1],

where i′1 and i′2 are the inclusions of the irreducible components of Xu, and the claim also

follows in this case.

If X → S is a smooth curve, then there is a degree datum (U, φ) for X over S, where

U = X and φ : Z → NSU (U ×S X) = NSX(X ×S X) given by φ(d) = d[O(∆X/S)], where

∆X/S ↪→ X ×S X is the diagonal. Note that O(∆X/S) is an ample line bundle on X ×S X.

Lemma 3.3.4. Assume X → S is a smooth curve of genus g and let (U, φ) be the degree

datum defined above. Then we have

DegS(X) = Mg,S(X, 1) ⊆Mg,S(X)

as open substacks.

Proof. It is clear from the definitions that DegS(X) ⊆Mg,S(X, 1). For the reverse inclusion,

assume that s : Spec k → S is a geometric point and f : C → Xs is a prestable map of genus

g and degree 1 with respect to (U, φ). Then the stabilisation f̃ : C̃ → Xs is a stable map of

degree 1 and genus g, so, since X is smooth, the normalisation of C̃ has a unique component

mapping isomorphically to Xs, all other components are rational and contracted to points

in Xs, and the dual graph of C is a tree. Stability of f̃ then implies that there are no

rational contracted components, so f̃ is an isomorphism, which proves that f defines a point

in DegS(X).

Lemma 3.3.5. Let X → S be a smooth curve over S of genus g, endowed with the degree

datum (U, φ) above. If τ is any Z-graph of degree 1 and genus g, then the following are

equivalent.

(1) The stack M◦S(X, τ) is nonempty.

(2) The stack MS(X, τ) is nonempty.

(3) There exists a unique vertex v ∈ Vτ with β(v) 6= 0, and this unique vertex satisfies

g(v) = g.

Proof. The implication (1)⇒ (2) is clear. We prove (2)⇒ (3)⇒ (1).

Assume (2) is satisfied. Then there exists a τ -marked prestable map p = ((pv : Cv →
Xs, (xf )f∈Fτ (v)))v∈Vτ over a geometric point s : Spec k → S. So β(v) = deg(pv) ≥ 0 for

all v ∈ Vτ , and hence there exists v ∈ Vτ with β(v) = 1 and β(v′) = 0 for v′ 6= v (since

deg(τ) = 1). So pv : Cv → Xs has degree 1, so there must exist an irreducible component of

Cv mapping isomorphically to Xs. So g(v) ≥ g, from which we deduce that g(v) = g, since

g(v) ≤ g(τ) = g. So (3) is satisfied.

Now assume that (3) is satisfied. Then β(v) = deg(τ) = 1, and the dual graph of τ is

a tree with g(v′) = 0 for v′ ∈ Vτ \ {v}. If τ has a single vertex, then for any geometric

point s : Spec k → S and any distinct k-points (xf )f∈Sτ of X, the tuple (idXs : Xs →
Xs, (xf )f∈Sτ ) defines a point of M◦S(X, τ) over s, so MS(X, τ) 6= ∅. If τ has more than one

vertex, then choosing a leaf v′ 6= v, we have an isomorphism

M◦S(X, τ) ∼= M◦S(X, τ ′)×X M◦0,1,S(X, 0) = M◦S(X, τ ′)×S M◦0,1,S ,
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where τ ′ is the Z-graph with Vτ ′ = Vτ \ {v}, Fτ ′ = Fτ \ Fτ (v), ∂τ ′ = ∂τ |Fτ′ and

jτ ′(f) =

jτ (f), if jτ (f) ∈ Fτ ′

f, otherwise.
.

So M◦S(X, τ ′) is nonempty by induction on the number of vertices, and hence so is M◦S(X, τ).

So (1) is satisfied.

Convention 3.3.6. If τ is a Z-graph (of genus g) satisfying the equivalent conditions of

Lemma 3.3.5, we will represent the functions g : Vτ → Z≥0 and β : Vτ → Z using a filled

circle for the unique vertex v with β(v) = 1 and g(v) = g and empty circles for the

remaining vertices v′ with g(v′) = β(v′) = 0. So, for example, the graph

is the dual graph of a degeneration with one component mapping isomorphically to Xs, and

two rational components mapping to different points of Xs.

In the following two propositions we assume X → S is a smooth curve over S and write

f : C → DegS(X) ×S X for the universal prestable degeneration, π : DegS(X) ×S X →
DegS(X) for the natural projection, and D ⊆ DegS(X) for the closed substack of prestable

degenerations with singular domain curve. We also write DegS(X)≤1 ⊆ DegS(X) for the

open substack of prestable degenerations such that the domain curve has at most one node,

C≤1 = π−1f−1(DegS(X)≤1) and D≤1 = D ∩DegS(X)≤1.

Proposition 3.3.7. Assume that X → S is a smooth curve over S. Then we have the

following.

(1) The stack DegS(X) is smooth over S.

(2) The closed substack D ⊆ DegS(X) is a reduced divisor with normal crossings relative

to S.

(3) For every n ≥ 0, the open stratum DegS(X)(n) of points where D is locally isomorphic

to an intersection of n coordinate hyperplanes in an affine space is given by

DegS(X)(n) =
∐
τ

M◦S(X, τ)/Aut(τ),

where the coproduct is over Z-graphs τ satisfying the equivalent conditions of Lemma

3.3.5 with Sτ = ∅ and |Eτ | = n.

(4) For every Z-graph τ satisfying the equivalent conditions of Lemma 3.3.5 with Sτ = ∅,
we have

M◦S(X, τ)/Aut(τ) =
⋃
τ ′→τ

M◦S(X, τ ′)/Aut(τ ′),

where the closure is taken in DegS(X) and the union is over all isomorphism classes

of Z-graphs satisfying the equivalent conditions of Lemma 3.3.5 such that there exists a

contraction τ ′ → τ .

Proof. The proof follows similar lines to the proofs of [DM, Corollary 1.9 and Theorem 5.2].

Fix a geometric point s : Spec k → S corresponding to a prestable map p : C → Xs and

consider the deformation functors

Dloc , Sloc : Artk −→ Grpd
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given by

Dloc(A) = Hom(SpecA,DegS(X))×Hom(Spec k,DegS(X)) {p : C → Xs},

and

Sloc(A) = Hom(SpecA,S)×Hom(Spec k,S) {s},

where Artk is the category of Artinian local rings with residue field k, and Grpd is the 2-

category of groupoids. Let {x1, . . . , xn} ⊆ C(k) denote the set of nodes, and for each i, let Di

denote the functor sending A ∈ Artk to the groupoid of flat deformations of the completed

local ring Ri = ÔC,xi ∼= kJyi, ziK/(yizi) over A. We claim that the natural morphism

Dloc −→ Sloc ×
n∏
i=1

Di

is formally smooth.

To see this, first note that by deformation theory of schemes and of local rings, it is

enough to show that the kernel in the derived category of k-vector spaces of the natural

morphism

TDloc/Sloc
−→

⊕
i

TDi

has vanishing Hj for j > 0, where

TDloc/Sloc
= RΓ(C,TC/Xs [1]) and TDi

= TRi/k[1] ∼= [Ri ⊕Ri
( yi zi )−−−−−→ Ri],

where we have used the identification of Ri with kJyi, ziK/(yizi) to write out the tangent

complex of Ri explicitly as a complex in degrees −1 and 0. The cohomology vanishing

reduces easily to the claim that

H0(TDloc/Sloc
) = H1(C,TC/Xs) −→ H0(C,H1(TC)) =

⊕
i

H0(TDi
)

is surjective, which is equivalent to the vanishing of H2(C,K), where

K = ker(TC/Xs → H1(TC)[−1]) = [q∗TC̃(−N)→ p∗TXs ]

is a complex on C in degrees 0 and 1, where q : C̃ → C is the normalisation of C and

N ⊆ C̃ is the divisor of preimages of nodes of C. But, using Lemma 3.3.3 to conclude that

Rp∗OC = OXs , we have

RΓ(C,K) = RΓ(C̃ ′, TC̃′(−N
′))⊕H0(NX , TXs |NX )[−1],

which manifestly has vanishing H2, where C̃ ′ ⊆ C̃ is the union of rational components

contracted under p, N ′ = N ∩ C̃ ′ and NX = N ∩Xs is the intersection of N with the unique

connected component of C̃ mapped isomorphically to Xs under p.

Now the product
∏n
i=1 Di is formally smooth, with a miniversal formal deformation given

by (
okJt1, . . . , tnK −→

okJt1, . . . , tn, yi, ziK
(yizi − ti)

)
i=1,...,n

,

where ok is the complete regular local ring with residue field k defined in [DM, p. 79]. It

follows that DegS(X)→ S is formally smooth at p, so (1) follows.

To prove (2), choose any formally smooth morphism Spf A→ Spf okJt1, . . . , tnK×∏n
i=1 Di

Dloc sending the closed point to the natural base point, with A a complete Noetherian local
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ring with residue field k. Then we have a formally smooth morphisms SpecA → DegS(X)

and SpecA→ Spec okJt1, . . . , tnK× S corresponding to a prestable degeneration pA : CA →
XA with closed fibre p and isomorphisms

ÔCA,xi ∼=
AJyi, ziK

(yizi − ti)

as A-algebras. In particular, we have D ×DegS(X) SpecA is the locus t1 · · · tn = 0, which

is a divisor with normal crossings relative to S. So this proves (2). This also shows that

the stratum DegS(X)(n) is the locus of prestable degenerations with exactly n nodes, from

which (3) follows as well.

To prove (4), we first note that Corollary 3.2.20 implies that

M◦S(X, τ)/Aut(τ) ⊆
⋃
τ ′→τ

M◦S(X, τ ′)/Aut(τ ′).

To prove the reverse inclusion, suppose that ψ : τ ′ → τ is a contraction satisfying the

conditions of (4) and that the prestable degeneration p chosen above is in the image of

M◦S(X, τ ′)/Aut(τ ′)→ DegS(X), i.e., that p has dual graph τ ′. If we choose the labelling of

the nodes of C so that xi+1, xi+2, . . . , xn are the nodes corresponding to the edges contracted

by ψ, then the morphism

SpecA/(t1, . . . , ti) ↪−→ SpecA −→ DegS(X)

factors through a morphism to MS(X, τ), such that the restriction to

SpecA/(t1, . . . , ti)[t
−1
i+1, . . . , t

−1
n ]

(which is nonempty since SpecA → Spec okJt1, . . . , tnK × S is formally smooth) factors

through M◦S(X, τ) ⊆MS(X, τ). So p is in the closure of the image of M◦S(X, τ)→ DegS(X),

which proves (4).

Proposition 3.3.8. Assume that X → S is a smooth curve over S. Then we have the

following.

(1) The stack C is smooth over S.

(2) The preimage of D in C is a reduced divisor with normal crossings relative to S.

(3) The preimage of D in C decomposes as

f−1π−1(D) = D′ ∪ Exc

where Exc ⊆ C is the locus of points around which f : C → DegS(X) ×S X is not an

isomorphism, and D′ is the proper transform of π−1(D) under f .

(4) The morphism f |C≤1 : C≤1 → DegS(X)≤1 ×S X is the blowup at the image f(Exc≤1) of

the divisor Exc≤1 = Exc ∩ C≤1, and the projection DegS(X) ×S X → DegS(X) maps

f(Exc≤1) isomorphically onto D≤1.

Proof. To prove (1) and (2), first note that it suffices to check each property after pulling back

to a formally smooth neighbourhood of every geometric point. So fix a prestable degeneration

p : C → Xs over a geometric point s : Spec k → S and a k-point x : Spec k → C ↪→ C.
If x is a smooth point of C, then the morphism π ◦ f : C → DegS(X) is smooth at x, so

(1) and (2) hold in a neighbourhood of x by Proposition 3.3.7. So assume that x = xj is a

node.
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Keeping the notation of the proof of Proposition 3.3.7, let Cloc : Artk → Grpd be the

functor given by

Cloc(A) = Hom(SpecA, C)×Hom(Spec k,C) {x}.

We show that

Cloc −→ Sloc ×D′j ×
∏
i 6=j

Di

is formally smooth as follows, where D′j is the functor sending A ∈ Artk to the groupoid of

flat deformations R̄j of Rj = ÔC,xj over A equipped with an augmentation homomorphism

R̄j → A restricting to x at the special fibre. By a similar argument to the proof of formal

smoothness of Dloc →
∏n
i=1 Di in Proposition 3.3.7, we reduce to showing that H2(C,K ′) =

0, where

K ′ = ker(T′C/Xs → H1(T′C)[−1]),

where T′C = ker(TC → TC |x) and T′C/Xs = ker(T′C → p∗TXs). A direct local computation

shows that H0(T′C) = H0(TC), from which it follows easily that K ′ = K = ker(TC/Xs →
H1(TC)[−1]), which we already showed had vanishing H2 in the proof of Proposition 3.3.7.

There is a commutative diagram

Spf okJt1, . . . , tj−1, uj , vj , tj+1, . . . , tnK D′j ×
∏
i6=j Di Cloc

Spf okJt1, . . . , tj−1, tj , tj+1, . . . , tnK
∏n
i=1 Di Dloc

where, in the leftmost square, the horizontal arrows are formally smooth, the left vertical

arrow is given by tj 7→ ujvj , the bottom arrow is the miniversal deformation in the proof of

Proposition 3.3.7, and the top arrow is given on the D′j-factor by the algebra

okJt1, . . . , tj−1, uj , vj , tj+1, . . . tnK −→
okJt1, . . . , tj−1, uj , vj , tj+1, . . . tn, yj , zjK

(yjzj − ujvj)
,

with augmentation sending yj to uj and zj to vj . In particular, D′j ×
∏
i6=j Di is formally

smooth, so this proves that (1) holds near x. Moreover, if we write

Y = Spf okJt1, . . . , uj , vj , . . . , tnK×D′j×
∏
i6=j Di

Cloc

and

Z = Spf okJt1, . . . , tj , . . . , tnK×∏
iDi

Dloc ,

then choosing versal deformations Spf A→ Z and Spf B → Y ×Z Spf A, we have a commu-

tative diagram

S × Spec okJt1, . . . , uj , vj , . . . , tnK SpecB C

S × Spec okJt1, . . . , tj , . . . , tnK SpecA DegS(X)

π◦f

where the horizontal arrows are all formally smooth. Since D×DegS(X) SpecA is the divisor

t1 · · · tn = 0, it follows that f−1π−1(D)×C SpecB is the divisor t1 · · · tj−1ujvjtj+1 · · · tn = 0,

which proves that (2) holds near x. So (1) and (2) hold everywhere on C.
The claim (3) follows immediately from the fact that f : C → DegS(X)×S X is a repre-

sentable morphism between smooth stacks over S that is an isomorphism outside the divisor

f−1π−1(D).
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Finally, to prove (4), observe that it suffices to check the claims after pulling back to

any atlas of DegS(X)≤1. It is straightforward to check that the morphism A1
S ×S X →

DegS(X)≤1 given by the prestable map

Bl{0}×S∆(A1
S ×S X ×S X) −→ A1

S ×S X ×S X

gives such an atlas, where Bl denotes the blowup at the given substack, and ∆ = ∆X/S ⊆
X ×S X denotes the diagonal. The claims of (4) are now obvious by construction after

pulling back to this atlas.

3.4 Kontsevich-Mori compactifications

In this section, we introduce the long awaited Kontsevich-Mori compactifications of the stack

of principal bundles under a parabolic subgroup of a reductive group.

Definition 3.4.1. Let G be a reductive group, P ⊆ G a parabolic subgroup, X → S a

smooth proper curve of genus g over a stack S, and ξuniG → BunG/S(X)×S X the universal

G-bundle. The Kontsevich-Mori compactification of BunP/S(X) is the fibre product

KMP,G/S(X) = Mg,BunG/S(X)(ξ
uni
G /P )×Mg,S(X) DegS(X).

If µ ∈ X∗(TP ) = X∗(P/[P, P ]), we write

KMµ
P,G/S(X) ⊆ KMP,G/S(X)

for the open and closed substack of stable maps σ : C → ξuniG /P such that deg σ∗Lλ(ξuniG ) =

〈λ, µ〉 for all λ ∈ X∗(TP ), where Lλ(ξuniG ) is the line bundle Lλ(ξuniG ) = ξuniG ×G Zλ on

ξuniG /P .

Remark 3.4.2. In more down to earth terms, the Kontsevich-Mori compactification is

the stack of tuples (s, ξG, C, σ), where s ∈ S is a point of S, ξG → Xs is a G-bundle,

C is a prestable curve, and σ : C → ξG/P is a stable map such that the prestable map

C → ξG/P → Xs is a prestable degeneration of Xs. Note that if we take s to be defined

over an algebraically closed field k, then C = Xs∪
⋃
i Ci has a unique irreducible component

mapping to a section of ξG/P → Xs, and a number of rational components Ci ∼= P1
k mapping

into fibres of the G/P -bundle ξG/P → Xs.

Remark 3.4.3. Note that the partial flag variety bundle ξuniG /P = ξuniG ×G Ft(P ) →
BunG/S(X) ×S X and the line bundles Lλ(ξuniG ) = ξuniG ×G Lλ depend only on the type

t(P ) of P up to canonical isomorphism, and hence so do the Kontsevich-Mori compactifica-

tions KMµ
P,G/S(X).

The degree datum of Lemma 3.3.4 for X → S has the following analogue for ξuniG /P → S.

Let U = BunG/S(X)×S X and define

φ : X∗(TP )⊕ Z −→ NSU (U ×BunG/S(X) ξ
uni
G /P )

by

φ(λ, d) = [p∗Lλ(ξuniG )] + d[q∗O(∆X/S)],

where p : U ×BunG/S(X) ξ
uni
G /P → ξuniG /P is the natural projection, q is the morphism

U ×BunG/S(X) ξ
uni
G /P −→ U ×S X = BunG/S(X)×S X ×S X −→ X ×S X,

and ∆X/S ⊆ X ×S X is the diagonal divisor.
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Lemma 3.4.4. With respect to the degree datum (U, φ) above, we have

KMµ
P,G/S(X) = Mg,S(X, (µ, 1)),

where we identify Hom(X∗(TP )⊕ Z,Z) with X∗(TP )⊕ Z in the usual way.

Proof. This is an immediate consequence of Lemma 3.3.4 and the definitions.

Proposition 3.4.5. In the situation of Definition 3.4.1, the morphism

KMµ
P,G/S(X) −→ BunG/S(X)

is proper with finite relative stabilisers.

Proof. Let (U, φ) be the degree datum of Lemma 3.4.4. If we choose λ ∈ X∗(TP ) so that

Lλ ∈ Pic(G/P ) is ample, then

φ(λ, 1) = [p∗Lλ(ξuniG )⊗ q∗O(∆X/S)] ∈ NSU (U ×BunG/S(X) ξ
uni
G /P )

is the class of a U -ample line bundle. So the claim follows by Corollary 3.1.9 and Lemma

3.4.4.

Definition 3.4.6. Let s : Spec k → E be a geometric point, ξG → Es a G-bundle and

σ : C → ξG/P a stable map. We write [σ] ∈ X∗(TP ) for the projection of the degree

deg(U,φ) σ ∈ X∗(TP ) ⊕ Z to the first factor, where (U, φ) is the degree datum of Lemma

3.4.4. We will often abuse terminology slightly and refer to [σ] as the degree of σ.

Proposition 3.4.7. The morphism

KMP,G/S(X) −→ DegS(X)

is smooth.

Proof. The stack KMP,G/S(X) is an open substack of

BunG/DegS(X)(DegS(X)×S X)×BunG/DegS(X)(C) BunP/DegS(X)(C),

where C → DegS(X)×S X is the universal prestable degeneration of X. Since

BunP/DegS(X)(C) −→ DegS(X)

is smooth, it therefore suffices to show that the morphism

DegS(X)×S BunG/S(X) = BunG/DegS(X)(DegS(X)×S X) −→ BunG/DegS(X)(C) (3.4.1)

defined by pullback of G-bundles is smooth. We in fact show that (3.4.1) is étale. By

deformation theory for G-bundles, it is enough to show that if s : Spec k → S is a geometric

point, f : C → Xs is a prestable degeneration, and ξG → Xs is a principal G-bundle, then

the canonical morphism

RΓ(Xs, ξG ×G g) −→ RΓ(Xs,Rf∗OC ⊗ (ξG ×G g)) = RΓ(C, f∗(ξG ×G g))

is a quasi-isomorphism. But this holds by Lemma 3.3.3, so we are done.

Corollary 3.4.8. The stack KMP,G/S(X) is smooth over S, and contains BunP/S(X) as a

dense open substack.
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Proof. Proposition 3.3.7 shows that DegS(X) is smooth over S and that the open immersion

S → DegS(X) classifying the identity idX : X → X is dense. So the claim now follows

from Proposition 3.4.7 and the natural identification of BunP/S(X) with the stack of tuples

(s, ξG, σ), where s ∈ S, ξG → Xs is a G-bundle and σ : Xs → ξG/P is a section.

Propositions 3.3.7 and 3.4.7 imply that the complement of BunP/S(X) in KMP,G/S(X)

is a divisor with normal crossings relative to S. In order to study this divisor in more detail,

we recall the following facts about stable maps to partial flag varieties.

Recall that there is a homomorphism

φ′ : X∗(TP ) = PicG(G/P ) −→ Pic(G/P ) = NSSpecZ(G/P ) = X∗(T scP ),

which is surjective after tensoring with Q. Here T sc ⊆ T is the subtorus of the abstract

Cartan T with cocharacter group ZΦ∨ ⊆ X∗(T ), and T scP is the quotient of T sc and subtorus

of TP with character group

X∗(T scP ) = {λ ∈ X∗(T sc) | 〈λ, α∨i 〉 = 0 for αi ∈ t(P )}.

With U ′ = SpecZ, the homomorphism φ′ defines a degree datum (U ′, φ′) for G/P over

SpecZ.

Proposition 3.4.9. Let P ⊆ G be a parabolic subgroup and let µ ∈ X∗(TP ). The morphism

M0,1(G/P, µ) −→ G/P ×M0,1 (3.4.2)

given on the two factors by evaluation and forgetting the map to G/P is smooth of relative

dimension 〈2ρP , µ〉, where 2ρP ∈ X∗(TP ) ⊆ X∗(T ) is the sum of all positive roots that are

not roots of P . In particular, the morphism M0,1(G/P, µ) → G/P is smooth of relative

dimension 〈2ρP , µ〉 − 2.

Proof. To prove that (3.4.2) is smooth of the required relative dimension, note that there is a

tangent-obstruction complex for (3.4.2) given at a 1-pointed stable map (f : C → (G/P )k, x)

defined over an algebraically closed field k by

T = RΓ(C, f∗TG/P (−x)).

Since TG/P is generated by global sections and C is rational, we haveHi(C, f∗TG/P (−x)) = 0

for i > 0, so (3.4.2) is smooth, and T is its relative tangent bundle at (f, x). By Riemann-

Roch, the relative dimension is

deg(f∗TG/P (−x)) + rank f∗TG/P (−x) = deg f∗TG/P = 〈2ρP , µ〉

as claimed.

Proposition 3.4.10. Let αi ∈ ∆ be a simple root of G and B ⊆ G a Borel subgroup. Then

the morphism

M0,1(G/B,α∨i ) −→ G/B,

given by evaluation at the marked point is an isomorphism, and

M0,1(G/B,α∨i ) = M◦0,1(G/B,α∨i ).

Proof. Let P be the minimal parabolic containing B with t(P ) = ∆ \ {αi}. Note that the

morphism π : G/B → G/P is a family of smooth curves of genus 0 and that the identity

G/B → G/B defines a stable map to G/B over G/P with degree α∨i . We claim that this
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is the universal stable map of genus 0 and degree α∨i , so that G/P = M0(G/B,α∨i ). The

proposition then follows by Proposition 3.1.13 and the fact that all the domain curves are

smooth.

To prove the claim, suppose that U is any scheme and f : C → U ×G/B is a stable map

over U of genus 0 and degree α∨i . For every line bundle Lλ on G/P , we have deg f∗π∗Lλ = 0

on the fibres of C → U . So, since G/P is projective, the morphism

C −→ G/B −→ G/P

factors through a unique morphism U → G/P , and the morphism C → U ×G/P G/B is a

genus 0 stable map of degree 1 to a smooth curve of genus 0 over S, hence an isomorphism.

So (π : G/B → G/P, id : G/B → G/B) is the universal stable map to G/B as claimed.

Lemma 3.4.11. Let k be an algebraically closed field and let τ be a stable X∗(TP )-graph of

genus 0. Then Mk((G/P )k, τ) 6= ∅ if and only if for all v ∈ Vτ , we have β(v) ∈ X∗(T scP )≥0 ⊆
X∗(TP ), where

X∗(T scP )≥0 = {µ ∈ X∗(T scP ) | 〈$i, µ〉 ≥ 0 for all αi ∈ t(P )}.

Proof. First suppose that Mk((G/P )k, τ) 6= ∅. Then for all v ∈ Vτ , there exists a stable

map (pv : Cv → (G/P )k, (xf )f∈Fτ (v)) over Spec k of degree β(v). So by definition of degree,

β(v) is the image of µ ∈ X∗(T scP ) under the inclusion

X∗(T scP ) = Hom(NS(G/P ),Z) ↪−→ Hom(X∗(TP ),Z) = X∗(TP ),

where 〈λ, µ〉 = deg p∗vLλ for λ ∈ X∗(T scP ). Moreover, for all αi ∈ t(P ), we have 〈$i, µ〉 ≥ 0

since the line bundle L$i on G/P is nef. So β(v) ∈ X∗(T scP )≥0 as claimed.

Conversely, suppose that β(v) ∈ X∗(T scP )≥0 for all v ∈ Vτ . Then we can find a contraction

τ ′ → τ where τ ′ is a stable X∗(TP )-graph of genus 0 such that β(v′) ∈ {0}∪{α∨i | αi ∈ t(P )}
for all v′ ∈ Vτ ′ . Since Proposition 3.4.10 implies that there exists an n-pointed stable map

of genus 0 and degree α∨i through any point in (G/P )k for any αi ∈ t(P ) and any n ≥ 0,

it follows by induction on the number of vertices of τ ′ that Mk((G/P )k, τ
′) 6= ∅, and hence

that Mk((G/P )k, τ) 6= ∅ as claimed.

Lemma 3.4.12. Let τ be a stable X∗(TP ) ⊕ Z-graph of genus g such that the underlying

Z-graph τ0 has degree 1. Then MBunG/S(X)(ξ
uni
G /P, τ) 6= ∅ if and only if τ0 satisfies the

equivalent conditions of Lemma 3.3.5 and for every v ∈ Vτ with β(v) ∈ X∗(TP ) ⊆ X∗(TP )⊕Z,

we have β(v) ∈ X∗(T scP )≥0 ⊆ X∗(TP ).

Proof. It is clear from Lemmas 3.3.5 and 3.4.11 that if MBunG/S(X)(ξ
uni
G /P, τ) 6= ∅ then the

claimed conditions must be satisfied. For the converse, assume that τ0 satisfies the conditions

of Lemma 3.3.5 and that for every v ∈ Vτ with β(v) ∈ X∗(TP ) we have β(v) ∈ X∗(T scP )≥0.

We prove that MBunG/S(X)(ξ
uni
G /P, τ) is nonempty by induction on the number of vertices

of τ .

If τ has a single vertex v, then we have β(v) = (1, µ) for some µ ∈ X∗(TP ). Choose any

geometric point s : Spec k → S, any TP -bundle ξTP on Xs of degree µ, and any lift of ξTP to

a P -bundle ξP → Xs. Then setting ξG = ξP ×P G and choosing distinct points xf ∈ Xs for

f ∈ Sτ , we have a τ -marked stable map (σ : Xs → ξG/P, (xf )f∈Fτ ), where σ is the canonical

section defined by the reduction ξP .
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If τ has more than one vertex, then since the underlying graph of τ is a tree, we can

choose a leaf v ∈ Vτ with β(v) ∈ X∗(T scP )≥0. Then writing τ ′0 and τ ′1 for the graphs with

Vτ ′0 = {v}, Fτ ′0 = Fτ (v), Vτ ′1 = Vτ \ {v} and Fτ ′1 = Fτ \ Fτ (v), we have a Cartesian diagram

MBunG/S(X)(ξ
uni
G /P, τ) MBunG/S(X)(ξ

uni
G /P, τ ′0) = ξuniG ×GM0,|Sτ |(G/P, β(v))

MBunG/S(X)(ξ
uni
G /P, τ ′1) ξuniG /P,

where MBunG/S(X)(ξ
uni
G /P, τ ′1) 6= ∅ by induction and the right vertical arrow is surjective by

Lemma 3.4.11. So MBunG/S(X)(ξ
uni
G /P, τ) 6= ∅ and we are done.

Proposition 3.4.13. Let X → S be a smooth curve over S. We have the following.

(1) The gluing morphism∐
τ

M◦BunG/S(X)(ξ
uni
G /P, τ)/Aut(τ) −→ KMP,G/S(X)

is a bijection on points, where the coproduct is taken over all stable X∗(TP )⊕ Z-graphs

τ with Sτ = ∅ satisfying the conditions of Lemma 3.4.12.

(2) For every stable X∗(TP )⊕ Z-graph τ as above, we have

M◦BunG/S(X)(ξ
uni
G /P, τ)/Aut(τ) =

⋃
τ ′

M◦BunG/S(X)(ξ
uni
G /P, τ ′)/Aut(τ ′),

where the union is over all stable X∗(TP ) ⊕ Z-graphs τ ′ satisfying the conditions of

Lemma 3.4.12 such that there exists a contraction τ ′ → τ .

Proof. The claim (1) follows immediately from Proposition 3.2.18 and Lemma 3.4.12. To

prove (2), note that by Corollary 3.2.20, it suffices to show that

M◦BunG/S(X)(ξ
uni
G /P, τ ′)/Aut(τ ′) ⊆M◦BunG/S(X)(ξ

uni
G /P, τ)/Aut(τ)

for all appropriate τ ′ with a contraction τ ′ → τ . Fix such a τ ′, a contraction ψ : τ ′ → τ and a

geometric point p′ in M◦BunG/S(X)(ξ
uni
G /P, τ ′). Writing ψ0 : τ ′0 → τ0 for the contraction of the

underlying Z-graphs, and p′0 ∈ DegS(X) for the image of p′, from the proof of Proposition

3.3.7, (4) it is clear that there exists a complete discrete valuation ring R and a morphism

p0 : SpecR → MS(X, τ0) such that the generic fibre factors through M◦S(X, τ0) and the

closed fibre is (ψ0)∗(p
′
0). Since there is a Cartesian diagram∐
τ1
MBunG/S(X)(ξ

uni
G /P, τ1) KMP,G/S(X)

MS(X, τ0) DegS(X),

where the coproduct is over all stable X∗(TP ) ⊕ Z-graphs with underlying Z-graph τ0, the

morphism MBunG/S(X)(ξ
uni
G /P, τ) → MS(X, τ0) is smooth by Proposition 3.4.7. So we

can lift p0 to a morphism p : SpecR → MBunG/S(X)(ξ
uni
G /P, τ) with closed fibre p′ and

generic fibre factoring through M◦BunG/S(X)(ξ
uni
G /P, τ). So the gluing of p′ is in the closure

of M◦BunG/S(X)(ξ
uni
G /P, τ)/Aut(τ) and we are done.

We have the following corollary of Proposition 3.4.13, where for λ, λ′ ∈ X∗(TP ) we write

λ′ ≤ λ if λ− λ′ ∈ X∗(T scP )≥0.
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Corollary 3.4.14. A G-bundle ξG → Xs is in the image of KMλ
P,G/S(X)→ BunG/S(X) if

and only if there exists a reduction of ξG to a P -bundle of degree λ′ ≤ λ.

Proof. It is immediate from Proposition 3.4.13 that the restriction of a stable map σ : C →
ξG/P in KMλ

P,G/S(X) to the irreducible component mapping isomorphically to Xs defines

a reduction of ξG to a P -bundle of degree λ′ ≤ λ. Conversely, if such a reduction exists,

then the proof of Lemma 3.4.12 shows that we can complete the corresponding section of

ξG/P → Xs to a stable map in KMλ
P,G/S(X).

Convention 3.4.15. If a X∗(T )⊕Z-graph τ is the dual graph of a stable map in KMP,G/S(X)

with respect to the degree datum of Lemma 3.4.4, we will draw τ by labelling each vertex

v of the underlying Z-graph (drawn according to Convention 3.3.6) with the projection of

β(v) ∈ X∗(TP )⊕ Z to X∗(TP ).

For λ ∈ X∗(T scP )+ = X∗(T scP )≥0 \ {0}, write Dµ,◦
λ,P ⊆ KMµ

P,G/S(X) for the locally closed

substack of stable maps with dual graph τµλ given by

τµλ =
µ−λ λ

.

In other words, Dµ,◦
λ,P is the image of M◦BunG/S(X)(ξ

uni
G /P, τµλ ) → KMµ

P,G/S(X). We write

Dµ
λ,P for the closure of Dµ,◦

λ,P in KMµ
P,G/S(X), and

Dµ
P =

⋃
λ∈X∗(T scP )+

Dµ
λ,P .

Note that Proposition 3.4.13 implies that Dµ
P is equal to the complement of BunµP/S(X) ⊆

KMµ
P,G/S(X) since every stable X∗(TP )⊕ Z-graph with more than one vertex appearing in

KMµ
P,G/S(X) admits a contraction onto τµλ for some λ ∈ X∗(T scP )+.

Proposition 3.4.16. We have the following.

(1) The closed substack Dµ
P ⊆ KMµ

P,G/S(X) is a divisor with normal crossings.

(2) If λ1, . . . , λm ∈ X∗(T scP )+ are distinct elements and j1, . . . , jm ∈ Z>0, then the open

stratum where Dµ
P is locally the intersection of ji branches of Dλi,P for i = 1, . . . ,m is

given by

(Dµ
P )(λ

j1
1 ···λ

jm
m ) =

∐
τ

M◦BunG/S(X)(ξ
uni
G /P, τ)/Aut(τ)

where the coproduct is over all stable X∗(TP ) ⊕ Z-graphs τ satisfying the conditions of

Lemma 3.4.12 such that there are exactly ji contractions τ → τµλi for each i = 1, . . . ,m,

and no contraction τ → τµλ for λ /∈ {λ1, . . . , λm}.

Proof. The claim (1) is immediate from Propositions 3.3.7 and 3.4.7.

To prove (2), fix a geometric point p in the open stratum D
(n)
P ⊆ D where Dµ

P is

locally isomorphic to an intersection of n coordinate hyperplanes in an affine space, let τ

be the dual graph of p, and write p′ for the τ -marked stable map with gluing p. Then by

Proposition 3.3.7, (3), the graph τ has exactly n edges. Writing Eτ = {e1, . . . , en}, for every

i = 1, . . . , n there exists a unique λ(i) ∈ X∗(T scP )+ and a contraction ψi : τ → τµλ(i)
such that

ei is the unique edge not contracted under ψi. So there are λ1, . . . , λm ∈ X∗(T scP )+ and

j1, . . . , jm ∈ Z>0, unique up to reordering, such that τ has exactly ji contractions onto τµλi
for each i and no contractions onto τµλ for λ /∈ {λ1, . . . , λm}. So it suffices to show that p

lies in the stratum (Dµ
P )(λ

j1
1 ···λ

jm
m ) where ji branches of Dµ

λi,P
intersect for i = 1, . . . ,m.
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From the proof of Proposition 3.3.7 (3), there exists a complete Noetherian local ring A

and formally smooth morphisms p̄0 : SpecA→ DegS(X) and SpecA→ Spec okJt1, . . . , tnK×
S over S such that p̄−1(D) is the locus t1 · · · tn = 0, and for each i = 1, . . . , n, we have a

commutative diagram

SpecAi MS(X, (τµλ(i)
)0)

SpecA DegS(X),

(p̄i)0

p̄0

(3.4.3)

where Ai = A/(ti), (τµλ(i)
)0 is the Z-graph underlying τµλ(i)

and (p̄i)0 maps the locus
∏
j 6=i ti 6=

0 into M◦S(X, (τµλ(i)
)0) and the closed point to the the gluing (ψi)0∗(p

′
0) of the image p′0 of

p′ in MS(X, τ0) with respect to the contraction (ψi)0 : τ0 → (τµλ(i)
)0 underlying ψi.

Since the diagram

MBunG/S(X)(ξ
uni
G /P, τµλ(i)

) KMµ
P,G/S(X)

MS(X, (τµλ(i)
)0) DegS(X)

realises MBunG/S(X)(ξ
uni
G /P, τµλ(i)

) as a connected component of the fibre product, Proposi-

tion 3.4.7 ensures that, after replacing SpecA with some formally smooth cover if necessary,

the diagram (3.4.3) lifts to a diagram

SpecAi MBunG/S(X)(ξ
uni
G /P, τµλ(i)

)

SpecA KMµ
P,G/S(X),

p̄i

p̄

such that p̄ sends the closed point to p and p̄i sends the closed point to the gluing of p′

under ψi. So in particular p̄ sends the locus
∏
j 6=i ti 6= 0 into D◦λ(i)

, and we conclude that p

lies in (Dµ
P )(λ

j1
1 ···λ

jm
m ) as claimed.

3.5 Blow down morphisms

An important feature of the Kontsevich-Mori compactification is the existence of a morphism

KMP,G/S(X) −→ BunTP /S(X)

extending the natural morphism BunP/S(X)→ BunTP /S(X). In this section, we define this

morphism and study some of its basic properties.

For simplicity, we will assume that the base stack S is regular. Since any family of

smooth curves of genus g is pulled back from one over the smooth Z-stack M◦g, one can

carry through these constructions for a general base S, if desired, by pulling back from this

universal base.

Let T be a split torus over SpecZ, and let ξuniT → BunT/DegS(X)(C) be the universal

T -bundle, where f : C → DegS(X) ×S X is the universal prestable degeneration of X. By

Proposition 3.3.8, there is an open substack U = (DegS(X)×SX)\f(Exc) ⊆ DegS(X)×SX
whose complement has codimension 2, such that morphism f−1(U)→ U is an isomorphism.

Since S is regular, so is BunT/DegS(X)(C)×S X, so the restriction of ξuniT to

BunT/DegS(X)(C)×DegS(X)f
−1(U) ∼= BunT/DegS(X)(C)×DegS(X)U ⊆ BunT/DegS(X)(C)×SX
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extends uniquely to a T -bundle Bl(ξuniT ) on BunT/DegS(X)(C)×S X since T is a torus. The

T -bundle Bl(ξuniT ) determines a morphism

BlT : BunT/DegS(X)(C) −→ BunT/S(X).

Definition 3.5.1. In the setup above, we call the morphism BlT the blow down morphism

for T . If P ⊆ G is a parabolic subgroup of a reductive group G with associated torus

TP = P/[P, P ], we define the blow down morphism for P to be the composition

BlP : KMP,G/S(X) −→ BunTP /DegS(X)(C)
BlTP−−−→ BunTP /S(X).

The blow down of a T -bundle can also be described in terms of its associated line bundles.

Lemma 3.5.2. Let λ ∈ X∗(T ) be a character. Then

λ(Bl(ξuniT )) = detRf∗λ(ξT ), (3.5.1)

where det denotes the determinant of a perfect complex, and by abuse of notation we write

f : BunT/DegS(X)(C)×DegS(X) C → BunT/DegS(X)(C)×S X

for the pullback of the morphism f : C → DegS(X)×S X.

Proof. Since BunT/DegS(X)(C)×S X is regular, this follows from the fact that both sides of

(3.5.1) agree when restricted to BunT/DegS(X)(C)×DegS(X) U .

Proposition 3.5.3. The morphism

Bl′T : BunT/DegS(X)(C) −→ DegS(X)×S BunT/S(X)

is étale.

Proof. The claim for general T reduces easily to the case where T = Gm. In this case, we

need to show that the morphism of tangent complexes

Rp∗Rf∗O[1] = TBunGm/DegS(X)(C)/DegS(X) −→ Bl∗TTBunGm/S(X)/S = Rp∗O[1] (3.5.2)

is a quasi-isomorphism, where p : BunGm/DegS(X)(C)×S X → BunGm/DegS(X)(C) is the pro-

jection onto the first factor and f : BunGm/DegS(X)(C)×DegS(X)C → BunGm/DegS(X)(C)×SX
is the pullback of the universal morphism as above. From the description of BlT from Lemma

3.5.2, it follows that (3.5.2) is obtained by pushing forward the morphism

Rf∗O[1] = Rf∗End(L)[1] −→ RHom(Rf∗L,Rf∗L)[1]
Tr−→ O[1] (3.5.3)

on BunGm/DegS(X)(C)×SX, where L is the universal line bundle on BunGm/DegS(X)(C)×DegS(X)

C. But since Rf∗O = O, and (3.5.3) is an isomorphism on an open substack whose com-

plement has codimension 2, it is necessarily an isomorphism everywhere. So (3.5.2) is a

quasi-isomorphism as claimed.

Corollary 3.5.4. Let P be a parabolic subgroup of a reductive group G. Then for any

λ ∈ X∗(TP ), the blow down morphism BlP restricts to a smooth morphism

KMλ
P,G/S(X) −→ BunλT/S(X)

extending the natural morphism BunλP/S(X)→ BunλT/S(X).
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Proof. Note that BlP restricts to the canonical morphism BunP/S(X) → BunTP /S(X) by

definition, and hence sends P -bundles of degree λ on C to TP -bundles of degree λ on X since

BunP/S(X) ⊆ KMP,G/S(X) is dense. It remains to show that BlP is smooth. By Proposition

3.5.3 and Proposition 3.3.7 (1), the only thing left to check is that the composition

KMP,G/S(X)→ BunP/DegS(X)(C)→ BunTP /DegS(X)(C)

is smooth. The first morphism is étale since it is the pullback of the étale morphism

BunG/S(X) ×S DegS(X) → BunG/DegS(X)(C). Smoothness of the second morphism re-

duces to the fact that for every prestable degeneration g : C → Xs and every P -bundle ξP

on C, we have

Hi(C, ξP ×P [p, p]) = 0 for i > 1,

where p = Lie(P ).

We conclude this section with the following observation about the connection between

the blow down morphism and gluing.

Proposition 3.5.5. Let µ ∈ X∗(TP ) and λ ∈ X∗(T scP )+. Then there is a commutative

diagram

MBunG/S(X)(ξ
uni
G /P, τµλ ) KMµ

P,G/S(X)

KMµ−λ
P,G/S(X)×S X Bunµ−λTP /S

(X)×S X BunµTP /S(X),

BlP

BlP×id

where the vertical morphism on the left is given by the natural forgetful map

MBunG/S(X)(ξ
uni
G /P, τµλ ) −→Mg,1,BunG/S(X)(ξ

uni
G /P, (µ− λ, 1))

composed with the map forgetting the marked point and stabilising on the first factor and

evaluating at the marked point and composing with the natural map to X on the second, and

the horizontal morphism on the bottom right is given by (ξT , x) 7→ ξT ⊗ λ(O(x)).

Proof. The two morphisms

MBunG/S(X)(ξ
uni
G /P, τµλ ) −→ BunµTP /S(X)

classify TP -bundles on MBunG/S(X)(ξ
uni
G /P, τµλ ) ×S X with an isomorphism φ outside the

section

MBunG/S(X)(ξ
uni
G /P, τµλ )→MBunG/S(X)(ξ

uni
G /P, τµλ )×S X

given by evaluation at the marked point on the genus g domain curve and projection from

ξuniG /P to X. Since both T -bundles have degree µ on every fibre, it follows that φ extends

to a global isomorphism, which gives the 2-isomorphism making the diagram commute.

3.6 Applications to BunG

In this section, we give some basic applications of the theory of Kontsevich-Mori compacti-

fications to the structure theory of BunG/S(X) for a reductive group G. We begin with the

proof that the locus of semistable bundles is open (Proposition 2.5.13).
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Proof of Proposition 2.5.13. Let P1, . . . , Pl denote the maximal parabolics of G with types

t(Pi) = {αi}. Call a character λ ∈ X∗(TPi) primitive if it is not a positive multiple of

another character, and let λi ∈ X∗(Pi) be the unique primitive nonzero dominant characters

vanishing on Z(G)◦. The natural homomorphism

X∗(TPi)
Zα∨i

−→ X∗(G/[G,G])

is surjective with finite kernel, and for every µ0 ∈ X∗(TPi)/Zα∨i , there is a unique lift

µ ∈ X∗(TPi) such that 〈λi, µ〉 < 0 and µ is maximal among lifts with this property with

respect to the partial order of Corollary 3.4.14. Corollary 3.4.14 then implies that for every

µ ∈ X∗(G/[G,G]), there exist finitely many µ1, . . . , µni ∈ X∗(TPi) such that the image of

ni∐
j=1

KM
µj
Pi/S

(X) −→ BunµG/S(X)

is equal to the locus of G-bundles ξG → Xs admitting a section σ : Xs → ξG/Pi of degree

µ′ satisfying 〈λi, µ′〉 < 0. So the locus of semistable bundles in BunµG/S(X) ⊆ BunG/S(X)

is equal to the complement of the image of

l∐
i=1

ni∐
j=1

KM
µj
Pi/S

(X) −→ BunG/S(X).

Since this morphism is proper and hence has closed image, openness of semistable bundles

follows.

Proposition 3.6.1. Assume that G is a reductive group such that the semisimple group

[G,G] is simply connected. Then for any µ ∈ X∗(G/[G,G]), the morphism BunµG/S(X)→ S

has connected fibres.

Proof. Since the statement concerns only geometric fibres of BunG/S(X) → S, we may

assume without loss of generality that S = Spec k for some algebraically closed field k. We

will also fix a Borel subgroup B and maximal torus T ⊆ B.

First, observe that since G is connected and reductive and k is algebraically closed,

[BS, §8.6] shows that any G-bundle ξG → X is trivial at the generic fibre, so there exists a

section X → ξG/B since X is a curve and ξG/B is proper. So the morphism BunB(X) →
BunG(X) is surjective.

Now suppose that ξG and ηG are G-bundles on X of the same degree µ ∈ X∗(G/[G,G]).

We need to show that ξG and ηG belong to the same connected component of BunG(X).

To see this, choose B-reductions ξB and ηB of ξG and ηG of degrees λ1, λ2 ∈ X∗(T ). Since

[G,G] is simply connected, we have a short exact sequence

0 −→ ZΦ∨ −→ X∗(T ) −→ X∗(G/[G,G]) −→ 0

and hence λ2 − λ1 ∈ ZΦ∨. So there exists λ ∈ X∗(T ) such that λ1 ≤ λ and λ2 ≤ λ.

Therefore, ξG and ηG are both in the image of the morphism

KMλ
B,G(X) −→ BunG(X)

by Corollary 3.4.14. But KMλ
B,G(X) is connected, since its dense open substack BunλB(X)

is by Proposition 2.4.2 and Corollary 2.4.5, so ξG and ηG belong to the same connected

component as claimed.
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Remark 3.6.2. The same proof shows that the morphism BunλG/S(X)→ Bunλ(G/[G,G])/S(X)

has connected fibres when [G,G] is simply connected.

Remark 3.6.3. When the derived group [G,G] is not simply connected, one can show

that the degree of a Borel reduction of ξG modulo ZΦ∨ depends only on ξG. The proof of

Proposition 3.6.1 then shows that this invariant in X∗(T )/ZΦ∨ singles out the connected

components of BunG(X) in the general case.

Proposition 3.6.4. Assume that [G,G] is simply connected and X → S is a family of

smooth curves of genus ≤ 1, let P ⊆ G be a parabolic subgroup containing a Borel subgroup

B, and let λ ∈ X∗(T ) be such that 〈α, λ〉 ≥ 0 for all α ∈ Φ+ such that α is a root of P .

Then the morphism

KMλ
B,G/S(X) −→ KMλ

P,G/S(X)

is surjective, where λ′ is the image of λ in X∗(TP ). In particular, any degree λ P -bundle on

a geometric fibre of X → S has a reduction to B of degree ≤ λ.

Proof. For simplicity, we can assume without loss of generality that S = Spec k for k an

algebraically closed field. We also fix a maximal torus T ⊆ B.

We first remark that by the assumption on λ, for a generic T -bundle of degree λ, we have

that ξT ×T p/b is a direct sum of nontrivial line bundles of nonnegative degree, and hence

H1(X, ξT ×T p/b) = 0, where p = Lie(P ) and b = Lie(B). So the morphism BunλB(X) →
Bunλ

′

P (X) is smooth at the point ξB = ξT ×T B for such a T -bundle.

Hence, there is a nonempty open subset U ⊆ BunλB(X) such that the morphism U →
Bunλ

′

P (X) is smooth. Since smooth morphisms are open, we conclude that the image of

KMλ
B,G(X)→ KMλ′

P,G(X) contains an open substack. Since Corollary 2.4.5 and Proposition

3.6.1 imply that KMλ′

P,G(X) is smooth and connected and KMλ
B,G(X) → KMλ′

P,G(X) is

proper, we deduce that KMλ
B,G(X)→ KMλ′

P,G(X) is surjective as claimed.

3.7 Bruhat cells for parabolic bundles

Let G be a reductive group and P, P ′ ⊆ G parabolic subgroups containing a Borel B and

maximal torus T ⊆ B. The Bruhat decomposition

G/P ′ =
∐

w∈WP /W/WP ′

PwP ′/P ′ (3.7.1)

into P -orbits is an important tool in the study of the partial flag variety G/P ′. Here w

ranges over any fixed set of double coset representatives for the Weyl groups WP = WL and

WP ′ = WL′ of the Levi factors L ⊆ P and L′ ⊆ P ′ inside the Weyl group W = NG(T )/T of

G. In this section, we study the natural cells in the stack

BunP/S(X)×BunG/S(X) BunP ′/S(X)

coming from the decomposition (3.7.1) for X → S a smooth curve.

It will be convenient for us to have a standard set of double coset representatives. Define

W 0
P,P ′ = {w ∈W | w−1αi ∈ Φ+ and wαj ∈ Φ+ for αi ∈ ∆ \ t(P ) and αj ∈ ∆ \ t(P ′)}.

(3.7.2)

Proposition 3.7.1. The set W 0
P,P ′ is a complete set of coset representatives for WP and

W ′P in W .
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Proof. First notice that

W 0
P,P ′ = {w ∈W | `(siw) > `(w) and `(wsj) > `(w) for αi ∈ ∆ \ t(P ) and αj ∈ ∆ \ t(P ′)},

so in particular, if w ∈W has minimal length among elements of WPwWP ′ , then w ∈W 0
P,P ′ .

So every double coset has a representative in W 0
P,P ′ .

To prove uniqueness of this representative, assume that w ∈ W 0
P,P ′ has minimal length

in WPwWP ′ and that w′ ∈WPwWP ′ ∩W 0
P,P ′ . Then we can write

w′ = si1 · · · simwsj1 · · · sjn ,

where αik ∈ ∆ \ t(P ) and αjk ∈ ∆ \ t(P ′) for each k, and si1 · · · sim and sj1 · · · sjn are

reduced words. We prove by induction on m + n that w = w′. If m + n = 0, then this is

clear, and if m + n > 0 we can assume without loss of generality that m > 0. Choose any

reduced word w = sk1 · · · skp for w. Since w′ ∈W 0
P,P ′ ,

`(w′) = `(si1si2 · · · simsk1 · · · skpsj1 · · · sjn) < `(si2 · · · simsk1 · · · skpsj1 · · · sjn) = `(si1w
′).

So by the deletion property for Coxeter groups, reducedness of si1 · · · sim , sk1 · · · skp and

sj1 · · · sjn , and the minimality of the length of w in its double coset, there must exist an

index jq such that

w′ = si2 · · · simsk1 · · · skpsj1 · · · ŝjq · · · sjn = si2 · · · simwsj1 · · · ŝjq · · · sjn .

So w′ = w by induction.

We remark that the coset representatives W 0
P = W 0

P,B have the following nice property.

Proposition 3.7.2. If w ∈W 0
P , then L∩wBw−1 = L∩B, and hence L∩B ⊆ L∩wP ′w−1.

Proof. Note that since w−1αi ∈ Φ+ for all αi ∈ ∆\t(P ), we have that αi is a root of wBw−1

for all αi ∈ ∆ \ t(P ), and hence L∩B ⊆ L∩wBw−1. Since L∩wBw−1 is a Borel subgroup

of L, it follows that L ∩B = L ∩ wBw−1 as claimed.

Let S be any stack and let X → S be a smooth curve. The partial Bruhat decomposition

on G/P ′ gives a decomposition

BP ×BG BP ′ = P /G/P ′ =
∐

w∈WP /W/WP ′

P /PwP ′/P ′ ∼=
∐

w∈WP /W/WP ′

B(P ∩ wP ′w−1)

into disjoint locally closed substacks, and hence a family of disjoint locally closed substacks

BunP∩wP ′w−1/S(X) ↪−→ BunP/S(X)×BunG/S(X) BunP ′/S(X)

for w ∈WP /W/WP ′ .

Definition 3.7.3. If w ∈WP /W/WP ′ and λ ∈ X∗(TP ′), the associated Bruhat cell is

Cw,λP,P ′/S(X) = BunP∩wP ′w−1/S(X)×BunP ′/S(X) BunλP ′/S(X)

⊆ BunP/S(X)×BunG/S(X) BunλP ′/S(X).

There is a natural decomposition of Cw,λP,P ′/S(X) in terms of the degree of the associated

P∩wP ′w−1-bundle. In the following proposition, we write TP∩wP ′w−1 = (P∩wP ′w−1)/[P∩
wP ′w−1, P ∩ wP ′w−1], and let

jw : TP∩wP ′w−1 −→ TP ′

56



to be the natural homomorphism induced by the homomorphism

w̄−1(−)w̄ : P ∩ wP ′w−1 −→ P ′

for any choice of lift w̄ ∈ NG(T ) of w ∈W = NG(T )/T .

Proposition 3.7.4. The Bruhat cell Cw,λP,P ′/S(X) decomposes as a disjoint union

Cw,λP,P ′/S(X) =
∐

µ∈j−1
w (λ)

BunµP∩wP ′w−1/S(X).

Proof. There are identifications P /PwP ′/P ′ ∼= B(P ∩ wP ′w−1) (resp., P /PwP ′/P ′ ∼=
B(w−1Pw ∩ P ′)) coming from the fact that P (resp., P ′) acts transitively on PwP ′/P ′

(resp., P /PwP ′) so that the stabiliser of wP ′/P ′ (resp., P /Pw) is P ∩ wP ′w−1 (resp.,

w−1Pw ∩ P ′). If we choose any lift w̄ ∈ NG(T ) for w, then these both lift to a transitive

action of P × P ′ on PwP ′ such that the stabiliser of w̄ is

{(g1, g2) ∈ P × P ′ | g−1
1 w̄g2 = w̄}.

So we have an identification

P /PwP ′/P ′ ∼= B{(g1, g2) ∈ P × P ′ | g−1
1 w̄g2 = w̄}

lifting the two identifications above. It follows that the morphism

B(P ∩ wP ′w−1)
∼−→ B(w−1Pw ∩ P ′) −→ BP ′

is induced by the homomorphism w̄−1(−)w̄ : P ∩wP ′w−1 → P , from which the result follows

immediately.

The decomposition P = LnRu(P ) gives a description of the Bruhat cell Cw,λP,P ′/S(X) in

terms of L and Ru(P ). In the following proposition, if µ ∈ X∗(TP∩wP ′w−1), then we write

ξL and ξL∩wP ′w−1 respectively for the universal L-bundle and L ∩ wP ′w−1 bundle on

BunµL∩wP ′w−1/S(X)×BunL/S(X) BunP/S(X)×S X,

U = ξL ×L Ru(P ) for the associated unipotent group scheme, Uw = ξL∩wP ′w−1 ×L∩wP ′w−1

(Ru(P ) ∩ wP ′w−1) ⊆ U , and ξU = ξP /L for the associated U-bundle.

Proposition 3.7.5. In the setup above, there is an isomorphism

BunµP∩wP ′w−1/S(X) ∼= ΓM (M ×S X, ξU/Uw),

where

M = BunµL∩wP ′w−1/S(X)×BunL/S(X) BunP/S(X).

Proof. We can have a natural identification

M = BunµL∩wP ′w−1nRu(P )/S(X).

Since

P ∩ wP ′w−1 = L ∩ wP ′w−1 nRu(P ) ∩ wP ′w−1 ⊆ L ∩ wP ′w−1 nRu(P )

is a subgroup, by Proposition 2.3.6 we have

BunµP∩wP ′w−1/S(X) = ΓM (M ×S X, ξL∩wP ′w−1nRu(P ) ×L∩wP
′w−1nRu(P ) N),
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where

N =
L ∩ wP ′w−1 nRu(P )

L ∩ wP ′w−1 nRu(P ) ∩ wP ′w−1
.

But the isomorphism Ru(P )/(Ru(P ) ∩ wP ′w−1) ∼= N induces an isomorphism

ξU/Uw
∼−→ ξL∩wP ′w−1nRu(P ) ×L∩wP

′w−1nRu(P ) N,

so this proves the proposition.

Unlike the Bruhat cells for the flag variety, the cells Cw,λP,P ′/S(X) do not cover the stack

BunP/S(X)×BunG/S(X) BunλP ′/S(X).

However, by giving bounds on the degrees of sections of flag variety bundles, the following

proposition can often be used to show that they do cover the preimages of certain substacks

of interest in BunP/S(X).

In the proposition below, we write

Cw,λP,P ′/S(X)ξP = {ξP } ×BunP/S(X) C
w,λ
P,P ′/S(X)

for ξP ∈ BunP/S(X).

Proposition 3.7.6. Let ξP → Xs be a P -bundle on a geometric fibre of X → S, and suppose

there exists a point in BunP/S(X)×BunG/S(X) BunλP ′/S(X) over ξP that does not lie in any

Bruhat cell. Then there exists w ∈W 0
P,P ′ \ {1} and λ′ < λ such that Cw,λ

′

P,P ′/S(X)ξL×LP 6= ∅,
where ξL = ξP ×P L is the associated L-bundle.

Proof. We can assume without loss of generality that S = Spec k for some algebraically

closed field k.

The preimage of ξP in BunP (X)×BunG(X)BunP ′(X) is the space of sections of the partial

flag variety bundle ξP ×P G/P ′ → X, and for all w ∈ W 0
P,P ′ , the preimage Cw,λP,P ′(X)ξP of

ξP in the Bruhat cell Cw,λP,P ′(X) is the space of sections of ξP ×P PwP ′/P ′ → X of degree

λ. So the assumption of the proposition is equivalent to the assumption that we have a

section σ : X → ξP ×P G/P ′ of degree λ that does not factor through any Bruhat cell

ξP ×P PwP ′/P ′.
The strategy of the proof is to construct a degeneration of ξP to the bundle ξL ×L P ,

together with a degeneration of σ to a stable map σ′ : C → ξL ×L G/P ′ such that the

restriction of σ′ to the irreducible component of C mapping isomorphically onto X factors

through some Bruhat cell. We then deduce the degree bounds by decomposing the degree

λ of σ′ into contributions from each irreducible component of C.

To construct the degeneration, first choose a cocharacter µ ∈ X∗(Z(L)◦) ⊆ X∗(Z(L)◦)Q

of the centre of L such that µ is a Harder-Narasimhan vector for P , and consider the induced

action

Gm × P −→ P (3.7.3)

(t, p) 7−→ µ(t)pµ(t)−1.

Since multiplication defines a Gm-equivariant isomorphism of schemes L×Ru(P ) ∼= P , and

since Gm acts trivially on L and with strictly positive weights on the affine space Ru(P ),

the morphism (3.7.3) extends uniquely to a morphism of schemes

A1 × P −→ P, (3.7.4)
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which restricts to the morphism P → L → P over 0 ∈ A1. Since (3.7.3) defines a ho-

momorphism Gm × P → Gm × P of group schemes over Gm, by continuity (3.7.4) defines

a homomorphism A1 × P → A1 × P of group schemes over A1. So we get a morphism

A1 × BunP (X) → BunP (X) extending the action of Gm on BunP (X), and hence a Gm-

equivariant morphism

A1
k −→ BunP (X)

by restricting to A1×{ξP }, which sends 1 ∈ A1
k to ξP and the origin 0 ∈ A1

k to the P -bundle

ξL ×L P . We write ξ̄P for the corresponding P -bundle on A1
k ×k X.

The action of Gm on (ξP , σ), viewed as a point in the stack BunP (X)×BunG(X)BunλP ′(X),

defines a morphism

Gm,k −→ A1
k ×BunG(X) BunλP ′(X) ⊆ A1

k ×BunG(X) KMλ
P ′,G(X).

Since KMλ
P ′,G(X) → BunG(X) is proper, by the valuative criterion for properness, there

exists morphism SpecR→ A1
k, with R a complete discrete valuation ring finite over ÔA1

k,0
,

and a commutative diagram

SpecK Gm,k KMλ
P ′,G(X)

SpecR A1
k BunG(X)

where K is the field of fractions of R. Write x ∈ SpecR for the closed point; since k is

algebraically closed by assumption, the point x is defined over k. We also write

σ̄ : C −→ SpecR×A1
k

(ξ̄P ×P G/P ′)

for the family of stable maps classified by the morphism SpecR→ A1
k×BunG(X) KMλ

P ′,G(X).

We claim that the restriction σ̄x|X of σ̄x to the unique component of the fibre Cx of C →
SpecR over x mapping isomorphically to X factors through some Bruhat cell ξL×LPwP ′/P ′

with w ∈W 0
P,P ′ \ {1}. To see this, observe that since each Bruhat cell is open in its closure,

we must have that U = σ−1(ξP ×P PwP ′/P ′) ⊆ X is open and dense for some w ∈ W 0
P,P ′ .

Since σ does not factor through ξP ×P PwP ′/P ′, we must also have σ−1(ξP ×P Dw) 6= ∅,
where Dw is the complement of PwP ′/P ′ in its closure. Since D1 = ∅, this in particular

implies that w 6= 1.

Let p : C → X be the natural morphism. Since Gm acts on the fibres of PwP ′/P ′ →
L/(L∩wP ′w−1) with strictly positive weights, it is clear that σ̄|p−1(U) is a section of ξL×L

L/(L ∩ wP ′w−1) over U and that p−1(U)x is a dense open subset of X ⊆ Cx. Since

L∩wP ′w−1 ⊆ L is a parabolic subgroup by Proposition 3.7.2, LwP ′/P ′ ∼= L/(L∩wP ′w−1)

is proper over SpecZ, hence closed in G/P ′. So σ̄x|X factors through ξL ×L LwP ′/P ′ ⊆
ξL ×L PwP ′/P ′ as claimed.

It remains to prove that σ̄x|X has degree λ′ < λ. To see this, note that since Dw is

proper over SpecZ and P -invariant, C → SpecR is proper, and σ−1(ξP ×P Dw) 6= ∅, it

follows that σ̄−1
x (ξL ×L Dw) 6= ∅ also. So Cx must have an irreducible component different

from X. So Proposition 3.4.13 now implies that the degree λ′ of σ̄x|X is less than the degree

λ of σ̄x, so we are done.
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Chapter 4

The elliptic Grothendieck-Springer resolution

We are now ready to begin our study of elliptic Springer theory in earnest. From now on, we

fix a split simply connected simple group G over Z of rank l with maximal torus and Borel

subgroup T ⊆ B ⊆ G and a family E → S of smooth curves of genus 1 over a connected

regular stack S. For the sake of brevity, for any group scheme H, we will write BunH =

BunH/S(E), and for P ⊆ G a parabolic subgroups, we will write KMP,G = KMP,G/S(E).

The main aim of this chapter is to construct the elliptic Grothendieck-Springer resolution

B̃unG BunG

Θ−1
Y /Gm (Ŷ //W )/Gm,

ψ

χ̃ χ (4.0.1)

advertised in the introduction. In §4.1, we define some of the basic objects and morphisms

appearing in (4.0.1). In §4.2 we write down some technical results on extending and de-

scending line bundles and their sections in families, which we apply in §4.3 to prove the

elliptic Chevalley isomorphism relating line bundles on BunG to certain line bundles on an

abelian variety Y . In §4.4, we classify the relevant line bundles on Y and thus obtain a useful

description of the generator of Pic(BunG) via the elliptic Chevalley isomorphism. We then

pull everything together in §4.5 to construct the diagram (4.0.1). Finally, in §4.6, we show

how the methods of this chapter can be used to give explicit descriptions of the canonical

bundles of the stacks BunG and B̃unG.

4.1 The basic objects

In this section, we define some of the objects appearing in (4.0.1) and introduce some other

useful bits and pieces of notation.

The most important definition is the following: we let B̃unG be the Kontsevich-Mori

compactification B̃unG = KM0
B,G of the stack of degree 0 B-bundles, and we let ψ : B̃unG →

BunG be the canonical morphism. By Propositions 3.4.5 and 3.6.4, we have the following.

Proposition 4.1.1. The morphism ψ : B̃unG → BunG is proper and surjective, with finite

relative stabilisers.

Set B̃un
ss

G = ψ−1(BunssG ), where BunssG ⊆ BunG is the open substack of semistable

bundles. One pleasing property of B̃unG is that this coincides with the locus of stable maps

with smooth domain curve.

Proposition 4.1.2. We have B̃un
ss

G = Bun0
B as open substacks of B̃unG = KM0

B,G.

Proof. The claim reduces easily to the following: given a geometric point s : Spec k → S,

a G-bundle ξG → Es and a stable map σ : C → ξG/B classified by a point in KM0
B,G, the

G-bundle ξG is semistable if and only if C → Es is an isomorphism.
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Assume first that C → Es is an isomorphism. Then σ is a section σ : Es → ξG/B

of degree 0, so we can write ξG = ξB ×B G for some degree 0 B-bundle ξB → Es with

associated T -bundle ξT = ξB×BT . Proposition 3.7.4 implies that for any standard parabolic

P ⊆ G, Cw,λB,P/S(Es)ξT×TB = ∅ unless λ = 0, so Proposition 3.7.6 shows that for any section

σ : Es → ξG/P , the degree of the corresponding P -bundle is ≥ 0. So ξG is semistable.

Conversely, assume that C → Es is not an isomorphism. Then there exists a unique

irreducible component of C mapping isomorphically to Es, and the restriction of σ to this

irreducible component defines a section of degree

[σ|Es ] < [σ] = 0.

If ξB denotes the B-bundle corresponding to σ|Es : Es → ξG/B, then it follows that there

exists a dominant character λ of B such that

deg ξB ×B Zλ = deg(σ|Es)∗L
ξG
λ = 〈λ, [σ|Es ]〉 < 0,

so ξG is unstable.

Writing Dλ = D0
B,λ ⊆ KM0

B,G = B̃unG for λ ∈ X∗(T )+, we have the following corollary

of Propositions 3.4.16 and 4.1.2.

Corollary 4.1.3. The closed substack
⋃
λ∈X∗(T )+

Dλ ⊆ B̃unG is a divisor with normal

crossings, equal to the complement of B̃un
ss

G .

At various points, we will need to work with rigidified stacks of principal bundles. (See

Definition 2.2.6.) Note that since Z(G) acts trivially on any partial flag variety G/P , it

follows that we have an action KMP,G × BZ(G) → KMP,G satisfying the conditions of

Proposition 2.2.5, and hence a rigidification with respect to Z(G). For this and subsequent

chapters, we fix the following convention.

Convention 4.1.4. If H ⊆ G is any subgroup containing the centre Z(G), then by BunH,rig

we will always mean the rigidified stack underlying BunH with respect to Z(G) ⊆ Z(H).

Similarly, if P ⊆ G is a parabolic subgroup, then KMλ
P,G,rig will denote the rigidification of

KMλ
P,G with respect to Z(G). We also write B̃unG,rig = KM0

B,G,rig.

If T ′ is any torus, we will also need notation for the rigidified stack of T ′-bundles on E

with respect to the whole group T ′.

Definition 4.1.5. Let T ′ be a split torus over SpecZ. If λ ∈ X∗(T ′), we write Y λT ′ for the

rigidification of BunλT ′/S with respect to T ′. If P ⊆ H is a parabolic subgroup of a reductive

group H with T ′ = P/[P, P ], we will also write Y λP = Y λT ′ and YP = Y 0
P . Finally, we will

write Y λ = Y λT = Y λB for the rigidification of BunλT with respect to T , and Y = Y 0.

Note that the blow down morphism BlB : KM0
B,G/S(E)→ Bun0

T gives a morphism

χ̄ : B̃unG −→ Y,

which is smooth by Corollary 3.5.4.

Remark 4.1.6. Proposition 2.5.1 shows that Y → S is the family of l-dimensional abelian

varieties

Y = HomZ(X∗(T ),Pic0
S(E)) ∼= Pic0

S(E)l.
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4.2 Some results on extension and descent

In this section, we collect a few general results on extending line bundles and their sections

from big open substacks, and on descending line bundles along ramified Galois coverings,

which we will need in the proof of the elliptic Chevalley isomorphism. All the results here

are surely well known, but we include them in full here for completeness.

It will be convenient to package the data of line bundles and their sections as follows.

For any stack X over S, we will write Pic(X) for the category of line bundles on X. This

is a symmetric monoidal category under tensor product, which has an enrichment over

the category OSch/S -mod of sheaves of O-modules on the category of (locally Noetherian)

schemes over S defined by the formula

Hom(L,L′) = πX∗(L
∨ ⊗ L′)

for L,L′ ∈ Pic(X), where πX : X → S is the structure morphism. If Γ is a finite group

acting on X over S, then we write PicΓ(X) for the category of Γ-linearised line bundles on

X. This is again a symmetric monoidal category with enrichment over OSch/S -mod defined

by the formula

Hom(L,L′) = πX∗(L
∨ ⊗ L′)Γ.

If X is proper and representable over S, then Pic(X) and PicΓ(X) are actually enriched

over the full subcategory Coh(S) ⊆ OSch/S -mod of coherent sheaves on S.

Definition 4.2.1. Let πX : X → S be a smooth morphism of stacks, and let U ⊆ X be an

open substack. We say that U is big relative to S if for every geometric point s : Spec k → S,

the complement of the open substack π−1
X (s)∩U ⊆ π−1

X (s) has codimension at least 2 in the

fibre π−1
X (s).

Lemma 4.2.2. Let πX : X → S be a smooth morphism of stacks, and let U ⊆ X be a big

open substack relative to S. Then the restriction functor

Pic(X) −→ Pic(U) (4.2.1)

is an equivalence of symmetric monoidal categories enriched over OSch/S -mod.

Remark 4.2.3. If we restrict to the lisse-étale site of S instead of the big site Sch/S , then

the corresponding statement is easy since every smooth chart of X is regular.

Proof of Lemma 4.2.2. We first note that since we have assumed that S is regular and πX is

smooth, the stack X is also regular, so (4.2.1) is essentially surjective since the codimension

of U in X is at least 2. It therefore remains to prove that (4.2.1) is fully faithful as an

enriched functor, i.e., that for all line bundles L,L′ ∈ Pic(X), the morphism

HomPic(X)(L,L
′) = πX∗(L

∨ ⊗ L′) −→ πU ∗((L
∨ ⊗ L′)|U ) = HomPic(U)(L|U , L′|U )

is an isomorphism of sheaves of O-modules on Sch/S . This reduces immediately to the claim

that for every line bundle L on X and every morphism S′ → S with S′ a locally Noetherian

scheme, the morphism

p∗f
∗L −→ pU ∗(f

∗
UL|U )

is an isomorphism of sheaves on S′, where p, f , pU and fU are as in the Cartesian diagrams

S′ ×S X X

S′ S

p

f

πX and

S′ ×S U U

S′ S.

pU

fU

πU
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By smooth descent, we reduce to the case where S′ is Noetherian, S′×S X is a scheme, and

f∗L is the trivial line bundle. The result in this case now follows from Lemma 4.2.4.

Lemma 4.2.4. Let S′ be a Noetherian scheme, let p : X → S′ be a smooth morphism of

schemes, and let U ⊆ X be a big open subset over S′. Then the restriction map

H0(X,OX) −→ H0(U,OU ) (4.2.2)

is an isomorphism.

Proof. Given a quasi-coherent sheaf F on S′, say that F has the unique extension property

if the morphism

H0(X, p∗F ) −→ H0(U, p∗F |U )

is an isomorphism. If s ∈ S′ is any scheme-theoretic point with residue field κ(s), then,

since the fibre p−1(s) is smooth over κ(s), hence normal, and the complement of p−1(s)∩U
in p−1(s) has codimension at least 2, any vector space over κ(s) = OS′,s/ms has the unique

extension property. It is also easy to show that, given a short exact sequence

0 −→ F −→ F ′ −→ F ′′ −→ 0,

of quasi-coherent sheaves on S′, if F and F ′′ have the unique extension property, then so

does F ′. So inductively, we deduce that OS′,s/mns has the unique extension property for all

n ∈ Z>0. It follows that the morphism

H0(X̂s,OX̂s) −→ H0(Ûs,OÛs)

is an isomorphism, where X̂s and Ûs are the formal completions of X and U along p−1(s).

To prove injectivity of (4.2.2), simply observe that there is a commutative diagram

H0(X,OX) H0(U,OU )

∏
s∈S H

0(X̂s,OX̂s)
∏
s∈S H

0(Ûs,OÛs)
∼

such that vertical arrows are injective and the bottom arrow is an isomorphism as argued

above.

To prove surjectivity of (4.2.2), by Noetherian induction, it suffices to show that given

f ∈ H0(U,OU ), if U 6= X then there exists an open set U ′ ⊆ X properly containing U and

an extension f ′ ∈ H0(U ′,OU ′) of f to U ′.

Assume we are in the situation above, and let x ∈ X \ U be the generic point of any

irreducible component of X \ U . We show below that there exists f̂ ∈ OX,x such that the

restriction to U ∩ SpecOX,x = SpecOX,x \ {x} agrees with the restriction of f . It then

follows that f̂ is the germ at x of some f ′ ∈ H0(U ′,OU ′) extending f to some open set

U ′ ⊆ X containing x and U .

We first remark that that SpecOX,x\{x} is covered by affine open setsD(g) = SpecOX,x[g−1]

for g ∈ mx but g /∈ msOX,x, where s = p(x) ∈ S′. To see this, let p ∈ SpecOX,x be a prime

ideal different from mx. If msOX,x ⊆ p, then taking any g ∈ mx \ p, we have g /∈ msOX,x
and p ∈ D(g). If msOX,x * p, choose h ∈ msOX,x with h /∈ p and any g ∈ mx \ msOX,x.

(Note that mx 6= msOX,x since U is dense in every fibre.) If g /∈ p, then p ∈ D(g), and if

g ∈ p, then g + h /∈ msOX,x and g + h /∈ p, so p ∈ D(g + h).
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Now let f̂ ∈ (OX,x)∧ms be the germ at x of the unique lift in H0(X̂s,OX̂s) of the image

of f in H0(Ûs,OÛs). Here (OX,x)∧ms denotes the completion of OX,x with respect to the

ms-adic topology. We show that in fact f̂ ∈ OX,x ⊆ (OX,x)∧ms , and that the restriction to

any D(g) with g ∈ mx \msOX,x agrees with f . Since U ∩SpecOX,x is covered by such D(g),

this will complete the proof.

Choose any g ∈ mx \ msOX,x. From Lemma 4.2.5, we have a commutative diagram of

topological rings

OX,x OX,x[g−1]

(OX,x)∧ms (OX,x[g−1])∧ms

in which every morphism is the inclusion of a subring with the subspace topology. It follows

from [GD, Chapitre 0, Corollaire 7.3.5] that OX,x is closed in g−nOX,x for all n ≥ 0, and

hence in OX,x[g−1], so we have

f̂ ∈ (OX,x)∧ms ∩ OX,x[g−1] = OX,x

as claimed. Since f̂ agrees with f on D(g) by construction, this completes the proof.

Lemma 4.2.5. In the setup of Lemma 4.2.4, fix a point x ∈ X, set s = p(x) ∈ S′, and

assume that M ⊆ OX,x is a multiplicative set with M ∩msOX,x = ∅. Then the localisation

morphism

iM : M−1OX,x −→ (OX,x)ms

is injective and satisfies i−1
M (mns (OX,x)ms) = mnsM

−1OX,x for all n ≥ 0. Moreover, M−1OX,x
is separated for the ms-adic topology.

Proof. By induction on n, we can assume that

i−1
M (mns (OX,x)ms) ⊆ mn−1

s M−1OX,x.

So by flatness of X → S′, the claim reduces to the assertion that

mn−1
s M−1OX,x
mnsM

−1OX,x
=

mn−1
s

mns
⊗κ(s) M

−1

(
OX,x

msOX,x

)
−→ mn−1

s

mns
⊗κ(s) Frac

(
OX,x

msOX,x

)
=

mn−1
s (OX,x)ms
mns (OX,x)ms

is injective, which is clear from the fact that msOX,x is prime (as X → S′ is smooth).

For the remaining statements, note that the above with M = {1} shows that OX,x →
(OX,x)ms is injective, since the local ring OX,x is separated for the ms-adic topology. So iM

is also injective for any M . Since (OX,x)ms is separated, this implies that M−1OX,x is also

separated for the ms-adic topology.

Remark 4.2.6. The same argument as the proof of Lemma 4.2.2 shows that Pic(X) →
Pic(U) is faithful whenever U ⊆ X is open and dense in every fibre of X → S.

Definition 4.2.7. Let f : X → Z be a morphism of smooth stacks over S, with Z connected.

We say that f is a ramified Galois covering relative to S with Galois group Γ if

(1) the morphism f is representable and finite, and

(2) there exists an open substack U ⊆ Z such that f−1(U)→ U is an étale Galois covering

with Galois group Γ, and U is dense in every fibre of Z → S.
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Remark 4.2.8. Note that if f : X → Z is a ramified Galois covering relative to S, then

f is automatically flat, since it is a finite morphism between regular stacks of the same

dimension.

Lemma 4.2.9. Let f : X → Z be a ramified Galois covering relative to S with Galois group

Γ, and let U ⊆ Z be as in Definition 4.2.7. Then the action of Γ on f−1(U) extends uniquely

to an action on X over Z.

Proof. Since for any smooth (connected) chart V → Z, the pullback V ×Z X → V is a

ramified Galois covering relative to S with Galois group Γ, by descent for morphisms of

stacks, it suffices to prove the claim in the case where Z (and hence X) is a regular affine

scheme. So we can assume Z = SpecA and X = SpecB, with A→ B a finite flat extension

of regular rings, with SpecA connected. By assumption, we have SpecK ⊗A B → SpecK

a Galois covering with Galois group Γ, where K = Frac(A) is the fraction field of A. Since

B ⊆ K ⊗A B is the subring of elements integral over A, it follows that B is preserved by

the action of Γ, which completes the proof.

Definition 4.2.10. Let f : X → Z be a ramified Galois covering with Galois group Γ, and

let L be a Γ-linearised line bundle on X. We say that L is good if for every γ ∈ Γ, the

morphism

γ : L|Xγ
(1)
−→ L|Xγ

(1)

is the identity, where Xγ
(1) ⊆ Xγ denotes the open substack of points in the fixed locus Xγ

(relative to Z) at which Xγ ⊆ X has codimension ≤ 1. We write PicΓ(X)good ⊆ PicΓ(X)

for the subgroup of good Γ-linearised line bundles, and PicΓ(X)good ⊆ PicΓ(X) for the

corresponding full subcategory.

Remark 4.2.11. It is important in Definition 4.2.10 that we take fixed loci relative to Z

and not S. The fixed locus Xγ relative to Z is by definition the fibre product

Xγ X

X X ×Z X,

∆X/Z

(id,γ)

which is a closed substack of X since X is representable and separated over Z. Taking fixed

loci relative to S would amount to replacing ∆X/Z with ∆X/S , which will not be a closed

immersion if X → S is not representable.

We now state our main descent result for ramified Galois coverings. For simplicity, we

have restricted to the case of line bundles, and to ramified Galois coverings in which fixed

loci intersect in high codimension.

Proposition 4.2.12. Let f : X → Z be a ramified Galois covering of smooth stacks over

S, with Galois group Γ. Assume that for any γ, γ′ ∈ Γ \ {1} with γ 6= γ′, the intersection of

the fixed loci (relative to Z) Xγ ∩Xγ′ ⊆ X has codimension at least 2. Then the pullback

functor Pic(Z)→ PicΓ(X) factors through an equivalence

Pic(Z)
∼−→ PicΓ(X)good

of categories enriched over OSch/S -mod.
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Proof. We first prove that Pic(Z)→ PicΓ(X) is fully faithful as a functor between categories

enriched over OSch/S -mod. This is equivalent to the claim that, for every line bundle L on

Z, the natural morphism

πZ∗L −→ (πX∗f
∗L)Γ

is an isomorphism of sheaves on Sch/S , i.e., that

H0(S′ ×S Z,pr∗ZL) −→ H0(S′ ×S X,pr∗Xf
∗L)Γ

is an isomorphism for every morphism S′ → S with S′ a locally Noetherian scheme. By

smooth descent, we may reduce to the case where S′×SX = SpecC, S′×S Z = SpecB and

S′ = SpecA are all Noetherien affine schemes, and S′ ×S Z is connected. Since X → Z is

faithfully flat and pr∗ZL is a flat OSpecB-module, by flat descent we have an exact sequence

0 −→ H0(SpecB, pr∗ZL) −→ H0(SpecC, pr∗Xf
∗L) −→ H0(SpecC,pr∗Xf

∗L)⊗B C,

so we can reduce to showing that the morphism

C ⊗B C −→
⊕
γ∈Γ

C (4.2.3)

c1 ⊗ c2 7−→ (c1γ(c2))γ∈Γ

is injective.

If A is regular, then so is B, so writing K for the fraction field of B, we have a commu-

tative diagram

C ⊗B C
⊕

γ∈Γ C

K ⊗B (C ⊗B C)
⊕

γ∈ΓK ⊗B C

(4.2.3)

∼

where the vertical morphisms are injective by flatness of C over B, and the bottom morphism

is an isomorphism since SpecC → SpecB is generically an étale Galois cover. So injectivity

of (4.2.3) in this case follows.

In general, using injectivity of (4.2.3) when A is a field and the argument at the start of

the proof of Lemma 4.2.4, we deduce that for every prime ideal p ⊆ A, the morphism

Ĉp ⊗B̂p
Ĉp −→

⊕
γ∈Γ

Ĉp

is injective, where B̂p and Ĉp are the p-adic completions of B and C. Injectivity of (4.2.3)

now follows from injectivity of the vertical arrows in the commutative diagram

C ⊗B C
⊕

γ∈Γ C

∏
p Ĉp ⊗B̂p

Ĉp

∏
p

⊕
γ∈Γ Ĉp.

(4.2.3)

It remains to prove that the essential image of the functor Pic(Z)→ PicΓ(X) is PicΓ(X)good,

i.e., that every good Γ-linearised line bundle L on X descends to a line bundle LZ on Z.

By smooth descent, it suffices to prove this in the case where S = SpecA, Z = SpecB and

X = SpecC are regular affine schemes, and Z is connected.
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By definition, there is a dense open subset U ⊆ Z such that f−1(U) → U is a Galois

covering with Galois group Γ. So L|f−1(U) descends to a line bundle LU on U . By Noetherian

induction, to construct LZ it suffices to prove that for any open subset V ( Z containing U

and line bundle LV on V with f∗LV ∼= L|f−1(V ) (as Γ-linearised line bundles), there exists

an open V ′ ) V and a line bundle LV ′ on V ′ with f∗LV ′ ∼= L|f−1(V ′).

Assume we are given V and LV as above. If the codimension of Z \ V in Z is at least 2,

then since X and Z are regular there exists a unique extension LZ of LV to V ′ = Z, which

necessarily satisfies f∗LZ ∼= L. If not, then there is a point z ∈ Z \ V of codimension 1

in Z. We claim that L|f−1(SpecOZ,z) descends to a line bundle Lz on SpecOZ,z. Assuming

the claim, there is a canonical isomorphism between the restrictions of Lz and LV to the

generic point of Z. Since Lz and this isomorphism must be defined over some open sets

in Z, we can glue to a line bundle LV ′′ on some open set V ′′ containing V and z. The

isomorphisms f∗LV ∼= L|f−1(V ) and f∗Lz ∼= L|f−1(SpecOZ,z) agree on the generic point of Z,

so define an isomorphism f∗LV ′ ∼= L|V ′ where LV ′ is the restriction of LV ′′ to some open

subset containing V and z.

To complete the proof, it therefore remains to prove the claim that L|f−1(SpecOZ,z) de-

scends to SpecOZ,z. For brevity, write B = OZ,z, f−1(SpecOZ,z) = SpecC and M =

L|f−1(SpecOZ,z) (viewed as Γ-linearised C-module). By the general machinery of faithfully

flat descent, it suffices to show that the isomorphism

φ :
⊕
γ∈Γ

C ⊗γ,C M
∼−→
⊕
γ∈Γ

M ⊗C,id C

(cγ ⊗mγ)γ∈Γ 7−→ (γ(mγ)⊗ cγ)γ∈Γ

restricts to an isomorphism

φ′ : C ⊗B M
∼−→M ⊗B C,

satisfying a cocycle condition, under the inclusions

C ⊗B M ↪−→
⊕
γ∈Γ

C ⊗γ,C M

c⊗m 7−→ (c⊗m)γ∈Γ = (1⊗ γ−1(c)m)γ∈Γ

and

M ⊗B C ↪−→
⊕
γ∈Γ

M ⊗C,id C

m⊗ c 7−→ (m⊗ c)γ∈Γ = (cm⊗ 1)γ∈Γ.

Since the morphism

C ⊗B C ⊗B C −→
⊕
γ,γ′∈Γ

C

c1 ⊗ c2 ⊗ c3 7−→ c1γ(c2)γ′(c3)

is injective (this follows by essentially the same argument as injectivity of (4.2.3)), the

cocycle condition for φ′, if it exists, follows from the cocycle condition for φ.

To show that φ restricts as desired, we first show that the sequence

0 −→ C ⊗B C
α−→
⊕
γ∈Γ

C
β−→

⊕
γ,γ′∈Γ

C/C(γ − γ′)(C) (4.2.4)

(cγ)γ∈Γ 7−→ (cγ − cγ′)γ,γ′∈Γ
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is exact, where α is (4.2.3). We have already shown that α is injective, so suppose that

(cγ)γ∈Γ satisfies cγ − cγ′ ∈ C(γ − γ′)(C) for all γ, γ′ ∈ Γ. We will show that (cγ) is in the

image of α by showing that for every subset Γ′ ⊆ Γ containing the identity 1 ∈ Γ, (cγ) is in

the image of α modulo the ideal

IΓ′ = {(c′γ)γ∈Γ | c′γ = 0 for γ ∈ Γ′}.

We then deduce that (cγ) is in the image of α by setting Γ′ = Γ.

We work by induction on the size of Γ′. For the base case, suppose that Γ′ = {1}. Then

we have (cγ) − α(c1 ⊗ 1) ∈ IΓ′ , so the claim holds. So suppose Γ′ = Γ′′ ∪ {γ0} and that

the claim holds for Γ′′ ⊆ Γ. By the induction hypothesis, we may assume without loss of

generality that (cγ) ∈ IΓ′′ . So by assumption we have

cγ0 ∈
⋂
γ∈Γ′′

C(γ − γ0)(C).

Note that C(γ − γ0)(C) is the ideal defining the fixed locus of γγ−1
0 in SpecC. Since C has

dimension 1 and the intersections of these fixed loci have codimension at least 2 in X, it

follows that ⋂
γ∈Γ′′

C(γ − γ0)(C) =
∏
γ∈Γ′′

C(γ − γ0)(C).

So we can write

cγ0 =
∑
i

∏
γ∈Γ′′

cγ,i(γ − γ0)(c′γ,i).

Writing

d =
∑
i

∏
γ′∈Γ′′

(cγ,iγ(c′γ,i)⊗ 1− cγ,i ⊗ c′γ,i) ∈ C ⊗B C

we have (cγ)γ∈Γ − α(d) ∈ IΓ′ , so the claim is proved by induction.

Since M is flat, tensoring (4.2.4) with M over each factor of C in C ⊗B C gives a pair

of exact sequences

0 C ⊗B M
⊕

γ∈Γ C ⊗γ,C M
⊕

γ,γ′∈Γ C/C(γ − γ′)(C)⊗γ,C M

0 M ⊗B C
⊕

γ∈ΓM ⊗C,id C
⊕

γ,γ′∈ΓM ⊗C,id C/C(γ − γ′)(C).

φ′ φ φ′′

To prove that φ restricts to a morphism φ′ as shown, it suffices to construct a morphism φ′′

as shown such that the square on the right commutes. We define φ′′ by the formula

φ′′((cγ,γ′ ⊗mγ,γ′)γ,γ′∈Γ) = (γ(mγ,γ′)⊗ cγ,γ′)γ∈Γ.

This is well-defined, and the condition that the necessary diagram commutes is precisely the

condition that the Γ-linearisation on M is good. So φ restricts to a descent datum φ′, M

descends to B, and we are done.

4.3 The Chevalley isomorphism

The classical Chevalley isomorphisms g//G ∼= t//W and G//G ∼= T//W are essential ingredi-

ents in the construction of the additive and multiplicative Grothendieck-Springer resolutions

as simultaneous resolutions, as they provide the base change maps t→ g//G and T → G//G.
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In this section, we prove an elliptic analogue of these statements, which is one of the main

results of this thesis.

One can think of the classical (say, additive) Chevalley isomorphism as an isomorphism

between the ring of regular functions on the stack g/G and the ring of W -invariant functions

on the affine variety t. So at first glance, the elliptic Chevalley isomorphism should identify

the ring of regular functions on the stack BunG with W -invariant regular functions on some

variety. However, since the coarse moduli space of semistable G-bundles is projective rather

than affine, there are not enough global regular functions on BunG to make such a statement

particularly useful. Instead, the elliptic Chevalley isomorphism that we will prove gives an

identification of Pic(BunG) with a subgroup of the group of W -linearised line bundles on the

abelian variety Y , so that the space of global sections of a line bundle on BunG is naturally

isomorphic to the space of W -invariant sections of the corresponding line bundle on Y .

Remark 4.3.1. The Weyl group W acts naturally on the torus T , and hence on the abelian

variety Y over S. Explicitly, this action is given by

sα(y) = y − α∨(α(y))

for α ∈ Φ, where we use the natural group structure on Y , and for λ ∈ X∗(T ) (resp.,

µ ∈ X∗(T )), we write λ : Y → Pic0
S(E) (resp., µ : Pic0

S(E) → Y ) for the morphism induced

by λ : T → Gm (resp., µ : Gm → T ).

Definition 4.3.2. Let L be a W -linearised line bundle on Y . We say that L is good if for

every root α ∈ Φ+, the morphism

sα : L|Y sα −→ L|Y sα

is the identity, where Y sα ⊆ Y is the fixed locus of sα : Y → Y . We write PicW (Y )good ⊆
PicW (Y ) for the subgroup of good W -linearised line bundles, and PicW (Y )good ⊆ PicW (Y )

for the corresponding full subcategory.

Remark 4.3.3. Over the smooth locus of Y //W , the morphism Y → Y //W is a ramified

Galois covering. Definition 4.3.2 is consistent with Definition 4.2.10 over this locus, since

for w ∈W we have Y w(1) 6= ∅ if and only if w = sα is the reflection in some root α ∈ Φ+.

Theorem 4.3.4 (Elliptic Chevalley isomorphism). There are equivalences

Pic(BunG) ' Pic(BunG,rig) ' PicW (Y )good

of symmetric monoidal categories enriched over OSch/S -mod.

Remark 4.3.5. In more down to earth terms, Theorem 4.3.4 states that there are isomor-

phisms

Pic(BunG) ∼= Pic(BunG,rig) ∼= PicW (Y )good

of abelian groups, and isomorphisms

πBunG∗LBunG
∼= πBunG,rig∗LBunG,rig

∼= (πY ∗L)W

of sheaves of O-modules on Sch/S , compatible with tensor products, for L ∈ PicW (Y )good

corresponding to LBunG ∈ Pic(BunG) and LBunG,rig ∈ Pic(BunG,rig).

Proof of Theorem 4.3.4. We give the outline of the proof here, and fill in the details in the

rest of the section.
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First, by Lemma 4.2.2 and Proposition 2.6.8, the restriction functors

Pic(BunG) −→ Pic(BunssG ) and Pic(BunG,rig) −→ Pic(BunssG,rig)

are equivalences of symmetric monoidal categories enriched over OSch/S -mod. So it suffices

to prove the theorem with BunssG and BunssG,rig in place of BunG and BunG,rig.

Consider the commutative diagram

B̃un
ss,reg

G B̃un
ss

G Bun0
T Y

Bunss,regG BunssG ,

and its rigidification

B̃un
ss,reg

G,rig B̃un
ss

G,rig Bun0
T,rig Y

Bunss,regG,rig BunssG,rig,

where Bunss,regG ⊆ BunssG and B̃un
ss,reg

G ⊆ B̃un
ss

G are the big open substacks of regular

semistable bundles (see Definition 4.3.7 and Proposition 4.3.15). By Lemma 4.2.2 again,

restriction of line bundles gives equivalences

Pic(BunssG )
∼−→ Pic(Bunss,regG ) and Pic(BunssG,rig)

∼−→ Pic(Bunss,regG,rig ).

By Proposition 4.3.14, the morphisms B̃un
ss,reg

G,rig → Bunss,regG,rig and B̃un
ss,reg

G → Bunss,regG

are ramified Galois coverings with Galois group W satisfying the hypotheses of Proposition

4.2.12 such that the Galois action covers the natural W -action on Y , so there are equivalences

Pic(Bunss,regG )
∼−→ PicW (B̃un

ss,reg

G )good and Pic(Bunss,regG,rig )
∼−→ PicW (B̃un

ss,reg

G,rig )good

of symmetric monoidal categories enriched over OSch/S -mod. But by Proposition 4.3.17 the

natural pullback functors give equivalences

PicW (Y )good
∼−→ PicW (B̃un

ss,reg

G )good

and

PicW (Y )good
∼−→ PicW (B̃un

ss,reg

G,rig )good,

which completes the proof.

Remark 4.3.6. From the proof, it is clear that the equivalence

Pic(BunG,rig)
∼−→ Pic(BunG)

of Theorem 4.3.4 is just the obvious pullback functor.

The rest of this section is concerned with proving the various propositions and lemmas

quoted in the proof of Theorem 4.3.4. We begin by introducing and studying the substack

of regular semistable bundles.

Definition 4.3.7. We say that a semistableG-bundle ξG ∈ BunssG is regular if dimψ−1(ξG) =

0. We write Bunss,regG ⊆ BunssG for the open substack of regular semistable bundles. We also

write

B̃un
ss,reg

G = ψ−1(Bunss,regG ).
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Remark 4.3.8. There is another notion of regular semistable bundle in use in the litera-

ture, namely that of a semistable principal bundle whose automorphism group has minimal

dimension l = rankG. We will see later on (Proposition 5.5.5) that this notion agrees with

ours.

In classical Springer theory, the simplest regular elements to describe are the regular

semisimple ones. The same is true in our context.

Definition 4.3.9. We say that a point y : Spec k → Y over s : Spec k → S is strictly

regular if for every root α ∈ Φ+, we have α(y) 6= 0 ∈ Pic0(Ys). We write Y sreg for the open

subset of regular points and Bun0,sreg
T and B̃un

ss,sreg

G for the preimages in Bun0
T and B̃un

ss

G

respectively. We call a G-bundle ξG ∈ BunssG strictly regular, or regular semisimple, if it lies

in the image Bunss,sregG = ψ(B̃un
ss,sreg

G ).

Lemma 4.3.10. The morphism B̃un
ss,sreg

G → Bun0,sreg
T is an isomorphism.

Proof. Since B̃un
ss,sreg

G → Bun0,sreg
T is smooth, it suffices to show that each geometric fibre

is trivial. But this is clear from Lemma 4.3.11 below, so we are done.

Lemma 4.3.11. Fix a geometric point s : Spec k → S and a degree 0 T -bundle ξT on Es

corresponding to y ∈ Ys, and let U ⊆ Ru(B) be a unipotent closed subgroup scheme that is

invariant under conjugation by T . Assume that for all α ∈ Φ− such that α(y) = 0, we have

Uα ⊆ U , where Uα = Ga is the root subgroup corresponding to α. Then the induced bundle

morphism

BunTU (Es)ξT −→ BunB(Es)ξT

is an isomorphism, where the subscript denotes the fibre over ξT of the natural morphism to

BunT (Es).

Proof. Since the statement only concerns individual geometric fibres of E → S, we can

assume that S = Spec k.

Writing R and U for the group schemes ξT ×T Ru(B) and ξT ×T U , we have canonical

isomorphisms

BunTU (E)ξT
∼= BunU and BunB(E)ξT

∼= BunR,

so it suffices to show that the natural morphism BunU → BunR is an isomorphism.

Let Ru(B) = Ru(B)≥1 ⊇ Ru(B)≥2 ⊇ · · · be the filtration on Ru(B) according to

root height, and U≥i = U ∩ Ru(B)≥i for all i. Then writing R≥i = ξT ×T Ru(B)≥i and

U≥i = ξT ×T U≥i, we show by induction on i that

BunU/U≥i −→ BunR/R≥i (4.3.1)

is an isomorphism for all i, and the statement then follows. Clearly this is true for i = 1, so

suppose i > 1. Then we have a commutative diagram of central extensions of group schemes

on E

1 U≥i−1/U≥i U/U≥i U/U≥i−1 1

1 R≥i−1/R≥i R/R≥i R/R≥i−1 1.

Since U≥i−1/U≥i andR≥i−1/R≥i are direct sums of degree 0 line bundles such that U≥i−1/U≥i

contains all trivial summands of R≥i−1/R≥i, the induced morphism

BunU≥i−1/U≥i
∼−→ BunR≥i−1/R≥i
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is an isomorphism, and by induction, the induced morphism

BunU/U≥i−1
∼−→ BunR/R≥i−1

is also an isomorphism. So Proposition 2.4.2 implies that (4.3.1) is an isomorphism as

claimed.

In the following lemma, for ξB → Es a B-bundle and w ∈W , we write

Cw = {ξB} ×BunB C
w,0
B,B/S(E).

Lemma 4.3.12. Let ξB → Es be a B-bundle of degree 0 on a geometric fibre of E → S,

and let ξG = ξB ×B G be the induced G-bundle. Then the morphism∐
w∈W

Cw −→ {ξG} ×BunG Bun0
B = ψ−1(ξG)

is surjective.

Proof. Let ξT = ξB×B T . Since Cw,λB,B/S(E)ξT×TB = ∅ unless λ = 0, the lemma follows from

Proposition 3.7.6.

Proposition 4.3.13. We have ψ−1(Bunss,sregG ) = B̃un
ss,sreg

G , and the morphism B̃un
ss,sreg

G,rig →
Bunss,sregG,rig (and hence also B̃un

ss,sreg

G → Bunss,sregG ) is an étale Galois covering with Galois

group W . In particular, every strictly regular G-bundle is regular.

Proof. We first show that B̃un
ss,sreg

G → BunssG is étale. To see this, let ξB → Es be the

B-bundle classified by a geometric point of B̃un
ss,sreg

G over s : Spec k → S, and observe that

the relative tangent complex at ξB is given by

T
B̃unG/BunG,ξB

= RΓ(Es, ξB ×B g/b).

The B-module g/b has a filtration with subquotients isomorphic to gα = Zα for α ∈ Φ+.

Since the associated T -bundle is strictly regular, the line bundles ξB ×B Zα are nontrivial

of degree 0, so have vanishing cohomology. So T
B̃unG/BunG,ξB

= 0, which implies that ψ is

étale at ξB as claimed.

We next compute the fibre of ψ over a geometric point ξG ∈ Bunss,sregG over s : Spec k →
S. Let ξB be a lift of ξG to B̃un

ss,sreg

G with associated T -bundle ξT . By Lemma 4.3.12, we

have a decomposition

ψ−1(ξG) =
∐
w∈W

Cw

into locally closed subsets indexed by the Weyl group W . By Propositions 3.7.4 and 3.7.5,

we have

Cw = Γ(Es, ξU/Uw) = BunUw ×BunU {ξU},

where U and Uw are the unipotent group schemes U = ξT×TRu(B) and Uw = ξT×T (Ru(B)∩
wBw−1) on Es, and ξU = ξB/T is the U-bundle corresponding to ξB . But since ξT is strictly

regular, Lemma 4.3.11 shows that BunU (Es) = BunUw(Es) = Spec k, so Cw ∼= Spec k as

well. Since ψ−1(ξG) is reduced by étaleness of ψ, we therefore have an isomorphism

W × Spec k
∼−→ ψ−1(ξG)

sending w ∈ W to Cw, such that the composition with ψ−1(ξG) → Y sends w ∈ W to

jw(y) = w−1y, where y = χ̄(ξB). In particular, since w−1y ∈ Y sreg, we have ψ−1(ξG) ⊆
B̃un

ss,sreg

G , so this proves ψ−1(Bunss,sregG ) = B̃un
ss,sreg

G .

72



Since ψ is proper, this implies that B̃un
ss,sreg

G → Bunss,sregG is finite étale, and hence

so is B̃un
ss,sreg

G,rig → Bunss,sregG,rig . To prove that it is a Galois cover with Galois group W , we

need to show that W acts on B̃un
ss,sreg

G,rig over Bunss,sregG,rig , freely and transitively on some

(hence every) fibre. By Lemma 4.3.10, we can identify B̃un
ss,sreg

G,rig → Bunss,sregG,rig with the

morphism Bun0,sreg
T,rig → Bunss,sregG,rig given by inducing along our chosen embedding T ↪→ G.

Since NG(T ) acts on B(T/Z(G)) over B(G/Z(G)), it acts on BT over BG preserving the

BZ(G)-action. So we get an action of NG(T ) on Bun0,sreg
T over Bunss,sregG also preserving

the BZ(G)-action, and hence on Bun0,sreg
T,rig over Bunss,sregG,rig . Since Bun0,sreg

T,rig → Bunss,sregG,rig

is étale, the connected subgroup T ⊆ NG(T ) must act trivially, so this factors through an

action of W .

By construction, the morphism Bun0,sreg
T,rig → Y sreg is W -equivariant. Choose a geometric

point y : Spec k → Y sreg over s : Spec k → S such that the stabiliser of y under W is trivial,

and let ξT be the corresponding T -bundle. Then ψ−1(ξT ×T G) maps isomorphically onto

the W -orbit of y in Ys, so in particular, the W -action on ψ−1(ξT ×T G) is free and transitive,

so we are done.

Proposition 4.3.14. The morphisms B̃un
ss,reg

G → Bunss,regG and B̃un
ss,reg

G,rig → Bunss,regG,rig

are ramified Galois coverings with Galois group W satisfying the conditions of Proposition

4.2.12.

Proof. Since B̃un
ss,sreg

G ⊆ B̃un
ss,reg

G is dense in every fibre over S, and both morphisms

are proper and quasi-finite, hence finite, both morphisms are ramified Galois coverings with

Galois group W by Proposition 4.3.13. It suffices to check the conditions of Proposition

4.2.12 for B̃un
ss,reg

G → Bunss,regG , as the claims for B̃un
ss,reg

G,rig → Bunss,regG,rig then follow by

descent.

We need to show that for every w,w′ ∈ W \ {1} with w 6= w′, the intersection of

the Bunss,regG -relative fixed loci (B̃un
ss,reg

G )w ∩ (B̃un
ss,reg

G )w
′

has codimension at least 2 in

every fibre over S. Observe that since B̃un
ss,sreg

G → Y sreg is W -equivariant and Y → S

is representable and separated, it follows by continuity that χ̄reg : B̃un
ss,reg

G → Y is also

W -equivariant. So (B̃un
ss,reg

G )w ⊆ χ̄−1(Y w) for all w ∈ W , where Y w denotes the fixed

locus relative to S. Since χ̄ is smooth and Y w ∩ Y w′ has codimension at least 2 in every

fibre, the result now follows.

Proposition 4.3.15. The open substacks

Bunss,regG ⊆ BunssG and B̃un
ss,reg

G ⊆ B̃un
ss

G

are big relative to S.

The proof of Proposition 4.3.15 relies on the following construction of G-bundles that

are regular semistable but not strictly regular.

Let s : Spec k → S be a geometric point, α ∈ Φ+ a positive root, and let y ∈ Ys satisfy

α(y) = 0 and β(y) 6= 0 for all β ∈ Φ+ \ {α}. Then by Lemma 4.3.11 and Proposition 2.4.2,

the fibre of B̃un
ss

G → Y over y is

B̃un
ss

G,y
∼= BunB,y ∼= BunTU−α(Es)y ∼= BunU−α(Es)/T.

SinceH1(Es,O) = k, Proposition 2.4.1 implies that there is a unique k-point of BunU−α(Es)/T

corresponding to a nontrivial U−α-bundle. Let ξTU−α be the corresponding point of BunTU−α(Es)y

and let ξG = ξTU−α ×TU−α G.
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Lemma 4.3.16. Let ξG be the G-bundle defined above. Then the fibre ψ−1(ξG) has exactly

|W |/2 k-points. In particular, ξG is regular semistable.

Proof. Observe that since the subgroup TU−α ⊆ G is conjugate under NG(T ) ⊆ G to TU−αi
for some αi ∈ ∆, we can assume without loss of generality that α = αi is a simple root.

Writing ξB = ξTU−αi ×
TU−αi B, we have ξG = ξB ×B G, so by Lemma 4.3.12 we get a

decomposition

ψ−1(ξG) =
∐
w∈W

Cw

into locally closed subschemes, where by Proposition 3.7.5 we can identify Cw with the space

of sections of

ξB ×B BwB/B = ξTU−αi ×
TU−αi Ru(B)/(Ru(B) ∩ wBw−1).

If U−αi * Ru(B)∩wBw−1, i.e., if w−1αi ∈ Φ−, then there is a TU−αi-equivariant morphism

Ru(B)/(Ru(B) ∩ wBw−1) −→ U−αi ,

so ξTU−αi×
TU−αiRu(B)/(Ru(B)∩wBw−1) has no sections since ξTU−αi×

TU−αiU−αi = ξU−αi
has none, and hence Cw = ∅. If U−αi ⊆ Ru(B) ∩ wBw−1, i.e., if w−1αi ∈ Φ+, then the

natural morphisms

BunTU−αi (Es)ξT −→ BunTRu(B)∩wBw−1(Es)ξT −→ BunB(Es)ξT

are isomorphisms by Lemma 4.3.11, where ξT → Es is the T -bundle corresponding to y,

which implies that Cw = Spec k. Since there are exactly |W |/2 elements of W satisfying

w−1αi ∈ Φ+, this proves the lemma.

Proof of Proposition 4.3.15. It suffices to prove the statement for B̃un
ss,reg

G ⊆ B̃un
ss

G ; the

statement for Bunss,regG ⊆ BunssG then follows immediately. Since the property of being big

is defined fibrewise, it suffices to prove the claim when S = Spec k for some algebraically

closed field k.

We need to show that the complement of B̃un
ss,reg

G in B̃un
ss

G has codimension at least

2. Since B̃un
ss,sreg

G ⊆ B̃un
ss,reg

G and B̃un
ss

G → Y is smooth, it suffices to show that

B̃un
ss,reg

G ∩ (χ̄ss)−1(X) is dense in (χ̄ss)−1(X) for all irreducible components X of Y \
Y sreg =

⋃
α∈Φ+

Y sα . But (χ̄ss)−1(Xred) is smooth and connected, hence irreducible,

and B̃un
ss,reg

G ∩ (χ̄ss)−1(X) is open. So it suffices to show that B̃un
ss,reg

G ∩ (χ̄ss)−1(X)

is nonempty. But there exists α ∈ Φ+ such that the generic point y of X ⊆ Y satisfies

α(y) = 0 and β(y) 6= 0 for all β ∈ Φ+ \ {α}, so this follows from Lemma 4.3.16.

Proposition 4.3.17. We have the following.

(1) The pullback functors

Pic(Y ) −→ Pic(B̃un
ss,reg

G,rig ) and Pic(Y ) −→ Pic(B̃un
ss,reg

G )

are fully faithful as functors enriched over OSch/S -mod.

(2) The pullback functors

PicW (Y ) −→ PicW (B̃un
ss,reg

G,rig ) −→ PicW (B̃un
ss,reg

G ) (4.3.2)

are equivalences of categories enriched over OSch/S -mod.
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(3) The equivalences (4.3.2) restrict to equivalences

PicW (Y )good
∼−→ PicW (B̃un

ss,reg

G,rig )good
∼−→ PicW (B̃un

ss,reg

G )good.

Proof. Note that since all enriched categories in the statement satisfy flat descent on S, we

can assume without loss of generality that S is a connected regular scheme and that E → S

has a section OE : S → E.

To prove (1), note that by Proposition 4.3.15 and Lemma 4.2.2, it suffices to prove that

the enriched functors

Pic(Y ) −→ Pic(B̃un
ss

G,rig) and Pic(Y ) −→ Pic(B̃un
ss

G )

are fully faithful. We will in fact show that

χ̄∗OB̃un
ss

G,rig
= χ̄∗OB̃un

ss

G
= OY

as sheaves of O-modules on Sch/Y . Fully faithfulness then follows since

Hom(χ̄∗L1, χ̄
∗L2) = πY ∗χ̄∗χ̄

∗(L−1
1 ⊗ L2) = πY ∗(L

−1
1 ⊗ L2 ⊗ χ̄∗O).

Recall that there is a universal degree 0 T -bundle ξT,Y on Y ×S E such that the

pullback to Y along OE is trivial. This induces canonical isomorphisms Bun0
T = Y ×

BT (resp., Bun0
T,rig = Y × B(T/Z(G))) and B̃un

ss

G = BunR/Y (E)/T (resp., B̃un
ss

G,rig =

BunR/Y (E)/(T/Z(G))), where R → Y ×S E is the unipotent group scheme ξT,Y ×T Ru(B).

Fix a cocharacter λ : Gm → T such that 〈αi, λ〉 > 0 for all simple roots αi ∈ ∆, and

write λ(O(OE)) for the T -bundle on E induced from the Gm-bundle corresponding to the

line bundle O(OE) on E. Since the weights of T acting on Ru(B) are strictly negative

linear combinations of the αi, the morphism O → O(OE) induces a morphism of group

schemes R′ = λ(O(OE))×T R → R, which satisfies the conditions of Proposition 2.4.7 over

Y . Corollary 2.4.3 shows that BunR′/Y (E) → Y is an affine space bundle and Proposition

2.4.7 shows that BunR/Y (E) = BunR′/Y (E)/U for some unipotent group scheme U =

ΓY (Y ×S E,R/R′) on Y . Moreover, T acts on the fibres of BunR′/Y (E) and U over Y

with nonzero weights in Z≤0∆, so the claim follows by direct computation using the Čech

complex for the covering BunR′/Y (E)→ BunR/Y (E) to compute the pushforward of O and

then taking T -invariants.

To prove (2), note that (1) implies that the functors

PicW (Y ) −→ PicW (B̃un
ss,reg

G,rig ) and PicW (Y ) −→ PicW (B̃un
ss,reg

G )

are fully faithful as enriched functors, and so it is enough to prove that they are essentially

surjective.

Fix a W -linearised line bundle L on B̃un
ss,reg

G . Restricting L to B̃un
ss,sreg

G = Bun0,sreg
T =

Y sreg × BT and using the isomorphism

PicW (Y sreg × BT ) ∼= PicW (Y sreg)⊕ X∗(T )W = PicW (Y sreg)

gives a W -linearised line bundle on Y sreg, which can be extended (non-uniquely) to a line

bundle L0 on Y . By construction,

L = ((χ̄reg)∗L0)

(∑
i

niD̄i

)
,
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where ni ∈ Z and D̄i ⊆ B̃un
ss,reg

G are irreducible divisors in the complement of B̃un
ss,sreg

G .

But it is clear from the discussion preceding Lemma 4.3.16 that for any irreducible divisor

D in Y in the complement of Y sreg, (χ̄reg)−1(D) is nonempty and irreducible. So we must

have D̄i = (χ̄reg)−1(Di) for some divisors Di on Y , and hence L = (χ̄reg)∗(L′), where

L′ = L0

(∑
i

niDi

)
.

Now (1) implies that the W -linearisation on L necessarily descends to a W -linearisation

on L′, so we have shown that PicW (Y ) → PicW (B̃un
ss,reg

G ) is essentially surjective. An

identical argument shows that PicW (Y )→ PicW (B̃un
ss,reg

G,rig ) is essentially surjective, so this

proves (2).

To prove (3), first note that it is clear from the definitions that a W -linearised line bundle

on B̃un
ss,reg

G,rig is good if and only if its pullback to B̃un
ss,reg

G is good. So it suffices to prove

that a W -linearised line bundle L on Y is good in the sense of Definition 4.3.2 if and only if

the W -linearised line bundle (χ̄reg)∗L on B̃un
ss,reg

G is good in the sense of Definition 4.2.10.

If w ∈ W , then (B̃un
ss,reg

G )w ⊆ (χ̄reg)−1(Y w), so either w = sα for some α ∈ Φ+ or

(B̃un
ss,reg

G )w ⊆ B̃un
ss,reg

G has codimension at least 2. It is clear from this and the definitions

that if L is good then (χ̄reg)∗L is good also. Conversely, suppose that (χ̄reg)∗L is good.

To show that L is good, it suffices to show that for every α ∈ Φ+ and every generic point

y ∈ Y sα of an irreducible component with codimension 1 in Y , the morphism

sα : L|(SpecOhY,y)sα −→ L|(SpecOhY,y)sα

is the identity, where OhY,y is a strict Henselisation of the local ring OY,y. We show below

that the morphism

(B̃un
ss,reg

G ×Y SpecOhY,y)sα = (B̃un
ss,reg

G )sα ×Y sα (SpecOhY,y)sα −→ (SpecOhY,y)sα (4.3.3)

admits a section, where the fixed locus on the left is relative to BunG, from which the result

follows since (χ̄reg)∗L is good.

We first claim that there exists some section SpecOhY,y → B̃un
ss,reg

G ×Y SpecOhY,y. To

see this, note that by Lemma 4.3.11, we have

B̃un
ss

G ×Y SpecOhY,y ∼= BunTU−α/OhY,y (E)ξT /T
∼= BunU−α/OhY,y (E)/T,

where ξT → SpecOhY,y ×S E is the restriction of the universal T -bundle (trivialised along

OE) on Y ×S E, and U−α = ξT ×T U−α. Applying Proposition 2.4.7 to the exact sequence

0 −→ U−α −→ U−α(OE) −→ OE∗O
∗
EU−α(OE) −→ 0

of sheaves on SpecOhY,y ×S E, we have a morphism

O∗EU−α(OE) −→ BunU−α/OhY,y (E) −→ B̃un
ss

G ×Y SpecOhY,y (4.3.4)

given by the action of O∗EU−α(OE) = ΓSpecOhY,y
(SpecOhY,y×SE,U−α(OE)/U−α) on the triv-

ial bundle. Since every line bundle on SpecOhY,y is trivial, there exists a nonvanishing sec-

tion of O∗EU−α(OE), which gives the desired section SpecOhY,y → B̃un
ss,reg

G ×Y SpecOhY,y ⊆
B̃un

ss

G×Y SpecOhY,y after composition with (4.3.4). Note that this does indeed factor through

B̃un
ss,reg

G by Lemma 4.3.16 since the U−α-bundle at the closed point in SpecOhY,y is non-

trivial.
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Writing ξB → SpecOhY,y×SE for the B-bundle induced by the section constructed above,

we remark that the group scheme Aut(ξB) is flat over SpecOhY,y. To see this, note that there

is a short exact sequence

1 −→ H −→ Aut(ξB) −→ ker(α : T → Gm)× SpecOhY,y −→ 1

of group schemes over SpecOhY,y, such that the special fibre of H is Ga and the generic fibre is

Gm. Since both are irreducible of dimension 1, flatness of H and hence Aut(ξB) follows since

OhY,y is a discrete valuation ring. Since every fibre of B̃un
ss,reg

G ×Y SpecOhY,y → SpecOhY,y
contains exactly one isomorphism class of regular bundles, it follows that the canonical

morphism

BSpecOhY,y
Aut(ξB) −→ B̃un

ss,reg

G ×Y SpecOhY,y (4.3.5)

is an isomorphism.

In terms of the isomorphism (4.3.5), the automorphism

sα : B̃un
ss,reg

G ×Y (SpecOhY,y)sα −→ B̃un
ss,reg

G ×Y (SpecOhY,y)sα

sends an Aut(ξB)-torsor θ to θ×Aut(ξB) η for some Aut(ξB)-torsor η → (SpecOhY,y)sα under

the commutative group scheme Aut(ξB), equipped with an additional commuting action of

Aut(ξB) on the left. Since sα is an automorphism relative to BunG, we are also given an

Aut(ξB)-equivariant isomorphism of G-bundles

g : η ×Aut(ξB) ξG|(SpecOhY,y)sα −→ ξG|(SpecOhY,y)sα

where ξG = ξB×BG. Since the group scheme Aut(ξB)→ SpecOhY,y is affine and (SpecOhY,y)sα =

SpecOhY sα ,y is the spectrum of an Artinian local ring with separably closed residue field,

the torsor η is necessarily trivial. Fixing a trivialisation, Aut(ξB)-action acts on η on the

left through a group automorphism sα : Aut(ξB) → Aut(ξB), and the isomorphism g is

equivalent to a section

g′ : (SpecOhY,y)sα −→ Aut(ξG)

such that (g′)−1(−)g′ : Aut(ξG) → Aut(ξG) restricts to sα : Aut(ξB) → Aut(ξB). The

given section (SpecOhY,y)sα → B̃un
ss,reg

G ×Y (SpecOhY,y)sα factors through (B̃un
ss,reg

G )sα ×Y
(SpecOhY,y)sα if and only if g′ factors through Aut(ξB) ⊆ Aut(ξG). To complete the proof,

it is therefore enough to prove that Aut(ξG) = Aut(ξB).

Write ψ−1(ξG) = SpecOhY,y ×BunG B̃unG. Then by construction there is a section

SpecOhY,y → ψ−1(ξG) corresponding to the reduction ξB of G to B whose stabiliser un-

der the natural action of Aut(ξG) is Aut(ξB). The morphism ψ−1(ξG) → SpecOhY,y ×S
B̃unG → SpecOhY,y ×S Y is Aut(ξG)-equivariant for the trivial action on Y , so the ac-

tion on ψ−1(ξG) restricts to an action on ψ−1(ξG) ×SpecOhY,y×SY
SpecOhY,y. We claim

that ψ−1(ξG) → SpecOhY,y ×S Y is a closed immersion. Given the claim, it follows that

ψ−1(ξG)×SpecOhY,y×SY
SpecOhY,y → SpecOhY,y is also a closed immersion, and hence an iso-

morphism since it has a section. So Aut(ξG) must stabilise the natural section of ψ−1(ξG),

which proves that Aut(ξG) = Aut(ξB).

It remains to prove the claim that ψ−1(ξG) → SpecOhY,y ×S Y is a closed immersion.

Since it separates points over the special fibre by Lemma 4.3.16 and W -equivariance, it

suffices to show that the restriction to special fibres is unramified. This is equivalent to the

claim that for every ξ′B in the special fibre of ψ−1(ξG)→ SpecOhY,y, the morphism

H0(Es, ξ
′
B ×B g/b) −→ H1(Es, t⊗OEs) (4.3.6)
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induced by the extension of B-modules

0 −→ t −→ g/Ru(b) −→ g/b −→ 0

is injective. The proof of Lemma 4.3.16 shows that there exists w ∈W such that w−1α ∈ Φ+

and ξ′B lies over w−1y ∈ Y . It follows that ξ′B is induced from a TU−w−1α-bundle ξTU−w−1α

such that ξTU−w−1α
has nontrivial associated U−w−1α-bundle. So writing β = w−1α, we can

identify (4.3.6) with the morphism

H0(Es, ξTU−β ×TU−β uβ) −→ H1(Es, t⊗OEs) (4.3.7)

induced by the extension

0 −→ t −→ (t + ρβ(sl2))/u−β −→ uβ −→ 0

of TU−β-modules. But we can write t = t′ ⊕ β∨(Z) so that the induced extension

0 −→ β∨(Z) −→ V −→ uβ −→ 0

is the canonical non-split one, so injectivity of (4.3.7) follows. This proves the claim, and

hence the proposition.

4.4 The theta bundle

In this section, we use Theorem 4.3.4 to compute Pic(BunG) by computing the group

PicW (Y )good. The computations show that PicW (Y )good is generated by Pic(S) and a

single ample line bundle ΘY . This corresponds to a canonical line bundle ΘBunG on BunG,

which we call the theta bundle.

Definition 4.4.1. Let L be any line bundle on Y . The quadratic class of L is the function

q(L) : X∗(T ) −→ Z

λ 7−→ degPic0(Es)(λ
∗L)

where the degree is taken over any geometric fibre of the relative Picard scheme Pic0
S(E)→

S.

The following lemma motivates the terminology “quadratic class”.

Lemma 4.4.2. Let L be a line bundle on Y . Then q(L) is a quadratic form, i.e., q(L)(−λ) =

q(L)(λ) for all λ ∈ X∗(T ) and the map

Q(L) : X∗(T )× X∗(T ) −→ Q

(λ, µ) 7−→ 1

2
(q(L)(λ+ µ)− q(L)(λ)− q(L)(µ))

is symmetric and bilinear.

Proof. Since q(L) is computed on a geometric fibre, we can assume for simplicity that

S = Spec k for some algebraically closed field k. We have

q(L)(−λ) = degPic0(E)(−λ)∗L = degPic0(E)[−1]∗λ∗L = degPic0(E) λ
∗L

since [−1] : Pic0(E)→ Pic0(E) has degree 1.
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For the map Q(L), symmetry is obvious. Bilinearity is equivalent to Q(L)(0, 0) = 0,

which is true by inspection, and the statement that for all λ, µ, ν ∈ X∗(T ) the line bundle

on Pic0(E)

(λ+ µ+ ν)∗L⊗ (λ+ µ)∗L−1 ⊗ (λ+ ν)∗L−1 ⊗ (µ+ ν)∗L−1 ⊗ λ∗L⊗ µ∗L⊗ ν∗L

has degree 0. But this line bundle is trivial by the theorem of the cube [M, §II.6], so we are

done.

Remark 4.4.3. Let L be a line bundle on Y . Note that Lemma 4.4.2 implies that q(L)(0) =

−Q(L)(0, 0) = 0, and hence

q(L)(λ) = −1

2
(q(L)(λ− λ)− q(L)(λ)− q(L)(−λ)) = −Q(L)(λ,−λ) = Q(L)(λ, λ).

So the datum of the function q(L) : X∗(T ) → Z is equivalent to the datum of the bilinear

form Q(L) ∈ Hom(Sym2(X∗(T )),Q). For this reason, we will often refer to Q(L) as the

quadratic class of L.

Remark 4.4.4. One might hope that the quadratic class q(L) determines the first Chern

class c1(L). This is not true in general: for example, it fails for the elliptic curve E =

C/(Z + iZ) over S = SpecC, the group G = SL3 and the line bundle L constructed as

follows. Identify Pic0(E) with E and hence Y with E × E via the canonical principal

polarisation. Let P be the line bundle on E × E defining the polarisation on E, and let

L = (id, i)∗P be the pullback of P under the automorphism (id, i) : E × E → E × E. Then

q(L) = 0 but c1(L) 6= 0.

Lemma 4.4.5. Let L be a good W -linearised line bundle on Y . Then Q(L) lies in the image

of

Sym2(X∗(T ))W ⊆ Hom(Sym2(X∗(T )),Z) ⊆ Hom(Sym2(X∗(T )),Q)

under the inclusion sending λµ ∈ Sym2(X∗(T )) to the bilinear map

X∗(T )× X∗(T ) −→ Z

(λ′, µ′) 7−→ 〈λ, λ′〉〈µ, µ′〉+ 〈λ, µ′〉〈µ, λ′〉.

Proof. As in Lemma 4.4.2, we may assume S = Spec k. Since Q(L) is manifestly W -

invariant, by elementary linear algebra, it is enough to show that if α∨i , α
∨
j ∈ ∆∨ are simple

coroots, then Q(L)(α∨i , α
∨
i ) ∈ 2Z and Q(L)(α∨i , α

∨
j ) ∈ Z.

If α∨i ∈ ∆∨, then Lemma 4.4.6 below implies that

Q(L)(α∨i , α
∨
i ) = degPic0(E)(α

∨
i )∗L ∈ 2Z.

If α∨j ∈ ∆∨ is another simple coroot, then invariance of q(L) and hence Q(L) under si ∈W
implies that

Q(L)(α∨i , α
∨
j ) =

Q(L)(α∨i , α
∨
i )

2
〈αi, α∨j 〉 ∈ Z,

so we are done.

In the following lemma, we writeOPic0S(E) for the origin in Pic0
S(E), in order to distinguish

it from the zero divisor 0. For the sake of clarity, we will also write OY : S → Y for the

section corresponding to the trivial T -bundle.
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Lemma 4.4.6. Let L be a W -linearised line bundle on Y such that the action of W on

O∗Y L is trivial. Then the W -linearisation on L is good if and only if for all simple coroots

α∨i , (α∨i )∗L ∼= π∗
Pic0S(E)

L′(2d ·OPic0S(E)) for some d ∈ Z and some line bundle L′ on S.

Proof. Since every reflection in W is conjugate to a simple reflection, the line bundle L is

good if and only if

si : L|Y si −→ L|Y si

is the identity for all simple reflections si.

Fix a simple reflection si. Observe that since X∗(T )siQ + Qα∨i = X∗(T )Q, the morphism

f : Pic0
S(E)⊗ZX∗(T )si×SPic0

S(E) = Pic0
S(E)⊗Z(X∗(T )si+Zα∨i ) −→ Pic0

S(E)⊗ZX∗(T ) = Y

is an isogeny of abelian varieties over S, and f ◦ si = r ◦ f , where

r = (id, [−1]) : Pic0
S(E)⊗Z X∗(T )si ×S Pic0

S(E) −→ Pic0
S(E)⊗Z X∗(T )si ×S Pic0

S(E).

Since r acts trivially on ker(f), it follows that

f−1(Y si) = Pic0
S(E)⊗Z X∗(T )si ×S Pic0

S(E)[2]

and so the action of si on L|Y si is trivial if and only if the action of r on

f∗L|Pic0S(E)⊗X∗(T )si×SPic0S(E)[2]

is trivial. Since the action of r is given by a global regular function on Pic0
S(E)⊗X∗(T )si×S

Pic0
S(E)[2], which is necessarily pulled back from a regular function on Pic0

S(E)[2], it suffices

to check that r acts as the identity on the fibre of

Pic0
S(E)⊗Z X∗(T )si ×S Pic0

S(E)[2] −→ Pic0
S(E)⊗Z X∗(T )si

over any section of the structure map to S. Taking the fibre over the natural origin, the

restriction of f here is α∨i : Pic0
S(E)→ Y . So by Lemma 4.4.7 below, r acts as the identity

if and only if (α∨i )∗L = π∗
Pic0S(E)

L′(2d ·OPic0S(E)), which proves the lemma.

Lemma 4.4.7. Let L be a line bundle on Pic0
S(E) with [−1]∗L ∼= L, and let σ : [−1]∗L→ L

be the unique isomorphism acting as the identity on the pullback of L along the section

OPic0S(E) : S → Pic0
S(E) corresponding to the trivial line bundle on E. Then σ acts as the

identity on L|Pic0S(E)[2] if and only if L = π∗L′ ⊗O(2d ·OPic0S(E)) for some d ∈ Z and some

line bundle L′ on S, where π : Pic0
S(E)→ S is the structure morphism.

Proof. The morphism σ acts as the identity on L|Pic0S(E)[2] if and only if L = f∗L′′ for some

line bundle L′′ on the P1-bundle P = PS(π∗O(2 ·OPic0S(E)))
∨ over S, where f is the canonical

morphism. But every line bundle L′′ on P is of the form L′′ = π∗PL
′(d ·f(OPic0S(E))) for some

d ∈ Z and some line bundle L′ on S, so f∗L′′ = π∗L′(2d ·OPic0S(E)) and we are done.

Lemma 4.4.8. Let M be a finitely generated free abelian group. Then the abelian group

Sym2(M)∨ = HomZ(Sym2(M),Z) is generated by

λ2 : Sym2(M) −→ Z

mn 7−→ λ(m)λ(n)

for λ ∈M∨, with relations

λ2 = (−λ)2 and (λ+ µ+ ν)2 − (λ+ µ)2 − (λ+ ν)2 − (µ+ ν)2 + λ2 + µ2 + ν2 = 0

for λ, µ, ν ∈M∨.
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Proof. Choose a basis e1, . . . , en for M . Then Sym2(M) has basis {eij = eiej | 1 ≤ i ≤
j ≤ n}, so Sym2(M)∨ has basis {e∗ij | 1 ≤ i ≤ j ≤ n}, where e∗ij(ei′j′) = δi,i′δj,j′ . Since

e∗ii = (e∗i )
2 and e∗ij = (e∗i + e∗j )

2 − (e∗i )
2 − (e∗j )

2, this shows that Sym2(M)∨ is generated by

λ2 for λ ∈M∨.

Now let N be the abelian group with generators [λ]2 for λ ∈M∨, and relations

[λ]2 = [−λ]2 and [λ+µ+ν]2− [λ+µ]2− [λ+ν]2− [µ+ν]2 +[λ]2 +[µ]2 +[ν]2 = 0 (4.4.1)

for all λ, µ, ν ∈ M∨. We have shown that the map N → Sym2(M)∨ sending [λ]2 to λ2 is

surjective. To show that it is injective, let P be the span of [e∗ij ] ∈ N for 1 ≤ i ≤ j ≤ n,

where

[e∗ii] = [e∗i ]
2 and [e∗ij ] = [e∗i + e∗j ]

2 − [e∗i ]
2 − [e∗j ]

2

for 1 ≤ i < j ≤ n. The morphism P → Sym2(M)∨ is injective, since it has a retraction

Sym2(M)∨ −→ P

Q 7−→
∑

1≤i≤j≤n

Q(ei, ej)[e
∗
ij ].

So it suffices to prove that P = N , i.e., that for all λ ∈M∨, [λ]2 ∈ P .

Writing λ =
∑n
i=1 aie

∗
i , ai ∈ Z, we have tautologically that

[λ]2 =

n∑
i=1

[aie
∗
i ]

2 +R

aie∗i ,∑
i<j

aje
∗
j


where

R(λ, µ) = [λ+ µ]2 − [λ]2 − [µ]2,

for λ, µ ∈M∨. The relations for N imply that R : M∨×M∨ → N is symmetric and bilinear,

so

[λ]2 =

n∑
i=1

[aie
∗
i ]

2 +
∑
i<j

aiajR(e∗i , e
∗
j ) =

n∑
i=1

[aie
∗
i ]

2 +
∑
i<j

aiaj [e
∗
ij ].

So it remains to show that [ae∗i ]
2 is in P for all i and all a ∈ Z. We note that

R(e∗i , e
∗
i ) = −R(e∗i ,−e∗i ) = −[0]2 + [e∗i ]

2 + [−e∗i ]2 = 2[e∗i ]
2,

and hence that

[(a+ 1)e∗i ]
2 = [ae∗i ]

2 + [e∗i ]
2 +R(ae∗i , e

∗
i ) = [ae∗i ]

2 + (2a+ 1)[e∗i ]
2

for all a ∈ Z. Since [0]2 = 0 (set λ = µ = ν = 0 in the second relation of (4.4.1)), we see by

induction that [ae∗i ]
2 = a2[e∗i ]

2 ∈ P for all a ∈ Z, so we are done.

Proposition 4.4.9. The homomorphism

(Q,O∗Y ) : PicW (Y )good −→ Sym2(X∗(T ))W ⊕ Pic(S) (4.4.2)

is an isomorphism of abelian groups.

Proof. We show that (4.4.2) is both injective and surjective.

For injectivity, suppose that L is a good W -linearised line bundle on Y such that Q(L) =

0 and O∗Y L
∼= OS . To show that L is trivial, it is enough to show that L is trivial on every

geometric fibre of Y → S, since this implies by Grauert’s Theorem that L is pulled back
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from a line bundle on S. So we can assume for this part of the proof that S = Spec k for

some algebraically closed field k.

We first claim that for any two simple coroots α∨i and α∨j , the pullback L′ = (α∨i , α
∨
j )∗L

of L under

(α∨i , α
∨
j ) : Pic0(E)× Pic0(E) −→ Y

is trivial. To see this, it suffices to show that (α∨j )∗L = O, and that L′ is trivial restricted

to every k-fibre of the second projection Pic0(E) × Pic0(E) → Pic0(E). To see the first

condition, apply Lemma 4.4.7 to the morphism

[−1]∗(α∨j )∗L = (α∨j )∗s∗jL
∼−→ (α∨j )∗L,

and use the fact that (α∨j )∗L has degree q(L)(α∨j ) = 0. For the second, let x2 ∈ Pic0(E) be

a k-point, and consider the restriction L′x2
of L′ to Pic0(E) × {x2}. Define σ : Pic0(E) →

Pic0(E) by

σ(x1) = −x1 − 〈αi, α∨j 〉x2.

Then the diagram

Pic0(E) Pic0(E)

Y Y

σ

ix2 ix2

si

commutes, where ix2 is given by ix2(x1) = α∨i (x1) + α∨j (x2). So the isomorphism s∗iL→ L

gives an isomorphism σ∗L′x2
→ L′x2

acting as the identity on Pic0(E)σ. But since k is

algebraically closed, 〈αi, α∨j 〉x2 has a square root in E(k), so σ is a conjugate of [−1] by a

translation. So we can apply Lemma 4.4.7 to conclude that L′x2
= O. So L′ is trivial as

claimed.

To complete the proof of injectivity, we need to show that in fact L = OY . We prove by

induction on n ∈ Z>0 that for all i1, . . . , in ∈ {1, . . . , l}, the line bundle

L′ = (α∨i1 , . . . , α
∨
in)∗L

on Pic0(E)n is trivial. We have shown this for n = 1 or 2. For n > 2, we write Pic0(E)n =

Pic0(E)n−2 × Pic0(E) × Pic0(E), and observe that by induction, the restrictions of L′ to

Pic0(E)n−2 × Pic0(E)× {OPic0(E)}, Pic0(E)n−2 × {OPic0(E)} × Pic0(E) and {OPic0(E)}n ×
Pic0(E) × Pic0(E) are all trivial. So L′ is trivial as claimed by the theorem of the cube.

Setting n = l and {i1, . . . , in} = {1, . . . , l}, we conclude that L is trivial, and hence that

(4.4.2) is injective.

To prove surjectivity, we first claim that there is a homomorphism

φ : Sym2(X∗(T ))∨ −→ Pic(Y )

sending λ2 ∈ Sym2(X∗(T ))∨ to the line bundle

φ(λ2) = λ∗O(OPic0S(E))⊗ π∗YO∗Pic0S(E)O(−OPic0S(E))

for λ ∈ X∗(T ). By Lemma 4.4.8, it suffices to check that for all λ, µ, ν ∈ X∗(T ), we have

φ(λ2) = φ((−λ)2)

and

φ((λ+µ+ν)2)⊗φ((λ+µ)2)−1⊗φ((λ+ν)2)−1⊗φ((µ+ν)2)−1⊗φ(λ2)⊗φ(µ2)⊗φ(ν2) = OY .
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Since it is clear that O∗Y φ(λ2) = OS for every λ ∈ X∗(T ), it suffices to check these relations

on every geometric fibre over S. The first holds since [−1]∗O(OPic0S(E)) = O(OPic0S(E)) and

the second holds by the theorem of the cube, so the homomorphism φ is indeed well-defined.

By construction, it is also clear that Q(φ(P )) = P for all P ∈ Sym2(X∗(T ))∨.

Assume now that P ∈ Sym2(X∗(T ))W ⊆ Sym2(X∗(T ))∨ and L ∈ Pic(S). We need to

find a good W -linearised line bundle L′ on Y such that Q(L′) = P and O∗Y L
′ = L. Note

that since the homomorphism φ is W -equivariant by construction, the line bundle φ(P ) is

W -invariant, so w∗φ(P ) ∼= φ(P ) for all w ∈ W . We can turn this into a W -linearisation by

taking

w∗ : w∗φ(P )
∼−→ φ(P )

to be the unique isomorphism acting as the identity on O∗Y φ(P ). We let L′ = φ(P )⊗ π∗Y L.

It is clear that Q(L′) = P and O∗Y L
′ = L, so it remains to show that φ(P ), and hence L′,

is good. By Lemma 4.4.6, it suffices to show that for every simple coroot α∨i and every

geometric point s : Spec k → S, we have

(α∨i )∗φ(P )|Pic0(Es) = O(2d ·OPic0(Es))

for some d ∈ Z. But by construction, it is clear that

(α∨i )∗φ(P )|Pic0(Es) = O(P (α∨i , α
∨
i ) ·OPic0(Es))

and P (α∨i , α
∨
i ) ∈ 2Z since P ∈ Sym2(X∗(T )) ⊆ Sym2(X∗(T ))∨. So φ(P ) is good, and hence

(4.4.2) is surjective as claimed.

Proposition 4.4.9 allows us to compute the Picard group Pic(BunG). In the statement

below, we write ( | ) ∈ Sym2(X∗(T ))W for the normalised Killing form. This is the unique

W -invariant symmetric bilinear form on X∗(T ) satisfying (α∨|α∨) = 2 for α∨ a short coroot.

Corollary 4.4.10. The Picard group of BunG is

Pic(BunG) = Z[ΘBunG ]⊕ Pic(S),

where ΘBunG is the unique line bundle satisfying

ψ∗(ΘBunG)|
B̃un

ss

G
= χ̄∗ΘY |B̃un

ss

G
(4.4.3)

where ΘY is the unique good W -linearised line bundle on Y with Q(ΘY ) = ( | ) and O∗Y ΘY =

OS. Moreover, there is an isomorphism of graded OS-algebras⊕
d≥0

πBunG∗Θ
⊗d
BunG

=
⊕
d≥0

(πY ∗Θ
⊗d
Y )W .

Proof. It is an elementary and well-known observation that since G is simply connected and

simple, we have Sym2(X∗(T ))W = Z( | ). So Proposition 4.4.9 gives

PicW (Y )good = Z[ΘY ]⊕ Pic(S),

and hence Theorem 4.3.4 gives

Pic(BunG) = Z[ΘBunG ]⊕ Pic(S),

where ΘBunG is the image of ΘY under the Chevalley isomorphism. The construction of

the Chevalley isomorphism shows that (4.4.3) is satisfied. Moreover, if L is any other line

bundle on BunG satisfying ψ∗L|
B̃un

ss

G
= χ̄∗ΘY |B̃un

ss

G
, then writing L as the image of a good
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W -linearised line bundle LY under the Chevalley isomorphism, we must have LY ∼= ΘY as

line bundles on Y by Proposition 4.3.17, and hence as W -linearised ones. So (4.4.3) indeed

characterises ΘBunG . Finally, the isomorphism of graded algebras follows immediately from

the fact that the Chevalley isomorphism is an equivalence of enriched symmetric monoidal

categories.

Remark 4.4.11. Of course, Corollary 4.4.10 also holds with BunG,rig in place of BunG,

with the same proof.

Remark 4.4.12. When S = Spec k, Corollary 4.4.10 shows that Pic(BunG) ∼= Z, recovering

a special case of a theorem of Y. Laszlo and C. Sorger [LS]. We remark that Laszlo and

Sorger’s proof is very different to ours: it uses the uniformisation of BunG by an affine

Grassmannian, rather than our method using the relation to the abelian variety Y .

We conclude by remarking on the following very basic property of the line bundle ΘY .

Proposition 4.4.13. The line bundle ΘY is ample relative to S.

Proof. Since Y → S is proper and flat, it suffices to prove that ΘY is ample on every

geometric fibre. So we can assume for the proof that S = Spec k for k an algebraically

closed field.

Since Y is an abelian variety, Y is projective over k, so there exists some ample line

bundle L on Y . The ample line bundle L′ =
⊗

w∈W w∗L is canonically W -linearised, and

it is easy to see that the W -linearisation on L′′ = (L′)⊗2 is therefore good. So L′′ is a good

W -linearised ample line bundle on Y , and therefore a positive multiple of ΘY by Proposition

4.4.9. Hence ΘY is ample as claimed.

4.5 The coarse quotient map and the fundamental diagram

In this section, we apply Corollary 4.4.10 to construct the elliptic Grothendieck-Springer

resolution as a commutative diagram

B̃unG BunG

Θ−1
Y /Gm (Ŷ //W )/Gm,

ψ

χ̃ χ (4.5.1)

and give an explicit formula for the divisor χ̃−1(0Θ−1
Y

).

We first remark that by Corollary 4.4.10, there is a tautological Gm-equivariant morphism

Θ−1
BunG

−→ SpecS
⊕
d≥0

πBunG∗Θ
⊗d
BunG

∼= SpecS
⊕
d≥0

(πY ∗Θ
⊗d
Y )W = Ŷ //W, (4.5.2)

where Ŷ is the cone over Y given by contracting the zero section of Θ−1
Y to S. Deleting the

zero section of Θ−1
BunG

and taking the quotient of both sides of (4.5.2) by Gm therefore gives

a morphism

χ : BunG −→ (Ŷ //W )/Gm.

Definition 4.5.1. The morphism χ above is called the coarse quotient map for BunG.

We next construct the morphism χ̃. By construction of the elliptic Chevalley isomor-

phism, if LY is a good W -linearised line bundle on Y and LBunG is its image under the

Chevalley isomorphism, then there is a functorial isomorphism

γss : ψ∗LBunG |B̃un
ss

G

∼−→ χ̄∗LY |B̃un
ss

G
,
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compatible with the isomorphisms πBunG∗LBunG
∼= (πY ∗LY )W . (Recall that χ̄ : B̃unG → Y

is the blow down morphism BlB composed with the rigidification map Bun0
T → Y .) We

therefore have a rational map of line bundles

γ : ψ∗LBunG χ̄∗LY .

We prove at the end of this subsection (Corollary 4.5.9) that when LY = Θ−1
Y , the rational

map γ has divisor of zeroes and poles∑
λ∈X∗(T )+

1

2
(λ |λ)Dλ.

In particular, γ is in fact a morphism of line bundles, and so defines a morphism

χ̃ : B̃unG −→ Θ−1
Y /Gm.

Corollary 4.5.2. The morphisms χ and χ̃ constructed above fit into a commutative diagram

(4.5.1).

Proof. This follows immediately from the definitions and the functoriality of the isomor-

phism γss.

Remark 4.5.3. Since the elliptic Chevalley isomorphism holds for the rigidified stack

BunG,rig as well, we also have a rigidified version

B̃unG,rig BunG,rig

Θ−1
Y /Gm (Ŷ //W )/Gm,

ψ

χ̃ χ

of the diagram (4.5.1).

We remark that the coarse quotient map gives a GIT-style characterisation of semistable

and unstable G-bundles.

Proposition 4.5.4. Let ξG → Es be a G-bundle on a geometric fibre of E → S. Then ξG

is unstable if and only if χ(ξG) ∈ (Ŷs//W )/Gm is equal to the image of the cone point of Ŷs.

Proof. Write 0Ŷ ⊆ Ŷ for the family of cone points over S and q : Θ−1
Y → Ŷ for the tauto-

logical morphism. Since ΘY is ample, we have q−1(Ŷ \ 0Ŷ ) = Θ−1
Y \ 0Θ−1

Y
, and by Corollary

4.5.9, we have χ̃−1(Θ−1
Y \ 0Θ−1

Y
) = B̃un

ss

G . So

χ−1(((Ŷ \ 0Ŷ )//W )/Gm) = ψ(χ̃−1((Θ−1
Y \ 0Θ−1

Y
)/Gm)) = ψ(B̃un

ss

G ) = BunssG ,

which proves the proposition.

Proposition 4.5.5. The morphism χ̃ : B̃unG → Θ−1
Y /Gm is flat, and all fibres of the mor-

phism χ : BunG → (Ŷ //W )/Gm have dimension −l = dim(BunG)− dim((Ŷ //W )/Gm).

Proof. To prove that χ̃ is flat, note that since γss : ψ∗Θ−1
BunG

|BunssG
→ χ̄∗Θ−1

Y |BunssG
is an

isomorphism, and since χ̄ is smooth by Corollary 3.5.4, hence flat, we can apply Lemma

4.5.7 to conclude that the morphism on total spaces ψ∗Θ−1
BunG

→ Θ−1
Y is flat, and hence so

is χ̃.
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It remains to prove that the fibres of χ have dimension −l. Fix a geometric point

x : Spec k → (Ŷ //W )/Gm over s : Spec k → S and consider the fibre χ−1(x). We know by

straightforward comparison of dimensions that dimχ−1(x) ≥ −l, so it suffices to show that

dimχ−1(x) ≤ −l. Since the morphism q : Θ−1
Y /Gm → (Ŷ //W )/Gm is finite away from the

zero section and χ̃ is flat, if x is not the image of the cone point 0Ŷs , then

dimχ−1(x) ≤ dimψ−1χ−1(x) = dim χ̃−1q−1(x) = −l

so we are done. On the other hand, if x is the image of the cone point, then χ−1(x) is a

Gm-torsor over the locus of unstable G-bundles on Es by Proposition 4.5.4. So

dimχ−1(x) = −codimBunG(Es)Bununstable
G (Es) + 1 = −l

by Proposition 2.6.8.

Remark 4.5.6. We will show later on (Corollary 5.5.1) that Ŷ //W is in fact an affine space

bundle over S, and in particular regular. Together with Proposition 4.5.5 and [E, Theorem

18.16], this imples that the coarse quotient map χ is flat.

Lemma 4.5.7. Let f : Z1 → Z2 be a flat morphism of regular stacks, let L1 and L2 be line

bundles on Z1 and Z2 respectively, and let g : L1 → f∗L2 be a morphism of line bundles.

If g does not vanish identically along any irreducible component of any fibre of f , then the

induced morphism of total spaces L1 → L2 is flat.

Proof. Since flatness can be checked locally on the source in the smooth topology, it suffices

to prove the lemma when Z1 = SpecR1 and Z2 = SpecR2, with R1, R2 regular local

rings, L1 = OR1
and L2 = OR2

are trivial, and f is induced by a flat local homomorphism

φ : R2 → R1. The morphism g is then given by multiplication by some element r ∈ R1, and

the induced morphism on total spaces is the spectrum of the R2-linear homomorphism

φ′ : R2[y] 7−→ R1[x]

y 7−→ rx.

Since R1[x] and R2[y] are regular rings, by [E, Theorem 18.16], it suffices to show that every

closed fibre has dimension d = dimR1[x]− dimR2[y] = dimR1− dimR2. If m is a maximal

ideal of R2[y], then writing k for the residue field of R2 and K = R2[y]/m, we have that K

is a finite field extension of k, and

R1[x]

φ′(m)R1[x]
=

(K ⊗R2
R1)[x]

(rx− y)
.

Since g is flat, dim(K ⊗R2
R1[x]) = dim(k ⊗R2

R1) + 1 = d + 1, so it suffices to show that

rx − y ∈ K ⊗R2
R1[x] is neither 0 nor a zero-divisor. But this follows from the fact that g

does not vanish along any irreducible component of Spec k ⊗R2 R1, so we are done.

The rest of this section is devoted to proving the following theorem, and hence Corollary

4.5.9, which was used above to construct the morphism χ̃.

Theorem 4.5.8. Let LBunG be a line bundle on BunG and let LY be the corresponding good

W -linearised line bundle on Y . Then the rational map of line bundles γ : ψ∗LBunG 99K χ̄
∗LY

induced by the isomorphism

γss : ψ∗(LBunG)|
B̃un

ss

G

∼−→ χ̄∗LY |B̃un
ss

G

has divisor of zeroes and poles

−
∑

λ∈X∗(T )+

1

2
Q(LY )(λ, λ)Dλ.
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Corollary 4.5.9. When LBunG = Θ−1
BunG

, the map γ of Theorem 4.5.8 is regular, and has

divisor of zeroes

div(γ) = χ̃−1(0Θ−1
Y

) =
∑

λ∈X∗(T )+

1

2
(λ |λ)Dλ.

The key idea behind the proof of Theorem 4.5.8 is to reduce to the case of a specific

choice of line bundle LBunG that we can describe explicitly as the determinant of a perfect

complex. The following lemma plays an important role.

Lemma 4.5.10. Let X be an algebraic stack, let D ⊆ X be an effective Cartier divisor on

X, let U = X \D, and let i : D ↪→ X denote the inclusion. If E is a perfect complex on D,

then the rational map of line bundles

g : OX = det 0 detRi∗E

induced by the quasi-isomorphism 0|U ∼= Ri∗E|U induces an isomorphism

OX(χ(E)D)
∼−→ detRi∗E ,

where χ denotes the Euler characteristic of a perfect complex.

Proof. We need to show that the divisor of zeros and poles of g is χ(E)D. Since both are

local on X and additive in E under exact triangles, it suffices to check this when E = OD.

In this case, an explicit free resolution for Ri∗E is

Ri∗E = [OX(−D) −→ OX ],

which gives an isomorphism

OX ⊗OX(−D)∨ ∼= detRi∗E .

The map g is given by

OX
∼−→ OX(−D)⊗OX(−D)∨ −→ OX ⊗OX(−D)∨ = detRi∗E ,

which does indeed have divisor D = χ(E)D as claimed.

Lemma 4.5.11. Let X be a smooth stack over S, let Z ⊆ X ×S E be a smooth substack

of codimension 2 mapping isomorphically to a divisor D ⊆ X under the first projection

prX : X ×S E → X, and let f : C → X ×S E be the blowup along Z. If L is a line bundle

on C such that L restricted to any exceptional fibre of f has degree d, then the canonical

rational map

detRprX∗Rf∗L detRprX∗ detRf∗L (4.5.3)

induced by the quasi-isomorphism Rf∗L|X×SE\Z ∼= detRf∗L|X×SE\Z has divisor

d(d+ 1)

2
D.

Proof. We first observe that if d = 0, then the claim is true since Rf∗L is a line bundle and

hence (4.5.3) is an isomorphism.

For a general line bundle L, write div(L) for the divisor of (4.5.3). Consider the exact

sequence

0 −→ L(−Exc) −→ L −→ L|Exc −→ 0,
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where Exc = f−1(Z) is the exceptional divisor. The morphism Rf∗L(−Exc) → Rf∗L
induces a commutative diagram

detRprX∗Rf∗L(−Exc) detRprX∗Rf∗L

detRprX∗ detRf∗L(−Exc) detRprX∗ detRf∗L

g

∼

of rational maps of line bundles, where the bottom arrow is an isomorphism since Z has

codimension 2. We deduce that

div(L(−Exc)) = div(L) + div(g).

But div(g) = div(g′), where

g′ : OX det(RprX∗Rf∗L(−Exc))−1 ⊗ RprX∗Rf∗L = detRprX∗Rf∗(L|Exc)

is the rational morphism induced by the quasi-isomorphism RprX∗Rf∗(L|Exc)|X\D ' 0. But

RprX∗Rf∗(L|Exc) is the pushforward from D of a perfect complex with Euler characteristic

d+ 1, so Lemma 4.5.10 gives div(g′) = (d+ 1)D and hence

div(L(−Exc)) = div(L) + (d+ 1)D.

Since L(−Exc) has degree d + 1 restricted to any exceptional fibre of f , the lemma now

follows easily by induction on the absolute value of d.

The next lemma identifies the W -linearised line bundle on Y and quadratic form corre-

sponding to a determinant line bundle on BunG.

Lemma 4.5.12. Let V be a representation of G, and let LBunG = detRprBunG∗(ξ
uni
G ×GV ),

where ξuniG → BunG×SE is the universal G-bundle, and prBunG : BunG×SE → BunG is the

canonical projection. Then the corresponding good W -linearised line bundle on Y is given

by

LY =
⊗

λ∈X∗(T )

λ∗O(−OPic0S(E))
⊗ dimVλ ,

and hence

q(LY )(µ) = −
∑

λ∈X∗(T )

dimVλ〈λ, µ〉2

for µ ∈ X∗(T ), where

V =
⊕

λ∈X∗(T )

Vλ

is the weight space decomposition of V under the action of T .

Proof. We have

ψ∗LBunG = detRpr
B̃unG∗

((ψ∗ξuniG )×G V ) = detRpr
B̃unG∗

Rf∗f∗((ψ∗ξuniG )×G V )

where pr
B̃unG

: B̃unG ×S E → B̃unG is the first projection and f : B̃unG ×DegS(E) C →
B̃unG×SE is the pullback of the universal prestable degeneration of E over B̃unG. Since the

G-linearised vector bundle V ⊗OF on the flag variety F = G/B has a G-equivariant filtration

with associated quotients isomorphic to Vλ ⊗ Lλ for λ ∈ X∗(T ), we get an isomorphism

ψ∗LBunG
∼=

⊗
λ∈X∗(T )

detRpr
B̃unG∗Rf∗(Vλ ⊗ (ξT,C ×T Zλ))

=
⊗

λ∈X∗(T )

(detRpr
B̃unG∗Rf∗(ξT,C ×

T Zλ))⊗ dimVλ ,
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where ξT,C is the induced T -bundle on B̃unG ×DegS(E) C. So restricting to B̃un
ss

G gives

ψ∗LBunG |B̃un
ss

G
=

⊗
λ∈X∗(T )

Bl∗B(detRprBun0
T ∗

(ξuniT ×T Zλ))⊗ dimVλ |
B̃un

ss

G
, (4.5.4)

where ξuniT is the universal T -bundle on Bun0
T ×S E and BlB : B̃unG → Bun0

T is the blow

down morphism. Now, for all λ ∈ X∗(T ), we have

detRprBun0
T ∗

(ξuniT ×T Zλ) = λ∗ detRprBun0
Gm/S

(E)∗M,

where M is the universal line bundle on Bun0
Gm/S(E)×S E. But

RprBun0
Gm/S

(E)∗M = (R1prBun0
Gm/S

(E)∗M)[−1]

is the pushforward of a perfect complex of Euler characteristic −1 on the Cartier divisor

OBun0
Gm/S

(E) corresponding to the trivial bundle, so by Lemma 4.5.10, we have

detRprBun0
Gm/S

(E)∗M = O(−OBun0
Gm/S

(E)) = q∗O(−OPic0S(E))

where q : Bun0
Gm/S(E)→ Pic0

S(E) is the canonical quotient by BGm. So (4.5.4) gives

ψ∗LBunG |B̃un
ss

G
= χ̄∗

⊗
λ∈X∗(T )

λ∗O(−OPic0S(E))
⊗ dimVλ |

B̃un
ss

G

from which the result follows immediately.

Proof of Theorem 4.5.8. We first remark that since the truth or falsehood of the statement

is unchanged if we raise LBunG to a nonzero power or tensor with a line bundle on S, by

Corollary 4.4.10, it suffices to prove the claim for any single LBunG with q(LY ) 6= 0. So

choose any nontrivial representation V of G and set

LBunG = detRprBunG∗(ξ
uni
G ×G V ),

as in Lemma 4.5.12. Keeping the notation from that proof, since π
B̃un

ss

G
∗O = πY ∗OY = OS

by Proposition 4.3.17 (1), the rational map γ must coincide up to rescaling by a nonvanishing

function on S with the rational map⊗
λ∈X∗(T )

(detRpr
B̃unG∗(ξT,C×

TZλ))⊗ dimVλ 99K
⊗

λ∈X∗(T )

(detRpr
B̃unG∗ detRf∗(ξT,C×TZλ))⊗ dimVλ

(4.5.5)

given by the quasi-isomorphisms

detRf∗(ξT,C ×T Zλ)|
B̃un

ss

G

∼= Rf∗(ξT,C ×T Zλ)|
B̃un

ss

G
,

for λ ∈ X∗(T ), where we recall that Bl∗B(ξuniT ×T Zλ) = detRf∗(ξT,C×T Zλ) by Lemma 3.5.2

and the definition of BlB : B̃unG → Bun0
T . To complete the proof, observe that Proposition

3.4.13 implies that

(B̃unG)≤1 =
⋃

µ∈X∗(T )+

(B̃unG)≤1
µ

where

(B̃unG)≤1 = B̃unG ×DegS(E) DegS(E)≤1 ⊆ B̃unG

is the open substack of points where the nodal domain curve C has at most 1 node, and for

µ ∈ X∗(T )+, (B̃unG)≤1
µ ⊆ (B̃unG)≤1 is the open substack of stable maps with either smooth
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domain or dual graph τ0
µ. Since the complement of (B̃unG)≤1 in B̃unG has codimension 2, it

suffices to show that for any µ ∈ X∗(T )+, the restriction of (4.5.5) to (B̃unG)≤1
µ has divisor

1

2

∑
λ∈X∗(T )

dimVλ〈λ, µ〉2Dµ.

By Lemma 4.5.11, the map

detRpr
(B̃unG)

≤1
µ ∗Rf∗(ξT,C ×

T Zλ) detRpr
(B̃unG)

≤1
µ ∗ detRf∗(ξT,C ×T Zλ)

has divisor
〈λ, µ〉(〈λ, µ〉+ 1)

2
Dµ,

so taking the tensor product over all λ ∈ X∗(T ), we find that the restriction of (4.5.5) has

divisor ∑
λ∈X∗(T )

dimVλ
2
〈λ, µ〉2 +

∑
λ∈X∗(T )

dimVλ
2
〈λ, µ〉

Dµ =
1

2

∑
λ∈X∗(T )

dimVλ〈λ, µ〉2Dµ

as required, since ∑
λ∈X∗(T )

(dimVλ)λ ∈ X∗(T )W = {0}.

4.6 The canonical bundles of BunG and B̃unG

As an application of the methods used in the proof of Theorem 4.5.8, we compute the

canonical bundles KBunG/S = detLBunG/S and K
B̃unG/S

= detL
B̃unG/S

of BunG and B̃unG

relative to S.

The aim is to prove the following theorem. In the statement below, we write ω ∈ Pic(S)

for the line bundle

ω = πE∗KE/S = πPic0S(E)∗KPic0S(E)/S = O∗Pic0S(E)KPic0S(E)/S .

Given (R,L) ∈ Sym2(X∗(T ))W ⊕ Pic(S), we write L(R,L) for the line bundle on BunG

associated to (R,L) by Proposition 4.4.9 and Theorem 4.3.4.

Theorem 4.6.1. The relative canonical bundles of BunG and B̃unG are given by

KBunG/S = L

(
−
∑
α∈Φ

α2, ω⊗ dimG

)
= L

−2
∑
α∈Φ+

α2, ω⊗ dimG


and

K
B̃unG/S

= ψ∗L

− ∑
α∈Φ+

α2, ω⊗ dimB

⊗O
 ∑
µ∈X∗(T )+

(−2 + 〈ρ, µ〉)Dµ

 .

Lemma 4.6.2. The line bundle

LY =
⊗
α∈Φ+

α∗O(−OPic0S(E))

admits a (necessarily unique) good W -linearisation.
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Proof. We first note that s∗iLY
∼= LY for all simple reflections si, since

s∗iLY =
⊗

α∈Φ+\{αi}

α∗O(−OPic0S(E))⊗ (−αi)∗O(−OPic0S(E))

and

(−αi)∗O(−OPic0S(E)) ∼= α∗iO(−OPic0S(E)).

So LY admits a unique W -linearisation such that the action of W on O∗Y L is trivial. It

remains to show that this linearisation is good. For all simple coroots α∨i , we have

(α∨i )∗LY =
⊗
α∈Φ+

(α∨i )∗α∗O(−OPic0S(E)) = O

− ∑
α∈Φ+

〈α, α∨i 〉2OPic0S(E)

 .

But ∑
α∈Φ+

〈α, α∨i 〉2 ≡
∑
α∈Φ+

〈α, α∨i 〉 ≡ 〈2ρ, α∨i 〉 ≡ 0 mod 2,

so the W -linearisation on LY is indeed good by Lemma 4.4.6.

Lemma 4.6.3. There is an isomorphism

KDegS(E)/S
∼= O(−2D),

where D ⊆ DegS(E) is the locus of singular curves.

For the proof of Lemma 4.6.3, we will use the following description of the relative tangent

complex of a blow up.

Lemma 4.6.4. Let X be a stack, let Z ⊆ X be a regularly embedded closed substack of

codimension d, and let π : X̃ → X be the blowup of X along Z. Then there is an exact

triangle

TX̃/X −→ Ri∗NExc/X̃ −→ Ri∗π∗NZ/X −→ TX̃/X [1] (4.6.1)

in D(X̃), where Exc = π−1(Z) is the exceptional divisor, i : Exc ↪→ X̃ is the inclusion, and

NU/V denotes the normal bundle of U in V .

Proof. Consider the exact triangle

TExc/X̃ −→ TExc/X −→ Li∗TX̃/X −→ TExc/X̃ [1]

inD(Exc). Pushing forward to X̃ and lettingM be the derived kernel (cocone) of Ri∗TExc/X⊕
TX̃/X → Ri∗Li∗TX̃/X gives a morphism

Ri∗TExc/X̃ M TX̃/X Ri∗TExc/X̃ [1]

Ri∗TExc/X̃ Ri∗TExc/X Ri∗Li∗TX̃/X Ri∗TExc/X̃ [1]

(4.6.2)

of exact triangles in D(X̃). We claim that the composition

M −→ Ri∗TExc/X −→ Ri∗Lπ∗TZ/X

is an isomorphism in D(X̃). Given the claim, the top row of (4.6.2) can be rewritten as an

exact triangle

Ri∗NExc/X̃ [−1] −→ Ri∗π∗NZ/X [−1] −→ TX̃/X −→ Ri∗NExc/X̃ ,
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from which we get (4.6.1) by rotation.

Since the claim is local on X for the smooth topology, we may assume without loss of

generality that X = SpecR is an affine scheme and that Z is defined by the ideal (x1, . . . , xd)

where x1, . . . , xd is a regular sequence in R. Then X̃ ⊆ X × Pd−1 is the closed subscheme

defined by the ideal

(xiXj − xjXi | 1 ≤ i < j ≤ d),

where X1, . . . , Xd are the homogeneous coordinates of Pd−1. The tangent complex TX̃/X is

given by

TX̃/X = [TX×Pd−1/X |X̃ → NX̃/X×Pd−1 ],

and the bottom row of (4.6.2) is given by the exact sequence of complexes

] ] ]

0 0 i∗i
∗TX×Pd−1/X |X̃ i∗i

∗TX×Pd−1/X |X̃ 0

0 i∗NExc/X̃ i∗NExc/X×Pd−1 i∗i
∗NX̃/X×Pd−1 0.

[ [ [

So the morpism M → Ri∗Lπ∗TZ/S is given by

M = [ TX×Pd−1/X |X̃ M ′ ]

Ri∗Lπ∗TZ/X = [ 0 i∗π
∗NZ/S ],

(4.6.3)

where M ′ is the fibre product

M ′ i∗NExc/X×Pd−1

NX̃/X×Pd−1 i∗i
∗NX̃/X×Pd−1 .

It remains to show that (4.6.3) is a quasi-isomorphism (and hence an isomorphism in D(X̃)).

Observing that the canonical map NExc/X×Pd−1 → π∗NZ/X is an isomorphism, we have a

commutative diagram

0 TX×Pd−1/X |X̃ M ′ i∗π
∗NZ/S 0

0 TX×Pd−1/X |X̃ NX̃/X×Pd−1 i∗i
∗NX̃/X×Pd−1 0

(4.6.4)

where the rightmost square is Cartesian. To show that (4.6.3) is a quasi-isomorphism, it

suffices to show that the bottom row of (4.6.4), and hence the top, is exact. But this follows

from a direct computation in local affine coordinates on Pd−1, so we are done.

Proof of Lemma 4.6.3. Let DegS(E)≤1 ⊆ DegS(E) denote the locus of curves with at most

one node. Since DegS(E) is smooth and the complement of DegS(E)≤1 is a closed substack

with codimension 2 by Proposition 3.3.7, it suffices to prove the claim for DegS(E)≤1.

The tangent complex of DegS(E)≤1 is

TDegS(E)≤1 = RprDegS(E)≤1∗Rf∗TC≤1/DegS(E)≤1×SE [1],
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where f : C → DegS(E)×S E is the universal degeneration and C≤1 = f−1(DegS(E)≤1). So

we have

KDegS(E)≤1/S = detRprDegS(E)≤1∗Rf∗TC≤1/E×SDegS(E)≤1 .

Since f : C≤1 → DegS(E)≤1 ×S E is the blow up along a closed substack Z of codimension

2 (mapping isomorphically to D≤1 under the projection prDegS(E)), by Lemma 4.6.4, there

is an exact triangle

TC≤1/DegS(E)≤1×SE −→ i∗NExc/C≤1 −→ i∗g
∗NZ/DegS(E)≤1×SE −→ TC≤1/DegS(E)≤1×SE [1]

(4.6.5)

where Exc = f−1(Z) is the exceptional divisor, i : Exc → C≤1 is the natural inclusion, and

g : Exc→ Z is the restriction of f . By Lemma 4.5.10, we have

detRprDegS(E)≤1∗Rf∗i∗NExc/C≤1 = det(Rj∗Rp∗O(Exc)|Exc)

= O(χ(Rp∗O(Exc)|Exc)D≤1)

= O(χ(P1,O(−1))D≤1) = O,

where D≤1 = D∩DegS(E)≤1, j : D≤1 → DegS(E)≤1 is the inclusion, and p = prDegS(E)≤1 ◦
g : Exc→ D≤1. (Note that p is a P1-bundle.) Similarly,

detRprDegS(E)≤1∗Rf∗i∗g∗NZ/DegS(E)≤1×SE = det(Rj∗Rp∗g∗NZ/DegS(E)≤1×SE)

= O(χ(Rp∗g∗NZ/DegS(E)≤1×SE)D≤1)

= O(χ(P1,O⊕2)D≤1) = O(2D≤1).

From the exact triangle (4.6.5), we deduce that

KDegS(E)≤1/S = detRprDegS(E)≤1∗Rf∗TC≤1/DegS(E)≤1×SE = O(−2D≤1),

which proves the lemma.

Proof of Theorem 4.6.1. We have

KBunG/S = det(RprBunG∗(ξ
uni
G ×G g[1]))∨ = detRprBunG∗(ξ

uni
G ×G g).

By Lemma 4.5.12, we therefore have

KBunG/S = L

(
−
∑
α∈Φ

α2, (O∗Pic0S(E)O(−OPic0S(E)))
⊗ dim g

)
. (4.6.6)

But there is an isomorphism

O∗Pic0S(E)O(−OPic0S(E))
∼−→ O∗Pic0S(E)KPic0S(E)/S = ω

given by taking exterior derivatives. So (4.6.6) gives

KBunG/S = L

(
−
∑
α∈Φ

α2, ω⊗ dimG

)

as required.

For B̃unG, we have

K
B̃unG/DegS(E)

= detRpr
B̃unG∗Rf∗(σ

∗ξuniG ×G ker(g⊗OF → TF ))

= (detRpr
B̃unG∗Rf∗O)⊗l ⊗

⊗
α∈Φ+

detRpr
B̃unG∗Rf∗(ξT,C ×

T Z−α),
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where we write f : B̃unG ×DegS(E) C → B̃unG ×S E for the pullback of the universal degen-

eration, and σ : B̃unG×DegS(E) C → ξuniG ×G F = ξuniG /B for the universal stable map to the

flag variety bundle. By Lemma 4.5.11, this is isomorphic to

π∗
B̃unG

ω⊗l ⊗
⊗
α∈Φ+

detRpr
B̃unG∗ detRf∗(ξT,C ×T Z−α)

⊗O

− ∑
µ∈X∗(T )+

1

2
〈−α, µ〉(〈−α, µ〉+ 1)Dµ


= χ̄∗

π∗Y ω⊗l ⊗ ⊗
α∈Φ+

α∗O(−OPic0S(E))

⊗O
 ∑
µ∈X∗(T )+

∑
α∈Φ+

1

2
(−〈α, µ〉2 + 〈α, µ〉)Dµ

 ,

where we use the fact that

detRpr
B̃unG∗Rf∗O = detRpr

B̃unG∗O = (R1pr
B̃unG∗

O)∨ = π∗
B̃unG

πE∗KE/S = π∗
B̃unG

ω.

By Lemma 4.6.2, the line bundle

π∗Y ω
⊗l ⊗

⊗
α∈Φ+

α∗O(−OPic0S(E))

admits a good W -linearisation, so corresponds to a line bundle on BunG, which, examining

quadratic classes and the pullback along OY , must be

L

− ∑
α∈Φ+

α2, ω⊗ dimB

 .

So by Theorem 4.5.8, we get

K
B̃unG/DegS(E)

= ψ∗L

− ∑
α∈Φ+

α2, ω⊗ dimB

⊗O
 ∑
µ∈X∗(T )+

∑
α∈Φ+

1

2
〈α, µ〉Dµ


= ψ∗L

− ∑
α∈Φ+

α2, ω⊗ dimB

⊗O
 ∑
µ∈X∗(T )+

〈ρ, µ〉Dµ


Using Lemma 4.6.3, we therefore get

K
B̃unG/S

= KDegS(E)/S ⊗KB̃unG/DegS(E)

= ψ∗L

− ∑
α∈Φ+

α2, ω⊗ dimB

⊗O
 ∑
µ∈X∗(T )+

(−2 + 〈ρ, µ〉)Dµ


as claimed.
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Chapter 5

Slices of BunG

In classical (say, additive) Springer theory, one has the freedom either to work with the

stack g/G, or to pull everything back to the chart g and work entirely within the world of

affine algebraic varieties. It is also very informative to study transversal slices of g, which

amounts to studying lower dimensional non-surjective charts of g/G. For example, the

section theorem of B. Kostant [K, Theorem 0.10] (and its analogue by R. Steinberg [S5,

Theorem 1.4] for the multiplicative case G/G) shows that slices of minimal dimension give

sections of the adjoint quotient map g→ g//G, and the work of Brieskorn and Slodowy uses

slices of the next lowest dimension to give Lie theoretic constructions of du Val singularities.

In the elliptic context, there is no finite-dimensional chart covering BunG to play the

role of g. However, it is still possible to construct incomplete charts, which we can use to

destackify the geometry of BunG and the elliptic Grothendieck-Springer resolution in low

codimension. We will see in this chapter and the next that this construction leads to an

analogue of the Kostant and Steinberg section theorems (Theorem 5.4.6) and to interesting

simultaneous log resolutions of families of surfaces.

Given a family of elliptic curves E → S with origin OE : S → E, there is an action of

E (endowed with its natural group scheme structure over S) on itself by translations, and

hence on BunG. Since we were careful in the previous chapter to allow families that do not

admit a section, we have an elliptic Grothendieck-Springer resolution (4.5.1) for the family

E′ := S → BSE = S′, which is manifestly the quotient of the elliptic Grothendieck-Springer

resolution for E → S by an action of E compatible with the action on BunG. So in some

sense this action adds nothing of interest to the geometry. Rather than working with charts

for BunG, we will therefore work with the following slightly weaker objects.

Definition 5.0.1. Assume that E → S has a section OE : S → E. A slice of BunG (resp.,

BunG,rig) is a morphism Z → BunG (resp., Z → BunG,rig) of stacks over S, such that the

composition Z → BunG → BunG/E (resp., Z → BunG,rig → BunG,rig/E) is smooth.

In this chapter, we give techniques for constructing slices and apply them to give a proof

of the Friedman-Morgan section theorem (Theorem 5.4.6). We begin in §5.1 with a general

discussion of equivariant slices, which are slices endowed with some useful extra structure.

We then present the parabolic induction construction of Friedman and Morgan [FM2] in

§5.2, which gives a recipe for constructing slices of BunG out of slices for a Levi subgroup.

In §5.3 we recall M. Atiyah’s classification of stable vector bundles on an elliptic curve [A]

and use it to construct explicit slices for some Levi subgroups. We then apply this machinery

in §5.4 to give a proof of Theorem 5.4.6 using the elliptic Grothendieck-Springer resolution.

As in the classical case, the section theorem has a number of important implications for the

geometry of the coarse quotient χ : BunG → (Ŷ //W )/Gm and the Grothendieck-Springer

resolution, which we give in §5.5. These implications include the fact (Corollary 5.5.7) that

(4.5.1) is a simultaneous log resolution.

Throughout this chapter, we keep the conventions and notation of Chapter 4. Unless

otherwise specified, we will also assume that the elliptic curve E → S has a given section
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OE : S → E and endow E with its natural group scheme structure over S for which OE is

the identity.

5.1 Equivariant slices

Let Z → BunG be a slice such that Z → S is representable. Then pulling back (4.5.1) gives

a commutative diagram

Z̃ Z

Θ−1
Y /Gm (Ŷ //W )/Gm

(5.1.1)

where Z̃ = B̃unG×BunG Z has finite relative stabilisers over S and maps smoothly to B̃unG.

So (5.1.1) gives an approximation to (4.5.1) in which most of the stackiness in the top row

has been removed. In this section, we discuss the extra structure that is needed to remove

the stackiness in the bottom row of (5.1.1).

Definition 5.1.1. Let H be a torus, and let λ ∈ X∗(H) be a nonzero character. An

equivariant slice of BunG,rig with equivariance group H and weight λ is a commutative

diagram

Z/H BunG,rig

BH BGm

Θ−1
BunG,rig

λ

where Z is a stack withH-action over S, such that the composition Z → Z/H → BunG,rig →
BunG,rig/E is smooth. We will often suppress the group H from the notation and refer to

Z → BunG,rig, or even simply Z, as an equivariant slice.

Remark 5.1.2. Unpacking the stacky formalism, the datum of an equivariant slice Z/H →
BunG,rig of weight λ is equivalent to the datum of an H-equivariant morphism

Z −→ (Θ−1
BunG,rig

)∗, (5.1.2)

where H acts on the complement (Θ−1
BunG,rig

)∗ of the zero section of Θ−1
BunG,rig

through

the character λ : H → Gm. Together with the rigidified version of (4.5.1), this gives an

H-equivariant commutative diagram

Z̃ Z

Θ−1
Y Ŷ //W,

ψZ

χ̃Z χZ

where Z̃ = Z ×BunG,rig B̃unG,rig and H acts on Θ−1
Y and Ŷ //W via the character λ.

Proposition 5.1.3. Let Z → BunG,rig be an equivariant slice. Then the composition

Z −→ (Θ−1
BunG,rig

)∗/E (5.1.3)

of (5.1.2) with the quotient by E is flat.
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Proof. Let H be the equivariance group of Z, and λ the weight. Since H is a torus, hence

smooth over SpecZ, the morphism Z/H → BunG,rig/E is smooth, and in particular flat.

Since the morphism

Z/H ×BunG,rig/E ((Θ−1
BunG,rig

)∗/E)/H −→ Z/H

is a gerbe under the flat group scheme ker(λ) ⊆ H, the section defined by (5.1.3) is flat, and

hence so is the composition

Z/H −→ Z/H ×BunG,rig/E ((Θ−1
BunG,rig

)∗/E)/H −→ ((Θ−1
BunG,rig

)∗/E)/H. (5.1.4)

So the pullback (5.1.3) of (5.1.4) is flat as claimed.

The group action can also be useful for bounding the dimensions of automorphism groups

in an equivariant slice.

Proposition 5.1.4. Let Z → BunG,rig be an equivariant slice with equivariance group H

and suppose that the smooth morphism Z → S has finite relative stabilisers and relative

dimension d. For any geometric point z : Spec k → Z with corresponding G-bundle ξG,z, we

have

dim Aut(ξG,z) ≤ d+ 1− dimH · z.

Proof. Pulling back along Spec k → S if necessary, we can assume without loss of generality

that S = Spec k. Let x be the image of z in BunG,rig and x′ its image in BunG,rig/E. By

H-equivariance of Z → BunG,rig, we have

H · z ⊆ Z ×BunG,rig/E BAut(x′).

So
dim Aut(x′) = codimBunG,rig/E(BAut(x′)) + 1

= codimZ(Z ×BunG,rig/E BAut(x′)) + 1

≤ d+ 1− dimH · z.

(5.1.5)

But we have

dim Aut(ξG) = dim Aut(x) ≤ dim Aut(x′), (5.1.6)

since BunG → BunG,rig is a Z(G)-gerbe and BunG,rig → BunG,rig/E is representable. So

combining (5.1.5) and (5.1.6) we are done.

Given any slice Z → BunG,rig, equivariant or not, we can consider the pullback Z̃ =

Z ×BunG,rig B̃unG,rig, and the divisor with normal crossings D(Z) =
∑
λ∈X∗(T )+

Dλ(Z),

where Dλ(Z) = Z̃ ×
B̃unG,rig

Dλ. Note that if Z → S is of finite type, then all but finitely

many Dλ(Z) will be empty. We remark below on a simple property of the set of nonempty

divisors.

Proposition 5.1.5. Let Z → BunG,rig be a slice, and λ1, λ2 ∈ X∗(T )+. If Dλ1+λ2
(Z) 6= ∅,

then Dλ1
(Z) 6= ∅ and Dλ2

(Z) 6= ∅.

Proof. We show that Dλ1
(Z) 6= ∅; the statement for Dλ2

(Z) follows by symmetry. Choose a

geometric point z : Spec k → Z over s : Spec k → S with corresponding G-bundle ξG,z → Es

and a stable map σ : C → ξG,z/B corresponding to a point in the interior of Dλ1+λ2
(Z).

Then by Proposition 3.4.16, σ has dual graph

τ0
λ1+λ2

=
−λ1−λ2 λ1+λ2
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Replacing the rational component of C with a chain of two rational curves of degrees λ1 and

λ2, we therefore also have a stable map σ′ : C ′ → ξG,z/B with dual graph

−λ1−λ2 λ2 λ1

which lies in Dλ1
(Z) ∩Dλ1+λ2

(Z). So Dλ1
(Z) 6= ∅ as claimed.

5.2 Parabolic induction

If L ⊆ L′ ⊆ G are Levi subgroups and Z → BunL,rig is a slice (i.e., a morphism such that

Z → BunL,rig/E is smooth), then there is a simple procedure for constructing an induced

slice IndL
′

L (Z) → BunL′,rig. In this section, we describe this construction, study properties

of the induced slices, and show how, when L′ = G, IndL
′

L (Z) = IndGL (Z) can be made into

an equivariant slice under mild assumptions on Z → BunL,rig.

Definition 5.2.1. Let L ⊆ L′ ⊆ G be Levi subgroups, let µ ∈ X∗(Z(L)◦)Q and let P ⊆ L′

be the unique parabolic subgroup with Levi factor L such that −µ is a Harder-Narasimhan

vector for P ⊆ L′ in the sense of Definition 2.5.18. If Z → Bunss,µL,rig is a morphism of stacks,

the parabolic induction of Z to L′ is the morphism

IndL
′

L (Z) = BunP,rig ×BunL,rig Z −→ Bunµ
′

L′,rig

where µ′ ∈ X∗(Z(L′)◦)Q is the image of µ under the natural morphism X∗(Z(L)◦)Q →
X∗(Z(L′)◦)Q.

Remark 5.2.2. In the situation of Definition 5.2.1, if the morphism Z → BunL,rig factors

through BunL, then we have an isomorphism IndL
′

L (Z) ∼= BunP ×BunL Z, and hence a

factorisation of IndL
′

L (Z)→ Bunµ
′

L′,rig as IndL
′

L (Z)→ Bunµ
′

L′ → Bunµ
′

L′,rig.

In the following proposition, we do not assume that E → S has a section.

Proposition 5.2.3. Assume that the morphism Z → Bunss,µL,rig is smooth. Then so is the

morphism IndL
′

L (Z)→ Bunµ
′

L′,rig.

Proof. Since Z → Bunss,µL,rig is smooth, so is the morphism IndL
′

L (Z) → Bunss,µP,rig. So it

suffices to show that the morphism Bunss,µP,rig → BunL′,rig is smooth. By flat descent for

smoothness, this is equivalent to showing that Bunss,µP → BunL′ is smooth. The relative

tangent complex is

T = RprBunss,µP ∗(ξ
uni
P ×P l′/p),

where l′ = Lie(L′), p = Lie(P ) and ξuniP → Bunss,µP ×SE is the universal P -bundle. But since

−µ is a Harder-Narasimhan vector for P , the vector bundle ξP ×P l′/p has a filtration whose

successive quotients are semistable of positive slope on every fibre of Bunss,µP ×SE → Bunss,µP .

So T is a vector bundle concentrated in degree 0 by Lemma 2.6.3, which proves the claim.

Corollary 5.2.4. Assume that Z → Bunss,µL,rig is a slice. Then IndL
′

L (Z) → Bunµ
′

L′,rig is a

slice.

Proof. Apply Proposition 5.2.3 to the family E′ := S → BSE =: S′.

A key feature of the parabolic induction construction is the existence of a natural action

of the torus Z(L)rig = Z(L)/Z(G) on IndL
′

L (Z).

In general, suppose that X is a stack equipped with an action a : X × BH → X of the

classifying stack of some commutative group scheme H. Then for any morphism of stacks
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π : X ′ → X, there is a canonical action of H on X ′ over X fitting into a commutative

diagram

X ′ X ′/H X ′

X X × BH X,a

(5.2.1)

in which both squares are Cartesian, where the morphism X → X × BH is the quotient

by the trivial action of H on X. Explicitly, this action can be realised by using the outer

square of (5.2.1) to identify X ′ with the stack of tuples (x′ ∈ X ′, x ∈ X,φ : x
∼→ π(x′)) and

setting (x′, x, φ) · h = (x′, x, φ ◦ a(h)) for h ∈ H.

Now suppose we are in the situation of Definition 5.2.1. Applying the above construction

to the action BunL,rig of BZ(L)rig on BunL,rig inherited from the action of BZ(L) on BunL

gives an action of Z(L)rig on BunP,rig over BunL,rig and a morphism BunP,rig/Z(L)rig →
BunP,rig → BunL′,rig. Pulling back along Z → BunL,rig, we get an action of Z(L)rig on

IndL
′

L (Z) over Z and a morphism IndL
′

L (Z)/Z(L)rig → Bunµ
′

L′,rig.

Remark 5.2.5. If the morphism Z → Bunss,µL,rig factors through Bunss,µL , then the BZ(L)-

action on BunL gives a morphism IndL
′

L (Z)/Z(L)→ Bunµ
′

L′ and a Cartesian diagram

IndL
′

L (Z)/Z(L) Bunµ
′

L′

IndL
′

L (Z)/Z(L)rig Bunµ
′

L′,rig.

Note that IndL
′

L (Z)/Z(L)→ Bunµ
′

L′ factors through IndL
′

L (Z)/Z(L)rig if and only if the left

hand morphism above admits a section, which holds if and only if Z(L) = Z(G)× Z(L)rig.

The following proposition describes the structure of the natural morphism IndL
′

L (Z)→ Z

together with the Z(L)rig-action constructed above.

Proposition 5.2.6. Assume we are in the setup of Definition 5.2.1. If Z is an affine

scheme, then there exists a (non-canonical) Z(L)rig-equivariant isomorphism of stacks over

Z,

IndL
′

L (Z) ∼= R1prZ∗(ξL/Z(G) ×L/Z(G) u),

where ξL/Z(G) → Z ×S E is the L/Z(G)-bundle induced by the morphism Z → BunL,rig →
BunL/Z(G), u is the Lie algebra of the unipotent radical Ru(P ), and Z(L)rig acts on u by

right conjugation. Hence, for any Z (not necessarily affine), the morphism IndL
′

L (Z) → Z

is always an affine space bundle with fibrewise linear Z(L)rig-action.

Proof. Let ξuniL/Z(G) → BunL,rig ×S E be the L/Z(G)-bundle classified by the morphism

BunL,rig → BunL/Z(G), and let Uuni = ξuniL/Z(G) ×
L/Z(G) Ru(P ). It follows directly from

the construction that the BZ(L)rig-action induces the right conjugation action (x, u) · g =

(x, g−1ug) of Z(L)rig on the group scheme Uuni. Letting ξL/Z(G) be the pullback of ξuniL/Z(G)

to Z and U = ξL/Z(G) ×L/Z(G) Ru(P ), it follows that the action of Z(L)rig on IndL
′

L (Z) =

BunU/Z is also given by right conjugation.

Let 0 < µ1 < · · · < µn be the possible positive values of 〈α,−µ〉 for α ∈ ΦL′ , and let

{1} = Un+1 ⊆ Un ⊆ · · · ⊆ U1 = Ru(P )
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be the filtration defined by

Ui =
∏

α∈ΦL′
〈α,−µ〉≥µi

Uα

for 1 ≤ i ≤ n+ 1. Letting

Ui = ξL/Z(G) ×L/Z(G) Ui ⊆ U ,

we show by induction on i that each Bun(U/Ui)/Z(E) is Z(L)rig-equivariantly isomorphic to

the vector bundle

R1prZ∗(ξL/Z(G) ×L/Z(G) u/ui) =
⊕
j≤i

R1prZ∗(ξL/Z(G) ×L/Z(G) uj−1/uj),

where ui is the Lie algebra of Ru(P )i.

For i = 1, the claim is trivial. For i > 1, Proposition 2.4.2 implies that each morphism

Bun(U/Ui)/Z(E) −→ Bun(U/Ui−1)/Z(E)

is a Z(L)rig-equivariant Bun(Ui−1/Ui)/Z(E)-torsor. But Ui−1/Ui ∼= ui−1/ui as L/Z(G)-

equivariant group schemes. So by Proposition 2.4.1,

Bun(Ui−1/Ui)/Z(E) ∼= Bun(ξL/Z(G)×L/Z(G)ui−1/ui)/Z(E) = R1prZ∗(ξL/Z(G) ×L/Z(G) ui−1/ui)

since

H0(Es, ξL/Z(G),z ×L/Z(G) ui−1/ui) = 0

for any geometric point z : Spec k → Z over s : Spec k → S, as this is the space of global

sections of a vector bundle all of whose semistable factors have negative degree. By induction,

Vi = Bun(U/Ui−1)/Z(E) is a vector bundle on Z with linear Z(L)rig-action, so the Z(L)rig-

equivariant torsors on it are classified by the group

H1(Vi/Z(L)rig, R1prZ∗(ξL/Z(L) ×L/Z(L) ui−1/ui))

= H1(BZ(L)rig, H
0(Vi,OVi)⊗H0(Z,OZ) H

1(E, ξL/Z(L) ×L/Z(L) ui−1/ui))

= 0

since Z(L)rig is a torus and Z is affine. So we can trivialise the given torsor Z(L)rig-

equivariantly, to give a Z(L)rig-equivariant isomorphism

Bun(U/Ui)/Z(E) ∼= Bun(U/Ui−1)/Z(E)×Z R1prZ∗(ξL/Z(G) ×L/Z(G) ui−1/ui)

∼=
⊕
j≤i

R1prZ∗(ξL/Z(G) ×L/Z(G) uj−1/uj),

as claimed.

The next two propositions give root-theoretic formulas for the Z(L)rig-weights and di-

mension of the affine space bundle IndL
′

L (Z)→ Z.

Proposition 5.2.7. If λ ∈ X∗(Z(L)rig), then the multiplicity of the weight λ in a fibre

of IndL
′

L (Z) → Z is d−λ〈λ, µ〉, if 〈λ, µ〉 > 0 and 0 otherwise, where d−λ is the number of

α ∈ ΦL′ such that α|Z(L)rig = −λ.

Proof. By Proposition 5.2.6, the multiplicity of λ in IndL
′

L (Z) is equal to the multiplicity

in H1(Es, ξL ×L u), where Es is any geometric fibre of E → S, ξL → Es is a semistable
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L-bundle of slope µ, and Z(L)rig acts by right conjugation on u. But this is equal to the

dimension of H1(Es, ξL ×L u−λ), where

u−λ =


⊕
α∈ΦL′

α|Z(L)rig
=−λ

gα, if 〈λ, µ〉 > 0,

0, otherwise,

is the λ-weight space of Z(L)rig acting on u by right conjugation. But since ξL ×L u−λ is

either 0 or a semistable vector bundle of negative slope −〈λ, µ〉, it follows that

dimH1(ξL ×L u−λ) = −deg(ξL ×L u−λ) =

d−λ〈λ, µ〉, if 〈λ, µ〉 > 0,

0, otherwise,

which proves the claim.

Proposition 5.2.8. The morphism IndL
′

L (Z) → Z has relative dimension 〈2ρP , µ〉, where

−2ρP is the sum of all roots α ∈ Φ such that Uα ⊆ Ru(P ).

Proof. This follows from Proposition 5.2.7 after taking the sum over all λ.

When L′ = G, it is often the case that the Z(L)rig-action on IndGL (Z) can be promoted

to the structure of an equivariant slice. The extra structure on the initial slice Z → Bunss,µL,rig

required to make this happen is the following.

Definition 5.2.9. A Θ-trivial slice of Bunss,µL,rig is a slice Z → Bunss,µL,rig equipped with a

trivialisation of the pullback ΘBunss,µL,rig
of the theta bundle ΘBunG,rig .

Proposition 5.2.10. Let Z → Bunss,µL,rig be a Θ-trivial slice. Then there is a natural equiv-

ariant slice structure on IndGL (Z) → BunG,rig with equivariance group Z(L)rig and weight

(µ | −).

A key step in the proof of Proposition 5.2.10 is a computation of the action of Z(L)rig

on the pullback of the theta bundle to Z. Before we give this computation, it will be useful

to introduce the following terminology.

Definition 5.2.11. Let X be a connected stack equipped with an action a : X × BH → X

of the classifying stack of a commutative group scheme H. If L is a line bundle on X, then

weight of L is the image of L ∈ Pic(X) under the homomorphism

Pic(X)
a∗−→ Pic(X × BH) ∼= Pic(X)⊕ X∗(H) −→ X∗(H),

where the isomorphism above is given by

Pic(X)⊕ X∗(H) −→ Pic(X × BH)

(L, λ) 7−→ p∗L ⊗ (ηH ×H Zλ)

for ηH → BH the universal H-torsor.

Remark 5.2.12. It follows tautologically from the definition that whenever f : X → BGm
classifies a line bundle L with weight λ, the diagram

X × BH X

BGm × BGm BGm

(f,λ) f

commutes, where the bottom arrow is given by tensor product of line bundles.
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Proposition 5.2.13. With respect to the natural BZ(L)rig-action, the weight of the pullback

ΘBunss,µL,rig
of ΘBunG,rig to Bunss,µL,rig is given by

(−µ | −) ∈ Hom(X∗(Z(L)rig),Z) = X∗(Z(L)rig).

Proof. We will in fact show that for any L ∈ Pic(BunG,rig), the pullback of L to Bunss,µL,rig has

weight −Q(L)(µ,−), where Q(L) is the quadratic class of the corresponding W -linearised

line bundle on Y . Since this statement is invariant under tensoring L with a line bundle on

the base stack S and raising L to a nonzero power, by Corollary 4.4.10, it suffices to show

this for a single nontrivial line bundle L.

Choose any nontrivial representation V of G/Z(G), and set

L = detRprBunG,rig∗(ξG/Z(G) ×G/Z(G) V ),

where ξG/Z(G) → BunG,rig×SE is theG/Z(G)-bundle classified by the morphism BunG,rig →
BunG/Z(G). Then the pullback of L to Bunss,µL,rig is the line bundle

LBunss,µL,rig
= detRprBunss,µL,rig∗

(ξL/Z(G) ×L/Z(G) V )

=
⊗

λ∈X∗(Z(L)rig)

detRprBunss,µL,rig∗
(ξL/Z(G) ×L/Z(G) Vλ),

where ξL/Z(G) → BunL,rig ×S E is the L/Z(G)-bundle classified by the natural morphism

BunL,rig → BunL/Z(G), and V =
⊕

λ∈X∗(Z(L)rig) Vλ is the weight space decomposition of V

under the action of the torus Z(L)rig = Z(L/Z(G)). Pulling back along the action morphism

a : Bunss,µL,rig × BZ(L)rig → Bunss,µL,rig, we get

a∗RprBunss,µL,rig∗
(ξL/Z(G) ×L/Z(G) Vλ)

= RprBunss,µL,rig×BZ(L)rig∗((p
∗ξL/Z(G) ⊗ q∗ηZ(L)rig )×L/Z(G) Vλ)

= RprBunss,µL,rig×BZ(L)rig∗(p
∗(ξL/Z(G) ×L/Z(G) Vλ)⊗ q∗λ(ηZ(L)rig ))

= p̄∗(RprBunss,µL,rig∗
(ξL/Z(G) ×L/Z(G) Vλ))⊗ q̄∗λ(ηZ(L)rig )

where p̄ : Bunss,µL,rig × BZ(L)rig → Bunss,µL,rig and q̄ : Bunss,µL,rig × BZ(L)rig → BZ(L)rig are the

natural projections, p and q are their respective compositions with the projection (Bunss,µL,rig×
BZ(L)rig) ×S E → Bunss,µL,rig × BZ(L)rig, and ηZ(L)rig is the universal Z(L)rig-bundle on

BZ(L)rig. So the weight of the determinant LBunss,µL,rig
is therefore∑

λ∈X∗(Z(L)rig)

χ(RprBunss,µL,rig∗
(ξL/Z(G) ×L/Z(G) Vλ))λ =

∑
λ∈X∗(Z(L)rig)

dimVλ〈λ, µ〉λ

= −Q(L)(µ,−)

as claimed, where the last equality follows from Lemma 4.5.12.

Proof of Proposition 5.2.10. Since IndGL (Z) → BunG,rig is a slice by Proposition 5.2.3, we

just need to construct an isomorphism of the pullback of Θ−1
BunG,rig

to IndGL (Z)/Z(L)rig with

the line bundle classified by

IndGL (Z)/Z(L)rig −→ BZ(L)rig
(µ | −)−−−−→ BGm.

Since IndGL (Z)/Z(L)rig → Z × BZ(L)rig is an affine space bundle by Proposition 5.2.6, the

pullback of Θ−1
BunG,rig

to IndGL (Z)/Z(L)rig is canonically isomorphic to the pullback of its
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restriction Θ−1
Z×BZ(L)rig

to the zero section Z × BZ(L)rig, i.e., of the pullback of Θ−1
BunG,rig

along the morphism

Z × BZ(L)rig −→ Bunss,µL,rig −→ BunG,rig.

Since the first morphism above is BZ(L)rig-equivariant, Proposition 5.2.13 implies that

Θ−1
Z×BZ(L)rig

has weight (µ | −). But the trivialisation of the pullback to Z identifies Θ−1
Z×BZ(L)rig

with the pullback of a line bundle on BZ(L)rig, which must be associated to the character

(µ | −), so we are done.

The following technical lemmas will come in handy for some of our explicit computations

later on.

Lemma 5.2.14. Assume that L ⊆ G is the Levi factor of a standard parabolic P− and that

µ is a Harder-Narasimhan vector for P−. Let Z → Bunss,µL,rig be a slice such that Z → S has

finite relative stabilisers and is of relative dimension d, and fix a point z ∈ IndGL (Z) with

corresponding G-bundle ξG,z. If there exists a section of ξG,z/Q of degree ν, where Q is any

standard parabolic with Harder-Narasimhan vector ν and (Q, ν) 6= (P−, µ), then

(1) there exists z′ ∈ IndGL (Z) such that the corresponding G-bundle ξG,z′ has Harder-

Narasimhan reduction to Q with degree ν, and

(2) −〈2ρ, ν〉 ≤ −〈2ρ, µ〉+ d− 1.

Proof. The assumptions of the proposition imply that the stack IndGL (Z)×BunG,rig BunνQ,rig
is nonempty. Since IndGL (Z) → BunG,rig/E is smooth, the preimage IndGL (Z) ×BunG,rig

Bunss,νQ,rig of Bunss,νQ,rig/E under the morphism

IndGL (Z)×BunG,rig BunνQ,rig = IndGL (Z)×BunG,rig/E BunQ,rig/E −→ BunνQ,rig/E

is dense, hence nonempty. This proves (1). Since (Q, ν) 6= (P ′, µ), by uniqueness of Harder-

Narasimhan reductions, the Z(L)rig-invariant locally closed substack IndGL (Z) ×BunG,rig

Bunss,νQ,rig ⊆ IndGL (Z) is disjoint from the Z(L)rig-fixed locus Z ⊆ IndGL (Z). Since IndGL (Z)→
S has finite relative stabilisers, IndGL (Z)×BunG,rig BunνQ,rig → S is therefore flat of relative

dimension at least 1, and hence has codimension at most

dimS IndGL (Z)− 1 = 〈2ρP , µ〉+ d− 1.

But this codimension is equal to the codimension −〈2ρ, ν〉 of Bunss,νQ,rig/E in BunG,rig/E, so

we have

−〈2ρ, ν〉 ≤ 〈2ρP , µ〉+ d− 1 = −〈2ρ, µ〉+ d− 1,

which proves (2).

Lemma 5.2.15. Let Z → Bunss,µL,rig be a morphism, and assume that Z is connected. Then

the set IndGL (Z)u of points z ∈ IndGL (Z) such that the corresponding G-bundle is unstable is

connected.

Proof. It follows easily from Proposition 5.2.6 that for any z ∈ IndGL (Z), the closure of the

Z(L)rig-orbit of z has nonempty intersection with Z. The claim now follows immediately

from the fact that IndGL (Z)u is closed and Z(L)rig-invariant and contains Z.
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5.3 Stable bundles under Levi subgroups

In this section, we give an explicit description of the stack of stable L-bundles of fixed degree

when L ⊆ G is a Levi subgroup all of whose simple factors are of type A. These results

form the base case for constructing slices of BunG and of more complicated Levi subgroups

using parabolic induction.

For this section, we will not assume that E → S necessarily has a section.

We begin with the following explicit description of the relevant Levi subgroups. Let t ⊆ ∆

be a set of simple roots, and let L be the Levi factor of the standard parabolic subgroup of

type t. Then L is the split reductive group scheme with root datum (X∗(T ),Φt,X∗(T ),Φ∨t ),

where Φt ⊆ Φ is the set of roots that are linear combinations of αi for αi ∈ ∆\t. The Dynkin

diagram of L is obtained from the Dynkin diagram of G by deleting the nodes corresponding

to elements of t. We will assume that the connected components of the Dynkin diagram of

L are all of type A.

The reductive group L can be described directly in terms of the following data. First,

write π0 = π0(∆ \ t) for the set of connected components of the Dynkin diagram of L.

For each component c ∈ π0, write nc for the number of nodes in c, and choose a labelling

αc,1, . . . , αc,nc of the nodes of c so that αc,i is adjacent to αc,i+1 for 1 ≤ i ≤ nc − 1. For

each αk ∈ t adjacent to a node of c, let αc,ik,c be the unique node adjacent to αk, and for

each αk ∈ t not adjacent to any node of c, set ik,c = nc + 1. Finally, write

mk,c = −
nc∑
i=1

〈αc,i, α∨k 〉 =

−〈αc,ik,c , α∨k 〉, if ik,c ≤ nc,

0, if ik,c = nc + 1,

for c ∈ π0 and αk ∈ t.

Proposition 5.3.1. Assume we are in the setup above. Then there is an isomorphism

L
∼−→

{
((Ac)c∈π0

, (λk)αk∈t) ∈
∏
c∈π0

GLnc+1 ×
∏
αk∈t

Gm

∣∣∣∣∣detAc =
∏
αk∈t

λ
mk,c(nc+1−ik,c)
k

}
(5.3.1)

with the property that for each αk ∈ t, the character $k of L is given by (5.3.1) composed

with the projection ((Ac)c∈π0 , (λj)αj∈t) 7→ λk.

Proof. Since both sides of (5.3.1) are split reductive groups over SpecZ, it is enough to

specify an isomorphism between their root data.

The root datum (M0,Ψ0,M
∨
0 ,Ψ

∨
0 ) of

∏
c∈π0

GLnc+1 ×
∏
αk∈tGm is specified as follows.

The weight lattice is

M0 =
⊕
c∈π0

Znc+1 ⊕
⊕
αk∈t

Zωk.

The roots and coroots Ψ0 and Ψ∨0 are determined by requiring that

{βc,j = ec,j − ec,j+1 | c ∈ π0 and 1 ≤ j ≤ nc} ⊆M0

be a set of positive simple roots for Ψ0, and that

β∨c,j = e∗c,j − e∗c,j+1

where {ec,j | 1 ≤ j ≤ nc + 1} is the standard basis for Znc+1, and e∗c,j ∈M∨0 satisfies

〈ec′,j′ , e∗c,j〉 =

1, if (c′, j′) = (c, j),

0, otherwise,
and 〈ωk, e∗c,j〉 = 0.
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The root datum (M,Ψ,M∨,Ψ∨) is given by setting

M =
M0

Z-span
{∑nc+1

j=1 ec,j −
∑
αk∈tmk,c(nc + 1− ik,c)ωk

∣∣∣ c ∈ π0

} ,
setting Ψ to be the image of Ψ0 in M , and setting Ψ∨ ⊆ M∨ to be the preimage of Ψ∨0
under the injection M∨ ↪→ M∨0 . Note that M is indeed a lattice, so this is the root datum

of a connected reductive group.

We define an isomorphism of (M,Ψ,M∨,Ψ∨) with the root datum (X∗(T ),Φt,X∗(T ),Φ∨t )

via the isomorphism

φ : X∗(T )
∼−→M∨

α∨c,j 7−→ e∗c,j − e∗c,j+1

α∨k 7−→ ω∗k +
∑
c∈π0

nc+1∑
j=ik,c+1

mk,ce
∗
c,j ,

for c ∈ π0, 1 ≤ j ≤ nc and αk ∈ t, where ω∗k ∈ M∨0 satisfies 〈ec,j , ω∗k〉 = 0 and 〈ωk′ , ω∗k〉 =

δk,k′ . It is clear by inspection that φ is a well-defined homomorphism of free abelian groups

such that the dual is surjective. Since M∨ and X∗(T ) have the same rank, φ is therefore

an isomorphism. To prove that φ defines an isomorphism of root data, it is enough to show

that φ : X∗(T ) → M∨ sends α∨c,j to β∨c,j and that φ∗ : M → X∗(T ) sends βc,j to αc,j for all

c ∈ π0 and 1 ≤ j ≤ nc. This is easily checked by direct calculation, so we are done.

Next, we state a version of Atiyah’s classification [A] of stable vector bundles on an

elliptic curve, adapted to our context.

Theorem 5.3.2. Let r > 0 and d be coprime integers. Then the determinant morphism

det : Bunss,dGLr
−→ PicdS(E) (5.3.2)

from the stack of semistable vector bundles on E of rank r and degree d to the Picard variety

of degree d line bundles on E is a Gm-gerbe, where BGm acts on Bunss,dGLr
through the centre

Gm = Z(GLr) in the usual way. If E → S has a section, then the gerbe (5.3.2) is trivial.

Remark 5.3.3. If V → Es is a vector bundle on a geometric fibre of E → S whose rank and

degree are coprime, then it is easy to see that semistability, stability, and indecomposability

of V are all equivalent. Moreover, if the rank and degree are not coprime, then V is never

stable.

Proof of Theorem 5.3.2. Since the claim is local on S for the fppf topology, we can assume

without loss of generality that E → S has a section OE : S → E.

We prove the theorem by induction on r. We first observe that for r = 1, the determinant

map is a Gm-gerbe by definition of the Picard scheme. It is trivial since there is a BGm-

equivariant morphism

O∗E : Bunss,dGL1
= BundGm −→ BSGm = S × BGm.

Now suppose r > 1 and that the theorem is true for all smaller r. Observe that for any

d ∈ Z, there is a commutative diagram

Bunss,dGLr
Bunss,d+r

GLr

PicdS(E) Picd+r
S (E)

∼

det det

∼

(5.3.3)
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where the horizontal arrows are the isomorphisms given by tensoring a vector bundle (resp.,

line bundle) with O(OE) (resp., O(rOE)), and the top one is BGm-equivariant. So we may

assume without loss of generality that 0 < d < r.

Let V → Bunss,dGLr
×SE be the universal vector bundle, and let p : Bunss,dGLr

×SE → Bunss,dGLr

denote the projection to the first factor. Consider the canonical exact sequence of coherent

sheaves on Bunss,dGLr
×S E,

0 −→ p∗p∗(V ) −→ V −→ V ′ −→ 0.

Since V is a family of semistable vector bundles on E of slope strictly less than 1, it follows

that the cokernel V ′ is itself a vector bundle, which is a family of indecomposable and

hence semistable bundles by [A, Lemma II.15]. This construction defines a BGm-equivariant

morphism

Bunss,dGLr
−→ Bunss,dGLr−d

(5.3.4)

over PicdS(E). By induction on r, to complete the proof of the theorem, it suffices to show

that (5.3.4) is an isomorphism.

We construct an inverse to (5.3.4) as follows. Let U → Bunss,dGLr−d
×S E be the universal

vector bundle. By Serre duality, there is a canonical morphism in the derived category

U −→ p∗Rp∗(U)⊗ q∗KE/S [1] = p∗(p∗(U)⊗ π∗
Bunss,dGLr

ω)[1], (5.3.5)

where q : Bunss,dGLr
×S E → E is the projection to the second factor, πBunss,dGLr

: Bunss,dGLr
→ S

is the structure morphism, and ω ∈ Pic(S) is the line bundle defined in §4.6. The morphism

(5.3.5) corresponds to an extension

0 −→ p∗(p∗(U)⊗ π∗
Bunss,dGLr

ω) −→ U ′ −→ U −→ 0

such that the induced connecting homomorphism p∗(U)→ R1p∗p
∗(p∗(U)⊗π∗

Bunss,dGLr

ω) is an

isomorphism. So by [A, Lemma II.16], U ′ is a family of semistable vector bundles on E, and

hence defines a morphism

Bunss,dGLr−d
−→ Bunss,dGLr

,

which is manifestly inverse to (5.3.4).

As an aside, we remark that in the case d = 1, the gerbe (5.3.2) is trivial even when

E → S does not have a section.

Proposition 5.3.4. For any r ∈ Z>0, the Gm-gerbe

det : Bunss,1GLr
−→ Pic1

S(E)

is trivial.

Proof. It suffices to construct a BGm-equivariant morphism

Bunss,1GLr
−→ BGm. (5.3.6)

Since the universal vector bundle Vr → Bunss,1GLr
×SE is a family of semistable vector bundles

of degree 1, by Lemma 2.6.3, it follows that p∗(Vr) is a line bundle on Bunss,1GLr
. This defines

the desired morphism (5.3.6). The corresponding section Pic1
S(E)→ Bunss,1GLr

is the unique

section such that the pullback of p∗(Vr) is trivial.
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Combining Proposition 5.3.1 and Theorem 5.3.2 gives the following description of the

stack of stable L-bundles. In what follows, for c ∈ π0, we write

λc =
∑
αk∈t

mk,c(nc + 1− ik,c)$k ∈ X∗(L).

Theorem 5.3.5. Let L ⊆ G be a Levi subgroup as above, and let µ ∈ X∗(L/[L,L]) be such

that for all c ∈ π0, 〈λc, µ〉 and nc + 1 are coprime. Then the natural morphism

($k)αk∈t : Bunss,µL −→
∏
αk∈t

Pic
〈$k,µ〉
S (E) (5.3.7)

is a Z(L)-gerbe, where the product is taken in the 2-category of stacks over S.

Proof. By Proposition 5.3.1, we can identify Bunss,µL with the fibre product

Bunss,µL

∏
c∈π0

Bun
ss,〈λc,µ〉
GLnc+1

∏
αk∈t Bun

〈$k,µ〉
Gm

∏
c∈π0

Bun
〈λc,µ〉
Gm .

det (5.3.8)

So, writing

X =
∏
αk∈t

Pic
〈$k,µ〉
S (E)×∏

c∈π0
Pic
〈λc,µ〉
S (E)

∏
c∈π0

Bun
ss,〈λc,µ〉
GLnc+1

and

X ′ =
∏
αk∈t

Pic
〈$k,µ〉
S (E)×∏

c∈π0
Pic
〈λc,µ〉
S (E)

∏
c∈π0

Bun
〈λc,µ〉
Gm ,

we have a Cartesian diagram

Bunss,µL X

∏
αk∈t Bun

〈$k,µ〉
Gm X ′

where, by Theorem 5.3.2, X, X ′ and
∏
αk∈t Bun

〈$kµ〉
Gm are

∏
c∈π0

Z(GLnc+1),
∏
c∈π0

Gm and∏
αk∈tGm-gerbes respectively over

∏
αk∈t Pic

〈$k,µ〉
S (E), and the morphisms are equivariant

with respect to the homomorphisms in the Cartesian diagram

BZ(L) B
∏
c∈π0

Z(GLnc+1)

B
∏
αk∈tGm B

∏
c∈π0

Gm.

det

It follows that (5.3.7) is a Z(L)-gerbe as claimed.

5.4 Regular unstable bundles and the Friedman-Morgan section

theorem

In this section, we introduce regular unstable bundles, and use them to prove the elliptic

analogue of the Kostant and Steinberg section theorems.
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Definition 5.4.1. Let αi ∈ ∆ be a simple root. We say that αi is special if αi is a long

root, the connected components of the Dynkin diagram of ∆\{αi} are all of type A, and αi

meets each such component at an end vertex. We call a principal bundle ξP for a parabolic

subgroup P ⊆ G special if P is the standard maximal parabolic of type {αi} with αi ∈ ∆

special, and ξP has slope −$∨i /〈$i, $
∨
i 〉.

Proposition 5.4.2. Let ξG → Es be an unstable G-bundle on a geometric fibre of E → S.

The following are equivalent.

(1) The Harder-Narasimhan reduction of ξG is special.

(2) dim Aut(ξG) = l + 2.

(3) dim Aut(ξG) ≤ l + 2.

(4) The Harder-Narasimhan locus of ξG has codimension l + 1.

(5) The Harder-Narasimhan locus of ξG has codimension ≤ l + 1.

Proof. It is clear that (2) ⇒ (3) and (4) ⇒ (5). We complete the proof by showing that

(3)⇒ (5)⇒ (1)⇒ (4) and (1)⇒ (2).

Fix once and for all a Harder-Narasimhan reduction ξP of ξG, where P is a standard

parabolic and let µ = µ(ξP ) be the slope of ξP . Then the codimension of the Harder-

Narasimhan locus of ξG is −〈2ρ, µ〉 by Proposition 2.6.7, and

dim Aut(ξG) = dim Aut(ξP ) = dim Aut(ξL)− 〈2ρ, µ〉,

where ξL = ξP ×P L is the associated bundle for the Levi factor L of P .

Assume (3). Then, since dim Aut(ξL) ≥ dimZ(L) ≥ 1, the codimension of the Harder-

Narasimhan locus of ξG is

−〈2ρ, µ〉 = dim Aut(ξG)− dim Aut(ξL) ≤ (l + 2)− 1 = l + 1,

which proves (5).

Now assume (5). The arguments of Proposition 2.6.8 show that there exists µ̃ =

−n$∨i /〈$i, $
∨
i 〉 for some n ∈ Z>0 and some αi ∈ ∆ such that −〈2ρ, µ〉 ≥ −〈2ρ, µ̃〉, with

equality if and only if P is of type {αi} and µ = µ̃. So we have

n
〈2ρ,$∨i 〉
〈$i, $∨i 〉

= −〈2ρ, µ̃〉 ≤ −〈2ρ, µ〉 ≤ l + 1.

But [FM2, Lemma 3.3.2] implies that this is the case if and only if αi is special and n = 1,

and that both inequalities above are in fact equalities in this case. This implies that the

Harder-Narasimhan reduction ξP is special, so (1) holds.

Now assume (1), i.e., that ξP is special. Then by [FM2, Lemma 3.3.2] again, the codi-

mension of the Harder-Narasimhan locus of ξG is −〈2ρ, µ〉 = l + 1, so (4) holds. Moreover,

by Theorem 5.3.5, dim Aut(ξL) = 1, so we have

dim Aut(ξG) = 1− 〈2ρ, µ〉 = l + 2,

and (2) holds as well. This completes the proof of the proposition.

Definition 5.4.3. Let ξG → Es be an unstable G-bundle on a geometric fibre of E → S.

We say that ξG is regular if it satisfies the equivalent conditions of Proposition 5.4.2.
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The next proposition uses Theorem 5.3.5 to classify regular unstable bundles up to

translation.

Proposition 5.4.4. Assume that E → S has a section OE : S → E, fix a special root

αi ∈ ∆ and let µ = −$∨i /〈$i, $
∨
i 〉. Then Bunss,µL,rig → Pic−1

S (E) and Bunss,µL,rig/E → S are

Z(L)rig-gerbes, and there exists a unique section S → Bunss,µL,rig lifting the section OE : S →
E ∼= Pic−1

S (E) such that the pullback of the theta bundle ΘBunG,rig to S is trivial.

Proof. Applying Theorem 5.3.5 to E → S and to the family E′ := S → BSE =: S′, we have

that

Bunss,µL −→ Pic−1
S (E) ∼= E

and

Bunss,µL /E = Bunss,µL/S′(E
′) −→ Pic−1

S′ (E′) ∼= E′ = S

are Z(L)-gerbes. Taking the quotient by BZ(G), we deduce that Bunss,µL,rig → Pic−1
S (E) and

Bunss,µL,rig/E → S are Z(L)rig = Z(L)/Z(G)-gerbes as claimed.

To construct the section S → Bunss,µL,rig, note that since (−µ | −) : Z(L)rig → Gm is an

isomorphism, the pullback of the theta bundle defines a BZ(L)rig-equivariant morphism

S ×Pic−1
S (E) Bunss,µL,rig −→ BGm ∼= BZ(L)rig

by Proposition 5.2.13. Since the source is a Z(L)rig = Gm-gerbe over S, it follows that there

is a unique section such that the pullback of ΘBunG,rig is trivial as claimed.

Fix a special root αi ∈ ∆ and let µ = −$∨i /〈$i, $
∨
i 〉, as above, and assume that E → S

has a section OE . Then the composition of the section S → Bunss,µL,rig of Proposition 5.4.4

with Bunss,µL,rig → Bunss,µL,rig/E is a section of a Z(L)rig = Gm-gerbe, and is hence smooth.

Since the pullback of the theta bundle to S is trivial, Z → BunG,rig is an equivariant slice

with equivariance group Z(L)rig and weight (µ | −) by Proposition 5.2.10. We therefore

have a Gm-equivariant commutative diagram

Z̃ Z

Θ−1
Y Ŷ //W

χ̃Z χZ

as in Remark 5.1.2.

Remark 5.4.5. Note that if the section S → Bunss,µL,rig factors through Bunss,µL , then the

slice Z constructed above factors through a morphism Z → BunG. However, even when this

happens, this morphism will not necessarily be a slice unless S × Z(L)→ S is smooth, i.e.,

unless S → SpecZ avoids all primes at which Z(L) is non-reduced.

Theorem 5.4.6 (Friedman-Morgan section theorem). In the setup above, the composition

χZ : Z −→ (Θ−1
BunG,rig

)∗ −→ Ŷ //W

is a Gm-equivariant isomorphism. In particular, the rigidified coarse quotient map

χ : BunG,rig → (Ŷ //W )/Gm

admits a section.
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Theorem 5.4.6 is originally due, in a slightly different form, to Friedman and Morgan

[FM2, Theorem 5.1.1]. We give a different proof to theirs below, relying on a computation

of the pullback Z̃ = Z ×BunG,rig B̃unG,rig of the elliptic Grothendieck-Springer resolution to

the slice Z.

The first step is to identify those Dλ(Z) ⊆ Z̃ that are nonempty, where we recall the

notation Dλ(Z) from §5.1.

Lemma 5.4.7. Assume λ ∈ X∗(T )+ and λ 6= α∨i . Then Dλ(Z) = ∅.

Proof. Assume for a contradiction that there exists λ ∈ X∗(T )+ with λ 6= α∨i andDλ(Z) 6= ∅.
Since λ 6= α∨i , there exists αj ∈ ∆ such that 〈$j , λ〉 > 0 and

µ′ = − 〈$j , λ〉
〈$j , $∨j 〉

$∨j 6= µ.

Since Dλ(Z) 6= ∅, it follows that Z ×BunG,rig Bun−λB,rig, and hence Z ×BunG,rig Bunµ
′

Pj ,rig
, is

nonempty, where Pj is the standard maximal parabolic of type {αj}. Lemma 5.2.14 implies

that 〈2ρ, µ′〉 < 〈2ρµ〉 = l + 1, contradicting [FM2, Lemma 3.3.2], so we are done.

Lemma 5.4.8. The morphism Z̃ → Θ−1
Y is representable, separated, of finite type, and flat

of relative dimension 0. For all λ ∈ X∗(T ), the morphism Dλ(Z) → Y is representable,

separated, and étale.

Proof. First note that Lemma 5.4.7 implies that no point of Z̃ can have nontrivial auto-

morphism group relative to Z. So Theorem 3.1.7 implies that Z̃ → Z is representable and

projective. In particular, Z̃, Dλ(Z), Y and Θ−1
Y are all representable, separated and of finite

type over S, so the morphisms Z̃ → Θ−1
Y and Dλ(Z) → Y are necessarily representable,

separated and of finite type as well.

Next, observe that since Y → S is projective and ΘY ∈ Pic(Y ) is ample relative to S, the

action of E on the pair (Y,ΘY ) is trivial relative to S, since it must be trivial on the sheaf

of graded algebras
⊕

d πY ∗Θ
⊗d
Y as E is an elliptic curve. So we have canonical isomorphisms

Y/E ∼= Y ×S BSE and Θ−1
Y /E ∼= Θ−1

Y ×S BSE. So the morphism Z̃ → Θ−1
Y factors as

Z̃ −→ (ψ∗Θ−1
BunG,rig

)∗/E −→ Θ−1
Y /E = Θ−1

Y ×S BSE −→ Θ−1
Y (5.4.1)

Since Z is an equivariant slice of BunG,rig, Proposition 5.1.3 implies that Z → (Θ−1
BunG,rig

)∗/E

is flat, and hence so is the pullback Z̃ → (ψ∗Θ−1
BunG,rig

)∗/E along ψ : B̃unG,rig → BunG,rig.

So by Proposition 4.5.5, the composition (5.4.1) is flat. By Proposition 5.2.8, Z has dimen-

sion 〈2ρP+ , µ〉 = −〈2ρ, µ〉 = l + 1 relative to S, where P+ is the unique parabolic subgroup

with Levi factor L for which −µ is a Harder-Narasimhan vector. (Note that P+ contains

the Borel subgroup spanned by positive root subgroups.) Since B̃unG,rig → BunG,rig is

generically finite, Z̃ must also have dimension l+ 1 relative to S. Since Θ−1
Y has dimension

l + 1 relative to S, the flat morphism Z̃ → Θ−1
Y must have relative dimension 0 as claimed.

Similarly, the morphism

Z̃ −→ B̃unG,rig/E −→ (Y ×S DegS(E))/E ∼= Y ×S DegS(E)/E

is smooth. Since the boundary divisor D ⊆ DegS(E) is a reduced divisor with normal

crossings relative to S, the closed substack D(Z) = Z̃ ×DegS(E) D = Z̃ ×Y×SDegS(E)/E

(Y ×S (D/E)) is a reduced divisor with normal crossings relative to Y . Since Z̃ → Y has

relative dimension 1, the irreducible components Dλ(Z) of D(Z) are therefore disjoint and

smooth of relative dimension 0, hence étale, over Y .
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Recall the notation Y λ of Definition 4.1.5.

Lemma 5.4.9. There is an isomorphism

Bun
−α∨i
L∩B ×BunµL

Bunss,µL
∼−→ Y −α

∨
i ×Pic−1

S (E) Bunss,µL

and hence an isomorphism

Bun
−α∨i
L∩B,rig ×BunµL,rig

Bunss,µL,rig
∼−→ Y −α

∨
i ×Pic−1

S (E) Bunss,µL,rig

sending an L ∩B-bundle to its associated T -bundle and L-bundle.

Proof. Using the isomorphism of Proposition 5.3.1, the claim reduces easily to Lemma 5.4.10

below.

In the following lemma, we write

Qnr = {(ap,q)1≤p,q≤n ∈ GLn | ap,q = 0 if p < min(q, r)} ⊆ GLn,

for 1 ≤ r ≤ n. For 1 ≤ i ≤ n, we write ei ∈ X∗(TQnn) for the character sending a

diagonal matrix to its ith entry, and we write {e∗1, . . . , e∗n} ⊆ X∗(TQnn) for the basis dual to

{e1, . . . , en}. If λ ∈ X∗(TQnn), we will also write λ for its image in X∗(TQnr ).

Lemma 5.4.10. Let n > 0 and 1 ≤ r ≤ n. Then the morphism

Bun
−e∗n
Qnr
×Bun−1

GLn

Bunss,−1
GLn

−→ Y
−e∗n
Qnr
×Pic−1

S (E) Bunss,−1
GLn

(5.4.2)

is an isomorphism, where the morphisms Y
−e∗n
Qnr

→ Pic−1
S (E) and Bunss,−1

GLn
→ Pic−1

S (E) are

both given by the determinant.

Proof. For the sake of brevity, we will write

(Bun
−e∗n
Qnr

)ss = Bun
−e∗n
Qnr
×Bun−1

GLn

Bunss,−1
GLn

.

We prove the claim by induction on r. For r = 1, the claim is true since Qn1 = GLn and

Y
−e∗n
Qn1

= Pic−1
S (E).

Next, suppose that r = 2. In this case, we construct an inverse to (5.4.2) as follows.

Let V → Y
−e∗n
Qn2

×Pic−1
S (E) Bunss,−1

GLn
×S E be the pullback of the universal vector bundle on

Bunss,−1
GLn

×S E and let Me1 → Y
−e∗n
Qn2
×Pic−1

S (E) Bunss,−1
GLn

×S E be the pullback of the degree

0 line bundle on Y
−e∗n
Qn2

×S E associated to the character e1. Writing p : Y
−e∗n
Qn2

×Pic−1
S (E)

Bunss,−1
GLn

×S E → Y
−e∗n
Qn2

×Pic−1
S (E) Bunss,−1

GLn
for the projection to the first two factors, we

have that N = p∗(Me1⊗V ∨) is a line bundle since Me1⊗V ∨ is a family of semistable vector

bundles of degree 1. By semistability of V , we therefore have a natural exact sequence

0 −→ V ′ −→ V −→Me1 ⊗ p∗N−1 −→ 0, (5.4.3)

where Me1 ⊗ p∗N−1 is a line bundle fibrewise of degree 0 and V ′ is a vector bundle of rank

n − 1 and degree −1. The exact sequence (5.4.3) defines a degree −e∗n reduction to Qn2 of

the pullback of the universal GLn-bundle, and hence a morphism

Y
−e∗n
Qn2
×Pic−1

S (E) Bunss,−1
GLn

−→ (Bun
−e∗n
Qn2

)ss,

which is easily shown to be inverse to (5.4.2). This proves the claim for r = 2.
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Finally, assume that r > 2 and the lemma holds for all smaller r. We need to show that

the outer square in the commutative diagram

(Bun
−e∗n
Qnr

)ss (Bun
−e∗n
Qnr−1

)ss Bunss,−1
GLn

Y
−e∗n
Qnr

Y
−e∗n
Qnr−1

Pic−1
S (E)

(5.4.4)

is Cartesian. Since the rightmost square is Cartesian by induction, it suffices to show that

the leftmost suqare is Cartesian.

Observe that there is a surjective homomorphism Qnr−1 → GLn−r+2 given by forgetting

the first r−2 rows and columns, such thatQnr ⊆ Qnr−1 is the preimage ofQn−r+2
2 ⊆ GLn−r+2.

Since the morphism

Bun
−e∗n
Qnr−1

−→ Bun−1
GLn−r+2

sends (Bun
−e∗n
Qnr−1

)ss to Bunss,−1
GLn−r+2

by [A, Lemma II.15], we therefore have a diagram

(Bun
−e∗n
Qnr

)ss (Bun
e∗n−r+2

Qn−r+2
2

)ss Y
−e∗n−r+2

Qn−r+2
2

(Bun
−e∗n
Qnr−1

)ss Bunss,−1
GLn−r+2

Pic−1
S (E)

in which the leftmost square is Cartesian. Since the rightmost square is also Cartesian by

induction, the outer square is also. This is also the outermost square in the diagram

(Bun
−e∗n
Qnr

)ss Y
−e∗n
Qnr

Y
−e∗n−r+2

Qn−r+2
2

(Bun
−e∗n
Qnr−1

)ss Y
−e∗n
Qnr−1

Pic−1
S (E).

It is easy to see that the rightmost square in this diagram is Cartesian and hence so is the

leftmost square. But this coincides with the leftmost square of (5.4.4), so we are done.

Proposition 5.4.11. The morphism Dα∨i
(Z)→ Y is an isomorphism.

Proof. Since the claim is local on S, we can assume for convenience that S → Bunss,µL,rig

factors through Bunss,µL , and hence that Z → BunG,rig factors through BunG.

Since every domain curve parametrised by a point in Dα∨i
(Z) has dual graph τ0

α∨i
, by

Proposition 3.4.13 there is an isomorphism

Dα∨i
(Z) ∼= M◦Z(ξG/B, τ

0
α∨i

) = M◦1,1,Z(ξG/B, (−α∨i , 1))×ξG/B M
◦
0,1,Z(ξG/B, (α

∨
i , 0)),

where ξG → Z ×S E is the G-bundle classified by Z → BunG. Proposition 3.4.10 implies

that the evaluation morphism M0,1,Z(ξG/B, (α
∨
i , 0))→ ξG/B is an isomorphism, so we have

a canonical identification

Dα∨i
(Z) ∼= M◦1,1,Z(ξG/B, (−α∨i , 1)) = E ×S Bun

−α∨i
B,rig ×BunG,rig Z. (5.4.5)
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Observe that Proposition 5.1.4 and 5.4.2 show that the morphism Bun
−α∨i
B,rig×BunG,rigZ →

Z must factor through the natural Gm-fixed section S → Z. So we have

Bun
−α∨i
B,rig ×BunG,rig Z = Bun

−α∨i
B,rig ×BunG,rig S,

where the morphism S → BunG,rig factors through the section S → Bunss,µL,rig of Proposition

5.4.4.

Let P ⊆ G be the standard parabolic subgroup with Levi factor L, and consider the

locally closed Bruhat cells

Cw = C
w,−α∨i
P,B/S,rig(E)×BunP,rig S ⊆ Bun

−α∨i
B,rig ×BunG,rig S,

for w ∈ W 0
P , where C

w,−α∨i
P,B/S,rig(E) ⊆ BunP,rig ×BunG,rig BunB,rig is the rigidification of the

locally closed substack C
w,−α∨i
P,B/S (E) ⊆ BunP ×BunG BunB defined in §3.7. Then Proposition

3.7.6 and Lemma 5.4.7 imply that

Bun
−α∨i
B,rig ×BunG,rig S =

⋃
w∈W 0

P

Cw.

Assume that w ∈W 0
P with Cw 6= ∅. Then there exists a geometric point s : Spec k → S

with corresponding L-bundle ξL → Es and a section σL : Es → ξL ×L L/(L ∩ B) of degree

[σL] = −wα∨i ∈ Φ∨. Since ξL has slope µ, we must have 〈$i, [σL]〉 = −1 and hence

[σL] ∈ Φ∨− ⊆ X∗(T )−. Since [σL] is the degree of the section

σ′ : Es
σ−→ ξL ×L L/(L ∩B) ↪−→ ξL ×L G/B,

Lemma 5.4.7 implies that we must have [σL] = −α∨i . So w ∈ W 0
P and wα∨i = α∨i , which

implies that w−1(Φ∨+) = Φ∨+, and hence w = 1. So Cw = ∅ for w 6= 1, and hence the closed

immersion

C1 ↪−→ Bun
−α∨i
B,rig ×BunG,rig S (5.4.6)

is surjective on geometric points. SinceDα∨i
(Z) is étale over Y , hence reduced, Bun

−α∨i
B,rig×BunG,rig

S is reduced as well, so (5.4.6) is an isomorphism. But by Lemma 5.4.9,

C1 = Bun
−α∨i
L∩B,rig ×BunµL,rig

S
∼−→ Y −α

∨
i ×Pic−1

S (E) {O(−OE)},

is an isomorphism, where the morphism Y −α
∨
i → Pic−1

S (E) is induced by the character

$i : T → Gm. So by (5.4.5) and Proposition 3.5.5, we can identify the morphism Dα∨i
(Z)→

Y with the isomorphism

E ×S Y −α
∨
i ×Pic−1

S (E) {O(−OE)} −→ Y

(p, ξT ) 7−→ α∨i (O(p))⊗ ξT ,

which completes the proof of the proposition.

Corollary 5.4.12. The morphism χ̃−1
Z (0Θ−1

Y
)→ 0Θ−1

Y
= Y is an isomorphism, where 0Θ−1

Y

denotes the zero section of Θ−1
Y .

Proof. Since Z is a slice of BunG,rig, Corollary 4.5.9 implies that

χ̃−1
Z (0Θ−1

Y
) =

∑
λ∈X∗(T )+

1

2
(λ |λ)Dλ(Z).

Applying Lemma 5.4.7, this simplifies to

χ̃−1
Z (0Θ−1

Y
) =

1

2
(α∨i |α∨i )Dα∨i

(Z) = Dα∨i
(Z).

The claim now follows from Proposition 5.4.11.
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Proposition 5.4.13. The morphism Z̃ → Θ−1
Y is an isomorphism.

The idea behind the proof of Proposition 5.4.13 is to use the Gm-action on Z̃ and Θ−1
Y

to reduce to Proposition 5.4.11. The key tool is the following technical lemma.

Lemma 5.4.14. Suppose that f : X → X ′ is a proper representable Gm-equivariant mor-

phism of stacks and that X ′0 ⊆ X ′ and X0 ⊆ f−1(X ′0) are closed substacks satisfying the

following conditions.

(1) X0 = f−1(X ′0) set-theoretically.

(2) Gm acts trivially on the closed substacks X ′0 and X0.

(3) There exists a Gm-equivariant retraction X ′ → X ′0 so that X ′ is an affine space bundle

over X ′0 on which Gm acts with positive weights.

(4) The induced action of Gm on the normal cone CX0/X has a single nonzero weight.

Then there is a unique Gm-equivariant isomorphism X ∼= CX0/X over X ′0 sending X0 ⊆ X

to the zero section via the identity and inducing the identity on normal cones.

Proof. We first remark that since Gm acts on CX0/X with a single nonzero weight, every

Gm-equivariant automorphism of CX0/X that acts as the identity on X0 and the normal

cone of X0 in CX0/X is (canonically 2-isomorphic to) the identity. So uniqueness follows.

The idea behind the proof of existence is to show that the deformation to the normal

cone is trivial. We do this by first compactifying, so that we are in a position to apply the

Grothendieck existence theorem, and then showing that the deformation is trivial infinites-

imally.

First note that by the uniqueness just shown, we can reduce the proof of existence by

descent to the case where X ′0 = SpecA for some Noetherian ring A. Again using uniqueness

and fpqc descent for morphisms of separated algebraic spaces, it suffices to show that the

desired isomorphism exists after base change along the fpqc morphism SpecAJtK[t−1] →
SpecA.

Let C → SpecA[t] and C ′ → SpecA[t] denote the deformations to the normal cone of

X0 in X and X ′0 in X ′ respectively. Then there are canonical inclusions

X0 ×SpecA SpecA[t] ↪−→ C, and X ′0 ×SpecA SpecA[t] = SpecA[t] ↪−→ C ′.

Define compactifications

C̄ = ((C×A1)\(X0×SpecASpecA[t]×{0}))/Gm and C̄ ′ = ((C ′×A1)\(SpecA[t]×{0}))/Gm,

where Gm acts on C and C ′ over SpecAJtK via the action induced from the action on X

and X ′, and Gm acts on A1 via the usual weight 1 action. Then C ′ → SpecA[t] is an affine

space bundle on which Gm acts with positive weights, and hence C̄ ′ → SpecA[t] is a bundle

of weighted projective spaces, and in particular proper. We also have that C → C ′ factors

as

C ↪−→ C ′ ×X′ X −→ C ′,

where the first morphism is a closed immersion, hence proper, and the second morphism

is proper by assumption on f . So C → C ′ is proper, and hence so are C̄ → C̄ ′ and

C̄ → SpecA[t]. We also write

C̄X0/X = ((CX0/X × A1) \ (X0 × {0}))/Gm = C̄ ×SpecA[t],t7→0 SpecA,
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and observe that C̄X0/X → X ′0 = SpecA is also proper. Note also that we have divisors

at infinity (CX0/X \ X0)/Gm ⊆ C̄X0/X and (C \ X0 ×SpecA SpecA[t])/Gm ⊆ C̄ whose

complements are canonically isomorphic to CX0/X and C respectively.

We claim that there is a unique Gm-equivariant isomorphism C∧ ∼= CX0/X ×SpecA

Spf AJtK of formal stacks over Spf AJtK acting as the identity on X0 ×SpecA Spf AJtK and

on the normal cone of X0 ×SpecA Spf AJtK in both sides. Given the claim, this extends to

an isomorphism between proper formal stacks C̄∧ ∼= C̄X0/X ×SpecA Spf AJtK, and hence an

isomorphism C̄×SpecA[t] SpecAJtK ∼= C̄X0/X×SpecASpecAJtK by the Grothendieck existence

theorem. Since this isomorphism identifies the divisors at infinity and since the restricted

deformation to the normal cone C → SpecA[t, t−1] is canonically trivial, it restricts to give

the desired isomorphism

X ×SpecA SpecAJtK[t−1] ∼= CX0/X ×SpecA SpecAJtK[t−1].

To prove the claim, it is enough to prove existence and uniqueness of isomorphisms

Cn ∼= CX0/X ×SpecA SpecA[t]/(tn) for all n ≥ 0 with the desired properties, where Cn =

C ×SpecA[t] SpecA[t]/(tn). Uniqueness is clear. Letting U = SpecR0 be any affine étale

chart for X0 (note that X0 is an algebraic space since f is representable), we have an affine

étale chart

CX0/X ×X0
U = Spec

⊕
d≥0

Rd

for CX0/X , which lifts to a canonical Gm-equivariant affine étale chart

Vn = Spec
⊕
d∈Z

Rn,d

for Cn since Cn is a nilpotent thickening of CX0/X , where the gradings are induced by the

Gm-action. From the flatness properties of the deformation to the normal cone, we deduce

that the map U ×SpecA SpecA[t]/(tn) = SpecR0[t]/(tn) → Vn induces an isomorphism

Rn,0 ∼= R0[t]/(tn), that Rn,d = 0 for all d < 0, and that
⊕

dRn,d is generated by Rn,0 and

Rn,d0 , where d0 = min{d > 0 | Rd 6= 0} is the single weight of Gm acting on CX0/X . So

Vn is canonically identified with the normal cone of U ×SpecA SpecA[t]/(tn) in Vn. But this

is in turn canonically isomorphic to CX0/X ×X0
U since the normal cone is constant in the

deformation to the normal cone. By uniqueness of this identification, it glues over all étale

affine charts of X0 to give the desired isomorphism Cn ∼= CX0/X ×SpecA SpecA[t]/(tn).

Proof of Proposition 5.4.13. Applying Lemma 5.4.14 to the morphism Z̃ → Z, we deduce

that Z̃ is Gm-equivariantly isomorphic to a line bundle over Dα∨i
(Z) = Y . So by Corollary

5.4.12, χ̃Z : Z̃ → Θ−1
Y is a morphism of line bundles over Y such that the preimage of the

zero section is the zero section, and is therefore an isomorphism.

Proof of Theorem 5.4.6. Let Zss,reg ⊆ Z and Z̃ss,reg ⊆ Z̃ denote the preimages of Bunss,regG,rig

in Z and Z̃ respectively. Since the morphism Z → BunG,rig/E is smooth and Z → S is

surjective, Propositions 4.3.14 and 4.3.15 imply that Z̃ss,reg → Zss,reg is a ramified Galois

cover relative to S with Galois group W , and that Zss,reg ⊆ Z and Z̃ss,reg ⊆ Zss =

χ̃−1
Z ((Θ−1

Y )∗) are big relative to S. So, since Z and Ŷ //W are affine over S, there is a
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commutative diagram

Z̃ss SpecπZ̃ss∗O Spec(πZ̃ss,reg∗O)W Z

(Θ−1
Y )∗ Specπ(Θ−1

Y )∗∗O Spec(π(Θ−1
Y )∗∗O)W Ŷ //W,

∼ ∼

∼

∼ χZ

∼

where the vertical arrows are isomorphisms by Proposition 5.4.13, and the horizontal arrows

marked are isomorphisms either by construction or by ramified Galois descent for regular

functions. So χZ is an isomorphism, which completes the proof of the theorem.

5.5 Applications of the Friedman-Morgan section theorem

In this section, we give some applications of the Friedman-Morgan section theorem.

Corollary 5.5.1 (cf., [L2, Theorem 3.4]). The quotient Ŷ //W is an affine space bundle over

S, on which Gm acts linearly and with positive weights.

Proof. This is immediate from Theorem 5.4.6 since the claim holds for the slice Z → S by

Proposition 5.2.6.

Corollary 5.5.2. The coarse quotient map χ : BunG → (Ŷ //W )/Gm is flat.

Proof. Since (Ŷ //W )/Gm is smooth over S, hence regular, this follows from Proposition

4.5.5.

Theorem 5.4.6 also has applications to the theory of regular semistable bundles. We first

note the following properties of the G-bundles arising from regular slices.

Proposition 5.5.3. Let Z → BunG,rig be as in Theorem 5.4.6, let z : Spec k → Z be a

geometric point not fixed under the Gm-action, and let ξG,z → Es be the corresponding G-

bundle. Then the G-bundle ξG,z is regular semistable in the sense of Definition 4.3.7, and

dim Aut(ξG,z) = l.

Proof. We can assume for simplicity that S = Spec k.

Since z does not map to the image 0 of the cone point in Ŷ //W , ξG,z is semistable by

Proposition 4.5.4. Since the morphism Z̃ → Z can be identified with Θ−1
Y → Ŷ //W , it is

finite over z, so dimψ−1(ξG,z) = 0 and ξG,z is regular.

To show that dim Aut(ξG,z) = l, let x be the image of z in BunG,rig, and let x′ be its

image in BunG,rig/E. By Lemma 5.5.4 below, any translate of x is isomorphic to x, so the

E-action on BunG,rig restricts to an action on BAut(x) with quotient BAut(x′). So we have

dim Aut(x′) = dim Aut(x) + 1 = dim Aut(ξG,z) + 1.

Since the morphism Z → BunG,rig/E is smooth and BunG,rig/E has dimension −1, the

locally closed substack

BAut(x′)×BunG,rig/E Z ↪−→ Z

has codimension dim Aut(x′)− 1 = dim Aut(ξG,z). But it is clear from Theorem 5.4.6 that

this is simply the Gm-orbit of z, which has codimension l, so we are done.

Given a point y : Spec k → Y over s : Spec k → S, we write

Uy =
∏
α∈Φ−
α(y)=0

Uα ⊆ Ru(B).
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Note that the group scheme ξT ×T Uy on Es is canonically isomorphic to Uy × Es once we

fix a trivialisation of the associated Ty-bundle, where Ty is the torus with character group

ZΦy, Φy = {α ∈ Φ | α(y) = 0} and ξT is the T -bundle corresponding to y. We also write

Uy/[Uy, Uy] =
∏
α∈∆y

U−α.

Lemma 5.5.4. Fix a geometric point s : Spec k → S and a semistable G-bundle ξG → Es.

Then any translate of ξG is isomorphic to ξG.

Proof. For ease of notation, we may as well assume that S = Spec k. We need to show

that for any x : Spec k → E, we have t∗xξG
∼= ξG, where tx : E → E is the translation by x.

Since ξG is semistable, there exists a B-reduction ξB of ξG of degree 0. We will show that

t∗xξB
∼= ξB as B-bundles.

Writing ξT = ξB ×B T for the associated T -bundle, and y ∈ Y for the point classifying

ξT , by Lemma 4.3.11, we have that ξB reduces canonically to a TUy-bundle ξTUy . Moreover,

we have t∗xξT
∼= ξT since ξT has degree 0 (this follows from translation invariance for degree 0

line bundles). Fixing such an isomorphism and a trivialisation of the associated Ty-bundle,

and hence an isomorphism ξT ×T Uy ∼= E × Uy as above, we have that the Uy-bundle

t∗xξTUy/T is the image of the Uy-bundle ξTUy/T under the homomorphism

H1(E,Uy)
t∗x−→ H1(E,Uy)

t−→ H1(E,Uy),

where the second morphism is induced by some element t of T acting on Uy determined by

our choice of isomorphism t∗xξT
∼= ξT . Since the translation action of E on H1(E,Uy) is

trivial, since H1(E,Uy) is an affine variety, the morphism t∗x above is the identity. It follows

that t∗xξTUy
∼= ξTUy , and hence t∗xξG

∼= ξG as claimed.

The next result is the analogue of [S6, §3.7, Theorem 2] for elliptic Springer theory.

Proposition 5.5.5. Let ξG ∈ BunssG be a semistable G-bundle on a geometric fibre Es of

E → S. Then dim Aut(ξG) ≥ l, and the following are equivalent.

(1) The bundle ξG is regular.

(2) dim Aut(ξG) = l.

(3) For any degree 0 reduction ξB of ξG to B with associated T -bundle ξT corresponding

to y ∈ Y , the associated ξT ×T Ru(B)-bundle ξB/T is induced from a Uy-bundle with

nontrivial associated U−α-bundles for α ∈ ∆y.

(4) For some degree 0 reduction ξB of ξG to B with associated T -bundle ξT corresponding

to y ∈ Y , the associated ξT ×T Ru(B)-bundle ξB/T is induced from a Uy-bundle with

nontrivial associated U−α-bundles for α ∈ ∆y.

Moreover, there is a unique G-bundle satisfying the above equivalent conditions in every

geometric fibre of χss : BunssG → Y //W .

Proof. Since the statement only concerns individual G-bundles on geometric fibres of E → S,

we may assume for simplicity that S = Spec k for k some algebraically closed field, and that

ξG → Es = E is defined over k.

To show that dim Aut(ξG) ≥ l, fix any reduction ξB ∈ B̃un
ss

G of ξG to a B-bundle of

degree 0, and write ξT = ξB ×B T . Note that Aut(ξB) is a closed subgroup of Aut(ξG), so
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dim Aut(ξG) ≥ dim Aut(ξB). Moerover, there is a commutative diagram

BAut(ξB) B̃un
ss

G

BAut(ξT ) Bun0
T

where the top and bottom horizontal arrows are locally closed immersions of codimension

dim Aut(ξB) and dim Aut(ξT ) respectively (since both target stacks have dimension 0), and

the right hand vertical arrow is smooth. It follows that dim Aut(ξG) ≥ dim Aut(ξB) ≥
dim Aut(ξT ) = l.

To prove the equivalence of (1), (2), (3) and (4), we first remark that by Lemma 4.3.11,

for every degree 0 B-bundle ξB with image y ∈ Y , the associated ξT ×T Ru(B)-bundle ξB/T

reduces canonically to Uy.

It is clear that (3)⇒ (4). We show that (4)⇒ (2)⇒ (3) and (4)⇒ (1)⇒ (3).

Assume (4) holds, and let ξUy be the reduction of ξB/T to Uy. Observe that the set

of Uy-bundles ηUy such that the induced G-bundle ηG is regular with dim Aut(ηG) = l is

open, and nonempty by Proposition 5.5.3 and the existence of reductions to Uy remarked

above. So we can find ηUy with these properties such that all the associated U−α-bundles

are nontrivial for α ∈ ∆y. We will show that ξG ∼= ηG, from which we can deduce (1) and

(2), as well as the uniqueness statement of the proposition.

First, observe that ∆y is a set of positive simple roots for the root system Φy = {α ∈
Φ | α(y) = 0}. In particular, the homomorphism

T −→ G∆y
m = Ty

t 7−→ (α(t))α∈∆y

is surjective, with kernel Ky of dimension l − |∆y|. So T = Aut(ξT ) acts transitively on

the subset of points in
∏
α∈∆y

H1(E,U−α) with nonzero projection to each factor. So,

acting by automorphisms of ξT if necessary, we may assume that ηUy ×Uy Uy/[Uy, Uy] ∼=
ξUy ×Uy Uy/[Uy, Uy]. To prove ηUy

∼= ξUy , and hence ηG ∼= ξG, it will suffice to show that

the diagram

BAut(ηUy ) BunUy

BAut(ηUy ×Uy Uy/[Uy, Uy]) BunUy/[Uy,Uy ]

(5.5.1)

is a pullback.

Observe that, since Ky acts trivially on Uy by definition, it also acts trivially on BunUy ,

so BunUy/T is a Ky-gerbe over BunUy/Ty. Since BunUy/T embeds into Bun0
B as the fibre

over y ∈ Y , we therefore have

l = dim Aut(ηG) ≥ dim Aut(ηB) ≥ dim Aut(ηUy ) + l − |∆y|

and hence dim Aut(ηUy ) ≤ |∆y|. But since the top and bottom arrows of (5.5.1) are locally

closed immersions of codimensions dim Aut(ηUy ) and dim Aut(ηUy ×Uy Uy/[Uy, Uy]) = |∆y|
respectively and the right vertical morphism is smooth, we have that dim Aut(ηUy ) ≥ |∆y|,
and hence dim Aut(ηUy ) = |∆y|. So the locally closed immersion of BAut(ηUy ) into the

pullback induced by (5.5.1) has codimension 0. But since Uy and Uy/[Uy, Uy] are unipotent,
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this is actually a closed immersion by Proposition 2.4.6, hence an isomorphism since the

pullback is smooth and connected. This completes the proof that (4)⇒ (1) and (4)⇒ (2).

We prove (1)⇒ (3) via the contrapositive. Assume that (3) is false, and choose a degree

0 reduction ξB with with associated T -bundle ξT corresponding to y ∈ Y induced from ξTUy ,

and α ∈ ∆y such that the associated U−α-bundle ξU−α is trivial. The space Csα of sections

of

ξTUy ×TUy BsαB/B = ξTUy ×TUy Ru(B)/(Ru(B) ∩ sαRu(B)sα)

embeds as a locally closed subscheme of ψ−1(ξG). But the image of U−α in Ru(B)/(Ru(B)∩
sαRu(B)sα) is TUy-invariant, so gives a closed immersion

ξU−α = E × U−α ↪−→ ξTUy ×TUy Ru(B)/(Ru(B) ∩ sαRu(B)sα)

and hence a locally closed immersion A1
k ↪→ Csα ↪→ ψ−1(ξG), from which we deduce

dimψ−1(ξG) > 0. So ξG is not regular.

Finally, to prove that (2)⇒ (3), note that any reduction ξTUy ∈ BunUy/T ⊆ Bun0
B of a

bundle ξG with dim Aut(ξG) = l must satisfy dim Aut(ξTUy ) ≤ l. So

BAut(ξTUy ) ↪−→ BunUy/T

is a locally closed immersion of codimension ≤ 0, hence an open immersion. Since BunUy/T

is irreducible, this open substack meets the open substack of points with nontrivial associated

U−α-bundles for all α ∈ ∆y, so ξTUy itself must have nontrivial associated U−α-bundle, and

we are done.

As the terminology suggests, the regular semistable and regular unstable G-bundles

can be grouped together into a single open substack of BunG. In what follows, we define

BunregG ⊆ BunG to be the union over all open substacks U ⊆ BunG such that the morphism

ψ−1(U) −→ U ×(Ŷ //W )/Gm Θ−1
Y /Gm (5.5.2)

is an isomorphism.

Proposition 5.5.6. The open substack BunregG ⊆ BunG is dense in every geometric fibre of

χ : BunG → (Ŷ //W )/Gm, and big relative to S.

Proof. Let {α1, . . . , αn} ⊆ ∆ denote the set of special roots, and let Z1, . . . , Zn be the

corresponding regular slices of BunG,rig. Let U ⊆ BunG be the preimage in BunG of

the union of the images of Zi → BunG,rig/E. Note that this is open since each Zi →
BunG,rig/E is smooth. By Proposition 5.4.13 and Theorem 5.4.6, it is clear that (5.5.2)

is an isomorphism, so U ⊆ BunregG . Note that U contains all regular unstable bundles by

construction and that Propositions 5.5.3 and 5.5.5 imply that U also contains all regular

semistable bundles, so the same is true for BunregG .

We first show that for every x ∈ (Ŷ //W )/Gm, χ−1(x) ∩ BunregG is dense in χ−1(x). For

x not in the zero section of Ŷ //W → S, this is clear since Proposition 5.5.5 implies that

χ−1(x) ∩ BunregG is open and nonempty, and that χ−1(x) is irreducible. For x in the zero

section, note that since Ŷ //W is regular, the inclusion {x} ↪→ Ŷ //W is a local complete

intersection morphism. So by Corollary 5.5.2, χ−1(x) is a local complete intersection stack,

hence of pure dimension. Since χ−1(x) is the locus of unstable bundles on some fibre of E →
S, BunregG meets every irreducible component of χ−1(x) by construction, so BunregG ∩χ−1(x)

is dense in χ−1(x) as claimed.

Finally, notice that Bunss,regG ⊆ BunregG , and the complement of BunssG in BunG has

codimension at least 2, so BunregG ⊆ BunG is big by Proposition 4.3.15.
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Corollary 5.5.7. The elliptic Grothendieck-Springer resolution

B̃unG BunG

Θ−1
Y /Gm (Ŷ //W )/Gm

ψ

χ̃ χ

q

and its rigidification are simultaneous log resolutions in the sense of Definition 1.0.2.

Proof. It is enough to prove the claim for the non-rigidified diagram: the statement for

rigidification follows immediately by descent along the gerbe BunG → BunG,rig. For the

non-rigidified diagram, condition (1) of Definition 1.0.2 holds by Propositions 4.1.1 and 4.5.5

and Corollary 5.5.2, condition (2) holds by Proposition 5.5.6, and (3) holds by Corollaries

3.5.4, 4.1.3 and 4.5.9.

We also have the following useful result on connectedness of elliptic Springer fibres.

Proposition 5.5.8. Let f denote the morphism

f : B̃unG −→ BunG ×(Ŷ //W )/Gm Θ−1
Y /Gm.

Then f∗O = O and f has connected fibres.

Proof. We first remark that since the morphism Θ−1
Y /Gm → (Ŷ //W )/Gm is a finite type

morphism between regular stacks, it is necessarily a local complete intersection morphism.

Since χ is flat, we deduce that the stack

BunG ×(Ŷ //W )/Gm Θ−1
Y /Gm

is a local complete intersection stack, hence Cohen-Macaulay. Proposition 5.5.6 implies that

the open substack of the target BunregG ×(Ŷ //W )/Gm Θ−1
Y /Gm is big, and necessarily regular

since B̃unG is. So BunG ×(Ŷ //W )/Gm Θ−1
Y /Gm is normal by Serre’s criterion and we must

have f∗O = O. So by Zariski’s connectedness theorem [O1, Theorem 11.3], f has connected

fibres, so we are done.

Corollary 5.5.9. Let P ⊆ G be a standard parabolic subgroup with Levi factor L, let

µ ∈ X∗(Z(L)◦)Q be a Harder-Narasimhan vector for P , let Z0 → Bunss,µL,rig be a Θ-trivial

slice such that Z0 → S has connected fibres, and let Z = IndGL (Z0) → BunG,rig be the

corresponding equivariant slice. Then the morphism D(Z)→ Y has connected fibres.

Proof. Since the diagram

D(Z) Z ×Ŷ //W 0Θ−1
Y

Z̃ Z ×Ŷ //W Θ−1
Y

is a pullback modulo non-reducedness and since Proposition 5.5.8 implies that the bottom

arrow has connected fibres, the top arrow

D(Z) −→ Z ×Ŷ //W 0Θ−1
Y

(5.5.3)

also has connected fibres. But

Z ×Ŷ //W 0Θ−1
Y

= χ−1
Z (0)×S 0Θ−1

Y
−→ χ−1

Z (0) (5.5.4)

manifestly has connected fibres. Since both morphisms (5.5.3) and (5.5.4) are proper and

surjective, it follows that the composition D(Z)→ Y has connected fibres as claimed.
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Chapter 6

Subregular unstable bundles

In the previous chapter, we saw how slices through regular unstable G-bundles could be used

to construct sections of the coarse quotient map χ : BunG,rig → (Ŷ //W )/Gm. In this chapter,

we use slices through slightly more unstable bundles to probe the geometry of the unstable

locus χ−1(0) and the elliptic Grothendieck-Springer resolution B̃unG,rig in codimension 2.

More precisely, given a subregular unstable bundle ξG (see Definition 6.1.1), we construct

an explicit equivariant slice Z → BunG,rig meeting the orbit of ξG under translations in a

single point, such that χZ : Z → Ŷ //W is a family of surfaces over S with a simultaneous

log resolution

Z̃ Z

Θ−1
Y Ŷ //W.

χ̃Z χZ (6.0.1)

We give explicit descriptions of the normal crossings varieties χ̃−1
Z (y) for y ∈ 0Θ−1

Y
in all

cases, and deduce descriptions of the variety χ−1
Z (0) and its singularities.

Remark 6.0.1. Although we have used the word “variety” in the above discussion, it must

be confessed that in type B the slice Z is not representable over S, but has finite relative

stabilisers. In all other cases, however, Z and Z̃ are honest varieties over S.

The results presented here extend the work of Helmke and Slodowy [HS2], who com-

puted the codimension 2 singularities of χ−1(0) in types A, D and E, and of Grojnowski and

Shepherd-Barron [GSB], who gave a less explicit description of the sliced elliptic Grothendieck-

Springer resolution (6.0.1) in type E only.

The outline of this chapter is as follows. In §6.1, we review the definition and classification

of subregular unstable G-bundles, and state our main general theorems on existence of well-

behaved subregular slices (Theorem 6.1.5) and the behaviour of the associated simultaneous

log resolutions (6.0.1) (Theorem 6.1.9). In §6.2, we write down some computations of certain

Bruhat cells for parabolic subgroups of GLn, which we use in the proof of Theorem 6.1.9

in §§6.3–6.4. We give the proof of Theorem 6.1.5 in §6.5. In §6.6 we give case by case

descriptions of χ̃−1
Z (y) for y ∈ 0Θ−1

Y
, which refine Theorem 6.1.9. Finally, in §6.7, we illustrate

in some examples how to use Theorem 6.1.9 and the results of §6.6 to identify the singularities

of χ−1
Z (0).

6.1 Classification and overview

In this section, we review Helmke and Slodowy’s classification of subregular unstable bundles,

and summarise our main results about the behaviour of the Grothendieck-Springer resolution

near them.

Definition 6.1.1. Let s : Spec k → S be a geometric point and let ξG → Es be an unstable

G-bundle. We say that ξG is subregular if dim Aut(ξG) = l + 4.
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In the following theorem, if s : Spec k → S is a geometric point, L ⊆ G is a Levi subgroup,

and ξL is a semistable L-bundle on Es of slope µ ∈ X∗(Z(L)◦)Q, then we say that ξL is

regular if its automorphism group has minimal dimension among all automorphism groups

of semistable L-bundles on Es of slope µ.

Theorem 6.1.2. Let s : Spec k → S be a geometric point and let ξG → Es be an unstable

G-bundle. Then either ξG is regular and dim Aut(ξG) = l + 2, or dim Aut(ξG) ≥ l + 4. If

ξG has Harder-Narasimhan reduction ξP to a standard parabolic P with Levi factor L, and

associated L-bundle ξL of slope µ, then ξG is subregular if and only if ξL is regular semistable

and (G,P, µ) satisfies one of the following conditions.

(Type A1) G is of type A1, t(P ) = {α1} and 〈$1, µ〉 = −2.

(Type A) G is of type Al for l > 1, t(P ) = {αi, αi+1} for some i with 1 ≤ i < l, and

〈$i, µ〉 = 〈$i+1, µ〉 = −1.

(Type B) G is of type Bl for l ≥ 3, t(P ) = {αl−2} and 〈$l−2, µ〉 = −1.

(Type C) G is of type Cl for l ≥ 2, t(P ) = {αl−1} and 〈$l−1, µ〉 = −1.

(Type D) G is of type Dl for l ≥ 4, t(P ) = {αi} and 〈$i, µ〉 = −1, where i ∈ {1, 3, 4} if

l = 4 and i = l − 3 otherwise.

(Type E) G is of type D5, E6, E7 or E8, t(P ) = {αi} and 〈$i, µ〉 = −1, where i ∈ {4, 5}
if G is of type D5, i ∈ {2, 5} if G is of type E6, and i = 5 if G is of type E7 or E8.

(Type F ) G is of type B3 or F4, t(P ) = {α3} and 〈$3, µ〉 = −1.

(Type G) G is of type G2, t(P ) = {α1} and 〈$1, µ〉 = −1.

Here the labelling of the Dynkin diagrams is as in Table 6.1.

Al :
1 2 3 l−1 l

El :
1 2 3

4

5 l

Bl :
1 2 l−2 l−1 l

> F4 :
1 2 3 4

>

Cl :
1 2 l−2 l−1 l

< G2 :
1 2
<

Dl :
1 2 l−3 l−2 l

l−1

Table 6.1: Labelling of the Dynkin diagrams

Proof. The theorem is a selection of statements from [HS1, Theorems 5.1 and 5.12], which are

proved there when S = SpecC. To deduce the theorem in general, note that by specialisation

we have

dim Aut(ξG) = −〈2ρ, µ〉+ dim Aut(ξL) ≥ −〈2ρ, µ〉+ d(L, µ),
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where d(L, µ) is the dimension of the automorphism group of a regular semistable L-bundle

with slope µ over C. So Proposition 5.4.2 and the statement of the theorem over C imply that

there are no unstable bundles with dim Aut(ξG) = l + 3 and that the Harder-Narasimhan

reduction of any subregular unstable bundle must appear on the list above. A priori, there

may be an elliptic curve Es over a field of positive characteristic such that regular semistable

L-bundles ξL on Es of slope µ have dim Aut(ξL) > d(L, µ), and hence G-bundles with

Harder-Narasimhan reductions on the list above that are not subregular. However, in case

(Type A1) this cannot happen since L = T , and the proof of Theorem 6.1.5 shows that

this does not happen for the other Levis and slopes on the list (see Remark 6.1.6). So the

theorem holds in all characteristics.

Definition 6.1.3. We will say that a tuple (G,P, µ) consisting of a simply connected simple

group G, a standard parabolic P with Levi factor L, and a Harder-Narasimhan vector µ for

P is a subregular Harder-Narasimhan class if ξL×LG is subregular unstable for ξL a regular

semistable L-bundle of slope µ. We will say that (G,P, µ) is of type A1 (resp., type A, type

B, etc.) if it satisfies (Type A1) (resp., (Type A), (Type B), etc.) of Theorem 6.1.2.

Remark 6.1.4. We stress that the type of a subregular Harder-Narasimhan class (G,P, µ)

is often, but not always, the type of the group G. For example, for G of type B3, there are

subregular Harder-Narasimhan classes of types B and F , and for G of type D5, there are

subregular Harder-Narasimhan classes of types D and E.

For the rest of this chapter, unless otherwise specified we will assume that G does not

have type A1. In the following theorem, we write

d =


1, if (G,P, µ) is of type A,B,D or E,

2, if (G,P, µ) is of type C or F,

3, if (G,P, µ) is of type G.

Theorem 6.1.5. Let (G,P, µ) be a subregular Harder-Narasimhan class not of type A1.

Then there is a µd-gerbe Guni on the stack M1,1 of elliptic curves such that if the pullback

G of Guni to S is trivial then there exists a Θ-trivial slice Z0 → Bunss,µL,rig with the following

properties.

(1) The morphism Z0 → S is smooth and proper with finite and generically trivial relative

stabilisers.

(2) The morphism Z0 → Bunss,µL,rig/E is smooth with connected fibres.

(3) The image of Z0 → Bunss,µL,rig/E is equal to the locus of regular semistable bundles.

(4) The induced equivariant slice Z = IndGL (Z0) → BunG,rig has relative dimension l + 3

over S.

We prove Theorem 6.1.5 in §6.5 by writing down explicit slices in each case of Theorem

6.1.2. Although a classification-free proof is probably possible, the explicit slices also help

us to describe interesting case-dependent features of the Grothendieck-Springer resolution

near the locus of subregular G-bundles.

Remark 6.1.6. The proof will show that Theorem 6.1.5 holds for every tuple (G,P, µ) on

the list of Theorem 6.1.2, excluding (Type A1). In the notation of the proof of Theorem

6.1.2, this shows that in each case we have a slice Z0 → Bunss,µL,rig with relative dimension
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l + 3 + 〈2ρ, µ〉 = d(L, µ)− 1 over S, and hence relative dimension d(L, µ) over Bunss,µL,rig/E.

Since Z0 → S has finite relative stabilisers, this shows that dim Aut(ξL) ≤ d(L, µ) for a

regular semistable L-bundle in all characteristics.

Remark 6.1.7. As promised in the introduction to this chapter, the slices Z → BunG,rig

of Theorem 6.1.2 meet the translation orbit of a subregular unstable bundle with Harder-

Narasimhan reduction ξP to P of slope µ in a single point. To see this, note that Remark

6.1.6 and the proof of Theorem 6.1.2 show that the automorphism group of the image x of

ξL = ξP ×P L in Bunss,µL,rig/E is equal to the dimension of the fibre (Z0)x of Z0 → Bunss,µL,rig/E

over x. So (Z0)x/Aut(x) ⊆ (Z0)s ⊆ Zs is a closed connected substack of dimension 0, where

s is the image of x in S, and is hence a single point since (Z0)s has finite stabilisers.

Remark 6.1.8. We have deliberately excluded the subregular Harder-Narasimhan class of

type A1 from Theorem 6.1.5. In this case, we have L = T ∼= Gm and Bunss,µL = Bun−2
Gm , and

one can try to construct the desired slice Z0 = S → Bunss,µL by lifting the natural section

O(−2OE) : S → Pic−2
S (E). The resulting map Z0 → Bunss,µL,rig will be a slice as long as 2 is

invertible in OS (so that the stabiliser E[2] of a point in Pic−2
S (E) is smooth), and can be

taken to be Θ-trivial after passing to some smooth cover of S if necessary. The resulting

slice satisfies (1), (3) and (4), but the map Z0 → Bunss,−2
L,rig /E is a torsor under an extension

of E[2] by Gm and hence has disconnected fibres.

In the next theorem, we describe the main case-independent features of the elliptic

Grothendieck-Springer resolution near the subregular Harder-Narasimhan locus defined by

(G,P, µ). For a clean statement, we will introduce the following notation.

If (G,P, µ) is of type A, then we set {αi, αj} = {αi, αi+1} = t(P ). Otherwise, we let

{αi} = t(P ) and let αj ∈ ∆ be the unique special root. Theorem 6.1.2 shows that in each

case, αi is adjacent to αj . Deleting the edge joining αi and αj breaks the Dynkin diagram of

G into two connected components; we write c0 (resp., c1) for the component containing αi

(resp., αj) and n0 (resp., n1) for the number of vertices in c0 (resp., c1). Since αj is special,

the Dynkin diagram of c0 is of type An0
. We write {αc0,1, . . . , αc0,n0

, αc0,n0
} ⊆ ∆ for the

vertices of c0, labelled so that αc0,k is adjacent to αc0,k+1 for all k < n0 and αc0,n0
= αi.

For k ≤ n0, we also write $c0,k ∈ X∗(T ) for the fundamental dominant weight associated

to αc0,k ∈ ∆, and for k0 ≤ n0 + 1, we write θk for the section

θk : Y −→ Y ×S Pic0
S(E)

y 7−→


(y,$j(y)−$i(y)−$c0,1(y)), if k = 1,

(y,$j(y)−$i(y)−$c0,k(y) +$c0,k−1(y)), if 1 < k ≤ n0,

(y, 0), if k = n0 + 1.

Theorem 6.1.9. Assume that (G,P, µ) is not of type A1, let Z0 → Bunss,µL,rig be any Θ-

trivial slice satisfying the conditions of Theorem 6.1.5, and let Z = IndGL (Z0) → BunG,rig

be the induced equivariant slice. Then we have the following.

(1) We have

χ̃−1
Z (0Θ−1

Y
) = dDα∨i

(Z) +Dα∨j
(Z) +Dα∨i +α∨j

(Z),

where each divisor is connected and smooth over Y , and d = 1
2 (α∨i |α∨i ) = −〈αj , α∨i 〉 is

the number defined before Theorem 6.1.5.

(2) Each fibre of the morphism Dα∨i +α∨j
(Z) → Y is isomorphic to the Hirzebruch surface

Fd−1.
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(3) There is a sequence of n0 + 1 morphisms

Dα∨j
(Z) = Dn0+2 −→ Dn0+1 −→ · · · −→ D1

over Y ×S Z such that D1 is a line bundle over Y ×S Pic0
S(E) and Dk+1 → Dk is the

blowup along the section θk : Y → Y ×S Pic0
S(E) ⊆ Dk of the proper transform of the

zero section of D1.

(4) The divisors Dα∨i
(Z) and Dα∨j

(Z) intersect along the proper transform of the zero section

Y ×S Pic0
S(E) ↪→ Dα∨j

(Z), and the induced map

Dα∨i
(Z) ∩Dα∨j

(Z) −→ Pic0
S(E)

sends a stable map with two rational components of degrees α∨i and α∨j meeting E in

points x′ and x to the difference x− x′ ∈ Pic0
S(E).

(5) The divisors Dα∨i
(Z) and Dα∨i +α∨j

(Z) intersect along a ruling of Fd−1.

(6) The divisors Dα∨j
(Z) and Dα∨i +α∨j

(Z) intersect along the exceptional divisor of the final

blowup in Dα∨j
(Z), which appears in each fibre Fd−1 of Dα∨i +α∨j

(Z)→ Y as a curve of

self-intersection 1− d.

We give the proof of Theorem 6.1.9 in §6.3 and §6.4.

Remark 6.1.10. The statement of Theorem 6.1.9 leaves completely open the identity of the

family of surfaces Dα∨i
(Z)→ Y , and the behaviour of the contraction χ̃−1

Z (0Θ−1
Y

)→ χ−1
Z (0).

In fact, these both depend drastically on the subregular Harder-Narasimhan class. We give

case-by-case descriptions in Theorem 6.6.1 and Theorem 6.7.3.

Remark 6.1.11. In [GSB, Theorem 6.7], it is argued that in type E, the fibre over 0 ∈ Y
of Dα∨i

(Z) → Y contains a chain of t + 1 curves β, ε1, · · · , εt isomorphic to P1 that are

contracted under the morphism to Z, where β = Dα∨i
(Z)0 ∩Dα∨i +α∨j

(Z)0 and 0 ≤ t ≤ l− 1.

Using Theorem 6.1.9, we can identify these curves with strict transforms of the exceptional

divisors of the blowups Dα∨i
(Z)0 → (Dn0+1)0 → · · · → (D1)0. This shows in particular

that t = n0 = l − 4, resolving the ambiguity in [GSB]. Theorem 6.1.9 also gives an explicit

description of how the configuration of curves changes as we vary the point in Y .

Remark 6.1.12. As for Theorem 6.1.5, we have excluded type A1 from Theorem 6.1.9

because the elliptic Grothendieck-Springer resolution in this case behaves very differently

to the other types, as we now explain. Assume for simplicity that S = Spec k for k some

algebraically closed field of characteristic not 2. Then the slice Z → BunG,rig = BunSL2,rig

of Remark 6.1.8 is the space Z = Ext1(O(2OE),O(−2OE)) of extensions

0 −→ O(−2OE) −→ V −→ O(2OE) −→ 0.

A negative degree reduction of such an SL2-bundle to B corresponds to a subbundle L ⊆ V
where L is a line bundle of positive degree, necessarily 1 or 2, so we deduce that the unstable

locus χ̃−1
Z (0Θ−1

Y
) decomposes as a divisor with normal crossings

χ̃−1
Z (0Θ−1

Y
) = Dα∨1

(Z) + 4D2α∨1
(Z)

by Corollary 4.5.9. By Proposition 3.4.16, the section of degree −2α∨1 corresponding to

O(2OE) ⊆ V = O(−2OE) ⊕ O(2OE) lifts to points in the self-intersection of Dα∨1
(Z), so
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the divisor Dα∨1
(Z) is not smooth over S. Even worse, we can lift this section to a stable

map with dual graph
α∨1

0

−2α∨1

α∨1

and automorphism group Z/2, so Z̃ → Z is not even representable in this case.

6.2 Some Bruhat cells for unstable vector bundles

In this section, we write down some auxiliary results on Bruhat cells for parabolic reductions

of certain unstable vector bundles. These results form the basis for identifying the blowups

in Theorem 6.1.9 and for identifying the divisor Dα∨i
(Z) in many examples.

Fix an integer n > 0, and let Rn ⊆ GLn be the standard parabolic subgroup

Rn = {(ap,q)1≤p,q≤n ∈ GLn | ap,q = 0 for q > max(p, n− 1)}

=





∗ ∗ · · · ∗ 0

∗ ∗ · · · ∗ 0
...

...
...

...

∗ ∗ · · · ∗ 0

∗ ∗ · · · ∗ ∗




of type {βn−1}, where, in the notation given just before Lemma 5.4.10, we write βi =

ei − ei+1 ∈ X∗(TQnn) = Zn, 1 ≤ i ≤ n − 1, for the simple roots of GLn. Note that −e∗1 is a

Harder-Narasimhan vector for Rn. For 1 ≤ k ≤ n, we consider the stack

Xn
k = Y

−e∗n
Qnn
×
Y
−e∗n
Qn
k

KM
−e∗n
Qnk ,GLn

×Bun−1
GLn

Bun
ss,−e∗1
Rn

.

where we recall that

Qnk = {(ap,q)1≤p,q≤n ∈ GLn | ap,q = 0 for p < min(q, k)}

is the standard parabolic subgroup of GLn of type {β1, . . . , βk−1}. Note that since −e∗1 is a

Harder-Narasimhan vector for Rn, Xn
k is a locally closed substack of Y

−e∗n
Qnn
×
Y
−e∗n
Qn
k

KM
−e∗n
Qnk ,GLn

by Proposition 2.6.5.

The aim of this section is to decompose Xn
k into Bruhat cells (Proposition 6.2.1) and to

describe the behaviour of the cells under the natural morphisms Xn
k+1 → Xn

k (Proposition

6.2.7).

For 1 ≤ k ≤ n, w ∈W 0
Rn,Qnk

and λ ∈ X∗(TQnk ), we write

Cw,λk = Cw,λRn,Qnk/S
(E)×BunRn

Bun
ss,−e∗1
Rn

,

where Cw,λRn,Qnk/S
(E) is the Bruhat cell of Definition 3.7.3. For 1 ≤ p ≤ n − 1, let wp ∈

WGLn = Sn be the cyclic permutation

wp = (n, n− 1, . . . , p+ 1, p) = sn−1sn−2 · · · sp

and let wn = 1 be the identity, where WGLn is the Weyl group of GLn, and si = (i, i + 1)

is the reflection in the root βi. We write

CGLnk,p =


Y
−e∗n
Qnn
×
Y
−e∗n
Qn
k

C
wp,−e∗n
k , if (k, p) 6= (n, n),

C
1,−e∗n−1
n ×S E, if (k, p) = (n, n),
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for 1 ≤ k ≤ n and 1 ≤ p < k or p = n.

Proposition 6.2.1. For 1 ≤ k ≤ n, there is a decomposition

Xn
k =

⋃
1≤p<k

CGLnk,p ∪ C
GLn
k,n

into disjoint locally closed substacks.

We break the proof of Proposition 6.2.1 into several lemmas.

Lemma 6.2.2. Assume that ξRn → Es is a semistable Rn-bundle on a geometric fibre of

E → S of degree −e∗1 and that σ : Es → ξRn ×Rn GLn/Qnn is a section of degree λ ≤ −e∗n.

Then λ ∈ {−e∗n,−e∗n−1}.

Proof. The section σ corresponds to a complete flag

0 = Vn ( Vn−1 ( · · · ( V0 = V,

where V is the vector bundle associated to the GLn-bundle ξGLn = ξRn ×Rn GLn, such

that Vi−1/Vi is a line bundle of degree 〈ei, λ〉 for i = 1, . . . , n. Since ξRn is the Harder-

Narasimhan parabolic of ξGLn , V has Harder-Narasimhan decomposition V = M ⊕ U ,

where U is a semistable vector bundle of rank n− 1 and degree −1 and M is a line bundle

of degree 0. In particular, any quotient bundle of V has slope ≥ −1/(n− 1), so we deduce

that

〈e1 + · · ·+ ei, λ〉 = deg V/Vi ≥
−i
n− 1

(6.2.1)

for i = 1, . . . , n− 1.

Since λ ≤ −e∗n by assumption, we have

λ = −e∗n −
n−1∑
i=1

diβ
∨
i

for some di ∈ Z≥0, where β∨i = e∗i − e∗i+1. Applying (6.2.1), we have di = 0 for 1 ≤ i ≤ n−2

and dn−1 ∈ {0, 1}, which implies the lemma.

Lemma 6.2.3. Assume that w ∈ W 0
Rn,Qnn

and λ ∈ X∗(TQnn) with Cw,λn 6= ∅ and λ ≤ −e∗n.

Then

(w, λ) ∈ {(1,−e∗n−1)} ∪ {(wp,−e∗n) | 1 ≤ p < n}.

Proof. First note that by Lemma 6.2.2, we know that λ ∈ {−e∗n,−e∗n−1}. Moreover, we have

from the definition (3.7.2) that

W 0
Rn,Qnn

= {w ∈ Sn | w−1(i) < w−1(i+ 1) for 1 ≤ i < n− 1} = {wp | 1 ≤ p ≤ n}.

Since Qnn ⊆ GLn is the standard Borel subgroup, the homomorphism

jw : X∗(TQnn) = X∗(TRn∩Qnn) = X∗(TRn∩wQnnw−1) −→ X∗(TQnn)

is the isomorphism given by w−1. So by Proposition 3.7.4 there exists a semistable Ln-

bundle ξLn → Es on a geometric fibre of E → S of degree −e∗1, where Ln ∼= GLn−1 × Gm
is the standard Levi factor of Rn and a section σL : Es → ξLn/(Ln ∩Qnn) of degree wλ. In

particular, since en ∈ X∗(Ln), 〈en, wλ〉 = 〈en,−e∗1〉 = 0 and wλ is the degree of a section

Es
σL−−→ ξLn/(Ln ∩Qnn) ↪−→ ξLn ×Ln GLn/Qnn.
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If λ = −e∗n and w = wp, then

wλ =

−e∗n−1, if p < n,

−e∗n, if p = n,

so from the above discussion we must have p ∈ {1, . . . , n − 1}. If λ = −e∗n−1, on the other

hand, then

wλ =


−e∗n−2, if p < n− 1,

−e∗n, if p = n− 1,

−e∗n−1, if p = n,

so the above discussion and Lemma 6.2.2 imply that p = n. Combining these two cases

gives that (w, λ) is in the desired set.

Lemma 6.2.4. For all λ ∈ X∗(TQnn) with λ ≤ −e∗n, we have⋃
w∈W 0

Rn,Qnn

Cw,λn = BunλQnn ×Bun−1
GLn

Bun
ss,−e∗1
Rn

.

Proof. Assume for a contradiction that this fails for some λ ≤ −e∗n. Then by Proposition

3.7.6 there exist w ∈ W 0
Rn,Qnn

\ {1} and λ′ < λ such that Cw,λ
′

n 6= ∅. So Lemmas 6.2.2 and

6.2.3 imply that λ′ = −e∗n and λ ∈ {−e∗n,−e∗n−1}. But this contradicts λ′ < λ so we are

done.

Lemma 6.2.5. Let 1 ≤ k < n. Then

W 0
Rn,Qnk

= {wp | 1 ≤ p < k} ∪ {wn}

and

Bun
−e∗n
Qnk
×BunGLn

Bun
ss,−e∗1
Rn

=
⋃

w∈W 0
Rn,Q

n
k

C
w,−e∗n
k . (6.2.2)

Proof. From the definition,

W 0
Rn,Qnk

= {w ∈W 0
Rn,Qnn

| w(i) < w(i+ 1) for k ≤ i ≤ n− 1} = {wp | 1 ≤ p < k} ∪ {wn}

as claimed. Next, note that by Proposition 3.6.4, the natural morphism

KM
−e∗n
Qnn,GLn

−→ KM
−e∗n
Qnk ,GLn

is surjective. So any geometric point of Bun
−e∗n
Qnk
×BunGLn

Bun
ss,−e∗1
Rn

lifts to a point of

BunλQnn ×BunGLn
Bun

ss,−e∗1
Rn

for some λ ≤ −e∗n, and hence λ ∈ {−e∗n,−e∗n−1} by Lemma

6.2.2. So by Lemma 6.2.4, the morphism∐
w∈W 0

Rn,Qnn

λ∈{−e∗n,−e
∗
n−1}

Cw,λn −→
∐

w∈W 0
Rn,Q

n
k

C
w,−e∗n
k −→ Bun

−e∗n
Qnk
×BunGLn

Bun
ss,−e∗1
Rn

is surjective, which proves (6.2.2).

Proof of Proposition 6.2.1. Suppose first that k < n. Then Proposition 3.6.4 and Lemma

6.2.2 imply that

KM
−e∗n
Qnk ,GLn

×BunGLn
Bun

ss,−e∗1
Rn

= Bun
−e∗n
Qnk
×BunGLn

Bun
ss,−e∗1
Rn

,
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since −e∗n and −e∗n−1 have the same image in X∗(TQnk ). So we have the desired decomposition

of Xn
k into locally closed substacks by Lemma 6.2.5.

On the other hand, if k = n, then Proposition 3.2.18 implies that we have a decomposition

Xn
n = M◦

1,0,Bun
ss,−e∗1
Rn

(ξuniRn ×
Rn GLn/Q

n
n, (−e∗n, 1)) ∪M◦

Bun
ss,−e∗1
Rn

(ξuniRn ×
Rn GLn/Q

n
n, τ
−e∗n
β∨n−1

)

since, by Lemma 6.2.2, τ
−e∗n
β∨n−1

is the only stable X∗(TQnn)⊕Z-graph of the correct degree and

genus such that the corresponding space of marked stable maps is nonempty. By Proposition

3.4.10 and the definition of τ
−e∗n
β∨n−1

-marked stable maps we can rewrite this as

Xn
n = (Bun

−e∗n
Qnn
×BunGLn

Bun
ss,−e∗1
Rn

) ∪ (Bun
−e∗n−1

Qnn
×BunGLn

Bun
ss,−e∗1
Rn

×S E),

which decomposes further as the desired decomposition

Xn
n =

⋃
1≤p<n

CGLnn,p ∪ CGLnn,n

by Lemmas 6.2.3 and 6.2.4.

From the proof of Proposition 6.2.1, it is clear that CGLnn,n ⊆ Xn
n is the locus of stable

maps with a single rational component of degree β∨n−1 in the relevant fibre of the flag variety

bundle, and that the natural projection

CGLnn,n = C
1,−e∗n−1
n ×S E −→ E (6.2.3)

takes such a stable map to the point on E meeting the rational curve. There is also a

morphism

CGLn1,n = Y
−e∗n
Qnn
×Pic−1

S (E) Bun
ss,−e∗1
Rn

−→ Y
−e∗n
Qnn
×Pic−1

S (E) Y
−e∗1
Rn
−→ Pic1

S(E) = E (6.2.4)

(y, y′) 7−→ en(y′)− en(y).

Lemma 6.2.6. The natural projection (6.2.3) is equal to the composition of (6.2.4) with

the natural morphism CGLnn,n → CGLn1,n .

Proof. This follows by direct calculation.

For 1 ≤ p < n, we let

MGLn
p ⊆ CGLn1,n

be the closed substack given by the fibre product

MGLn
p CGLn1,n

Y
−e∗n
Qnn

Y
−e∗n
Qnn
×S E,

θGLnp

where the morphism C1,n → E is (6.2.4), and the morphism Y
−e∗n
Qnn

→ Y
−e∗n
Qnn

×S Pic1
S(E) is

given by

θGLnp : Y
−e∗n
Qnn

−→ Y
−e∗n
Qnn
×S Pic1

S(E) = Y
−e∗n
Qnn
×S E

y 7−→ (y, ep(y)− en(y)).
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Proposition 6.2.7. For all 1 ≤ k < n, the morphism Xn
k+1 → Xn

k restricts to isomorphisms

CGLnk+1,n
∼−→ CGLnk,n and CGLnk+1,p

∼−→ CGLnk,p

for 1 ≤ p < k, and a morphism

CGLnk+1,k −→MGLn
k ⊆ CGLnk,n

∼= CGLn1,n

that identifies CGLnk+1,k with the total space of a line bundle over MGLn
k .

We will prove Proposition 6.2.7 at the end of this section using Propositions 3.7.4 and

3.7.5 to compute the relevant Bruhat cells in terms of reductions of Ln-bundles to Ln ∩
wpQ

n
kw
−1
p and sections of the associated Ru(Rn)/(Ru(Rn) ∩ wpQnkw−1

p )-bundles. The first

step is to identify the parabolics Ln ∩ wpQnkw−1
p .

Lemma 6.2.8. Suppose that 1 ≤ k ≤ n and 1 ≤ p < k. Then Ln ∩ wpQnkw−1
p ⊆ Ln is the

standard parabolic with type

t(Ln ∩ wpQnkw−1
p ) = {β1, . . . , βk−2},

so Ln ∩ wpQnkw−1
p is identified with Qn−1

k−1 × Gm under the natural identification Ln ∼=
GLn−1 ×Gm.

Proof. First observe that since wp ∈W 0
Rn,Qnn

, we have

Ln ∩Qnn = Ln ∩ wpQnnw−1
p ⊆ Ln ∩ wpQnkw−1

p ,

so Ln∩wpQnkw−1
p is indeed a standard parabolic subgroup of Ln. The type follows by direct

computation.

In order to compute the degrees of the Ln ∩ wpQnkw−1
p -bundles of interest, we need to

describe the homomorphism

TL∩wpQnkw
−1
p
−→ TQnk ×Gm TRn (6.2.5)

induced by jwp : w−1
p (−)wp : Ln ∩ wpQnkw−1

p → Qnk on the first factor and the inclusion

Ln ∩ wpQnkw−1
p ⊆ Ln ⊆ Rn on the second. (Here the maps to Gm in the fibre product on

the right hand side are given by the determinant e1 + · · ·+ en.)

Note that if 1 ≤ p < k, then by Lemma 6.2.8, the character lattices are given by

X∗(TLn∩wpQnkw−1
p

) =
⊕

1≤i≤k−2

Zei ⊕ Z(ek−1 + · · ·+ en−1)⊕ Zen,

X∗(TQnk ) =
⊕

1≤i≤k−1

Zei ⊕ Z(ek + · · ·+ en) and X∗(TRn) = Z(e1 + · · ·+ en−1)⊕ Zen.

The cocharacter lattices are therefore given by

X∗(TLn∩wpQnkw−1
p

) =
⊕

1≤i≤k−1

Ze∗i ⊕ Ze∗n, X∗(TQnk ) =
⊕

1≤i≤k−1

Ze∗i ⊕ Ze∗n

and

X∗(TRn) = Ze∗1 ⊕ Ze∗n.

as quotients of X∗(TQnn).
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Lemma 6.2.9. If p < k, then (6.2.5) factors as an isomorphism onto TQnk sending e∗n−1 to

e∗n followed by the section (id, γk,p) : TQnk → TQnk ×Gm TRn , where γk,p : TQnk → TRn is the

homomorphism given on cocharacters by

γk,p(e
∗
i ) =

e∗1, for i 6= p,

e∗n, for i = p.

Proof. Using the fact that the natural diagram

X∗(TQnk ) X∗(TQnk )

X∗(TLn∩wpQnkw−1
p

) X∗(TQnk )

w−1
p

jwp

commutes, the claim follows by direct computation.

The situation for p = n is also very simple.

Lemma 6.2.10. The canonical morphism TLn∩Qnk → TQnk ×Gm TRn is an isomorphism.

Proof. The character lattice of TLn∩Qnk is given by

X∗(TLn∩Qnk ) =
⊕

1≤i≤k−1

Zei ⊕ Z(ek + · · ·+ en−1)⊕ Zen

and hence the cocharacter lattice is

X∗(TLn∩Qnk ) =
⊕

1≤i≤k−1

Ze∗i ⊕ Ze∗k ⊕ Ze∗n.

The claim now follows by inspection.

We deduce that the degrees of the parabolic reductions appearing in the Bruhat cells are

given as follows.

Lemma 6.2.11. If p < k or p = n then the morphism

CGLnk,p −→ BunLn∩wpQnkw
−1
p

(6.2.6)

factors through

Bun
−e∗n−1

Ln∩wpQnkw
−1
p
⊆ BunLn∩wpQnkw

−1
p
.

Proof. First suppose that (k, p) 6= (n, n). By Proposition 3.7.4 and our restriction on the

degrees of the Ln-bundles, the bundles in the image of (6.2.6) have degrees mapping to

(−e∗n,−e∗1) ∈ X∗(TQnk ×Gm TLn) under (6.2.5). By Lemmas 6.2.9 and 6.2.10, this homomor-

phism is injective and sends −e∗n−1 to (−e∗n,−e∗1), so the claim follows.

On the other hand, suppose that (k, p) = (n, n). Then the degrees of bundles in the

image of (6.2.6) must map to (−e∗n−1,−e∗1) ∈ X∗(TQnn ×Gm TLn) under (6.2.5). Since this

is an isomorphism by Lemma 6.2.10 and sends −e∗n−1 to (−e∗n−1,−e∗1), the claim follows in

this case as well.

Lemma 6.2.12. If p < k or p = n, then the natural morphism

Bun
−e∗n−1

Ln∩wpQnkw
−1
p
×

Bun
−e∗1
Ln

Bun
ss,−e∗1
Ln

−→ Y
−e∗n−1

Ln∩wpQnkw
−1
p
×
Y
−e∗1
Ln

Bun
ss,−e∗1
Ln

(6.2.7)

is an isomorphism.
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Proof. Lemmas 6.2.8 and 6.2.13 show that we have a pullback

Bun
−e∗n−1

Ln∩wpQnkw
−1
p
×

Bun
−e∗1
Ln

Bun
ss,−e∗1
Ln

Bun
−e∗n−1

Qn−1
k−1

×Bun−1
GLn−1

Bunss,−1
GLn

Y
−e∗n−1

Ln∩wpQnkw
−1
p
×
Y
−e∗1
Ln

Bun
ss,−e∗1
Ln

Y
−e∗n−1

Qn−1
k−1

×Pic−1
S (E) Bunss,−1

GLn
,

so the claim follows immediately from Lemma 5.4.10.

Lemma 6.2.13. Let ρ : H → H ′ be a surjective homomorphism of reductive groups and let

P1 ⊆ P2 ⊆ H be parabolic subgroups. For any λ ∈ X∗(Tρ−1(P1)), the natural diagrams

Bunλρ−1(P1) BunλP1

Y λρ−1(P1) ×Y λ
ρ−1(P2)

Bunλρ−1(P2) Y λP1
×Y λP2

BunλP2

and

KMλ
ρ−1(P1),H KMλ

P1,H′

Y λρ−1(P1) ×Y λ
ρ−1(P2)

KMλ
ρ−1(P2),H Y λP1

×Y λP2

KMλ
P2,H′

are pullbacks, where we also write λ for its images in X∗(Tρ−1(P2)), X∗(TP1
) and X∗(TP2

).

Proof. The statement follows easily from the fact that

Bunλρ−1(P1) = BunλP1
×BunλP2

Bunλρ−1(P2), Y λρ−1(P1) = Y λP1
×Y λP2

Y λρ−1(P2)

and

KMλ
ρ−1(P1),H = KMλ

P1,H′ ×KMλ
P2,H

′
KMλ

ρ−1(P2),H .

Lemma 6.2.14. If p < k ≤ n, then the morphism

Y
−e∗n
Qnn
×
Y
−e∗n
Qn
k

(Bun
−e∗n−1

Ln∩wpQnkw
−1
p
×

Bun
−e∗1
Ln

Bun
ss,−e∗1
Rn

) −→ Y
−e∗n
Qnn
×Pic−1

S (E)Bun
ss,−e∗1
Rn

= CGLn1,n = Xn
1

(6.2.8)

induced by the inclusion Ln ∩wpQnkw−1
p ⊆ Ln factors through an isomorphism onto MGLn

p .

Here the morphisms to Pic−1
S (E) in the fibre product in the right hand side of (6.2.8) are

both given by the determinant.

Proof. First note that by Lemma 6.2.12 and Lemma 6.2.9, we have isomorphisms

Y
−e∗n
Qnn
×
Y
−e∗n
Qn
k

(Bun
−e∗n−1

Ln∩wpQnkw
−1
p
×

Bun
−e∗1
Ln

Bun
ss,−e∗1
Rn

)

∼−→ Y
−e∗n
Qnn
×
Y
−e∗n
Qn
k

(Y
−e∗n−1

Ln∩wpQnkw
−1
p
×
Y
−e∗1
Rn

Bun
ss,−e∗1
Rn

),

∼−→ Y
−e∗n
Qnn
×
Y
−e∗n
Qn
k

(Y
−e∗n
Qnk
×
Y
−e∗1
Rn

Bun
ss,−e∗1
Rn

),
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where Y
−e∗n
Qnk

maps to Y
−e∗1
Rn

via the homomorphism γk,p. So we can identify (6.2.8) with the

closed immersion

Y
−e∗n
Qnn
×
Y
−e∗1
Rn

Bun
ss,−e∗1
Rn

−→ Y
−e∗n
Qnn
×Pic−1

S (E) Bun
ss,−e∗1
Rn

,

where the morphism Y
−e∗n
Qnn

→ Y
−e∗1
Rn

is the composition of Y
−e∗n
Qnn

→ Y
−e∗n
Qnk

with γk,p. Chasing

through the various definitions now shows that the source of this morphism is precisely

MGLn
p , so we are done.

We next identify the Ln ∩ wpQnkw−1
p -variety Ru(Rn)/(Ru(Rn) ∩ wpQnkw−1

p ). In the

following lemma, we write Uk,p for the Ln ∩wpQnkw−1
p -representation induced by the homo-

morphism

Ln ∩ wpQnkw−1
p = Qn−1

k−1 ×Gm −→ Qn−1
k−1 −→ GLn−p

given by deleting the last row and column and the first p− 1 rows and columns.

Lemma 6.2.15. If p < k, then there is an Ln ∩ wpQnkw−1
p -equivariant isomorphism

Ru(Rn)/(Ru(Rn) ∩ wpQnkw−1
p )

∼−→ U∨k,p ⊗ Zen . (6.2.9)

Proof. If β is a root of Ru(Rn), then Uβ ⊆ Ru(Rn) maps injectively into Ru(Rn)/(Ru(Rn)∩
wpQ

n
kw
−1
p ) if and only if w−1

p β is not a root of Qnk . In particular, this implies that β is a

negative root and w−1
p β is a positive root, and hence that

β ∈ Σ = {−βn−1,−βn−1 − βn−2, . . . ,−βn−1 − βn−2 − · · · − βp},

and

w−1
p β ∈ {βn−1 + βn−2 + · · ·+ βp, βn−2 + · · ·+ βp, . . . , βp}.

Note that if β ∈ Σ, then Uβ ⊆ Ru(P ), and w−1
p β is not a root of Qnk , so Σ is precisely the

set of roots appearing in Ru(Rn)/(Ru(Rn) ∩ wpQnkw−1
p ).

It is clear from the above that Ru(Rn)/(Ru(Rn) ∩ wpQnkw−1
p ) is isomorphic to an Ln ∩

wpQ
n
kw
−1
p -representation. The isomorphism (6.2.9) follows by inspection of the weights of

this representation.

Proof of Proposition 6.2.7. If k < n− 1, then there is a pullback

CGLnk+1,n Bun
−e∗n−1

Ln∩Qnk+1
×

Bun
−e∗1
Ln

Bun
ss,−e∗1
Ln

CGLnk,n Y
−e∗n
Qnk+1

×
Y
−e∗n
Qn
k

Bun
−e∗n−1

Ln∩Qnk
×

Bun
−e∗1
Ln

Bun
ss,−e∗1
Ln

.

But since

Y
−e∗n
Qnk+1

×
Y
−e∗n
Qn
k

Y
−e∗n−1

Ln∩Qnk
= Y

−e∗n−1

L∩Qnk+1

this implies that CGLnk+1,n → CGLnk,n is an isomorphism by Lemma 6.2.12. If k = n − 1, then

since Ln ∩Qnn = L ∩Qnn−1, there is instead a pullback

CGLnn,n Y
−e∗n−1

Qnn
×S E

CGLnn−1,n Y
−e∗n
Qnn
×
Y
−e∗n
Qn
n−1

Y
−e∗n−1

Qnn

∼
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where the vertical arrow on the right is induced by the isomorphism of tori

TQnn ×Gm −→ TQnn ×TQnn−1
TQnn

(t1, t2) 7−→ (t1β
∨
n−1(t2), t1).

So CGLnn,n → CGLnn−1,n is also an isomorphism.

If k ≤ n and 1 ≤ p < k, then Proposition 3.7.5 and Lemma 6.2.14 show that CGLnk,p is

the relative space of sections of

ηk,p ×Ln∩wpQ
n
kw
−1
p

Ru(P )

Ru(P ) ∩ wpQnkw
−1
p

−→MGLn
p ×S E,

where ηk,p is the pullback of the universal Ln ∩ wpQnkw−1
p -bundle under the map

MGLn
p −→ Bun

−e∗n−1

Ln∩wpQnkw
−1
p

coming from Lemma 6.2.14. If k ≤ n− 1, then by Lemma 6.2.15, we can therefore identify

the morphism CGLnk+1,p → CGLnk,p with the morphism

πp∗(ηk+1,p ×Ln∩wpQ
n
kw
−1
p U∨k+1,p ⊗ Zen) −→ πp∗(ηk,p ×Ln∩wpQ

n
kw
−1
p U∨k,p ⊗ Zen),

where πp : MGLn
p ×S E → MGLn

p is the natural projection. But this is the pushforward

of a surjective morphism between families of stable vector bundles of degree 1 (since both

vector bundles are naturally degree 1 quotients of stable vector bundles of degree 1), and

is therefore an isomorphism as claimed. We can also identify the morphism CGLnk+1,k → Ck,n

with the morphism

πp∗(ηk+1,p ×Ln∩wpQ
n
kw
−1
p U∨k+1,p ⊗ Zen) −→MGLn

p ↪−→ CGLn1,n
∼= CGLnk,n ,

which factors as a line bundle over MGLn
p as claimed.

6.3 Computing the divisor Dα∨
j
(Z)

In this section, we prove parts (3) and (4) of Theorem 6.1.9.

Throughout this section, we will suppose that we are in the setup of Theorem 6.1.9, i.e.,

that (G,P, µ) is a subregular Harder-Narasimhan class not of type A1, and that we are given

a Θ-trivial slice Z0 → Bunss,µL,rig satisfying the conditions of Theorem 6.1.5, for L ⊆ P the

standard Levi subgroup. Writing Z = IndGL (Z0), note that Proposition 5.4.2 implies that

−〈2ρ, µ〉 ≥ l + 2, and Proposition 5.2.8 implies that dimS Z0 − 〈2ρ, µ〉 = dimS Z = l + 3, so

in particular dimS Z0 ≤ 1.

Lemma 6.3.1. Assume that z ∈ Z\Z0 and that the corresponding G-bundle ξG,z is unstable.

Then ξG,z is regular unstable.

Proof. Since z ∈ Z \Z0 is not fixed under the Z(L)rig-action, Proposition 5.1.4 implies that

dim Aut(ξG,z) ≤ l + 3.

So ξG,z is regular as claimed by Theorem 6.1.2.

Lemma 6.3.2. For λ ∈ X∗(T )+, we have Dλ(Z) 6= ∅ if and only if λ ∈ {α∨i , α∨j , α∨i + α∨j }.
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Proof. For simplicity, we can assume without loss of generality that S = Spec k for k an

algebraically closed field and hence that Z0 is connected. We first show that Dα∨i
(Z) 6= ∅

and Dα∨j
(Z) 6= ∅.

If (G,P, µ) has type A, then µ is the image of −α∨i − α∨j under the homomorphism

X∗(T ) → X∗(Z(L)◦)Q and 〈α, α∨i + α∨j 〉 ≤ 0 for all α ∈ Φ+ a root of P . So by Proposition

3.6.4, the morphism

KM
−α∨i −α

∨
j

B,G −→ KMµ
P,G/S

is surjective. In particular, for every z ∈ Z0, there exists a section of ξL,z ×L P/B ⊆
ξL,z ×L G/B with degree −λ0 ≤ −α∨i − α∨j . So we must have Dλ0

(Z) 6= ∅, and hence

Dα∨i
(Z) 6= ∅ and Dα∨j

(Z) 6= ∅ by Proposition 5.1.5.

On the other hand, if (G,P, µ) does not have type A, then µ is the image of −α∨i in

X∗(Z(L)◦)Q, and 〈α, α∨i 〉 ≤ 0 for α ∈ Φ+ a root of P . So

KM
−α∨i
B,G −→ KMµ

P,G

is surjective by Proposition 3.6.4, so we deduce that Dα∨i
(Z) 6= ∅. For Dα∨j

(Z), note

that since αj ∈ ∆ is the unique special root, Proposition 5.4.2 implies that the Harder-

Narasimhan locus Bun
ss,−α∨j
Q ⊆ BunG is dense in the locus of unstable G-bundles, where

Q is the standard parabolic with t(Q) = {α∨j }. So Bun
ss,−α∨j
Q,rig ×BunG,rig Z 6= ∅, and hence

Dα∨j
(Z) 6= ∅ by Proposition 5.4.11.

Conversely, suppose that λ ∈ X∗(T ) and that Dλ(Z) 6= ∅. Then for any αk ∈ ∆

with corresponding maximal parabolic Pk, there exists a point in Z and a section of the

corresponding G/Pk-bundle with degree νk = −〈$k, λ〉/〈$k, $
∨
k 〉$∨k (the image of λ in

X∗(TPk)). So by Lemma 5.2.14 and [FM2, Lemma 3.3.2], we must have

(l + 1)〈$k, λ〉 ≤
〈2ρ,$∨k 〉
〈$k, $∨k 〉

〈$k, λ〉 = −〈2ρ, νk〉 ≤ −〈2ρ, µ〉 ≤ l + 3.

So

〈$k, λ〉 ≤
l + 3

l + 1
< 2,

since l > 1. So 〈$k, λ〉 = 0 or 1 for all k.

Now assume for a contradiction that there exists λ ∈ X∗(T )+ \ {α∨i , α∨j , α∨i + α∨j } such

that Dλ(Z) 6= ∅. Since the divisor D(Z) = χ̃−1
Z (0Θ−1

Y
) is connected by Corollary 5.5.9, we

can choose λ so that Dλ(Z) has nonempty intersection with one of Dα∨i
(Z), Dα∨j

(Z) or

Dα∨i +α∨j
(Z). Choose a point in such an intersection over z ∈ Z, and let −λ′ ∈ X∗(T )−

denote the degree of the corresponding stable map restricted to the irreducible component

of genus 1. Then we have Dλ′(Z) 6= ∅, λ′ ≥ λ and λ′ ≥ α∨r for some αr ∈ {αi, αj}. By

the bound proved above, we must have 〈$k, λ〉 = 1 for some αk ∈ ∆ \ {αi, αj}, and hence

λ′ ≥ α∨r + α∨k . So by Proposition 5.1.5, we have Dα∨r +α∨k
(Z) 6= ∅ and Dα∨k

(Z) 6= ∅.
Assume first that G is not of type A. Since Dα∨k

(Z) 6= ∅, there exists z ∈ Z and a section

of ξG,z/B with degree −α∨k , and hence a section of ξG,z/Pk with slope −$∨k /〈$k, $
∨
k 〉. So

by Lemma 5.2.14, there exists z′ ∈ Z such that ξG,z′ has Harder-Narasimhan reduction to

Pk with slope −$∨k /〈$k, $
∨
k 〉. Since Pk 6= P , we have z′ ∈ Z \ Z0. So ξG,z′ is regular by

Lemma 6.3.1, which contradicts Proposition 5.4.2 since αk is not special.

Assume on the other hand that G is of type A. We have k /∈ {i, i+ 1} and r ∈ {i, i+ 1}
such that Dα∨r +α∨k

(Z) 6= ∅. So there exists z ∈ Z and a section of ξG,z/Pr,k of slope ν ∈
X∗(Z(Lr,k)◦)Q satisfying 〈$r, ν〉 = 〈$k, ν〉 = −1, where Pr,k ⊆ G is the standard parabolic

of type {αr, αk} and Lr,k its standard Levi factor. But ν is a Harder-Narasimhan vector

for Pr,k, so by Lemma 5.2.14, there exists z′ ∈ Z such that ξG,z′ has Harder-Narasimhan
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reduction to Pr,k with slope ν. Since Pr,k 6= P , we have z ∈ Z \ Z0, so ξG,z′ is regular

unstable by Lemma 6.3.1, which again contradicts Proposition 5.4.2.

So Dλ(Z) = ∅ for λ /∈ {α∨i , α∨j , α∨i + α∨j }, and Dα∨i
(Z), Dα∨j

(Z) 6= ∅. This implies

that Dα∨i +α∨j
(Z) 6= ∅, for if this were not the case, we would have Dα∨i

(Z) ∩ Dα∨j
(Z) = ∅

by Proposition 3.4.16 and hence χ̃−1
Z (0Θ−1

Y
) would be disconnected, contradicting Corollary

5.5.9.

Given a torus T ′ and a cocharacter λ ∈ X∗(T ′), there is a natural morphism

Y −λT ′ ×S E −→ YT ′ = Y 0
T ′ (6.3.1)

(ξT ′ , x) 7−→ ξT ′ ⊗ λ(O(x)).

We will repeatedly make use of this in what follows.

Lemma 6.3.3. There are isomorphisms

Dα∨i
(Z) ∼= M1,1,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨i , 1)) (6.3.2)

and

Dα∨j
(Z) ∼= M1,1,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨j , 1)), (6.3.3)

where ξG/Z(G) → Z×SE is the G/Z(G)-bundle classified by the morphism Z → BunG,rig →
BunG/Z(G), and we use the degree datum of Lemma 3.4.4 in the notation for spaces of stable

maps. Moreover, the isomorphisms commute with the maps to Y given by

M1,1,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨i , 1)) −→ Y −α
∨
i ×S E −→ Y

and

M1,1,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨j , 1)) −→ Y −α
∨
j ×S E −→ Y,

where the first morphism in each composition is given on the first factor by forgetting the

marked point and applying BlB and on the second factor by evaluation at the marked point

followed by projection to E, and the second morphisms are given by (6.3.1).

Proof. We prove the claims for Dα∨i
(Z); the proofs for Dα∨j

(Z) are identical.

By Propositions 3.2.18 and 3.4.13, Dα∨i
(Z) is the image of the gluing morphism

MZ(ξG/Z(G) ×G/Z(G) G/B, τ0
α∨i

) −→ Z̃ = M1,0,Z(ξG/Z(G) ×G/Z(G) G/B, (0, 1)). (6.3.4)

By Lemma 6.3.2, the stable X∗(T )⊕ Z-graphs τ admitting contractions τ → τ0
α∨i

such that

MZ(ξG/Z(G) ×G/Z(G) G/B, τ) 6= ∅ are as follows.

−α∨i α∨i α∨j −α∨i −α
∨
j α∨i −α∨i −α

∨
j α∨j α∨i

α∨j
0

−α∨i −α
∨
j

α∨i

In particular, any such τ has a unique contraction onto τ0
α∨i

, so Corollary 3.2.21 implies that

(6.3.4) is a closed immersion, and hence that

Dα∨i
(Z) ∼= MZ(ξG/Z(G) ×G/Z(G) G/B, τ0

α∨i
).
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By definition of τ0
α∨i

-marked stable maps, there is therefore a Cartesian diagram

Dα∨i
(Z) M0,1,Z(ξG/Z(G) ×G/Z(G) G/B, (α∨i , 0))

M1,1,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨i , 1)) ξG/Z(G) ×G/Z(G) G/B.

But the vertical arrow on the right can be identified with the morphism

ξG/Z(G) ×G/Z(G) M0,1(G/B,α∨i ) −→ ξG/Z(G) ×G/Z(G) G/B,

and is therefore an isomorphism by Proposition 3.4.10. So the vertical arrow on the left

gives the desired isomorphism (6.3.2). Commutativity with the maps to Y follows from the

construction and Proposition 3.5.5.

We can now construct the sequence of blow downs of Dα∨j
(Z) promised in Theorem

6.1.9 (3). For 1 ≤ k ≤ n0, let Pk ⊆ G be the standard parabolic with type t(Pk) =

∆ \ {αc0,k, . . . , αc0,n0
} = ∆ \ {αc0,k, . . . , αc0,n0−1, αi}, and let Pn0+1 = B. Then for 1 ≤ k ≤

n0 + 1, we define

Dk = Y
−α∨j
B ×

Y
−α∨

j
Pk

KM
−α∨j
Pk,G,rig

×BunG,rig Z ×S E

∼= Y ×YPk (KM
−α∨j
Pk,G,rig

×BunG,rig Z ×S E),

where the morphism to YPk in the last fibre product is given by the composition

KM
−α∨j
Pk,G/S,rig

×BunG,rig Z ×S E
BlPk−−−→ Y

−α∨j
Pk

×S E
(6.3.1)−−−−→ YPk .

There is a morphism

Dα∨j
(Z) −→ Dn0+1 = M1,0,Z(ξG/Z(G) ×G/Z(G) G/Pk, (−α∨j , 1))×S E (6.3.5)

over Y , given in terms of the isomorphism of Lemma 6.3.3 by forgetting the marked point

and stabilising on the first factor, and by evaluating at the marked point and composing with

the projection to E on the second factor. For 1 ≤ k ≤ n0, the projection G/Pk+1 → G/Pk

also induces a morphism

Dk+1 −→ Dk (6.3.6)

over Y . We show later (Propositions 6.3.11 and 6.3.17) that the morphisms (6.3.5) and

(6.3.6) are blowups along explicit loci. The first step towards formulating and proving these

propositions is Proposition 6.3.4, which shows that D1 ×Z Z0 is controlled entirely by the

subgroup P1.

In what follows, for 1 ≤ k ≤ n0 + 1, w ∈W 0
P,Pk

and λ ∈ X∗(TPk), we write

Cw,λPk
(Z0) = Cw,λP,Pk/S

(E)rig ×BunP,rig Z0 ⊆ BunλPk,rig ×BunG,rig Z0

and Cw,λ(Z0) = Cw,λPn0+1
(Z0). (Recall that Pn0+1 = B.)

Proposition 6.3.4. The natural inclusion L/(L ∩ P1) = P/(P ∩ P1) → G/P1 induces an

isomorphism

Bun
−α∨i −α

∨
j

L∩P1,rig
×BunL,rig Z0 = Bun

−α∨i −α
∨
j

P∩P1,rig
×BunP,rig Z0

∼−→ KM
−α∨j
P1,G,rig

×BunG,rig Z0, (6.3.7)

and hence isomorphisms

KM
−α∨j
L1∩Pk,L1/S,rig

×BunL1,rig
Bun

−α∨i −α
∨
j

P∩P1,rig
×BunP,rig Z0

∼−→ KM
−α∨j
Pk,G,rig

×BunG,rig Z0, (6.3.8)

for 1 ≤ k ≤ n0 + 1, where L1 ⊆ P1 is the standard Levi subgroup.
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Proof. The isomorphism (6.3.8) is obtained from (6.3.7) by noting that for ξP∩P1
→ Es a

P ∩ P1-bundle over a geometric fibre of E → S, the preimage of the canonical section of

ξP∩P1
×P∩P1 G/P1 → Es under ξP∩P1

×P∩P1 G/Pk → ξP∩P1
×P∩P1 G/P1 is

ξP∩P1
×P∩P1 P1/Pk ∼= ξP∩P1

×P∩P1 L1/(L1 ∩ Pk).

To prove that (6.3.7) is an isomorphism, first note that it can be identified with the

locally closed immersion

C
1,−α∨j
P1

(Z0) ↪−→ Bun
−α∨j
P1,rig

×BunG,rig Z0 ↪−→ KM
−α∨j
P1,G,rig

×BunG,rig Z0. (6.3.9)

Since both sides are reduced, it is therefore enough to show that (6.3.9) is surjective.

To see this, note that Lemma 6.3.5 below and Proposition 3.7.6 imply that the morphism∐
w∈W 0

P,B∩WL1

λ=−w−1(α∨i +α∨j )

Cw,λ(Z0) −→ BunλB,rig ×BunG,rig Z0

is surjective for all λ ≤ −α∨j . Since the morphism KM
−α∨j
B,G → KM

−α∨j
P1,G

is also surjective by

Proposition 3.6.4, and maps sections coming from Cw,λ(Z0) to C
1,−α∨j
P1

(Z0), surjectivity of

(6.3.9) now follows.

Lemma 6.3.5. Assume that w ∈ W 0
P,B, λ ≤ −α∨j and Cw,λ(Z0) 6= ∅. Then w ∈ WL1

and

λ = −w−1(α∨i + α∨j ) ∈ {−α∨j ,−α∨i − α∨j }, where L1 ⊆ P1 is the standard Levi subgroup.

Proof. It is immediate from Lemma 6.3.2 that λ ∈ {−α∨j ,−α∨i −α∨j }. By Proposition 3.7.4,

if Cw,λ(Z0) 6= ∅, then there exists a geometric point z : Spec k → Z0 over s : Spec k → S

and a section σL : Es → ξL,z/(L∩B) of degree wλ ∈ X∗(T ). Since ξL,z has slope µ, we must

have

〈$i, wλ〉 = 〈$i, µ〉 = −1.

Since λ and hence wλ is a coroot, we therefore have wλ ∈ Φ∨− ⊆ X∗(T )−. Since composing

σL with the inclusion ξL,z/(L∩B)→ ξG,z/B defines a section of degree wλ, we deduce that

D−wλ(Z) 6= ∅, and hence that wλ ∈ {−α∨i ,−α∨i − α∨j }.
If wλ = −α∨i , then w−1α∨i ∈ Φ∨+, so w = 1 since w ∈ W 0

P,B . So λ = −α∨i , contradicting

λ ≤ −α∨j . So we must have wλ = −α∨i − α∨j , and in particular w−1(α∨i + α∨j ) ∈ Φ∨+.

If (G,P, µ) is not of type A, then w−1(α∨k ) ∈ Φ∨+ for αk 6= αi (since w ∈W 0
P,B and t(P ) =

{αi}) so Lemma 6.3.6 implies that w ∈ WL1 . If (G,P, µ) is of type A, then w−1(α∨k ) ∈ Φ∨+
for αk 6= αi, αj . If w−1(α∨j ) ∈ Φ∨+ then w ∈ WL1 by Lemma 6.3.6 again. Otherwise, we

must have w−1(α∨i ) ∈ Φ∨+ and hence

w ∈ {si+1si+2 · · · sk | i < k ≤ l}

by Lemma 6.3.6. But this implies that λ = w−1(−α∨i − α∨j ) = w−1(−α∨i − α∨i+1) = −α∨i ,

contradicting λ ≤ −α∨j , so we are done.

Lemma 6.3.6. Let (M,Ψ,M∨,Ψ∨) be a root datum with Weyl group W (Ψ), and let Γ ⊆ Ψ

be a complete set of positive simple roots. Let βj ∈ Γ be a simple root, and let c ∈ π0(Γ\{βj})
be a connected component of the Dynkin diagram of Γ \ {βj} of type An such that βj is

adjacent to one end of c. Let βc,1, . . . , βc,n ∈ Γ denote the nodes of c, labelled so that βc,k is

adjacent to βc,k+1 for all k and βc,n is adjacent to βj, and let

Σ = {w ∈W (Ψ) | w−1β∨k ∈ Ψ∨+ for all βk ∈ Γ \ {βc,n} and w−1(β∨c,n + β∨j ) ∈ Ψ∨+},
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Then

Σ = {1} ∪ {sc,nsc,n−1 · · · sc,k | 1 ≤ k ≤ n}

where sc,k ∈W (Ψ) is the reflection in the root βc,k

Proof. First note that an easy inspection shows that

{1} ∪ {sc,nsc,n−1 · · · sc,k | 1 ≤ k ≤ n} ⊆ Σ,

so it suffices to prove the reverse inclusion.

We prove the claim by induction on n ≥ 1. Suppose that w ∈ Σ. Then either w = 1 or

w−1βc,n ∈ Ψ−. In the second case, we see that (sc,nw)−1β∨k ∈ Ψ∨+ for βk ∈ Γ \ {βc,n−1} and

(sc,nw)−1(β∨c,n−1 + β∨c,n) ∈ Ψ∨+ if n > 1. So either n = 1 and w ∈ {1, sc,n}, or n > 1 and by

induction we have

sc,nw ∈ {sc,n−1 · · · sc,k | 1 ≤ k ≤ n− 1},

and hence

w ∈ {1} ∪ {sc,nsc,n−1 · · · sc,k | 1 ≤ k ≤ n}.

This proves the lemma.

Proposition 6.3.7. There exists a surjective homomorphism

ρP1 : P1 −→ GLn0+1

such that ρ−1
P1

(Rn0+1) = P ∩P1 and ρ−1
P1

(Qn0+1
k ) = Pk for 1 ≤ k ≤ n0 + 1, and such that the

induced map T = TPn0+1 → Qn0+1
n0+1 is given on cocharacters by

X∗(T ) −→ X∗(TQn0+1
n0+1

)

α∨c0,k 7−→ e∗k − e∗k+1

α∨j 7−→ e∗n0+1

α∨p 7−→ 0, if αp /∈ {αc0,1, . . . , αc0,n0 , αj}.

Proof. Since the Dynkin diagram ∆ \ t(P1) has exactly one connected component of type

An0 , Proposition 5.3.1 gives an embedding

L1 ↪−→ GLn0+1 ×Gn1
m . (6.3.10)

Let ρL1
be the composition of (6.3.10) with the projection to the first factor, and let ρP1

be the composition of ρL1
with the quotient P1 → L1. The remaining claims can now be

checked routinely using the explicit isomorphism of Proposition 5.3.1.

Returning to the study of the divisors Dk, Propositions 6.3.4 and 6.3.7 give a morphism

Dk ×Z Z0 −→ Y −α
∨
j ×

Y
−α∨

j
Pk

KM
−α∨j
L1∩Pk,L1,rig

×BunL1,rig
Bun

−α∨i −α
∨
j

P∩P1,rig

−→ Y
−e∗n0+1

Q
n0+1
n0+1

×
Y
−e∗
n0+1

Q
n0+1
k

KM
Q
n0+1

k ,GLn0+1,rig
×BunGLn0+1

Bun
ss,−e∗1
Rn0+1

= Xn0+1
k,rig

where, in the notation of §6.2, Xn0+1
k,rig is the rigidification of Xn0+1

k with respect to the image

of Z(G) in Z(GLn0+1) under ρP1 . Moreover, Lemma 6.2.13 shows that there is a sequence
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of pullback squares

Dk+1 ×Z Z0 Xn0+1
k+1,rig

Dk ×Z Z0 Xn0+1
k,rig ,

for 1 ≤ k ≤ n0. For 1 ≤ k ≤ n0 + 1 and 1 ≤ p < k or p = n0 + 1, we define

Ck,p = (Dk ×Z Z0)×
X
n0+1

k,rig
C
GLn0+1

k,p,rig .

Proposition 6.3.8. For 1 ≤ k ≤ n0 + 1, there is a decomposition

Dk = (Dk ×Z (Z \ Z0)) ∪
⋃

1≤p<k

Ck,p ∪ Ck,n0+1

into disjoint locally closed substacks.

Proof. This follows immediately from the definitions and Proposition 6.2.1.

By construction, the morphism C1,n0+1 → C
GLn0+1

1,n0+1 factors through a morphism

C1,n0+1 −→ Y −α
∨
j ×

Y
−e∗
n0+1

Q
n0+1
n0+1

(C
GLn0+1

1,n0+1 ×S E) = Y ×Y
Q
n0+1
n0+1

(C
GLn0+1

1,n0+1 ×S E),

where the morphism C
GLn0+1

1,n0+1 ×SE → Y
Q
n0+1
n0+1

is given by the natural morphism to Y
−e∗n0+1

Q
n0+1
n0+1

×S
E composed with (6.3.1). Composing with the morphism (6.2.4) gives a morphism

C1,n0+1 −→ Y ×S E ×S E −→ Y ×S Pic0
S(E) (6.3.11)

(y, x1, x2) 7−→ (y, x2 − x1)

over Y .

Remark 6.3.9. From the definitions, Cn0+1,n0+1 ⊆ Dn0+1 can be identified with the locus

of stable maps with one rational component of degree α∨i . By Lemma 6.2.6, the composition

of (6.3.11) with Cn0+1,n0+1 → C1,n0+1 sends a point in Cn0+1,n0+1 over x ∈ E to x − x′ ∈
Pic0

S(E), where x′ ∈ E is the point where E meets the rational component.

For 1 ≤ p ≤ n0 + 1, we let

Mp ⊆ C1,n0+1

be the closed substack given by the fibre product

Mp C1,n0+1

Y Y ×S Pic0
S(E),

(6.3.11)

θp

where θp is defined as in §6.1.

Proposition 6.3.10. For all 1 ≤ k ≤ n0, the morphism (6.3.6) restricts to isomorphisms

Dk+1 ×Z (Z \ Z0)
∼−→ Dk ×Z (Z \ Z0), Ck+1,n0+1

∼−→ Ck,n0+1 and Ck+1,p
∼−→ Ck,p

for 1 ≤ p < k, and a morphism

Ck+1,k −→Mk ⊆ Ck,n0+1
∼= C1,n0+1

that identifies Ck+1,k with the total space of a line bundle over Mk.
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Proof. Chasing through the definitions, we have

Mk = C1,n0+1 ×
C
GLn0+1
1,n0+1

M
GLn0+1

k .

So by Proposition 6.2.7, it remains to show that

Dk ×Z (Z \ Z0) −→ Dk ×Z (Z \ Z0) (6.3.12)

is an isomorphism. By Lemma 6.3.1, every G-bundle in the image of Dk ×Z (Z \ Z0) is

regular unstable, necessarily with Harder-Narasimhan reduction to the parabolic Q of type

t(Q) = {αj} by Lemma 5.4.7. So the morphism to BunG,rig factors through

Dk ×Z (Z \ Z0) −→ Bun
ss,−α∨j
Q,rig ↪−→ BunG,rig.

The argument of the proof of Proposition 5.4.11, together with the observation that KM
−α∨j
B,G →

KM
−α∨j
Pk,G

is surjective for all k by Proposition 3.6.4, shows that we have isomorphisms

Dk ×Z (Z \ Z0) ∼= Y ×YPk (Bun
−α∨j
M∩Pk,rig ×Bun

−α∨
j

M,rig

Bun
ss,−α∨j
Q,rig ×BunG,rig (Z \ Z0)×S E)

for all k, where M is the Levi factor of Q. So Proposition 5.3.1 and Lemma 5.4.10 show

that (6.3.12) is an isomorphism as claimed.

Proposition 6.3.11. The morphism (6.3.5) is the blowup of Dn0+1 along the closed substack

Mn0+1 ⊆ Cn0+1,n0+1 ⊆ Dn0+1.

Proof. First notice that by Proposition 3.1.13, we can identify (6.3.5) with the pullback of

morphism

KM
−α∨j
B,G,rig ×DegS(E) C −→ KM

−α∨j
B,G,rig ×S E (6.3.13)

along the map Dn0+1 → KM
−α∨j
B,G,rig ×S E. Since every stable map parametrised by a point

in Dn0+1 has a domain curve with at most 1 node, it therefore follows from Proposition

3.3.8 (4) that (6.3.13) is the blowup at the image of the locus of points where stabilisation

is not an isomorphism. But from Remark 6.3.9 it is clear that this locus is Mn0+1, so we

are done.

Lemma 6.3.12. The stacks Dk are all smooth of relative dimension 2 over Y .

Proof. Since KM
−α∨j
Pk,G,rig

×BunG,rig Z ×S E is smooth over Y
−α∨j
Pk

×S E, and hence over YPk ,

the stacks Dk are all smooth over Y . Moreover, Propositions 6.3.10 and 6.3.11 imply that

Dα∨j
(Z) → Dk is birational for all k, so Dk has relative dimension 2 over Y since Dα∨j

(Z)

does. (Note that the flat morphism χ : Z → Ŷ //W has relative dimension 2 by construction.)

Lemma 6.3.13. The morphism (6.3.11) is smooth with connected fibres.

Proof. From the construction and Lemma 6.2.13, we have

C1,n0+1 = D1 ×Z Z0 = Y −α
∨
j ×

Y
−α∨

j
P1

Bun
−α∨i −α

∨
j

L∩P1,rig
×BunL,rig Z0 ×S E.

There is an isomorphism

Y ×YP1
YL∩P1

∼−→ Y ×S Pic0
S(E) (6.3.14)

(y1, y2) 7−→ (y1, $i(y2)−$i(y1)).
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Chasing through the definitions of the various morphisms involved, we deduce that there is

a pullback

C1,n0+1 Y ×S Pic0
S(E)

Bun
−α∨i −α

∨
j

L∩P1,rig
×BunL,rig Z0 ×S E Y

−α∨i −α
∨
j

L∩P1
×S E YL∩P1 ,

(6.3.11)

(6.3.1)

where the morphisms Y ×S Pic0
S(E) → YL∩P1 is the composition of the inverse to (6.3.14)

with the natural projection.

It therefore suffices to show that the composition f of the first two morphisms in the

bottom row is smooth with connected fibres. Note that the morphism

Y
−α∨i −α

∨
j

L∩P1
×S E −→ YL∩P1

naturally identifies YL∩P1 with the quotient (Y
−α∨i −α

∨
j

L∩P1
×S E)/E by the diagonal action of

E by translations. So we can identify f with the composition of the middle vertical arrows

in the diagram

Bun
−α∨i −α

∨
j

L∩P1,rig
×BunµL,rig

Z0 ×S E Z0

Bun
−α∨i −α

∨
j

L∩P1,rig
×S E (Bun

−α∨i −α
∨
j

L∩P1,rig
×S E)/E BunµL,rig/E

Y
−α∨i −α

∨
j

L∩P1
×S E (Y

−α∨i −α
∨
j

L∩P1
×S E)/E.

(6.3.15)

The vertical arrow on the left in (6.3.15) is smooth, and has connected fibres since the

semisimple part of L ∩ P1 is simply connected. The vertical arrow on the right in (6.3.15)

is smooth with connected fibres by assumption. Since both squares are Cartesian, and the

horizontal arrows in the square on the left are faithfully flat, it follows that both vertical

arrows in the middle are smooth with connected fibres, and hence so is their composition f .

Lemma 6.3.14. The morphism (6.3.11) is an isomorphism.

Proof. Observe that the cell

Cn0+1,n0+1 ⊆ Dn0+1 = KM
−α∨j
B,G,rig ×BunG,rig Z ×S E

is equal to the locus of singular domain curves, and is therefore a divisor in Dn0+1 flat over

Y . Since Dn0+1 → Y has relative dimension 2 by Lemma 6.3.12, Cn0+1,n0+1 → Y therefore

has relative dimension 1. So by Lemma 6.3.13, (6.3.11) is a smooth proper morphism with

connected fibres and finite relative stabilisers between smooth stacks of the same dimension

over S. Since Cn0+1,n0+1 → S is representable over the dense open substack where Z0 → S

is representable, so is Cn0+1,n0+1 → Y ×S Pic0
S(E). Since Y ×S Pic0

S(E)→ S has irreducible

fibres, (6.3.11) is therefore surjective, so by Lemma 6.3.15 below, it is an isomorphism as

claimed.
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Lemma 6.3.15. Let X and X ′ be stacks that are smooth and of the same dimension over

S, and let f : X → X ′ be a smooth surjective proper morphism with connected fibres and

finite relative stabilisers. Assume that there exists some open set U ⊆ X that is dense in

every fibre of X → S such that f |U is representable. Then f is an isomorphism.

Proof. First note that f |U : U → X ′ is étale and representable with connected fibres, and

hence an open immersion. Moreover, the morphism X×X′X → X is smooth with connected

fibres, so the preimage of U under either projection is dense. So the diagonal X → X×X′X,

which is finite by assumption, is an isomorphism over the dense open subset U , and hence

surjective. Since X×X′X is smooth over S, and hence normal, it follows that X → X×X′X
is an isomorphism. Since f is smooth and surjective, by flat descent it follows that f : X →
X ′ is also an isomorphism as claimed.

Proposition 6.3.16. The stack D1 is isomorphic to a line bundle over

C1,n0+1
∼= Y ×S Pic0

S(E).

Proof. Propositions 6.3.8, 6.3.10 and Lemma 6.3.14 together imply that C1,n0+1 = D1 ×Z
Z0 is a Cartier divisor on D1. Moreover, choosing any cocharacter of the torus Z(L)rig

whose negative is a Harder-Narasimhan vector for the parabolic P+ opposite to P , we get

compatible actions of Gm on Z and D1 acting trivially on Z0 and D1 ×Z Z0, such that Gm
acts on the fibres of the affine space bundle Z → Z0 with positive weights. Since the normal

cone of D1 ×Z Z0 in D1 is a line bundle and Gm acts nontrivially on it, Gm acts on it with

a single nonzero weight. So the proposition follows from Lemma 5.4.14.

Proposition 6.3.17. For 1 ≤ k ≤ n0, the natural morphism Dk+1 → Dk is the blowup

along Mk.

Proof. Propositions 6.3.8 and 6.3.10, and Lemmas 6.3.14 and 6.3.12 imply that Dk+1 → Dk

is a projective birational morphism between smooth stacks of relative dimension 2 over Y

that is an isomorphism outside the section Y ∼= Mk ⊆ Dk, such that the fibres of Dk+1 → Dk

over points in Mk are irreducible curves. Moreover, Proposition 6.3.16 implies that D1 → Y

is representable, and hence so is Dk → Y . So by Lemma 6.3.18 below, Dk+1 → Dk is the

blowup along Mk as claimed.

Lemma 6.3.18. Let U be a regular stack, let X → U and X ′ → U be smooth representable

morphisms of relative dimension 2, and let f : X → X ′ be a projective morphism over U .

Suppose that there exists a section g : U → X ′ such that f−1(X ′ \ g(U))→ X ′ \ g(U) is an

isomorphism, and such that every fibre of f over a point in g(U) is an irreducible curve.

Then f is the blowup of X ′ along g(U).

Proof. Since the claim is local in the smooth topology on U and in the étale topology on

X ′, we can reduce to the case where X ′ → U is a smooth morphism of schemes with U

connected and regular.

First note that the underlying reduced scheme D of the exceptional locus f−1(g(U)) is an

integral closed subscheme of codimension 1 in a regular scheme, and hence a Cartier divisor.

Since X and X ′ are smooth over U and f is an isomorphism outside D, we therefore have

KX/U = f∗KX′/U (nD) for some n > 0. If k is any field and u : Spec k → U is a k-point, we

have D|Xu = muCu for some mu > 0, where Cu ⊆ Xu is the irreducible curve contracted

under f , and hence, by adjunction

−2 ≤ degKCu = (mun+ 1)C2
u.

143



Since C2
u < 0, we deduce that mu = n = 1, C2

u = −1, degKCu = −2, and hence that Cu

is a smooth rational curve. In particular, by Castelnuovo’s theorem, fu : Xu → X ′u is the

blowup at g(u).

We next prove the claim in the case where U = SpecR for some discrete valuation ring

R. If η : SpecK → U is the generic point and u : Spec k → U the closed point, we have

shown that on the open generic fibre, fη : Xη → X ′η is the blowup along g(η), and hence we

get an isomorphism

h : X \ f−1(g(u))
∼−→ X̃ ′ \ π−1(g(u))

over X ′, where π : X̃ ′ → X ′ is the blowup of X ′ along g(U). Since f is projective and

is an isomorphism outside D, it follows that either D or −D is f -ample. Since D · Cu =

(C2
u)Xu = −1, it follows that −D is f -ample. But h is an isomorphism in codimension 1

between regular schemes projective over X ′, h(D \f−1(g(u))) = π−1(g(U))\π−1(g(u)), and

−π−1(g(U)) is f -ample, so

X
∼−→ ProjX′

⊕
d≥0

f∗O(−dD) ∼= ProjX′
⊕
d≥0

π∗O(−dπ−1(g(U)))
∼←− X̃ ′,

which proves that X is the blowup as claimed.

Now consider a general connected regular U , let π : X̃ ′ → X ′ be the blowup along g(U)

as before, and let X̃ ⊆ X ×X′ X̃ ′ be the closure of X ′ \ g(U). We claim that X̃ → X

is an isomorphism. To see this, it suffices to show that X̃ → X is quasi-finite, since it

is proper and birational and X is normal. If not, then there exists a curve C̃ in X̃u for

some u : Spec k → U , say with k algebraically closed, that is contracted under the map

to X. Since Xu
∼= X̃ ′u over X ′u, it follows that C̃ cannot be contained in the closure of

X ′u \ g(u). Choose some k-point x : Spec k → C̃u that does not lie in this closure. Since C̃

is in the closure of X ′ \ g(U), we can find a discrete valuation ring R with residue field k

and a morphism SpecR → X ×X′ X̃ ′ sending the closed point to x and the generic point

to X ′ \ g(U). Pulling everything back along SpecR → U , we deduce that there is a point

in the closure of X ′R \ g(U)R in XR ×X′R X̃
′
R over the closed point of SpecR that is not in

the closure of X ′u \ g(u). But since we have shown that XR = X̃ ′R above, the closure of

X ′R \ g(U)R is isomorphic to XR, so this is a contradiction. So we must have X̃ ∼= X as

claimed.

So the morphism f : X → X ′ factors through a morphism X → X̃ ′. But since this map

is an isomorphism on every fibre over U , it is therefore an isomorphism globally, and we are

done.

Proof of Theorem 6.1.9, (3) and (4). To prove (3), apply Propositions 6.3.11, 6.3.16 and

6.3.17. To prove (4), observe that the proper transform of the zero section is the closure of

the locus of stable maps with dual graph

α∨j −α∨i −α
∨
j α∨i

and is hence equal to the intersection with Dα∨j
(Z) by Propositions 3.4.13 and 3.4.16. The

map to Pic0
S(E) is given as in the statement of the theorem by Remark 6.3.9.

6.4 Computing the divisor Dα∨
i +α

∨
j
(Z)

In this section, we complete the proof of Theorem 6.1.9 by computing the divisorDα∨i +α∨j
(Z).

We will assume for this section that the hypotheses of Theorem 6.1.9 are satisfied.
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In the following proposition, for λ ∈ X∗(T )+, we write

M+
0,1(G/B, λ) = M0,1(G/B, λ)×G/B SpecZ

for the stack of 1-pointed genus 0 stable maps of degree λ sending the marked point to the

base point B/B ∈ G/B.

Proposition 6.4.1. Let y : Spec k → Y be a geometric point. Then there is an isomorphism

Dα∨i +α∨j
(Z)y ∼= M+

0,1(G/B,α∨i + α∨j )k.

Proof. Since Lemma 6.3.2 implies that all stable X∗(T )⊕Z-graphs τ admitting contractions

τ → τ0
α∨i +α∨j

with MZ(ξG/Z(G) ×G/Z(G) G/B, τ) 6= ∅ have a unique such contraction, the

gluing map

MZ(ξG/Z(G) ×G/Z(G) G/B, τ0
α∨i +α∨j

) −→ Dα∨i +α∨j
(Z) (6.4.1)

is an isomorphism by Corollary 3.2.21 and Proposition 3.4.13, where ξG/Z(G) → Z ×S E is

the G/Z(G)-bundle classified by Z → BunG,rig → BunG/Z(G). Moreover, every fibre of the

morphism

MZ(ξG/Z(G) ×G/Z(G) G/B, τ0
α∨i +α∨j

) −→M1,1,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨i − α∨j , 1))

(6.4.2)

over a k-point is isomorphic to M+
0,1(G/B,α∨i + α∨j )k. But by the isomorphism (6.4.1) and

Lemma 6.4.2 below, we can identify (6.4.2) with the morphism Dα∨i +α∨j
(Z) → Y , so the

result now follows.

Lemma 6.4.2. The morphism

M1,1,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨i − α∨j , 1)) −→ Y −α
∨
i −α

∨
j ×S E −→ Y (6.4.3)

is an isomorphism, where the first morphism is the usual (blow down) map to Y −α
∨
i −α

∨
j on

the first factor and the map evaluating at the marked point and projecting to E on the second

factor, and the second morphism is (6.3.1).

Proof. Using Proposition 3.4.10 and the fact that each of the evalation mapsM0,3(G/B, 0)→
G/B is an isomorphism, we deduce that the canonical morphism

MZ0
(ξG/Z(G) ×G/Z(G) G/B, τ) −→M1,1,Z0

(ξG/Z(G) ×G/Z(G) G/B, (−α∨i − α∨j , 1))

is an isomorphism, where τ is the X∗(T )⊕ Z-graph below.

τ =

α∨j
0

−α∨i −α
∨
j

α∨i

But MZ(ξG/Z(G) ×G/Z(G) G/B, τ) is equal to the intersection of the proper transform of

Cn0+1,n0+1 = Y ×S Pic0
S(E) ⊆ Dn0+1 with the exceptional divisor of the blowup Dα∨j

(Z)→
Dn0+1, and therefore maps isomorphically to Y under Dα∨j

(Z) → Y . Since this map to Y

agrees with the one in the statement of the lemma by Proposition 3.5.5, this completes the

proof.
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Proposition 6.4.3. Let d = −〈αj , α∨i 〉 − 1. Then there is an isomorphism

M+
0,1(G/B,α∨i + α∨j ) ∼= Fd−1

such that the closure of the locus of stable maps with dual graph

α∨i α∨j

is a fibre of Fd−1 → P1, and the closure of the locus of stable maps with dual graph

α∨j α∨i

is a section P1 → Fd−1 with self-intersection 1− d.

An important role in the proof of Proposition 6.4.3 is played by the Schubert varieties in

G/B. Given w ∈W , recall that the Schubert variety associated to w is the closed subvariety

Xw = BwB/B ⊆ G/B.

In what follows, we write Qi, Qj ⊆ G for the standard minimal parabolics of types t(Qi) =

∆ \ {αi} and t(Qj) = ∆ \ {αj}.

Lemma 6.4.4. There are isomorphisms

Xsisj
∼= Fd, (resp. Xsjsi

∼= F1 )

such that Xsj is identified with a fibre of Fd → P1 (resp., the unique section P1 → F1 of self-

intersection −1) and Xsi is identified with the unique section P1 → Fd of self-intersection

−d (resp., a fibre of F1 → P1).

Proof. We prove the claim for Xsisj ; the proof for Xsjsi is identical after noting that

〈αi, α∨j 〉 = −1.

There is an isomorphism

SL2 ×BSL2
,ραi Qj/B = Qi ×B Qj/B

∼−→ Xsisj ,

given by multiplication, where BSL2
⊆ SL2 is the Borel subgroup of lower triangular

matrices, and ραi : SL2 → G is the root homomorphism corresponding to αi. We also

have an isomorphism of Qj-varieties Qj/B ∼= P(V ∨), where V is the Qj-representation

V = Ind
Qj
B (Z$j ), and an exact sequence

0 −→ Z$j−αj −→ V −→ Z$j −→ 0

of B-representations, which splits uniquely as an exact sequence of BSL2
-representations.

So we have

Xsisj = SL2×BSL2P(V ∨) = PP1(O(−〈$j , α
∨
i 〉)⊕O(−〈$j−αj , α∨i 〉)) = PP1(O⊕O(−d))) = Fd.

The identifications of Xsi = Qi/B and Xsj = Qj/B under this isomorphism follow imme-

diately.

Lemma 6.4.5. The partial Schubert variety Xsisj/Qi = BsisjQi/Qi ⊆ G/Qi is isomorphic

to the projective cone P̂1
d on P1 of degree d, and the morphism

Xsisj −→ Xsisj/Qi (6.4.4)

is the blowup of Xsisj/Qi at the origin Qi/Qi.
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Proof. First note that the morphisms BsisjB/B → BsisjQi/Qi and BsjB/B → BsjQi/Qi

are isomorphisms. So (6.4.4) is birational and finite outside Qi/Qi, and hence an isomor-

phism outside Qi/Qi since partial Schubert varieties are always normal. Since the preimage

of Qi/Qi under (6.4.4) is Qi/B = Xsi , using normality of Xsisj/Qi and of P̂1
d (note that

d ≤ 3), we can conclude from Lemma 6.4.4 that (6.4.4) can be identified with the morphism

Fd −→ P̂1
d

contracting the curve of self-intersection −d. But this is indeed the blowup at the cone

point, so we are done.

Lemma 6.4.6. There is a Qi-equivariant isomorphism

M+
0,1(Xsisj/Qi, α

∨
j ) ∼= Qi/B ∼= P1,

identifying the universal stable map with

Qi ×B Qj/B −→ Xsisj −→ Xsisj/Qi. (6.4.5)

Proof. Assume that U is a scheme and (f : C → Xsisj/Qi, x : U → C) is a 1-pointed stable

map over U of degree α∨j sending x to the base point. We need to show that there is a

unique morphism U → Qi/B such that (f, x) is the pullback of (6.4.5) and the canonical

section Qi/B = Qi ×B B/B → Qi ×B Qj/B.

We first claim that C → U is smooth and that every geometric fibre of f−1(Qi/Qi)→ U

is a reduced point. Since f−1(Qi/Qi) → U has a section x, it then follows that it is an

isomorphism.

To prove the claim, fix a geometric point u : Spec k → U , and consider the stable map

fu : Cu → (Xsisj/Qi)k. Since α∨j is not the sum of two nonzero effective curve classes, it

follows that Cu is irreducible, hence smooth over Spec k, and hence that f−1
u (Qi/Qi) is a

Cartier divisor on Cu. So by Lemmas 6.4.4 and 6.4.5, fu lifts to a morphism f̄u : Cu →
(Xsisj )k

∼= (Fd)k such that Cu ·Xsi > 0 and Cu · (dXsj +Xsi) = 1. Since d > 0, it follows

that Cu · Xsi = 1 and Cu · Xsj = 0. In particular, f−1
u (Qi/Qi) = Cu ∩ Xsi is a reduced

closed point on Cu, so f−1
u (Qi/Qi) ∼= Spec k as claimed.

Since f−1(Qi/Qi) ⊆ C is a section of the smooth curve C → U , it is a Cartier divisor, so

by Lemma 6.4.5, f lifts uniquely to a morphism f̄ : C → Xsisj . Since the above argument

shows that the composition f̄ : C → Xsisj = Qi ×B Qj/B → Qi/B has degree 0 on every

fibre, this descends to a unique morphism U → Qi/B. The induced morphism

C −→ U ×Qi/B (Qi ×B Qj/B) (6.4.6)

has degree 1 on every fibre and is therefore an isomorphism. Since (6.4.6) sends the section

x to the section Qi/B → Qi×BQj/B (as both are the preimage of Qi/Qi ⊆ Xsisj/Qi), this

proves the lemma.

Proof of Proposition 6.4.3. For the sake of brevity, write

M = M+
0,1(G/B,α∨i + α∨j ).

We first claim that M is connected. To see this, observe that B acts on M , that any B-fixed

point corresponds to a stable map factoring through Xsi ∪Xsj ⊆ G/B, and that there is a

unique such pointed stable map of class α∨i + α∨j defined over k for any algebraically closed

field k. Since every connected component of M must have at least one B-fixed point over

every algebraically closed field, connectedness of M follows immediately.
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We now compute the closed subscheme

M ′ = M+
0,1(Xsisjsi , α

∨
i + α∨j ) ⊆M

consisting of stable maps factoring through the Schubert variety Xsisjsi . We will show that

M ′ ∼= Fd is smooth and projective of relative dimension 2 over SpecZ, from which it follows

from connectedness of M and Proposition 3.4.9 that M ′ = M .

Since Xsisjsi/Qi = Xsisj/Qi, by Lemma 6.4.6 we have a morphism

M ′ −→M+
0,1(Xsisj/Qi, α

∨
j ) ∼= Qi/B = P1

sending a stable map to the stabilisation of its composition with G/B → G/Qi. The pullback

of the universal domain curve of M+
0,1(Xsisj/Qi, α

∨
j ) along Xsisjsi → Xsisj/Qi is

Xsisjsi ×Xsisj /Qi (Qi ×B Qj/B) = G/B ×G/Qi (Qi ×B Qj/B),

which is identified with the Bott-Samelson variety X̃sisjsi via

X̃sisjsi = Qi ×B Qj ×B Qi/B
∼−→ G/B ×G/Qi (Qi ×B Qj/B)

(g1, g2, g3B) 7−→ (g1g2g3B, (g1, g2B)).

So we can identify M ′ with the relative space of stable maps

M ′ ∼= M+
0,1,Qi/B

(X̃sisjsi , α
∨
i + α∨j ),

where M+
0,1,Qi/B

(X̃sisjsi , α
∨
i + α∨j ) is the fibre product

M+
0,1,Qi/B

(X̃sisjsi , α
∨
i + α∨j ) Qi/B

M0,1,Qi/B(X̃sisjsi , α
∨
i + α∨j ) X̃sisjsi ,

σ

Here σ is the section defined by Qi/B ∼= m−1(B/B) → X̃sisjsi , for m : X̃sisjsi → G/B the

natural morphism given by multiplication. By Proposition 3.1.13, we therefore have a fibre

product

M ′ Qi/B

C X̃sisjsi ,

σ

where C is the universal domain curve over M0,Qi/B(X̃sisjsi , α
∨
i + α∨j ).

By Lemma 6.4.4, every fibre of X̃sisjsj → Qi/B is isomorphic to F1 = Xsjsi = Qj ×B

Qi/B, and α∨i + α∨j is the class Xsi + Xsj of the (−1)-curve plus a fibre of F1 → P1.

Unpointed stable maps of class α∨i +α∨j are the same things as closed subschemes with ideal

sheaf O(−Xsi − Xsj ) = m∗L−$i . So we can identify M0,Qi/B(X̃sisjsi , α
∨
i + α∨j ) with the

Hilbert scheme PQi/B(π∗m
∗L$i) and M ′ with the closed subscheme

M ′ = PQi/B(kerπ∗m
∗L$i → σ∗m∗L$2),

where π : X̃sisjsi → Qi/B is the natural projection.

It therefore remains to identify the vector bundle π∗m
∗L$i on Qi/B ∼= P1 and the

morphism π∗m
∗L$i → σ∗m∗L$i = O. It is clear from the identification X̃sisjsi =
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Qi ×B Qj ×B Qi/B that π∗m
∗L$i is the Qi-linearised vector bundle associated to the

B-representation

V = Ind
Qj
B IndQiB Z$i .

The representation V has rank 3, with weights $i, $i−αi and $i−αi−αj , and restricting

V to a BSL2
-representation via the root homomorphism ραi : SL2 → Qi ⊆ G, we have

V = U ⊕ Z〈$i−αi−αj ,α∨i 〉 = U ⊕ Zd−1,

where U is the standard representation of SL2 and Zd−1 is the rank 1 BSL2 -module of weight

d− 1. So we get

π∗m
∗L$i = U ⊗OP1 ⊕O(d− 1).

Since d > 0, the kernel of

π∗m
∗L$i = O ⊕O ⊕O(d− 1) −→ O = σ∗m∗L$i

must be isomorphic to O⊕O(d− 1), which gives the desired isomorphism M = M ′ ∼= Fd−1.

Finally, to identify the loci of stable maps with given dual graphs in the statement of

the proposition, notice that Proposition 3.4.10 implies that each closure is isomorphic to P1,

and that the closure of curves with dual graph

α∨i α∨j

is contracted under the map to M+
0,1(G/Qi, α

∨
j ), and is hence a fibre of Fd−1 → P1 as

claimed. Moreover, the canonical section of Fd−1 of degree 1− d is the subscheme

PQi/B(kerπ∗m
∗L$i → π′∗(σ

′)∗m∗L$i) ⊆ PQi/B(kerπ∗m
∗L$i → σ∗m∗L$i) = M ′,

where σ′ is the morphism Qi×BQi/B = Qi×BB×BQi/B → X̃sisjsi and π′ : Qi×BQi/B →
Qi/B is the natural projection onto the first factor. But this parametrises curves of class

α∨i +α∨j containing some curve of class α∨i , so this must be the closure of the locus of curves

with dual graph

α∨j α∨i

as claimed.

Proof of Theorem 6.1.9 (1), (2), (5) and (6). First note that (2), (5) and (6) follow imme-

diately from Propositions 6.4.1 and 6.4.3.

To prove (1), by Corollary 4.5.9 and Lemma 6.3.2, the only thing left to show is

that Dα∨i
(Z), Dα∨j

(Z) and Dα∨i +α∨j
(Z) are connected. We have shown that Dα∨j

(Z) and

Dα∨i +α∨j
(Z) are both connected, and that the union of their intersections with Dα∨i

(Z) is

connected. Since the normal crossings divisor D(Z) = χ̃−1
Z (0Θ−1

Y
) is connected by Corollary

5.5.9, this implies that Dα∨i
(Z) must also be connected, so we are done.

6.5 Constructing slices

In this section, we give the proof of Theorem 6.1.5. The proof we give here is somewhat ad

hoc, and relies on directly understanding the structure of the Levi subgroup L in each case.

We first give the construction in type A.
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Proof of Theorem 6.1.5 in type A. First note that since d = 1 in this case, the µd = µ1-

gerbe Guni must be the trivial one, so we need to construct a slice without passing to a

smooth cover.

Proposition 5.3.1 gives an identification L ∼= GLi×GLl−i so that the characters $i and

$i+1 ∈ X∗(L) are identified with the determinants of the first and second factors respectively.

(Explicitly, the isomorphism is given by

GLi ×GLl−i
∼−→ L ⊆ SLl+1

(A,B) 7−→

A 0 0

0 (detA)−1 detB 0

0 0 v(Bt)−1v−1

 ,

where v ∈ Sl−i is the matrix of the permutation of {1, . . . , l− i} sending j to l− i− j + 1.)

Theorem 5.3.5 and Proposition 5.3.4 therefore imply that the morphism

($i, $i+1) : Bunss,µL,rig −→ Pic−1
S (E)×S Pic−1

S (E)

is a trivial Z(L)rig-gerbe. Note that in particular, all semistable L-bundles of slope µ are

regular in this case.

By Proposition 5.2.13, the pullback of Θ to Bunss,µL,rig has Z(L)rig-weight (−µ | −) ∈
X∗(Z(L)rig). Since the corresponding homomorphism X∗(Z(L)rig) → Z is surjective, it

follows that there exists a section

Pic−1
S (E)×S Pic−1

S (E) −→ Bunss,µL,rig

such that the pullback of ΘBunG,rig is trivial. Since such a section is necessarily smooth,

composing it with any choice of section of

Pic−1
S (E)×S Pic−1

S (E) −→ Pic−1
S (E)×S Pic−1

S (E)/E ∼= E

gives a Θ-trivial slice Z0 → Bunss,µL,rig with Z0 = E, such that Z0 → Bunss,µL,rig/E is surjective

with fibres isomorphic to Z(L)rig, hence connected. So (1), (2) and (3) are satisfied. A simple

root-theoretic calculation shows that −〈2ρ, µ〉 = l+ 2, so (4) follows from Proposition 5.2.8.

So this proves the theorem in this case.

The construction in the exceptional types E, F and G is also fairly straightforward.

Proof of Theorem 6.1.5 in types E, F and G. In these cases, Theorem 5.3.5 shows that the

morphism

$i : Bunss,µL,rig −→ Pic−1
S (E) (6.5.1)

is a Gm = Z(L)rig-gerbe. Let Z0 = S, and let G′ be the Z(L)rig-gerbe given by the

pullback along O(−OE) : Z0 → Pic−1
S (E). By Proposition 5.2.13, the pullback of the theta

bundle defines a BZ(L)rig-equivariant morphism G′ → BGm, where BZ(L)rig acts on BGm
through the homomorphism −(µ | −) : Z(L)rig → Gm. So a section of G′ such that the

pullback of ΘBunG,rig is trivial is the same thing as a section of the µd = ker(µ | −)-gerbe

G = G′ ×BGm SpecZ. The µd-gerbe is by construction pulled back from one Guni on M1,1,

defined in the same way, and if it is trivial then there is a morphism Z0 → Bunss,µL,rig lifting

the section O(−OE) : Z0 → Pic−1
S (E) such that the pullback of ΘBunG,rig is trivial.

It is immediately clear that (1) is satisfied. Letting (Bunss,µL,rig)0 be the fibre of (6.5.1)

over O(−OE) : S → Pic−1
S (E), we have that (Bunss,µL,rig)0

∼= Bunss,µL,rig/E is a Z(L)rig-gerbe

over S = Z0 and the map Z0 → Bunss,µL,rig/E is a section. In particular, it is smooth with
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connected fibres, so (2) is satisfied, and surjective, so (3) is also satisfied. Finally, to prove

(4), simply note that Proposition 5.2.8 and a simple root-theoretic calculation shows that

Z = IndGL (Z0)→ Z0 = S is an affine space bundle of relative dimension l + 3.

The construction of the slice Z0 for (G,P, µ) of types B, C and D is somewhat more

complicated, and involves parabolic induction from a smaller Levi L′ ⊆ L. To prove that

this construction works, we will need to describe the Levi subgroup L in some detail. For

future reference, we do this now in all types.

Assume first that we are in types C, D, E or F . Then the connected component c1

containing αj of the Dynkin diagram with the edge joining αi and αj deleted is of type An1
,

and we can choose a labelling αc1,1, . . . , αc1,n1 such that αc1,p is adjacent to αc1,p+1 for each

p and αj is either αc1,n1 (in types C and F ) or αc1,n1−1 (in types D and E).

Lemma 6.5.1. In the setup above, there is an isomorphism

L ∼= {(A,B) ∈ GLn0
×GLn1+1 | detB = (detA)2},

such that $i is identified with the character (A,B) 7→ detA and L ∩ B is the preimage of

the Borel subgroup Qn0
n0
×Qn1+1

n1+1 ⊆ GLn0 ×GLn1+1. Moreover, the induced map

X∗(Qn1+1
n1+1) −→ X∗(L ∩B) = X∗(T )

is given in types D and E by

ek 7−→


$1,c1 if k = 1,

$k,c1 −$k−1,c1 if 1 < k < n1,

$n1,c1 −$n1−1,c1 +$i, if k = n1,

−$n1,c1 +$i, if k = n1 + 1,

and in types C and F by

ek 7−→


$1,c1 if k = 1,

$k,c1 −$k−1,c1 if 1 < k ≤ n1,

−$n1,c1 + 2$i, if k = n1 + 1.

Proof. Apply Proposition 5.3.1; the expressions for X∗(Qn1+1
n1+1)→ X∗(T ) follow by examining

the specific isomorphism given in the proof.

In type G, the Levi L has a similarly simple form.

Lemma 6.5.2. Assume that (G,P, µ) is of type G. Then there is an isomorphism

L
∼−→ {(λ,A) ∈ Gm ×GL2 | detA = λ3} (6.5.2)

such that $1 is identified with the character (λ,A) 7→ λ and L ∩ B is the preimage of the

Borel subgroup Gm ×Q2
2 ⊆ Gm ×GL2. Moreover, the induced morphism

X∗(Q2
2) −→ X∗(L ∩B) = X∗(T )

sends the characters e1 and e2 to $2 and 3$1 −$2 respectively.

Proof. Apply Proposition 5.3.1 again and inspect the explicit isomorphism given in the proof

to compute X∗(Q2
2)→ X∗(T ).
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The case of type B is somewhat more complicated, as the Levi subgroup L is not of type

A. In what follows, we let

GSp4 = {B ∈ GL4 | BtJB = χ(B)J for some χ(B) ∈ Gm},

where

J =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 .

Note that GSp4 is a reductive group with weight lattice X∗(GSp4∩Q4
4) =

⊕4
k=1 Zfk/Z(f1−

f2−f3+f4), where fk is the character sending a matrix to its kth diagonal entry, simple roots

β1 = f2−f3 and β2 = f1−f2, and simple coroots β∨1 = f∗2 −f∗3 and β∨2 = f∗1 −f∗2 +f∗3 −f∗4 .

In this description, χ is the character χ = f1 + f4 = f2 + f3.

Lemma 6.5.3. If (G,P, µ) is of type B, then there is an isomorphism

L
∼−→ {(A,B) ∈ GLl−2 ×GSp4 | det(A) = χ(B)},

such that $i = $l−2 is identified with the character (A,B) 7→ det(A) = χ(B) and L ∩B is

the preimage of the Borel subgroup Ql−2
l−2 × (GSp4 ∩ Q4

4) ⊆ GLl−2 × GSp4. Moreover, the

induced morphism

X∗(GSp4 ∩Q4
4) =

4⊕
k=1

Zfk −→ X∗(L ∩B) = X∗(T )

sends f1, f2, f3 and f4 to $l, $l−1 −$l, $l−2 −$l−1 +$l and $l−2 −$l respectively.

Proof. We describe the isomorphism at the level of root data.

Write

L0 = {(A,B) ∈ GLl−2 ×GSp4 | det(A) = χ(B)} ⊆ GLl−2 ×GSp4.

The root datum (M,Ψ,M∨,Ψ∨) of L0 is specified as follows. The weight lattice is

M =

⊕l−2
i=1 Zei ⊕

⊕4
j=1 Zfj

〈f1 − f2 − f3 + f4, f1 + f4 −
∑l−2
i=1 ei〉

,

and the coweight lattice is therefore

M∨ =

λ ∈
l−2⊕
i=1

Ze∗i ⊕
4⊕
j=1

Zf∗j

∣∣∣∣∣∣ 〈f1 + f4, λ〉 = 〈f2 + f3, λ〉 =

l−2∑
i=1

〈ei, λ〉

 .

The roots Ψ and coroots Ψ∨ and the bijection Ψ→ Ψ∨ are determined by requiring that

{γi | 1 ≤ i ≤ l, i 6= l − 2}

be a set of simple roots, where

γi =


ei − ei+1, if i < l − 2,

f2 − f3, if i = l − 1,

f1 − f2, if i = l,

and γ∨i =


e∗i − e∗i+1, if i < l − 2,

f∗2 − f∗3 , if i = l − 1,

f∗1 − f∗2 + f∗3 − f∗4 , if i = l.

152



There is an isomorphism

φ : X∗(T ) =

l⊕
i=1

Zα∨i
∼−→M∨

sending α∨i to γ∨i for i 6= l−2, and α∨l−2 to e∗l−2 +f∗3 +f∗4 , such that the dual φ∗ : M → X∗(T )

sends βi to αi for i 6= l− 2. So φ defines an isomorphism of root data, which has the desired

properties by inspection.

In view of Lemma 6.5.3, it will be useful to have a description of GSp4-bundles in terms

of vector bundles.

Definition 6.5.4. A conformally symplectic vector bundle is a tuple (W,M,ω), where W

is a vector bundle, M is a line bundle, and ω : ∧2 W → M is a morphism such that the

induced morphism W →W∨ ⊗M is an isomorphism.

Lemma 6.5.5. There is an isomorphism of BunGSp4 with the relative stack of conformally

symplectic vector bundles (W,M,ω) on E over S, which identifies χ : BunGSp4 → BunGm
with the map (W,M,ω) 7→M .

Proof. Let V be the standard representation of GSp4 coming from the inclusion GSp4 ⊆
GL4. Then J defines a homomorphism of GSp4-representations J : ∧2 V → Zχ. The

isomorphism from BunGSp4 to the stack of conformally symplectic vector bundles sends a

GSp4-bundle ξ to (ξ ×GSp4 V, ξ ×GSp4 Zχ, ξ ×GSp4 J).

Returning to the problem of constructing slices in types B, C and D, let P ′ ⊆ L be the

standard parabolic of type t(P ′) = {αl}, and L′ ⊆ P ′ its standard Levi subgroup. In types

C and D, let ρL : L→ GLn1+1 be the composition of the isomorphism of Lemma 6.5.1 with

the projection to the second factor (where for concreteness we choose the labelling so that

αc1,n1
= αl), and in type B let ρL : L → GL4 be the composition of the isomorphism of

Lemma 6.5.3 with the projection to the second factor and the inclusion GSp4 ⊆ GL4.

Lemma 6.5.6. Assume we are in types B, C or D. Then there is an isomorphism of BunP ′

with the stack of pairs (ξL,M ⊆ W ), where ξL ∈ BunL and M ⊆ W is a line subbundle of

the vector bundle W associated to ξL under the representation ρL, such that the morphism

$l : BunP ′ −→ BunGm

is identified with the morphism

(ξL,M ⊆W ) 7−→

$i(ξL)⊗M−1, in types B and D,

$i(ξL)⊗2 ⊗M−1, in type C.

In types C and D (resp., type B), if ξP ′ corresponds to (ξL,M ⊆ W ) and V is the vector

bundle induced by ξL under the projection L → GLn0
coming from Lemma 6.5.1 (resp.,

6.5.3), then the L′-bundle ξP ′ ×P
′
L′ is semistable if and only if the vector bundles V and

W/M (resp., ker(ω : W/M → detV ⊗M∨)) are semistable.

Proof. In types C and D this is clear from Lemma 6.5.1. In type B, using Lemma 6.5.3 we

have an L-equivariant identification L/P ′ ∼= GSp4/(GSp4 ∩ R4) ∼= GL4/R4
∼= P4 with the

space of lines in the representation ρL, where we recall that

R4 =



∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗


 ⊆ GL4.
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The claimed isomorphism in this case now follows. To get the desired identification of the

semistable bundles, notice that the Levi factor of GSp4 ∩R4 is


λ−1 detA 0 0 0

0 0

0
A

0

0 0 0 λ


∣∣∣∣∣∣∣∣∣A ∈ GL2, λ ∈ Gm

 ∼= GL2 ×Gm,

so we have an isomorphism

BunL′ ∼= BunGLn0
×BunGm

BunGL2 ×S BunGm ,

such that the map BunP ′ → BunL′ is identified with

(ξL,M ⊆W ) 7−→ (V, ker(W/M → detV ⊗M∨),M).

This now implies the claim.

Lemma 6.5.7. Let (G,P, µ) be of type B, C or D, and assume that ξL → Es is a semistable

L-bundle of slope µ over a geometric fibre of E → S. Then dim Aut(ξL) ≥ 2.

Proof. By Lemmas 6.5.1, 6.5.3 and 6.5.5 and Theorem 5.3.2, it suffices to show that if W

is a semistable vector bundle of degree −2 and rank 2r (resp., (W,M,ω) is a conformally

symplectic vector bundle with W semistable and degM = −1), then dim Aut(W ) ≥ 2 (resp.,

dim Aut(W,M,ω) ≥ 2).

In the first case, observe that if U and U ′ are nonisomorphic semistable vector bundles of

degree −1 and rank r, then U⊗(U ′)∨ is a vector bundle of degree 0 with H0(E,U⊗(U ′)∨) =

0, and hence H1(E,U ⊗ (U ′)∨) = 0 also. It follows that the morphism

Bunss,−1
GLr

× Bunss,−1
GLr

−→ Bunss,−2
GL2r

(U,U ′) 7−→ U ⊕ U ′

is étale at (U,U ′) if U 6∼= U ′. Since the locus of vector bundles W in Bunss,−2
GL2d

with

dim Aut(W ) < 2 is open, it is either empty or dense. So by openness of étale mor-

phisms, if it is nonempty, then there exists such a bundle W = U ⊕ U ′ with U 6∼= U ′.

But Aut(W ) = Aut(U) × Aut(U ′) = Gm × Gm for such bundles, so this is a contradiction

and we are done in this case.

The proof for conformally symplectic bundles is similar. Consider the Levi subgroup

GL2 ×Gm ∼= L′′ =

{(
λJ0(At)−1J0 0

0 λA

)∣∣∣∣∣A ∈ GL2, λ ∈ Gm

}
,

where

J0 =

(
0 1

1 0

)
.

Given (U,M) ∈ Bunss,−1
GL2

×S Bun−1
Gm corresponding to an L′′-bundle ξL′′ , with U 6∼= U∨⊗M ,

we have that

ξL′′ ×L
′′
gsp4/l

′′ ⊆ U∨ ⊗ (U∨ ⊗M)⊕ U ⊗ (U∨ ⊗M)∨

is a degree 0 vector bundle on Es withH0(Es, ξL′′×L
′′
gsp4/l

′′) = 0 and henceH1(Es, ξL′′×L
′′

gsp4/l
′′) = 0 also, where gsp4 = Lie(GSp4) and l′′ = Lie(L′′). So we conclude that the mor-

phism

BunL′′ −→ Bun−1
GSp4
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is étale at (U,M).

Since the locus of conformally symplectic vector bundles (W,M,ω) in Bunss,−1
GSp4

with

automorphism group of dimension < 1 is open, it is either empty or dense. If it is nonempty,

then by openness of étale morphisms we can find such a bundle of the form W = U⊕U∨⊗M
as above. But dim AutGSp4(W ) = dim Aut(U)× dim Aut(M) = 2, so this is a contradiction

and the lemma is proved.

Proof of Theorem 6.1.5 in types B, C and D. Let µ′ ∈ X∗(Z(L′))Q be the unique vector

with 〈$i, µ
′〉 = −1 and 〈$l, µ

′〉 = 0. Then Theorem 5.3.5 shows that the morphism

($i, $l) : Bunss,µ
′

L′,rig −→ Pic−1
S (E)×S Pic0

S(E)

is a Z(L′)rig-gerbe. Let G′′ be the Z(L′)rig-gerbe on S given by pulling back along the

section

(O(−OE),O) : S → Pic−1
S (E)×S Pic0

S(E).

The pullback of the theta bundle gives a BZ(L′)rig-equivariant morphism G′′ → BGm
where BZ(L′)rig acts through the homomorphism (−µ′ | −), so we get a ker(µ′ | −)-gerbe

G′ = G′′×BGm SpecZ. Let G be the rigidification of G′ with respect to $∨l (Gm). Then G is

a ker(µ′ | −)/$∨l (Gm) ∼= µd-gerbe, pulled back from a gerbe Guni on M1,1, and if it is trivial

then we have a BGm-equivariant morphism BSGm → Bunss,µ
′

L′,rig (with BGm acting through

$∨l ) lifting the section (O(−OE),O) such that the pullback of the theta bundle is trivial.

Define

Z0 = IndLL′(BSGm) \ BSGm −→ BunµL,rig,

and observe that the pullback of ΘBunG,rig to Z0 is also trivial since Z0 → BSGm is an affine

space bundle.

Type α ∈ ΦL with 〈α, µ′〉 < 0 〈α, µ′〉 〈α,$∨l 〉

B

−αl − 1
2 −1

−αl−1 − αl − 1
2 −1

−αl−1 − 2αl −1 −2

C −αl −2 −1

D

−αl − 2
3 −1

−αl−2 − αl − 2
3 −1

−αl−2 − αl−1 − αl − 2
3 −1

Table 6.2: Roots of L with 〈α, µ′〉 < 0

We now check that Z0 satisfies the conditions of Theorem 6.1.5. Since the claims are

local on S, we can assume for convenience that the section BSGm → Bunss,µ
′

L′,rig lifts to a

morphism S → Bunss,µ
′

L′ and that the line bundle on E associated to this section via the

character $l is trivial. Note that in this case, we have a natural identification

Z0
∼= (IndLL′(S) \ S)/Gm.

First, the roots α ∈ ΦL with 〈α, µ′〉 < 0 are given in Table 6.2, along with the values

of 〈α, µ′〉 and 〈α,$∨l 〉. Using Propositions 5.2.6 and 5.2.7, it follows that IndLL′(S) → S is

an A2-bundle on which Gm acts with weight 1 in types C and D, and weights 1 and 2 in

type B. So Z0 → S is a P(1, 2)-bundle in type B and a P1-bundle in types C and D. In

particular, (1) is satisfied.

155



We next show that Z0 → BunµL,rig factors through Bunss,µL,rig. Note that Table 6.2 shows

that −µ′ is a Harder-Narasimhan vector for P ′ ⊆ L, so IndLL′(S) = Bunss,µ
′

P ′,rig ×Bunss,µ
′

L′,rig
S.

So Lemma 6.5.6 shows that ξL is in the image of IndLL′(S) if and only if V is semistable of

determinant O(−OE) and there exists a nonvanishing section of W ⊗O(dOE) such that the

vector bundle

U =

W/O(−dOE), in types C and D,

ker(W/O(−(dOE)→ O), in type B,

is semistable. Here V and W are as in the statement of Lemma 6.5.6, and

d =

1, in types B and D,

2, in type C

is as in the statement of the theorem. The bundle ξL is in the image of IndLL′(S) \ S if and

only if O(−dOE)→W can be chosen not to admit a retraction. Suppose that ξL is such a

bundle and that ξL is unstable; we deduce a contradiction in each type.

In type B, W is an unstable conformally symplectic vector bundle of rank 4 and degree

−2, so there exists a quotient W → N where N has slope < −1/2. Replacing N with

coker(N∨ ⊗ O(−OE) → W ) if necessary, we can assume that N has rank ≤ 2. Since any

vector bundle of rank 2 and slope < −1/2 surjects onto some line bundle of negative degree,

we can therefore assume without loss of generality that N is a line bundle. Examining

slopes, we see from semistability of U that W → N does not factor through W/O(−OE),

and hence that O(−OE)→ N is nonzero. So O(−OE)→ N must be an isomorphism since

degN ≤ degO(−OE), and we therefore have a retraction W → O(−OE) = N . Since this is

a contradiction, we are done in this case.

In type C, W is an unstable vector bundle of rank 2 and degree −2, so there exists a

quotient W → N where N is a a line bundle of degree < −1. Examining slopes, we see that

W → N does not factor through W/O(−2OE) and hence that O(−2OE) → N is nonzero.

So O(−2OE)→ N must be an isomorphism since degN ≤ degO(−2OE), and we therefore

have a retraction W → O(−2OE) = N . Since this is a contradiction, we are done in this

case as well.

Finally, in type D, W is an unstable vector bundle of rank 4 and degree −2, so there

exists a quotient W → N where N is a semistable vector bundle of slope < −1/2. Examining

slopes and using semistability of W/O(−OE) and of N , we see that W → N does not factor

through W/O(−OE) and we again get a retraction W → N ∼= O(−OE). So we have shown

that ξL must be semistable in all cases.

We next show that the morphism Z0 → Bunss,µL,rig/E is smooth with connected fibres,

which proves (2) and that Z0 → Bunss,µL,rig is a Θ-trivial slice. Write (Bunss,µL )0 for the fibre

of $i : Bunss,µL → Pic−1
S (E) over O(−OE) and (Bunµ

′

P ′)
ss
0 = Bunµ

′

P ′ ×BunµL
(Bunss,µL )0. Then

Lemma 6.5.6 gives an open immersion

(Bunµ
′

P ′)
ss
0 ⊆ P(Bunss,µL )0π∗(W

uni ⊗O(dOE)),

where we write Wuni for the universal bundle on (Bunss,µL )0 ×S E induced by the represen-

tation ρL of L and π : (Bunss,µL )0 ×S E → (Bunss,µL )0 for the natural projection. Moreover,

Z0 ×(Bunss,µL,rig)0 (Bunss,µL )0 −→ (Bunµ
′

P ′)
ss
0

is a Gm = Z(L)rig/$
∨
l (Gm)-torsor over the open substack where the associated L′-bundle is

semistable. This shows in particular that Z0×(Bunss,µL,rig)0 (Bunss,µL )0 → (Bunss,µL )0 is smooth
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with connected fibres of dimension 2, and hence that the same is true for Z0 → (Bunss,µL,rig)0
∼=

Bunss,µL,rig/E as claimed.

To prove (3), first observe that since Z0 → S has finite relative stabilisers, any L-bundle

in the image of Z0 → (Bunss,µL,rig)0 ⊆ Bunss,µL,rig can have automorphism group of dimension

at most 2, and is hence regular by Lemma 6.5.7. For the converse, note that since every

regular semistable L-bundle is a translate of one in (Bunss,µL )0, it suffices to show that any

regular semistable bundle in (Bunss,µL )0 is in the image of (Bunss,µP ′ )0 → BunµL, and hence in

the image of Z0 → Bunss,µL,rig.

Suppose then that ξL → Es is a semistable L-bundle in (Bunss,µL )0 over s : Spec k → S

that is not in the image of (Bunss,µ
′

P ′ )0. We show in each type that dim Aut(ξL) > 2 so ξL

is not regular.

In type B, in the notation of Lemma 6.5.6, we have that for every nonzero morphism

γ : O(−OE) → W , the vector bundle Uγ = ker(W/O(−OE) → O) is unstable. (Note

that W is semistable of rank 4 and degree −2, so any such morphism is a subbundle.)

Using semistability of W , the Harder-Narasimhan decomposition of Uγ must be of the form

Uγ = Nγ ⊕N∨γ ⊗ O(−OE), where Nγ is a line bundle of degree 0 on Es and the preimage

of Nγ in W is the unique non-split extension N ′γ of Nγ by O(−OE). By Proposition 2.6.5 it

follows that we have a morphism P1
k = PH0(Es,W ⊗O(OE))→ Pic0(Es) sending γ to the

isomorphism class of Nγ . Since there are no non-constant morphisms from P1
k to any elliptic

curve over k, we deduce that Nγ = N and N ′γ = N ′ are independent of γ. So every nonzero

morphism O(−OE)→ W factors through a Lagrangian subbundle N ′ ⊆ W . Choosing any

such morohism gives an exact sequence

0 −→ N ′ −→W −→ (N ′)∨ ⊗O(−OE) −→ 0.

Since dim Hom(O(−OE), N ′) = 1 and dim Hom(O(−OE),W ) = 2, we can choose another

homomorphism O(−OE) not factoring through the given N ′, and hence get another La-

grangian morphism N ′ ↪→ W , which must map N ′ isomorphically onto (N ′)∨ ⊗ O(−OE).

So the above exact sequence splits, and we have

W ∼= N ′ ⊕N ′,

where both summands are Lagrangian. In particular, W and hence ξL carries a faithful

action of Sp2, so dim Aut(ξL) > 2 as claimed.

In type C, we have that every nonzero morphism γ : O(−2OE)→W must vanish at some

unique point xγ ∈ Es. So again we have a morphism P1
k = PH0(Es,W ⊗O(−2OE))→ Es

sending γ to xγ , which must be constant. So xγ = x is independent of γ, and every

morphism O(−2OE) → W therefore factors through a subbundle O(x− 2OE) ⊆ W . Since

W is semistable of trivial determinant, choosing any two linearly independent morphisms

gives an isomorphism W ∼= O(x − 2OE) ⊕ O(x − 2OE). So SL2 acts faithfully on W and

hence on ξL and dim Aut(ξL) > 2 as claimed.

In type D, we have that Uγ = W/O(−OE) is unstable for every nonzero morphism

γ : O(−OE)→W . (Note that again any such γ must be a subbundle since W is semistable

of slope −1/2.) Since W is semistable, one sees that the Harder-Narasimhan decomposi-

tion of Uγ must be of the form Uγ = Nγ ⊕ det(Nγ)∨ ⊗ O(−OE), where Nγ is a rank 2

semistable vector bundle of degree −1. Again by Proposition 2.6.5, we get a morphism

P1
k = PH0(Es,W ⊗ O(OE)) → Pic−1(Es) sending γ to the isomorphism class of det(Nγ),

which again must be constant. So det(Nγ), and hence Nγ = N are independent of γ,

and every nonzero morphism O(−OE) → W factors through the kernel of some surjection
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W → N . Choosing two linearly independent morphisms O(−OE) → W therefore gives

a map W → N ⊕ N , which one easily sees must be an isomorphism. So again SL2 acts

faithfully on W fixing the determinant, and hence on ξL, which proves that dim Aut(ξL) > 2

in this case as well.

Finally, to prove (4), simply note that Proposition 5.2.8 implies that Z → Z0 is an affine

space bundle of relative dimension −〈2ρ, µ〉 = l + 2, so Z → S has relative dimension l + 3

as required.

6.6 Computing the divisor Dα∨
i
(Z)

In this section, we give case-by-case computations of the divisors Dα∨i
(Z) for the slices

Z = IndGL (Z0) constructed in the previous section. We summarise the results of these

calculations in Theorem 6.6.1 below.

For the statement of the theorem, we let

N =


n1 + 1, in type A,

n1 − 1, in type F,

n1, otherwise.

We let θ′N : Y → Y ×S Pic0
S(E) be the section θ′N (y) = (y, 0), and for 1 ≤ k < N , we let

θ′k : Y → Y ×S Pic0
S(E) be the section given in type A by

θ′k(y) =

(y,−$i(y) +$i+1(y) +$l(y)), if k = 1,

(y,−$i(y) +$i+1(y) +$l−k+1(y)−$l−k+2(y)), if 1 < k ≤ l − i+ 1 = N − 1,

and in types B, D and E by

θ′k(y) =


(y, αl−1(y)), in type B,

(y, αl−2(y) + · · ·+ αl−k(y)), in type D,

(y, αk(y) + αk+1(y) + · · ·+ α3(y)), in type E.

(Note that N = 1 in types C, F and G.)

Theorem 6.6.1. Assume that (G,P, µ) is not of type A1. Then we have the following.

(1) There is a sequence of N morphisms

Dα∨i
(Z) = D′N+1 −→ D′N −→ · · · −→ D′1

over Y ×SZ such that D′1 is a family of smooth surfaces over Y containing Y ×SPic0
S(E)

as a closed substack, and D′k+1 → D′k is the blowup along the section θ′k : Y → Y ×S
Pic0

S(E) ⊆ D′k of the proper transform of Y ×S Pic0
S(E) ⊆ D′1.

(2) The intersection Dα∨i
(Z) ∩Dα∨i +α∨j

(Z) is the exceptional divisor of the final blowup.

(3) The intersection Dα∨i
(Z) ∩ Dα∨j

(Z) is the proper transform of Y ×S Pic0
S(E), and the

identification of Dα∨i
(Z) ∩Dα∨j

(Z) with Y ×S Pic0
S(E) given here agrees with the iden-

tification given by Theorem 6.1.9.

(4) The stack D′1 is a line bundle over Y ×S Pic0
S(E) in type A, and the fibres of D′1 → Y

are as given in Proposition 6.6.8 in the other types.

158



Remark 6.6.2. Using the methods of [GSB, Corollary 6.29], one can use Theorems 6.1.9

and 6.6.1 to deduce descriptions of all fibres of χ̃Z : Z̃ → Θ−1
Y in types A, B, D and E

as follows. Assume for simplicity that S = Spec k, let y ∈ Y be any k-point with fibre

A1
k ⊆ Θ−1

Y , and let X̃ = χ̃−1
Z (A1

k). By Theorem 6.1.9 and Theorem 4.6.1, we have

X̃0 = Dα∨i
(Z)y +Dα∨j

(Z)y +Dα∨i +α∨j
(Z)y and KZ̃ = ψ∗ZM ⊗O(−Dα∨i

(Z)−Dα∨j
(Z)),

for some line bundle M on Z. Writing β = Dα∨i +α∨j
(Z)y ∩ Dα∨j

(Z)y, we deduce that

KX̃ · β = −1. Since β is a ruling of the divisor Dα∨i +α∨j
(Z)y ∼= P1 × P1, which is contracted

to a point in Z, it follows that there is a morphism X̃ → X̃+ over Z × A1 contracting the

ruling β of Dα∨i +α∨j
(Z)y, where X̃+ is again smooth. We can then flop the strict transforms

of the exceptional divisors of (Dk+1)y → (Dk)y in sequence to produce a rational map

X̃+ 99K X̃− over Z × A1, such that the fibre of X̃− over 0 ∈ A1 is now a normal crossings

divisor

X̃−0 = (D1)y + (D′N+n0
)y,

where (D′N+n0
)y is the iterated blowup of (D′N )y at the points θn0(y), θn0−1(y), . . . , θ1(y) ∈

{y} × Pic0(E) ⊆ (D′N )y.

The map X̃ → A1
k is Gm-equivariant, where Gm = −$∨i (Gm) acts on A1

k with weight 1

by Proposition 5.2.10, and hence the same is true for X̃− → A1
k. Moreover, the action on

X̃− is trivial on the preimage (D′N+n0
)y of 0 in Z, so Lemma 5.4.14 implies that X̃− is a

line bundle on (D′N+n0
)y, and the map X̃− → A1

k is given by a section of the dual vanishing

along {y} × Pic0(E). So the fibres of X̃− over nonzero points in A1 are isomorphic to the

complement of {y}×Pic0(E) in (D′N+n0
)y. Since X̃ 99K X̃− is an isomorphism outside X̃0,

these are exactly fibres of χ̃Z over nonzero points in Θ−1
Y over y ∈ Y .

In type A, since αi and αj = αi+1 play completely symmetric roles, we can use Theorem

6.1.9 to deduce a Theorem 6.6.1.

Proof of Theorem 6.6.1 in type A. Applying Theorem 6.1.9 with the vertices of the Dynkin

diagram Al labelled in reverse order gives contractions

Dα∨i
(Z) = D′l−i+2 −→ D′l−i+1 −→ · · · −→ D′1

with the desired properties (1), (2) and (4), where to get the correct blowup loci we have

composed the identification of D′1 with a line bundle over Y ×S Pic0
S(E) given by Theorem

6.1.9 with the isomorphism

Y ×S Pic0
S(E)

∼−→ Y ×S Pic0
S(E)

(y, x) 7−→ (y,−x).

The two identifications of the intersection

Dα∨i
(Z) ∩Dα∨i+1

(Z) ∼= M0,2,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨i − α∨i+1, 1)),

with Y ×S Pic0
S(E) are both given by taking the difference between the images in E of the

two marked points, so they agree, proving (3).

From now on, we will assume that (G,P, µ) is not of type A. In this case, we have the

following description of Dα∨i
(Z) as a space of stable maps, from which we can construct the

first blow down just as for Dα∨j
(Z).
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Lemma 6.6.3. The natural morphism

M1,1,Z0(ξL/Z(G) ×L/Z(G) L/(L ∩B), (−α∨i , 1)) −→M1,1,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨i , 1))

(6.6.1)

is an isomorphism.

Proof. Observe that since αi is not a special root, Lemma 5.4.7 implies that the closed

immersion

M1,1,Z0
(ξL/Z(G) ×L/Z(G) G/B, (−α∨i , 1)) ↪−→M1,1,Z(ξG/Z(G) ×G/Z(G) G/B, (−α∨i , 1))

(6.6.2)

is an isomorphism, since the right hand side is smooth over S hence reduced, and for z ∈
Z \Z0, ξG,z is either semistable or regular unstable, and hence ξG,z/B has no sections of the

given degree. But Lemma 6.6.4 below and Proposition 3.7.6 imply that every stable map

in the left hand side of (6.6.2) factors through ξL/Z(G) ×L/Z(G) L/(L ∩ B), so the closed

immersion

M1,1,Z0(ξL/Z(G) ×L/Z(G) L/(L ∩B), (−α∨i , 1)) ↪−→M1,1,Z0(ξL/Z(G) ×L/Z(G) G/B, (−α∨i , 1))

is also an isomorphism, and we are done.

Lemma 6.6.4. Assume (G,P, µ) is not of type A, w ∈W 0
P,B, λ ≤ −α∨i and Cw,λ(Z0) 6= ∅.

Then w = 1 and λ ∈ {−α∨i − α∨j }.

Proof. From the proof of Lemma 6.3.5, we have either wλ = −α∨i and w = 1, or wλ =

−α∨i − α∨j and

w ∈ {1} ∪ {sc0,n0
sc0,n0−1 · · · sc0,k | 1 ≤ k ≤ n0}.

If w 6= 1, then this implies that λ = −w−1(α∨i + α∨j ) = −α∨j , contradicting λ ≤ −α∨i . So

this proves the lemma.

Lemma 6.6.5. The projection L/(L ∩B)→ L/(L ∩ P1) and the isomorphisms of Lemmas

6.3.3 and 6.6.3 induce an isomorphism

Dα∨i
(Z)

∼−→ Y ×YL∩P1
M1,1,Z0

(ξL/Z(G) ×L/Z(G) L/(L ∩ P1), (−α∨i , 1)),

where P1 ⊆ G is the parabolic subgroup of type t(P1) = ∆ \ {αc0,1, . . . , αc0,n0}.

Proof. First notice that the flag variety L/(L ∩B) splits as a product

L/(L ∩B) ∼= GLn0/Q
n0
n0
× L/(L ∩ P1),

and that −α∨i restricts to the cocharacter −e∗n0
on the Borel Qn0

n0
⊆ GLn0

. Since every

stable section of ξL/Z(G) ×L/Z(G) GLn0
/Qn0

n0
of degree −e∗n0

is a genuine section, it follows

from Lemmas 5.4.10, 6.3.3 and 6.6.3 that there are isomorphisms

Dα∨i
(Z)

∼−→M1,1,Z0
(ξL/Z(G) ×L/Z(G) L/(L ∩B), (−α∨i , 1))

∼−→M1,Z0
(ξL/Z(G) ×L/Z(G) GLn0

/Qn0
n0
, (−e∗n, 1))×Z0

M1,1,Z0
(ξL/Z(G) ×L/Z(G) L/(L ∩ P1), (−α∨i , 1))

∼−→ Y
−e∗n0

Q
n0
n0

×Pic−1
S (E) M1,1,Z0(ξL/Z(G) ×L/Z(G) L/(L ∩ P1), (−α∨i , 1))

∼−→ Y −α
∨
i ×

Y
−α∨

i
L∩P1

M1,1,Z0
(ξL/Z(G) ×L/Z(G) L/(L ∩ P1), (−α∨i , 1)),

∼−→ Y ×YL∩P1
M1,1,Z0

(ξL/Z(G) ×L/Z(G) L/(L ∩ P1), (−α∨i , 1)),

which proves the lemma.
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We can now construct the first blow down of Dα∨i
(Z) as follows. Observe that we have

a natural morphism

Dα∨i
(Z)

(BlB ,f,g)−−−−−−→ D′N = Y ×YL∩P1
(M1,0,Z0

(ξL/Z(G) ×L/Z(G) L/(L ∩ P1), (−α∨i , 1))×S E)

= Y ×YL∩P1
(KM

−α∨i
L∩P1,L,rig

×BunµL,rig
Z0 ×S E)

where f is given in terms of the isomorphism of Lemma 6.6.5 by the morphism forgetting

the marked point and stabilising and g is given by evaluation at the marked point composed

with the projection to E on the second factor.

Let

(D′N )0 = Y ×YL∩P1
(Bun

−α∨i
L∩P1,rig

×BunµL,rig
Z0 ×S E) ⊆ D′N

and let (D′N )1 = D′N \ (D′N )0. Then Propositions 3.4.10 and 3.4.13 and Lemma 6.3.2 imply

that (D′N )1 is a smooth divisor in D′N isomorphic to

(D′N )1
∼= Y ×YL∩P1

(Bun
−α∨i −α

∨
j

L∩P1,rig
×BunµL,rig

Z0 ×S E ×S E),

where the first factor of E above keeps track of the point of attachment of an α∨j curve.

There is a morphism

(D′N )1 −→ Y ×S Pic0
S(E) (6.6.3)

given on the first factor by the morphism (D′N )1 → D′N → Y and on the second by the

morphism

(D′N )1 −→ E ×S E −→ Pic0
S(E)

(x, x′) 7−→ x− x′.

Proposition 6.6.6. The morphism Dα∨i
(Z)→ D′N is the blowup along the preimage of the

zero section θ′N of Y ×S Pic0
S(E)→ Y under the morphism (6.6.3).

Proof. The proof is identical to the proof of Proposition 6.3.11.

Lemma 6.6.7. The morphism (6.6.3) is an isomorphism.

Proof. It is clear from Proposition 6.6.6 and Proposition 3.4.13 that the morphismDα∨i
(Z)→

D′N restricts to an isomorphism

Dα∨i
(Z) ∩Dα∨j

(Z)
∼−→ (D′N )1

and by Remark 6.3.9 that the composition of this isomorphism with (6.6.3) agrees with the

morphism Dα∨i
(Z) ∩Dα∨j

(Z)→ Y ×S Pic0
S(E) coming from (6.3.11). But this composition

is an isomorphism by Lemma 6.3.14 so we are done.

The next step is to construct the family of surfaces D′1 over Y . Let P ′1 ⊆ L be the

standard parabolic subgroup of type

t(P ′1) =


{αl}, in types B,C,D,

{α4}, in type E,

{α1, α2}, in type F,

{α1}, in type G,

and define

D′1 = Y ×YP ′1 (KM
−α∨i
P ′1,L,rig

×BunµL,rig
Z0 ×S E).
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Proposition 6.6.8. We have the following descriptions of D′1 in each type.

(1) In type B, the morphism D′1 → Y ×S Z0 is a P1-bundle such that the fibre of D′1 → Y

over a point y ∈ Y is isomorphic to the stacky Hirzebruch surface

(D′1)y ∼=

PP(1,2)(O ⊕O(1)), if $l(y) 6= 0,

PP(1,2)(O ⊕O(3)), if $l(y) = 0.

(2) In types C and D, the morphism D′1 → Y ×S Z0 is a P1-bundle such that the fibre of

D′1 → Y over a point y ∈ Y is isomorphic to the Hirzebruch surface

(D′1)y ∼=

F0, if $l(y) 6= 0,

F2, if $l(y) = 0.

(3) In types E and G, the morphism D′1 → Y ×S Z0 = Y is a P2-bundle.

(4) In type F , the morphism D′1 → Y ×S Z0 = Y factors as a sequence of two P1-bundles

D′1 → D′′1 → Y , and the fibre over a point y ∈ Y is isomorphic to the Hirzebruch surface

(D′1)y ∼=

F0, if α1(y) 6= 0,

F2, if α1(y) = 0.

Since Proposition 6.6.8 is local on S, we will assume for the proof and Lemmas 6.6.9

and 6.6.10 below that the initial section S → Bunss,µL,rig (resp., BSGm → Bunss,µ
′

L′,rig) used in

the construction of the slice Z0 in types E, F and G (resp., B, C and D) lifts to a section

S → Bunss,µL (resp., S → Bunss,µ
′

L′ ). We will also write Z1 = Z0 = S in types E, F and G

and Z1 = IndLL′(S) \ S in types B, C and D; our assumption implies that Z0 → Bunss,µL,rig

lifts to Z1 → Bunss,µL .

The first step in the proof of Proposition 6.6.8 is to relate D′1 → Y ×S Z0 to the projec-

tivisation of a vector bundle. Let ρL be the representation of L given by the isomorphism of

Lemmas 6.5.1 and 6.5.2 composed with the projection to the second factor in types C, D,

E, F and G, and given by the isomorphism of Lemma 6.5.3 composed with the projection

to the second factor and the inclusion GSp4 ⊆ GL4 in type B. We will write W for the

vector bundle on Z1 ×S E induced by Z1 → Bunss,µL and ρL. We will also write λ ∈ X∗(T )

for the character

λ =


$l, in types B,C,D,

$4, in type E,

$2, in type G,

and

d =


1, in types B,D,E,

2, in type C,

3, in type G.

Lemma 6.6.9. In types B, C, D, E and G, there is an isomorphism

D′1 ×Z0
Z1
∼= PY×SZ1π∗(Mλ ⊗O(dOE)⊗W ),

where π : Y ×S Z1 ×S E → Y ×S Z1 is the natural projection and Mλ is the line bundle on

Y ×S Z1 ×S E classified by the morphism

Y ×S Z1 −→ Y
λ−→ Pic0

S(E).
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Proof. We first prove the lemma in types B, D and E. Let

X = Y ×YP ′1 (Bun
−α∨i
P ′1
×BunL Z1 ×S E) ⊆ D′1 ×Z0

Z1.

Then Lemmas 6.5.1 and 6.5.6 show that X is the stack of tuples (y, z,M−1
λ,y⊗O(−OE) ⊆Wz),

where y ∈ Y , z ∈ Z1, Mλ,y is the line bundle on E corresponding to λ(y) ∈ Pic0
S(E), and

Wz is the restriction of W to the fibre over z ∈ Z1. Since the vector bundle Wz is semistable

of slope < 0, any nonzero morphism M−1
λ,y ⊗ O(−OE) → Wz must be a subbundle, so we

have an isomorphism

X ∼= PY×SZ1
π∗(Mλ ⊗O(OE)⊗W ).

Since this implies in particular that X is already proper over Y ×S Z1 = Y ×YP ′1 (Z1×S E),

we conclude that X = D′1 ×Z0
Z1 and the claim is proved.

In types C and G, we argue instead as follows. Observe that there is a pullback

D′1 ×Z0 Z1 KM
−de∗2
Q2

2,GL2
×BunGL2

Bunss,−dGL2

Y ×S Z1 Pic−dS (E)×S Bun
ss,−(d+1)
GL2

,

(6.6.4)

where the bottom morphism is given by

(y, z) 7−→ (M−1
λ,y ⊗O(−dOE),Wz)

and the right morphism is given on the first factor by the blow down to TQ2
2
-bundles com-

posed with the character e2. If (y, z) ∈ Y ×S Z1 lies over a geometric point s : Spec k → S,

then any stable map to the GL2 flag variety bundle P(W∨z ) corresponding to a point in

D′1×Z0 Z1 over (y, z) is a closed immersion with ideal sheaf p∗(M−1
λ,y⊗O(−d)OE))⊗O(−1),

where p : P(W∨z )→ Es is the structure morphism. So we deduce that

D′1 ×Z0 Z1 = PY×SZ1π∗p∗(p
∗(Mλ ⊗O(dOE))⊗O(1)) = PY×SZ1π∗(Mλ ⊗O(dOE)⊗Wz)

as claimed.

The situation in type F is similar. In this case, we let P ′′1 ⊆ L be the standard parabolic

subgroup of type t(P ′′1 ) = {α1}, and define

D′′1 = Y ×
Y
−α∨

i
P ′′1

(KM
−α∨i
P ′′1 ,L,rig

×BunµL,rig
Z0 ×S E).

Lemma 6.6.10. In type F , there are isomorphisms

D′′1
∼= PY×SZ1

π∗(M$1
⊗W∨)

and

D′1
∼= PD′′1 π

′
∗(p
∗M$2

⊗O(2OE)⊗ ker(p∗W → p∗M$1
⊗OD′′1 (1))),

where π : Y ×S Z1 ×S E → Y ×S Z1 and π′ : D′1 ×S Z1 ×S E → Y ×S Z1 are the natural

projections, and p : D′′1 → Y ×S Z1 is the structure morphism.

Proof. Recall that αi = α3 and Z1 = S in this case and let

X = Y ×
Y
−α∨3
P ′′1

(Bun
−α∨3
P ′′1
×BunµL

Z1 ×S E) ⊆ D′′1 .
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Then Lemma 6.5.1 shows that X is the stack of tuples (y, z,Wz � M$1,y), where y ∈ Y
and z ∈ Z1. Since the vector bundle Wz is semistable of slope > −1, any nonzero morphism

Wz →M$1,y is surjective, so we have an isomorphism

X ∼= PY×SZ1(π∗(M$1 ⊗W∨)).

Since this shows that X is already proper over Y ×S Z1 = Y ×YP ′ (Z1×S E), it follows that

X = D′′1 , so this gives the first of the desired isomorphisms.

For the second isomorphism, there is a pullback

D′1 KM
−2e∗2
Q2

2,GL2
×Bun−2

GL2

Bunss,−2
GL2

D′′1 Pic−2
S (E)×S Bunss,−2

GL2

where the bottom horizontal morphism is classified by the pair (p∗M−1
$2
⊗O(−2OE), ker(p∗W →

p∗M$1
⊗OD′′1 (1))) of line bundle and vector bundle on D′′1 ×S E. Since any stable map to

the associated flag variety bundle appearing in D′1 is again a closed immersion, the argument

used in the proof of Lemma 6.6.9 for types C and G gives the desired isomorphism

D′1
∼= PD′′1 π

′
∗(p
∗M$2 ⊗O(2OE)⊗ ker(p∗W → p∗M$1 ⊗OD′′1 (1))).

Proof of Proposition 6.6.8. First observe that in types E and G, Mλ ⊗ O(dOE) ⊗W is a

family of semistable vector bundles of degree 3, so Lemma 6.6.9 shows that D′1 → Y ×SZ1 =

Y is a P2-bundle, which proves (3).

In types B, C and D, Mλ ⊗O((d+ 1)OE)⊗W is a family of semistable vector bundles

of degree 2, so Lemma 6.6.9 shows that D′1 ×Z0 Z1 → Y ×S Z1 is a P1-bundle, and hence

that D′1 → Y ×S Z0 is also.

To complete the proof of (1), note that in type B, we have a canonical Z(L′)-invariant

subbundle O(−OE) ⊆W and a Z(L′)-equivariant exact sequence

0 −→ U −→W/O(−OE) −→ O −→ 0,

where U is a family of stable vector bundles on E of rank 2 and determinant O(−OE). So

if we fix a geometric point y : Spec k → Y over s : Spec k → S, we have Z(L′)-equivariant

exact sequences

0 −→ π∗(M$l,y) −→ π∗(M$l,y ⊗O(OE)⊗Ws) (6.6.5)

−→ π∗(M$l,y ⊗O(OE)⊗ (Ws/O(−OE))) −→ R1π∗(M$l,y) −→ 0,

and

0 −→ π∗(M$l,y ⊗O(OE)⊗ Us) −→ π∗(M$l,y ⊗O(OE)⊗ (Ws/O(−OE))) (6.6.6)

−→ π∗(M$l,y ⊗O(OE)) −→ 0

of Z(L′)-linearised vector bundles on (Z1)s. Note that π∗(M$l,y), R1π∗(M$l,y), π∗(M$l,y⊗
O(OE)⊗Us) and π∗(M$l,y⊗O(OE)) are each either a trivial line bundle or zero, with Z(L′)-

weights f4, f4, f2 = f3 and f1 respectively, where we use the notation of the proof of Lemma

6.5.3. So after tensoring with the character −f1 of Z(L′), Z(G) acts trivially on (6.6.5) and
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(6.6.6), so they descend to exact sequences of vector bundles on (Z0)s = (Z1)s/Gm ∼= P(1, 2).

Examining the Gm-weights, the sequence (6.6.6) descends to a sequence of the form

0 −→ O(1) −→W ′ −→ O −→ 0.

Since any such sequence splits, we must have W ′ ∼= O ⊕O(1) as vector bundles on P(1, 2).

If $l(y) 6= 0, then π∗(M$l,y) = R1π∗(M$l,y) = 0, so we have

π∗(M$l,y ⊗O(OE)⊗Ws) ∼= π∗(M$l,y ⊗O(OE)⊗Ws/O(−OE)),

and hence (D′1)y = PP(1,2)(W
′) = PP(1,2)(O ⊕ O(1)). Otherwise, (6.6.5) tensored with −f1

descends to an exact sequence

0 −→ O(2) −→W ′′ −→W ′ = O ⊕O(1) −→ O(2) −→ 0

such that (D′1)y = PP(1,2)(W
′′). But since the kernel of any surjection O⊕O(1)→ O(2) on

P(1, 2) must be isomorphic to O(−1), this means that we must have W ′′ = O(−1)⊕O(2),

so

(D′1)y = PP(1,2)(O(−1)⊕O(2)) = PP(1,2)(O ⊕O(3)).

This proves (1).

Similarly, to prove (2), note that in types C and D we have a canonical Z(L′)-equivariant

exact sequence

0 −→ O(−dOE) −→W −→ U −→ 0,

where U is semistable and Z(L′) acts on O(−dOE) and O respectively with weights

en1+1 = −$l + (d+ 1)$i =

−$l + 2$l−1, in type C,

−$l +$l−3, in type D,
and e1 =

$l, in type C,

$l−1, in type D.

So over any geometric point y : Spec k → Y over s : Spec k → S, we have an exact sequence

0 −→ π∗(M$l,y) −→ π∗(M$l,y ⊗O(dOE)⊗Ws) (6.6.7)

−→ π∗(M$l,y ⊗O(dOE)⊗ Us) −→ R1π∗(M$l,y) −→ 0,

of Z(L′)-linearised vector bundles on (Z1)s, which descends to an exact sequence of vector

bundles on P1 = (Z0)s = (Z1)s/Gm after tensoring with −e1. Note that in both cases

M$l,y ⊗ O((d + 1)OE) ⊗ Us is a semistable vector bundle of degree 2 on which Z(L′) acts

with the single weight e1, so π∗(M$l,y ⊗ O((d + 1)OE) ⊗ Us) ⊗ Z−e1 descends to a trivial

rank 2 vector bundle O ⊕O on P1.

If $l(y) 6= 0, then π∗(M$l,y) = R1π∗(M$l,y) = 0, so

π∗(M$l,y ⊗O((d+ 1)OE)⊗Ws)⊗ Z−e1 = π∗(M$l,y ⊗O((d+ 1)OE)⊗ Us)⊗ Z−e1

descends toO⊕O on P1, which together with Lemma 6.6.9 shows that (D′1)y = PP1(O⊕O) =

F0. Otherwise, (6.6.7) descends to an exact sequence

0 −→ O(1) −→W ′ −→ O ⊕O −→ O(1) −→ 0

such that (D′1)y ∼= PP1(W ′). Since the kernel of any surjection O ⊕ O → O(1) must be

isomorphic to O(−1), this implies that W ′ ∼= O(−1)⊕O(1) and hence that

(D′1)y ∼= PP1(O(−1)⊕O(1)) ∼= F2.
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This proves (2).

Finally, in type F , we have already constructed the morphismsD′1 → D′′1 → Y = Y×SZ0.

Since M$1
⊗W∨ is a family of semistable vector bundles of degree 2, Lemma 6.6.10 shows

that D′′1 → Y is a P1-bundle as claimed. Moreover, any rank 2 degree −2 subbundle of W

is necessarily also semistable, so Lemma 6.6.10 also shows that D′1 → D′′1 is a P1-bundle.

If y : Spec k → Y is a geometric point over s : Spec k → S, then by Lemma 6.6.10 we

have an exact sequence

0 −→ U −→ q∗(M$2,y ⊗O(2OE)⊗Ws) −→ q∗(M$1+$2,y ⊗O(2OE))⊗ (π′)∗O(1) −→ 0

(6.6.8)

of vector bundles on P1×Es such that (D′1)y = Pπ′∗U , where π′ and q are the projections to

the first and second factors respectively. Since U is a vector bundle of rank 2 and determinant

q∗(M−$1+2$2,y ⊗O(2OE))⊗ (π′)∗O(−1), it follows that we have an isomorphism

U
∼−→ U∨ ⊗ detU = U∨ ⊗ q∗(M−$1+2$2,y ⊗O(2OE))⊗ (π′)∗O(−1).

So the dual of (6.6.8) gives an exact sequence

0 −→ q∗M−2$1+$2,y ⊗ (π′)∗O(−2) −→ q∗(M−$1+$2,y ⊗W∨s )⊗ (π′)∗O(−1) −→ U −→ 0,

and hence an exact sequence

0 −→ H0(Es,M−2$1+$2,y)⊗O(−2) −→ H0(Es,M−$1+$2,y ⊗W∨s )⊗O(−1)

−→ (π′)∗U −→ H1(Es,M−2$1+$2,y)⊗O(−2) −→ 0.

(6.6.9)

If α1(y) = 2$1(y)−$2(y) 6= 0, then H0(Es,M−2$1+$2,y) = H1(Es,M−2$1+$2,y) = 0,

so (6.6.9) gives an isomorphism

(π′)∗U ∼= H0(Es,M−$1+$2,y ⊗W∨s )⊗O(−1) = O(−1)⊕O(−1),

so (D′1)y ∼= PP1(O(−1)⊕O(−1)) = F0. Otherwise, (6.6.9) gives an exact sequence

0 −→ O(−2) −→ O(−1)⊕O(−1) −→ (π′)∗U −→ O(−2) −→ 0.

Since the cokernel of the injective morphism O(−2)→ O(−1)⊕O(−1) must be isomorphic

to O, we get (π′)∗U ∼= O(−2) ⊕O and hence (D′1)y ∼= F2. This completes the proof of (4)

and of the proposition.

We can now prove Theorem 6.6.1 in types C, F and G.

Proof of Theorem 6.6.1 in types C, F and G. Since L ∩ P1 = P ′1 and N = 1 in these cases,

Proposition 6.6.6 and Lemma 6.6.7 prove (1), and (2) and (3) are clear from the construction.

Proposition 6.6.8 shows (4), so the theorem is proved in this case.

In types B, D and E, we still have L ∩ P1 ⊆ P ′1, so we get a morphism D′N → D′1. In

type D, let P ′2 ⊆ L be the standard parabolic of type t(P ′2) = {αl−1, αl} and in type E, let

P ′2, P
′
3 ⊆ L be the standard parabolics of type t(P ′2) = {α1, α4} and t(P ′3) = {α1, α2, α4}.

Set

D′k = Y ×YP ′
k

(KM
−α∨i
P ′k,L,rig

×Bunµ
P ′
k

Z0 ×S E)

for 1 ≤ k < N . Note that in each case we have a sequence of morphisms

D′N −→ D′N−1 −→ · · · −→ D′1
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as desired.

In type B, we let ρP ′1 : P ′1 → GLn1
= GL2 be the representation given by the restriction

P ′1 → GSp4 ∩R4 of ρL to P ′1 composed with the homomorphism

GSp4 ∩R4 −→ GL2
λ−1 detA 0 0 0

0 0

0
A

0

0 0 0 λ

 7−→ A.

In types D and E, we let ρP ′1 : P ′1 → GLn1
be the composition

ρP ′1 : P ′1
ρL−→ Rn1+1 −→ GLn1

,

where the second homomorphism is given by deleting the last row and column. In each of

types B, D and E, we then have P ′k = (ρP ′1)−1(Qn1

k ) for 1 ≤ k ≤ n1 = N and hence a

sequence of pullback squares

D′k+1 Y
−e∗n1

Q
n1
n1

×
Y
−e∗n1

Q
n1
k+1

KM
−e∗n1

Q
n1
k+1,GLn1 ,rig

D′k Y
−e∗n1

Q
n1
n1

×
Y
−e∗n1

Q
n1
k

KM
−e∗n1

Q
n1
k ,GLn1 ,rig

(6.6.10)

by Lemma 6.2.13, where the subscript (−)rig denotes the rigidification with respect to the

image of Z(G) in Z(GLn1). Note that, in the notation of §6.2, the rigidification Xn1

k,rig of

Xn1

k is naturally a locally closed substack of Y
−e∗n1

Q
n1
k

×
Y
−e∗n1

Q
n1
n1

KM
−e∗n1

Q
n1
k ,GLn1 ,rig

. For 1 ≤ k ≤ n1

and 1 ≤ p < k or p = n1, we write C ′k,p ⊆ D′k for the preimage of C
GLn1

k,p,rig ⊆ X
n1

k,rig in D′k.

Lemma 6.6.11. In types B, D and E, for 1 ≤ k ≤ n1, there is a decomposition

D′k = (D′k ×Bun−1
GLn1

,rig
Bunss,−1

GLn1 ,rig
) ∪

⋃
1≤p<k

C ′k,p ∪ C ′k,n1

into disjoint locally closed substacks.

Proof. Using Proposition 6.2.1, we can reduce to showing that any unstable GLn1-bundle

in the image of D′1 → Bun−1
GLn1 ,rig

has Harder-Narasimhan reduction to Rn1 with degree

−e∗1, i.e., that the Harder-Narasimhan decomposition of the corresponding vector bundle U

is U = M1 ⊕M2 with M1 a line bundle of degree 0 and M2 a semistable vector bundle of

rank n1 − 1 and degree −1.

In type B, we argue as follows. Since U is a vector bundle of rank n1 = 2 and degree −1,

we know that the Harder-Narasimhan decomposition of U is U = M1 ⊕M2 for some line

bundles M1 and M2 with degM1 ≤ −1 and degM2 = −1− degM1 ≥ 0. Moreover, since U

is in the image of D′1 → Bun−1
GL2,rig

, we know that there exist exact sequences

0 −→ U −→ U ′ −→ N1 −→ 0

and

0 −→ N2 −→W −→ U ′ −→ 0,
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where N1 and N2 are line bundles of degree 0 and −1 respectively and W is a semistable

vector bundle of rank 4 and degree −2. So we have an exact sequence

0 −→ N2 −→ U ′′ −→M2 −→ 0

for U ′′ ⊆ W a subbundle of rank 2. In particular, by semistability of W , we have µ(U ′′) ≤
−1/2, so degU ′′ = degM2 − 1 ≤ −1. So we must have degM2 = 0 and hence U has the

desired Harder-Narasimhan decomposition.

In types D and E, we instead have an exact sequence

0 −→ N −→W −→ U −→ 0,

where N is a line bundle of degree −1 and W is semistable rank n1 +1 and degree −2. Since

U is unstable, there exists a semistable quotient M2 of U with slope µ(M2) < −1/n1 = µ(U).

Since M2 is also a quotient of the semistable vector bundle W , it follows that

µ(M2) ≥ µ(W ) =
−2

n1 + 1
.

This implies that

0 <
rankM2

n1
< −degM2 ≤

2 rankM2

n1 + 1
< 2,

so degM2 = −1. So we have

µ(W ) =
−2

n1 + 1
≤ µ(M2) =

−1

rankM2
< µ(U) =

−1

n1

and hence
n1 + 1

2
≤ rankM2 < n1.

But since n1 ≤ 4, we have n1 − 2 < n1+1
2 , so it follows that rankM2 = n1 − 1. So we have

an exact sequence

0 −→M1 −→ U −→M2 −→ 0,

with M1 a line bundle of degree 0, which shows that U has the Harder-Narasimhan decom-

position U = M1 ⊕M2 as claimed.

Next, observe that the morphism (6.2.3) gives a morphism

C ′n1,n1
−→ Y ×S Pic0

S(E) (6.6.11)

given by the composition

C ′n1,n1
−→ Y ×YL∩P1

(Y
−α∨i
L∩P1

×
Y
−e∗n1

Q
n1
n1

C
GLn1
n1,n1,rig

×S E)

−→ Y ×YL∩P1
(Y
−α∨i
L∩P1

×S E ×S E)

−→ Y ×YL∩P1
(YL∩P1 ×S Pic0

S(E)) = Y ×S Pic0
S(E),

where the last morphism is the pullback of

Y
−α∨i
L∩P1

×S E ×S E −→ YL∩P1
×S Pic0

S(E)

(y, x1, x2) 7−→ (y + α∨i (x2), x1 − x2).

Lemma 6.6.12. The closed substack C ′n1,n1
⊆ D′n1

= D′N coincides with (D′N )1 and the

morphism (6.6.11) agrees with (6.6.3).
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Proof. This follows directly from the definitions and Lemma 6.2.6.

Lemma 6.6.13. For 1 ≤ k < n1, the morphism D′k+1 → D′k restricts to isomorphisms

(D′k+1×Bun−1
GLn1

,rig
Bunss,−1

GLn1
,rig)

∼−→ (D′k×Bun−1
GLn1

,rig
Bunss,−1

GLn1
,rig) and C ′k+1,p

∼−→ C ′k,p

for 1 ≤ p < k, and a morphism C ′k+1,k → C ′k,n1
identifying C ′k+1,k with the total space of a

line bundle over the section θ′k of Y ×S Pic0
S(E) = C ′k,n1

.

Proof. Using the natural Cartesian diagram (6.6.10), the claim follows easily from Lemma

5.4.10 and Proposition 6.2.7.

Proof of Theorem 6.6.1 in types B, D and E. By Propositions 6.6.6, 6.6.8 and Lemma 6.6.7,

the only thing left to show is that D′k+1 → D′k is the blowup along θ′k for 1 ≤ k < n1 = N .

To see this, note that Lemmas 6.6.11 and 6.6.7 imply that D′k+1 → Y is a family of smooth

surfaces, that D′k+1 → D′k is an isomorphism outside θ′k : Y → Y ×SPic0
S(E) ↪→ D′k and that

every fibre of D′k+1 → D′k over that section is an irreducible curve. So Lemma 6.3.18 then

shows that D′k+1 → D′k is the blowup along the given section as claimed, and the theorem

is proved.

6.7 Singularities

Theorems 6.1.9 and 6.6.1 give very explicit descriptions of the families of normal crossings

surfaces χ̃−1
Z (0Θ−1

Y
)→ Y . We show in this section how these results can be used to identify

the singularities of the unstable loci χ−1
Z (0). For the sake of simplicity, we will assume always

that S = Spec k for some algebraically closed field k.

Definition 6.7.1. Let k be an algebraically closed field, and let R be a 2-dimensional

complete local k-algebra with residue field k.

(1) We say that R has a singularity of type A∞ if

R ∼=
kJx, y, zK

(xy)
.

(2) If the characteristic of k is not 2, we say that R has a singularity of type D∞ if

R ∼=
kJx, y, zK

(x2y − z2)
.

(3) If 5 ≤ l ≤ 8, we say that R has a singularity of type Ẽl, or a simply elliptic singularity

of degree 9− l if there exists a smooth elliptic curve X over k, a line bundle L on X of

degree 9− l, and an isomorphism

R ∼=
∏
n≥0

H0(X,L⊗n).

We say that a stack X over k has a singularity of type A∞ (resp., D∞, Ẽl) at a point

x : Spec k → X if there is a ring R as above and a formally smooth morphism SpecR→ X

sending the closed point to x, such that R has a singularity of type A∞ (resp., D∞, Ẽl).

Remark 6.7.2. Note that the singularities A∞ and D∞ are not isolated, whereas the

singularities Ẽl are isolated.
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Theorem 6.7.3. Assume that S = Spec k for k an algebraically closed field, let (G,P, µ)

be a subregular Harder-Narasimhan class, not of type A1, and let Z → BunG,rig be the

equivariant slice constructed in the proof of Theorem 6.1.5. Then the stack χ−1
Z (0) ⊆ Z has

the following singularities.

(1) If (G,P, µ) is of type A (but not A1), then then χ−1
Z (0) is a union of two line bundles

on E meeting along the zero section with singularities of type A∞.

(2) Assume that the characteristic of k is not 2. If (G,P, µ) is of type B (resp., C, D), then

χ−1
Z (0) is obtained by contracting the zero section of a line bundle on E along a degree

2 map E → P(1, 2) (resp., E → P1) branched over 3 (resp., 4) points. The singularities

are of type A∞ at the non-branch points of P(1, 2) (resp., P1) and of type D∞ at the

branch points.

(3) If (G,P, µ) is of type E (resp., F , G), then χ−1
Z (0) is obtained by contracting the zero

section of a line bundle on E of degree l − 9 (resp., l − 5, l − 3 = −1) to a point. The

singularity is simply elliptic of degree 9− l (resp., 5− l, 3− l).

Remark 6.7.4. The restriction on the characteristic in types B, C and D in Theorem 6.7.3

is not essential: it will be clear from the proof that the general description of χ−1
Z (0) as

a contraction of a line bundle on E is still correct in characteristic 2, and the techniques

of the proof can still be used to compute local equations for the singularities. However, in

characteristic 2 the maps E → P(1, 2) and E → P1 have more complicated local equations

than in other characteristics, which depend on the precise elliptic curve E, and hence the

same is true for the singularities of χ−1
Z (0).

To prove Theorem 6.7.3, we first compute the degrees of the line bundles D1 appearing

in Theorem 6.1.9 in types E, F and G.

Lemma 6.7.5. Assume we are in the setup of Theorem 6.1.9 with (G,P, µ) of type E (resp.,

F , G), and fix a geometric point y : Spec k → Y . Then the fibre of D1 → Y over y is a line

bundle over Pic0(E) of degree l − 9 (resp., l − 5, l − 3 = −1).

Proof. To simplify the notation, identify Pic0(E) ⊆ (D1)y with E. The desired degree is

equal to the self-intersection number (E2)(D1)y of E on the surface (D1)y.

First note that by Theorem 6.1.9, Dα∨j
(Z)y is the iterated blowup of (D1)y at n0 + 1

points on E, so we have

(E2)(D1)y = (E2)Dα∨
j

(Z)y + n0 + 1. (6.7.1)

Next, observe that we have

0 = χ̃−1
Z (0Θ−1

Y
)·E = (dDα∨i

(Z)+Dα∨j
(Z)+Dα∨i +α∨j

(Z))·E = d(E2)Dα∨
j

(Z)y+(E2)Dα∨
i

(Z)y+1,

(6.7.2)

where d = 1
2 (α∨i |α∨i ) and we have used the fact that Dα∨i

(Z)y ∩ Dα∨j
(Z)y = E and that

the exceptional curve of the final blowup Dα∨i +α∨j
(Z)y ∩ Dα∨j

(Z)y meets E transversely

in a single point. Since Dα∨j
(Z)y is the iterated blowup of the smooth surface (D′1)y of

Proposition 6.6.8 at N points on E, we have

(E2)Dα∨
i

(Z) = (E2)(D′1)y −N,

and hence (6.7.1) and (6.7.2) give

(E2)(D1)y =
1

d
(N − (E2)(D′1)y − 1) + n0 + 1. (6.7.3)
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To compute the self-intersection number (E2)(D′1)y , note that by Theorem 4.6.1, we have

KZ̃/Z = f∗K
B̃unG,rig/BunG,rig

∼= ψ∗ZM ⊗O(−Dα∨i
(Z)−Dα∨j

(Z))

for some line bundle on M on Z, where f : Z̃ → B̃unG,rig is the natural morphism. Since

Z ∼= Al+3 is an affine space, every line bundle on Z is trivial, so

KZ̃ = KZ̃/Z ⊗ ψ
∗
ZKZ

∼= O(−Dα∨i
(Z)−Dα∨j

(Z)).

By adjunction, we therefore have a linear equivalence

KDα∨
i

(Z)y ∼ (KZ̃ +Dα∨i
(Z))|Dα∨

i
(Z)y = −Dα∨i

(Z)y ∩Dα∨j
(Z)y = −E.

So E ⊆ Dα∨i
(Z)y is an anticanonical divisor, from which it follows that E ⊆ (D′1)y is also

an anticanonical divisor in the blow down. So from the explicit identification of the surface

(D′1)y given in Proposition 6.6.8, we have

(E2)(D′1)y = K2
(D′1)y

=

9, in types E and G,

8, in type F.

Substituting the values of N , n0 and d into (6.7.3) in each of the different cases gives the

desired expressions for (E2)(D1)y .

We can use similar techniques to study the morphism Y × Pic0(E)→ Z0 in types B, C

and D.

Lemma 6.7.6. Assume that (G,P, µ) is of type B, C or D. Then for any y : Spec k →
Y = 0Θ−1

Y
, the morphism Pic0(E) = {y} × Pic0(E) ⊆ χ̃−1

Z (y)→ Z0 has degree 2.

Proof. In these cases, we have again by Theorem 4.6.1 that

KZ̃ = ψ∗ZKZ ⊗ f∗KB̃unG,rig/BunG,rig
= ψ∗ZM ⊗O(−Dα∨i

(Z)−Dα∨j
(Z))

for some line bundle M on Z, where f : Z̃ → B̃unG,rig is the natural morphism. So by

adjunction, we have

KDα∨
i

(Z)y = (KZ̃ ⊗O(Dα∨i
(Z)))|Dα∨

i
(Z)y = ψ∗ZM |Dα∨

i
(Z)y ⊗O(−E), (6.7.4)

where we write E = {y}×Pic0(E) ⊆ Dα∨i
(Z)y. To compute the degree of the finite morphism

E → Z0, choose a k-point z ∈ Z0 disjoint from the images of θ′k(y) and the stacky point in

type B, and let Fz ∼= P1
k be the fibre of Dα∨i

(Z)y → Z0 over z. By (6.7.4) and adjunction,

the degree is the intersection product

E · Fz = −KDα∨
i

(Z)y · Fz = −(KDα∨
i

(Z)y + Fz) · Fz = −degKFz = 2,

which proves the lemma.

Proof of Theorem 6.7.3. We first prove (3). By construction, χ−1
Z (0) is affine, and the open

subset

χ−1
Z (0)reg = χ−1

Z (0)×BunG,rig BunregG,rig

is big. So choosing any y : Spec k → 0Θ−1
Y

, we have

χ−1
Z (0) = SpecH0(χ−1

Z (0),O) = SpecH0(χ−1
Z (0)reg,O) = SpecH0(χ̃−1

Z (y)reg,O),
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where χ̃−1
Z (y)reg = χ̃−1

Z (y)∩ψ−1
Z (χ−1

Z (0)reg) ∼= χ−1
Z (y)reg. But by Theorem 6.1.9, χ̃−1

Z (y)reg =

(D1)y \ E is the complement of the zero section in the negative degree line bundle L−1 =

(D1)y over E = {y} × Pic0(E). So

χ−1
Z (0) = SpecH0((D1)y \ E,O) = Spec

⊕
n≥0

H0(E,L⊗n).

Taking completions and applying Lemma 6.7.5 shows that χ−1
Z (0) has a simply elliptic

singularity of the desired degree.

To prove (1) and (2), we argue as follows. First note that by Proposition 5.5.8, we have

ψ′Z∗O = O, where

ψ′Z : Z̃ −→ Z ×Ŷ //W Θ−1
Y

is the natural morphism induced by ψZ . For y : Spec k → 0Θ−1
Y

, we let ψ′Z,y : χ̃−1
Z (y) →

χ−1
Z (0) denote the restriction of ψ′Z . We show below that Riψ′Z,y∗O = 0 for i > 0, which

implies, since both domain and codomain of ψ′Z are flat over Θ−1
Y , that Rψ′Z∗O = O, and

hence Rψ′Z,y∗O = O by base change.

Since χ−1
Z (0) → Z0 is affine by construction, it is enough to show that Riπ∗O = 0 for

i > 0, where π : χ̃−1
Z (y) → Z0 is the natural morphism. This holds by inspection for the

fibre over y ∈ Y of the reduced normal crossings variety

D = Dα∨i
(Z) +Dα∨j

(Z) +Dα∨i +α∨j
(Z),

from the explicit descriptions of the components given by Theorems 6.1.9 and 6.6.1, using

the fact that Rf∗O = O whenever f is either a P1-bundle or the blow up of a smooth

surface at a point. This proves the claim in types A, B and D. In type C, we claim that the

morphism Rπ∗OD̄y → Rπ∗ODy is a quasi-isomorphism, where D̄ = χ̃−1
Z (0Θ−1

Y
), from which

the desired vanishing follows. To see this, note that we have a short exact sequence

0 −→ O(−D)|Dα∨
i

(Z) −→ OD̄ −→ OD −→ 0,

so it is enough to show that Riπ∗O(−D)|Dα∨
i

(Z)y = 0 for all i. From the explicit descrip-

tion of Dα∨i
(Z)y given in Theorem 6.6.1 and Proposition 6.6.8, it is enough to show that

O(−D)|Dα∨
i

(Z)y has degree 0 on the exceptional curve γ of the blowup and degree −1 on

every irreducible fibre of D′1 → Z0 = P1. But since ΘY is trivial on Dα∨i
(Z)y, we have a

linear equivalence

−2D|Dα∨
i

(Z)y ∼ −Dα∨j
(Z)y ∩Dα∨i

(Z)y −Dα∨i +α∨j
(Z)y ∩Dα∨i

(Z)y = −E − γ,

from which the claim follows by Lemma 6.7.6.

To complete the proof of (1) and (2), since ψZ,y∗O = O in each case and χ−1
Z (0) → Z0

is affine, we have

χ−1
Z (0) = SpecZ0

π∗OD̄y = SpecZ0
π∗ODy ,

for any choice of y : Spec k → 0Θ−1
Y

. Using Theorems 6.1.9 and 6.6.1, it is easy to see that

π∗ODy ∼= π∗O(D1)y ×π∗OE π∗O(D′1)y ,

where we have identified {y}×Pic0(E) = Dα∨i
(Z)y ∩Dα∨j

(Z)y with E and by mild abuse of

notation we have also written π for the morphisms (D1)y → Z0, (D′1)y → Z0 and E → Z0.

From the explicit descriptions of (D1)y and (D′1)y, it is clear that χ−1
Z (0) is obtained in type

A by gluing two line bundles as claimed, and in types B, C and D by contracting the zero

section of (D1)y along E → Z0.
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Let p : Spec k → Z0 be any point, and choose a formally smooth morphism Spec kJuK→
Z0 sending the closed point to p. In type A, the completed pullbacks of π∗O(D1)y , π∗O(D′1)y

and π∗OE are given by kJu, vK, kJu,wK and kJuK respectively, with the maps to π∗OE given

by setting v and w to 0. So

R = kJu, vK×kJuK kJu,wK ∼=
kJx, y, zK

(xy)
,

where x = (v, 0), y = (0, w) and z = u, has a type A∞ singularity. This proves (1).

In types B, C and D, if E → Z0 is unramified over p, then by Lemma 6.7.6, the

completed pullbacks of π∗O(D1)y , π∗O(D′1)y and π∗OE are given by kJu1, v1K × kJu2, v2K,
kJuK and kJu1K× kJu2K respectively, where the maps to π∗OE are given by sending v1 and

v2 to 0 and u to (u1, u2). So the ring

R = (kJu1, v1K× kJu2, v2K)×kJu1K×kJu2K kJuK ∼=
kJx, y, zK

(xy)
,

where x = (v1, 0, 0), y = (0, v2, 0) and z = (u1, u2, u), again has a singularity of type A∞,

and hence χ−1
Z (0) has a singularity of type A∞ at p. If p is a branch point of E → Z0,

then (since we are assuming k does not have characteristic 2 in these types) the completed

pullbacks of π∗O(D1)y , π∗O(D′1)y and π∗OE are instead given by kJv, wK, kJuK and kJwK
respectively, where the maps to π∗OE send v to 0 and u to w2. So

R = kJv, wK×kJvK kJuK ∼=
kJx, y, zK

(x2y − z2)
,

where x = (w, 0), y = (v2, u) and z = (vw, 0), has a singularity of type D∞, and hence

χ−1
Z (0) has a singularity of type D∞ at p as claimed.

To complete the proof, it remains to show that E → Z0 has 3 branch points in type B

and 4 in types C and D. To see this, note that the composition with the coarse moduli

space map Z0 → P1 is a degree 2 morphism from a smooth elliptic curve over k to P1 and is

therefore branched over 4 isolated points since the characteristic of k is not 2. So in types

C and D, E → Z0 = P1 is branched over these 4 points. In type B, on the other hand, one

of the branch points must be the branch point of Z0 = P(1, 2)→ P1 (i.e., the stacky point),

so E → Z0 is branched over the remaining 3 points.
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