

Implementing STACK questions concerning integration techniques combined with the usage of STACK in ILIAS

Jesús Copado, Wigand Rathmann

30.04.2019

1 Examples from Integration

What do I do?

Question

What should be trained in using integration techniques in times of CAS?

Selected techniques

- 1. Antiderivative
- 2. Partial fraction decomposition
- 3. Partial integration
- 4. Substitution

Antiderivative

Definite Integrals

Solving definite Integrals using Fundamental Theorem of Calculus

$$\int_{a}^{b} f(\xi) \,\mathrm{d}x = F(b) - F(a).$$

Three steps:

- 1. Determine F,
- 2. Evaluate F at a and b,
- 3. Evaluate F(b) F(a).

Implemented "independently", may be copied to other questions.

Antiderivative

Find an antiderivative of f with $f(x)=rac{1}{x}~(x>0)$
$F(z)=$, $c\in\mathbb{R}.$
Compute the value of the integral $\int\limits_2^3 f(x)\mathrm{d} x$ using the antiderivative. Use as constant $c=0.$
Type in here the value of
F(3) =
and
F(2) =
an.
Finally put integral (simplified) value here :
$\int_{-\infty}^{3} f(x) \mathrm{d}x = \checkmark$
2

Antiderivative

Possible Response Trees

	Node 8: Check the integration constant.
	Node 1: Check the antiderivative F , if is is not correct use it as \hat{F} .
	Node 2: $F(b)$ is correct?.
	Node 3: $\hat{F}(b)$ is correct?
	Node 4: $F(a)$ is correct?
5	Node 5: $\hat{F}(a)$ is correct?
) °	Node 6: $F(b) - F(a)$ is correct?
r N	Node 7: $F(b) - F(a)$ is numerically correct?
7 ≁	
• •	

1.1 Partial Fraction Decomposition

Partial Fraction Decomposition

$\int rac{3\cdot x+9}{x^2+8\cdot x+16}\mathrm{d}x=$	✓	
Roots of the denominator polynomial:	✓	
Fip: Type <code>abs(u)</code> for $ u $. Use $\{\}$ to specify sets,	e.g. {-5,6}.	

Focus

Dealing binoms. Only

$$(x - \lambda)(x + \lambda) = x^2 - \lambda^2$$

or

$$(x - \lambda)^2 = x^2 - 2\lambda x + \lambda^2$$

are considered and the detection of these expressions should be trained.

Partial Fraction Decomposition

Implementation / Generation

- 1. Choose $\lambda_1 \in \{-4, ..., 4\}$
- 2. Choose $\alpha \in \{-1, 1\}$ and set $\lambda_2 = \alpha \cdot \lambda_1$, hence two cases can occur
- 3. Choose $A, B \in \{-3, \ldots, 3\}$ and set

$$q := \frac{A}{x - \lambda_1} + \frac{B}{x - \lambda_2} \text{ or } q := \frac{A}{x - \lambda_1} + \frac{B}{(x - \lambda_1)^2}.$$

4. Simplify q and show the integral

Partial Fraction Decomposition

Problem: $\{4, 4\}$ is treated to be algebraic equivalent to $\{4\}$.

Partial Fraction Decomposition

Typical cases

• $\int \frac{x+1}{x^2+4\cdot x+4} dx = \ln(|x+2|) + \frac{1}{x+2} + c$

•
$$\int -\frac{3 \cdot x - 11}{x^2 - 6 \cdot x + 9} dx = -\frac{2}{x - 3} - 3 \cdot \ln(|x - 3|) + c$$

• $\int -\frac{2 \cdot x - 12}{x^2 - 9} dx = \ln(|x - 3|) - 3 \cdot \ln(|x + 3|) + c$

Possible Response Trees

Two trees,

- one to handle the integration,
- one to handle the roots of the denominator.

Partial Fraction Decomposition Possible Response Tree

Node 0: Check solution ist correct, integration constant specified.

Node 1: Check solution ist correct, integration constant not specified.

Node 2: Check partial fraction decomposition was entered.

1.2 Partial Integration

Partial Integration

Focus

Use the antiderivative of elementary functions.

Randomization for $f: \frac{1}{\cos(v)^2}, \frac{1}{\sin(v)^2}, \exp(v), \ln(v), \sin(v), \cos(v)$ Randomization for $g: x^n, n \in \{1, 2\}.$

Partial Integration

Some realizations

• $\int x^2 \cdot \cos(x) \, dx = (x^2 - 2) \cdot \sin(x) + 2 \cdot x \cdot \cos(x) + c$

•
$$\int t^2 \cdot e^t \, \mathrm{d} t = (t^2 - 2 \cdot t + 2) \cdot e^t + c$$

• $\int u^2 \cdot \ln(u) \, \mathrm{d} \, u = \frac{u^3 \cdot \ln(u)}{3} - \frac{u^3}{9} + c$

Reference solution

- Not implemented (yet)
- different approaches: decrease the power of the independent variable or avoid ln.

Partial Integration

Implementation

Node 1: Check the result.

Node 2: Check the integration constant.

Improvement

Use the algebraic equivalence input, but how to implemented it (integration as symbol)?

$$\int x \sin(x) dx = x \cos(x) - \int \cos(x) dx$$
$$= x \cos(x) - \cos(x)$$

1.3 Substitution

Substitution

Find an antiderivative of
$$f(u)=-\cos(u)\cdot\sin^3u+2\cdot\cos(u)\cdot\sin(u)+3\cdot\cos(u)$$

 $F(u)= \checkmark,\ c\in\mathbb{R}.$

Focus

- "See" derivatives of elementary functions, since integrand is of the type $(f \circ g) \cdot g'$.
- Randomization for $f: \exp(v), \sin(v), \cos(v)$
- Randomization for $g: a_2x^2 + a_1x + a, a_i \in \{-4, ..., 4\}.$

Variants

- Only the result.
- Enter the substitution used, to provide a better feedback.

2 STACK on ILIAS