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Year 1 Curriculum

Introduction to Calculus and

Linear Algebra n=609 its Applications n=599
Fundamentals of Algebra Proofs and

and Calculus  N=113 Problem Solving nN=332

Option Option
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FAC: a new course

o Level 7, 20-credit, semester 1

* 113 students from Schools of Maths,
Informatics, Economics, Physics and
Astronomy, and others

* Introduction to Linear Algebra a
corequisite
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FAC: a new course

* Aimed at incoming students with
lower entry qualifications

Qualifications (approx) FAC Advice

AH Maths < B, or A-level Further Maths < B FAC strongly recommended
AH Maths B, or A-level (Further) Maths A FAC permitted
AH Maths A, or A-level Maths A* FAC inappropriate

v o :4"1,
N | ~ THE UNIVERSITY of EDINBURGH
Y=  School of Mathematics
&




Topics In the course

Vectors Principles and techniques of
Polynomials and rational differentiation
functions Further techniques and
Functions and graphs applications of differentiation
Complex numbers Principles of integration
Sequences and series Methods of integration

Applications of integration
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A flavour of the topics...
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Algebra

Vectors

Polynomials and rational
functions

Functions and graphs / VvV — 1 ;

Complex numbers

Sequences and series \
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A flavour of the topics...

Product rule, quotient rule\
chain rule
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Principles and techniques of

differentiation /
Further techniques and

applications of differentiation

Principles of integration /

Methods of integration
Applications of integration =y,

Inverse, implicit and
parametric functions

Curve sketching,
optimisation

Substitution
Integration by parts

Rational functions




(Almost) entirely online

Autonomous
Introductory @ \1-theBase Learning
Groups

lecture
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A typical question

STACK offers

e randomized
guestions

* input validation
* robust grading

THE UNIVERSITY quDINBURGH
School of Mathematics

Fully factorise the polynomial p(z) = 32! + 16 2% + 3% — 46z + 24, given that
r = —3isaroot

plE) = (X"2+2°xX-3)(x+4)%(3

Your last answer was interpreted as follows:
(2 +22—3) (z+4) (3z—2)
The variables found in your answer were: ||

Check

Your answer is parially correct
r x S I = ok 3 2 . E -
Your answer is not factored. You could still do some more work on the term o= + 22
The factor 3 & — 2 is comect

The factor & + 4 is correct

Marks for this submission: 0.50/1.00.
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A typical week

< VWeek 3: Polynomials and rational functions Week 5: Functions »

Week 4: Principles of integration

Your progress
87| Getting started L

1 (g |
i 1. The area under a curve 3

{ 2. Antiderivatives

gé 3. Evaluating definite integrals {::
{( 4. Finding areas ::E
&/ | 2. Antiderivatives 3
7 ]
v_/ 3. Evaluating definite integrals Ld
A ™M
{ 4. Finding areas i-d
71 ™
% Week 4 Practice Quiz Led
™M

Week 4 Final Test d

SN Not available unless: You achieve a required score in Week 4 Practice Quiz
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Overall course design

Distributed | | “Textbook in | | SPecifications | | 1y s o
practice the quiz” grading / feedback
Mastery
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Distributed practice

PSYCHOLOGICAL SCIENCE

* Consistent finding in
cognitive science

Spaced practice is better
than massed practice
* S0, we have broken
up some large topics
and spaced them out
through the semester

THE UNIVERSITY quDINBURGH
School of Mathematics

Research Article

Spacing Effects in Learning
A Temporal Ridgeline of Optimal Retention

Nicholas J. Cepetlu,"z Edward Vul,z':; Doug Huhrer,4 John T. Wixted,2 and Harold Pashler®

York Universit
Florida

ABSTRACT—To achieve enduring retention, people must
usually study information on multiple occasions. How does
the timing of study events affect retention? Prior research

has examined this issue only in a spetty fushion, usually

; rrshnrtiin ¢
y short tim;

! d at char-

acterizing spacing effects over significant durations, more
than 1,350 individuals were taught a set of facts and—
after agap of up to 3.5 months—given a review. A final test
was administered at a further delay of up to 1 year. At any
given test delay, an increase in the intersiudy gap at first
increased, and then gradually reduced, final test perfor-
mance. The optimal gap increased as test delay increased.
However, when measured as a proportion of test delay, the
optimal gap declined from about 20 to 40% of a 1-week test
delay to about 5 to 10% of a 1-year test delay. The inter-
action of gap and test delay implies that many educational
practices are highly inefficient.

As time progresses, people lose their ability to recall past ex-
periences. The amount of information lost per unit of time
gradually shrinks, producing the well-known increasingly
gradual forgetting curve, Far less is known about the course of
forgetting after a person has experienced multiple exposures to
the same piece of information, Multiple exposures are obviously
very common, and are probably essential for most long-term
instruction. Thus, an understanding of how the gap between two
exposures affects subsequent forgetting is fundamentally im-

portant if one wishes to temporally structure learning events ina
oo mas o L oea 25 .o

niversity of California, San Diego; *Massachusetts Institute of Technology; and *University of South

Effects of the gap between exposures on later memory are
usually termed distributed-practice or spacing effeets, and there
is a large literature on such effects going back to the 19th

century (for reviews, see Cepeda, Pashler, Vul, Wixted, &

same material, separated by some variable time gap, with a final
memory test administered after an additional retention interval
(RI) measured from the second exposure
hat no gap results in worse final test

see Fig. 1). Many
spacing studies have show

performance than does a brief gap. Several studies involving
modest time intervals ranging from minutes to days have found
that memory at the final test is best for intermediate gap dura-
tions (e.g., Balota, Duchek, & Paullin, 1989; Glenberg, 1976;
Glenberg & Lehmann, 1980: Young, 19606: see Cepeda et al.,
2000, for a meta-analysis focused on this point).

Given the enormous size of the literature on spacing effects,
readers may wonder why there would be a need for further and
more systematic exploration. Indeed, the literature is large: A
recent review of distributed-practice studies involving verbal
recall (Cepeda et al., 2006) examined more than 400 reports.
However, only about a dozen of these looked at Rls as long as 1
day, with just a handful examining Rls longer than 1 week.
Although psychologists have decried the lack of practical ap-

r, 1988: Rohrer & Tay-

plication of the s

lor, 2006), the fault appears to lie at least partly in the

literature itself: On the basis of short-term studies, one cannot

answer with confidence even basic questions about the timing of

learning. For example, how much time between study sessions is



© 00 N O O o WO DN -

Weekly schedule

Vectors
Principles and techniques of differentiation
Polynomials and rational functions
Principles of integration
Functions and graphs
Further techniques and applications of differentiation
Complex numbers
Methods of integration
Sequences and series
Applications of integration



“Textbook in the quiz”

» Testing can enhance
learning

the testing effect

 Where to place
questions?

— Interspersed in the text?
— At the end of the
chapter?

—Either, or both!

THE UNIVERSITY quDINBURGH
School of Mathematics

Journal of Applied Research in Memory and Cognition 7 (2018) 116-122

Contents lists available at ScienceDirect

Journal of Applied Research in Memory and Cognition

journal homepage: www.elsevier.com/locate/jarmac

The Effect of Question Placement on Learning from Textbook (!) S
Chapters

Oyku Uner”, Henry L. Roediger 111
Washington University in St. Louis, United States

Retrieval practice enhances learning of short passages, but its effectiveness for authentic educational materials such
as textbook chapters is not well established. In the current experiment, students studied a 40-page textbook chapter
on biology. Retrieval practice with correct-answer feedback was manipulated within subjects: some questions
appeared only after a chapter section, others only after the whole chapter, and yet others at both times. Two groups
served as controls: the reread group read the feedback presented in the retrieval practice condition, and the other
group simply read the chapter once. Students took a final test two days later. Practicing retrieval resulted in greater
recall relative to the two control groups. On the final test, the two single testing conditions produced comparable
benefits, but testing twice produced the greatest benefit. Retrieval practice is effective in learning from authentic
text material and placement of the initial test does not matter.

General Audience Summary

In educational settings, testing is typically used to assess knowledge of students; however, research has shown
that testing can be a powerful tool to enhance learning. This outcome is referred to as the retrieval practice
effect, or the testing effect. Most laboratory studies examining this effect use simple materials, but it is not clear
whether testing can be an effective study strategy when students read entire textbook chapters, which is the task
faced by many students in introductory courses. Because a textbook chapter is lengthy and complex, a critical
issue is where to place practice tests: after each section, after the whole chapter, or both? In the current study,
we asked students to study a biology textbook chapter and we tested them two days later with short-answer
questions from the chapter. One group of students read the chapter once, another group read the chapter and
then reread critical information from the chapter, and a final group read the chapter and answered practice
questions on it. The questions could occur after each section, after the entire chapter, or both. We found that
answering questions once while reading the chapter increased recall two days later relative to the two control
groups. Where the questions were placed did not matter on the final test; however, answering questions twice
increased recall more than answering questions once. When studying from textbook chapters, students can use
self-testing to improve their grades. Whether they test themselves during reading of the chapter or after reading
the chapter does not matter, so long as feedback is provided. To receive the greatest benefit, students should
test themselves more than once.

Keywords: Retrieval practice, Testing effect, Learning from text, Question placement



Fundamentals of Algebra and Calculus (2018-2019)[SV1-SEM1]

Dashboard My courses www.leam.ed 68007 1 Week 4: Principles of inlegration 2, Anliderivatives

Information

I N DE F I N ITE l N TEG RA LS ¥ Pl queeron Antiderivatives and indefinite integrals

Remember that any function we can differentiate tells us aboul a corresponding antiderivative

d
1 2 3 For example, o (r?) = 2z sowe know 2 Is an antiderivative of 2.
T

diiy s 3
However, notice that we also have S (2% +1) — 2. S0 2* + 1 Is also an antiderivative of 2.
dz

In fact, f Fi(x) is an antderivative of f{z) then sois F(z) + € where C s any constant, We can ses this because differentiating both Fi(z) and F{z) + C gives f(z).

We saw in the Iast section that antiderivatives are related {o definite integrals:

STANDARD ANTIDERIVATIVES CiasAiisn Thaorw

i | 4 5 6 7 8 if f{z) = G'(x) (i.e. G is an antiderivative of f)then
fh,rl.n]! r = G{b) — Cfa).

Because of this connection, we also talk about indefinite integrais:

INTEGRATION BY INSPECTION Tne-ndefmnemtegralffu-aru — Flz) + C means F'(z) = f(z).

i 9 1 O 1 1 1 2 It represents the most general antiderivative of f, so must always include an arbitrary constant (usually +C')
Note that
= we say that f(x) is the integrand.

« The dz is very important because it indicates the vanable we are integrating with respect to.

» the function F is often just referred to as the integral of f

M lXE D P RA C TI C E The notation is very similar for definite and indefinite integrals — the only difference is whether we attach limits to the integral sign. However, nofice that the result of an

indefinlte integralis a function, whereas the definile integral gives a number.
1 3 1 4 1 5 1 6 Example

Returniing fo the example above, we can wiite the indefinite integral

f?;"d;r=r.! 4

to represent the fact that 27 4 (7 is fhe most genersl antiderivative of 2z

Simple questions
Eﬁwwﬁgfmmmm“” to check
understanding

Masmed out of 1.00

¥ Flag guestion
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QU NAVIGATION o Sketching graphs of cubics

Using the Factor Theorem, we can take the fully factorised form of a eubic and read off its roots. This enables us to make a sketch of the graph.

UADRA ¥ Flag question

Example

Sketch the graph of the polynomial function f(z) =

+) = 1! — ¥y

CUBICS

4 )
Video worked

examples
\_ J

HIGHER DEGREES

Different forms of cubic graph are possible. based on the factors in the fully factorised form:

= each linear factor will give a root,
« any repeated linear factors will give rise 1o a repeated root on the graph,
« a quadratic factor which cannot be factarised further will mean the graph only has one real root.

Another thing to look for is the sign of the &* coefficient - if it is positive, then the graph goes off to +og as = increases, while Ifit's negative the graph will go off to —oo

AR The following are all the possible forms that the factorised cubic can take:
> Fl
¥ Flag question 1.ale — (@ — B)(x — )
2 alz—a)(z—8)
d.alz —a)®

4, (z —a){az® + br + ) with b — dac < 0

Complete the following table showing what a sketch of the graph might ook like for each form:

= 2z -
ar-)x=p)x=7) |  alx—aPx=p) alx—a? e

4 )

Matching/sorting - ]
activities

\ J a<0

o BT a

. N ,
%
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Specifications grading

 |ndividual assessments are
graded pass/fail SPECIFICATIONS

» Some amount of resubmission GRAD\NG

IS allowed

» Letter grades are based on
performance across multiple
assessments
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Specifications grading

Each week

Practice Final gets either a
Quiz Test Mastery
(80%+)
or
Unlimited attempts Single attempt One more attempt Distinction
Full feedback 80% requiredto  80% required to (95%+)

ass ass
80% score required P P
to unlock Final Test

I/’_, THE UNIVERSITY of EDINBURGH
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What grade will you get?
Number of units Number of Distinctions | Percentage awarded Equivalent
Mastered (80%+) (95%+) for the Unit Score Grade

- 0 F

Less than 7
7 - 45% D
8 2o0r3 55% C
9 40rd 65% B
10 6or7 75% A1
10 8or9 85% A2
10 10 100% A3

3
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Possible grade distribution

(based on extrapolating from results in weeks 1-5)

25
20
15

10

5

0
4] 20 a0 &0 20 100

@\)N '_ t’?‘y/
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Actual results...

Frequency

30

Pt
—

10

= 0.00 9.99
@ 10.00 19.98
T 40.00 100.00
n 20.00 29.99
m 30.00 39.99

= 40.00 49.99

Grade

& 50,00 59.99

= 60.00 69.99

& 70.00 79.99

& 80.00 §9.99

= 90.00 100.00

- 120

Running %

THE UNIVERSITY of EDINBURGH

School of Mathematics

(N=113)

 Mean: 67
 Median: 70

* Pass rate: 94%



Timing of feedback

Journal of Applied Research in Memory and Cognition 3 (2014) 222-229

Contents lists available at ScienceDirect

Journal of Applied Research in Memory and Cognition

VIER journal homepage: www.elsevier.com/locate/jarmac

n n
* |s it best to give
Delaying feedback promotes transfer of knowledge despite student ® i
n preferences to receive feedback immediately
0 S S I b I e ? Hillary G. Mullet®*, Andrew C. Butler?, Berenice Verdin®,
L Ricardo von Borries”, Elizabeth J. Marsh*

# Duke University, United States
" University of Texas at El Paso, United States

“delaying feedback can

facilitate learning”

* We delay the feedbac
on the Final Test until
after the deadline.

THE UNIVERSITY quDINBURGH
School of Mathematics

Article history:

Received 5 December 2013

Received in revised form 28 April 2014
Accepted § May 2014

Available online 14 May 2014

Keywords:
Immediate feedback
Delayed feedback
Transfer

Learning

Classroom

Educators and researchers who study human learning often assume that feedback is most effective when
given immediately. However, a growing body of research has challenged this assumption by demonstrat-
ing that delaying feedback can facilitate learning. Advocates for immediate feedback have questioned
the generalizability of this finding, suggesting that such effects only occur in highly controlled laboratory
settings. We report a pair of experiments in which the timing of feedback was manipulated in an upper-
level college engineering course, Students practiced applying their knowledge of complex engineering
concepts on weekly homework assignments, and then received feedback either immediately after the
assignment deadline or 1 week later. When students received delayed feedback, they performed better
on subsequent course exams that contained new problems about the same concepts. Although delayed
feedback produced superior transfer of knowledge, students reported that they benefited most from
immediate feedback, revealing a metacognitive disconnect between actual and perceived effectiveness.

©2014 Society for Applied Research in Memory and Cognition. Published by Elsevier Inc. All rights

reserved.

“In many cases - for example, when papers are taken home to be
corrected - as much as 24 hours may intervene [before students
receive feedback]. It is surprising that this system has any effect
whatsoever.” - B.F. Skinner (1954, p. 91)

Although Skinner wrote this statement 60 years ago, the
assumption that delaying feedback impairs learning remains
popular among researchers and educators today. The practical rec-
ommendation from most reviews of the feedback literature is that
feedback should be given as soon as possible (e.g., Azevedo &
Bernard, 1995; Hattie & Timpersley, 2007; Kulik & Kulik, 1988;
Mory, 2004). Likewise, promotional materials for educational prod-
ucts suchas classroom response systems (e.g,, “Pedagogy in Actior
2013), online courses (e.g., Coursera; “Pedagogical Foundations,
2013), and testing tools (e.g., The Immediate Feedback Assessment
Technique; Epstein Educational Enterprises, 2013) emphasize the
importance of providing learners with feedback immediately after
a response. The primary purpose of the present research was to

examine the assumption that delaying feedbackis harmful to learn-
ing. We conducted two experiments in which we manipulated the
timing of feedback on homework assignments in a college course.
We also surveyed students about their experience in the course in
order to explore the degree of correspondence between the actual
and perceived effectiveness of delayed feedback.

1. Background

The assumption that feedback must be given immediately
in order to be maximally effective derives from the behaviorist
approach to learning in which feedback was conceptualized in
terms of reinforcement and punishment (e.g., Hull, 1943; Skinner,
1938; Thorndike, 1932).In operant learning paradigms, researchers
used reinforcement and punishment to modify voluntary behavior
(e.g., using food pellets to shape a desired key-pressing behavior
in pigeons). One of the core findings that emerged from such
studies was that the response and subsequent feedback had to
be paired closely in time in order for the animal to perceive the
contingency for learning (for review see Renner, 1964). In fact,



Task design

Faded
worked
examples

“Give an
example”

Retrieval
practice
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Faded worked examples

Worked Example
Worked Example with
last step as a task

Worked example with
more steps to complete
Problem
Solving
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Faded worked examples

« Using a faded sequence

of worked examples
“The fading procedure fosters
learning”

 The course uses this
structure for many key
procedures...

THE UNIVERSITY ngDINBURGH
School of Mathematics

The Journal of Experimental Education, 2002, 70(4), 293-315

From Example Study to
Problem Solving: Smooth
Transitions Help Learning

ALEXANDER RENKL
University of Freiburg (Germany)

ROBERT K. ATKINSON
Mississippi State University

UWE H. MAIER
Educational University of Ludwigsburg (Germany)

RICHARD STALEY
State University of New York—College at Oneonta

ABSTRACT. Research has shown that it is effective to combine example study and
problem solving in the initial acquisition of cognitive skills. Present methods for com-
bining these learning modes are static, however, and do not support a transition from
example study in early stages of skill acquisition to later problem solving. Against
this background, the authors proposed a successive integration of problem-solving
elements into example study until the learners solved problems on their own (i.e.,
[ — increasi more i ples — problem to-be-
solved). The authors tested the effectiveness of such a fading procedure against the
traditional hod of using p pairs. In a field experiment and in 2
more controlled laboratory experiments, the authors found that (a) the fading pro-
cedure fosters learning, at least when near transfer performance is considered; (b)
the number of problem-solving errors during learning plays a role in mediating this
effect; and (c) it is more favorable to fade out worked-out solution steps in a back-
ward manner (omitting the last solution steps first) as compared with a forward
manner (omitting the first solution steps first).

Key words: fading, learning, problem solving, transfer, worked-out examples

WORKED-OUT EXAMPLES consist of a problem formulation, solution
steps, and the final solution itself. Researchers have shown that learning from such
examples is of major importance for the initial acquisition of cognitive skills in
well-structured domains such as mathematics, physics, and programming (for an



Marked out of 1.00

W Flag question

Example

Divide 22 +x — 10 by = — 3.

< O
A _io _ ST
X+ = (%-3)(x +H‘)+’L Y
e .t N “% A = %
x3 %=1 - 'L{/A—FZ =-10

= b3l , 2

*-3
P S

1

> ) 150 /155

Now apply this procedure to the following examples:

222+ 7z

s (z+3) 2z+1)—3

(z+3)

Check

Check

Worked Example

Worked Example with
last step as a task

Worked example with
more steps to complete

Problem solving




Worked Example

{ THE UNIVERSITY ijDINBURGH
School of Mathematics

Maclaurin series

The Maclaurin series of f is given by

2F P f©)  £7(0)
f(ﬂ’):; oz = f(0) + T x + i e
Example
Find the Maclaurin series for f(z) = e”.
i
0 ex P
1 ke =1
% e A |
& 4
S )= Z—Ti‘“ v Ly ifr}—,f-r---
n=o N ) 1! 21 ¥
_ do2 oL v, o,
= j_-!-'x-i-',z)c ‘\'67,‘\'




Worked Example

Worked Example with

last step as a task

S
vg . THE UNIVERSITY ngDINBLIRGH
School of Mathematics

Find the Maclaurin series of f(z) = sin(z).

We compute the derivatives and evaluate them at x = 0:

f(z) = sin(z) ) =0
f'(z) = cos(z) fin—=1
f"(z) = — sin(zx) f'(0) =0

¥ () = — cos(z) F0) = -1
4 (z) = sin(z) @ (0) =

and from here we see that the cycle of values 0, 1, 0, —1 will repeat.

So the Maclaurin series begins:

(enter the first four nonzero terms)

The general term is
(_1)2 n+1 wz n+1
(2n+1)!
(1" ="
n!
(71)” $2 n+1
(2n +1)!
(<L) 22"
(2n)!

- (a)

(b)

(c)

- (d)

Check



Worked Example

Worked Example with
last step as a task

Worked example with

more steps to complete

THE UNIVERSITY of EDINBURGH
School of Mathematics

Find the Maclaurin series of f(x) = cos(z).

We compute the derivatives and evaluate them at z = 0:

7(z) = cos(z) F0) =1
7' (@) = — sin(x) F(0)=0
f'(x) = — cos(a) 7(0) = -1

79 () = sin(z) F9(0) =0

79 (2) = cos(z) F9(0) =1

and from here we see that the cycle of values 1,0, —1, 0 will repeat.

So the Maclaurin series begins:

(enter the first four nonzero terms)

The general term is

Note: for the last question, the general term would be typed as (-1)~n*x~(2*n+1)/(2*n+1)!

Check




Worked Example

Worked Example with
last step as a task

Worked example with
more steps to complete

Worked example with
more steps to complete

QPN THE UNIVERSITY of EDINBURGH

\#N)J: School of Mathematics

Find the Maclaurin series of f(z) = In(z + 1).

We compute the derivatives and evaluate them at z = 0:

f(@) = In(z + 1)

fl(z) =

f(z) =

(@) =

So the Maclaurin series begins:

The general term is

Check

f(0) =0
0=

7"(0) =

fm' (0) =

(enter the first four nonzero terms)



Worked Example

Worked Example with
last step as a task

Worked example with

more steps to complete

Worked example with
more steps to complete

Problem solving

X7 | "; THE UNIVERSITY of EDINBURGH
NFNV: School of Mathematics

Find the Maclaurin series of f(z) = e~

(a) The first five nonzero terms are:

(b) The general term is:

Check

ST



“Give an example”

* Inviting students to
construct examples

“‘Simply ‘giving’ examples
and construction
techniques is rarely
sufficient for most learners.
Most learners need to
(re)construct examples in
order to populate their
example space”

THE UNIVERSITY quDINBURGH
School of Mathematics

Educ Stud Math (2008) 69:183-194
DOI 10.1007/510649-008-9143-3

Shedding light on and with example spaces

Paul Goldenberg - John Mason

Published online: 25 July 2008
© Springer Science + Business Media B.V. 2008

Abstract Building on the papers in this special issue as well as on our own experience and
research, we try to shed light on the construct of example spaces and on how it can inform
research and practice in the teaching and learning of mathematical concepts. Consistent
with our way of working, we delay definition until after appropriate reader experience has
been brought to the surface and several ‘examples” have been discussed. Of special interest
is the notion of accessibility of examples: an individual’s access to example spaces depends
on conditions and is a valuable window on a deep, personal, situated structure. Through the
notions of dimensions of possible variation and range of permissible change, we consider
ways in which examples exemplify and how attention needs to be directed so as to
emphasise examplehood (generality) rather than particularity of mathematical objects. The
paper ends with some remarks about example spaces in mathematics education itself.

Keywords Examples - Exemplification - Example spaces

1 Examples

The widespread use of ‘examples’ in mathematics textbooks from the earliest recorded time
is a manifestation of the common insight that it is through the appreciation of familiar
examples that abstractions become reified (Sfard 1994). Just as with natural language,
meaning arises mainly from encountering instances in use, while definitions provide a
reference against which to test those uses. Put another way, definitions function as
generalisations or abstractions whose meaning emerges through experience of particular



“Give an example”

For each case below, type in a quadratic, e.g. 2x~2+3x+1 , whose graph has exactly the given
number of intersections with y — z2 . If it is not possible, then enter none .

No intersection: y —

1 intersection: y =

2 intersections: y =

3 intersections: y — 4

Check

y=ax?2+bx+c

THE UNIVERSITY quDINBURGH
School of Mathematics




“Give an example”

In each case below, give an example of an arithmetic sequence with the stated property, by entering
an expression for the general term. If it is not possible, enter none .

(a) Increasing

Uy —

(b) Decreasing

Uy =

(c) Bounded above

Uy —

(d) Decreasing and bounded below

THE UNIVERSITY quDINBURGH
School of Mathematics




Retrieval practice

“retrieval of
information from
memory produces
better retention than
restudying ...

the testing effect”

THE UNIVERSITY quDINBURGH
School of Mathematics
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The critical role of retrieval practice in

long-term retention

Henry L. Roediger IlI' and Andrew C. Butler?

" Department of Psychology, Box 1125, Washington University, One Brookings Drive, St. Louis, MO 63130-4899, USA
2Psychology & Neuroscience, Duke University, Box 90086, Durham, NC 27708-0086, USA

Learning is usually thought to occur during episodes of
studying, whereas retrieval of information on testing
simply serves to assess what was learned. We review

h that icts this traditional view by dem-
onstrating that retrieval practice is actually a powerful
mnemonic enhancer, often producing large gains in
long-term retention relative to repeated studying. Re-
trieval practice is often effective even without feedback
(i.e. giving the correct answer), but feedback enhances
the benefits of testing. In addition, retrieval practice

pr the of ge that can be
flexibly retrieved and transferred to different contexts.
The power of retrieval ice in idating memo- d

ignored the possibility that learning occurred during the
retrieval tests [2-5]. Exactly the same assumption is built
into our educational systems. Students are thought to learn
via lectures, reading, highlighting, study groups, and so on;
tests are given in the classroom to measure what has been
learned from studying. Again, tests are considered assess-
ments, gauging the knowledge that has been acquired with-
out affecting it in any way.

Inthis article, we review evidence that turns this conven-
tional wisdom on its head: retrieval practice (as occurs
during testing) often produces greater learning and long-
term retention than studying. We discuss research that

ries has important implications for both the study of
memory and its application to educational practice.

Introduction

A curious peculiarity of our memory is that things are
impressed better by active than by passive repetition.
I'mean that in learning (by heart, for example), when
we almost know the piece, it pays better to wait and
recollect by an effort within, than to look at the book
again. If we recover the words the former way, we
shall probably know them the next time; if in the
latter way, we shall likely need the book once more.

William James [1]

Psychologists have often studied learning by alternating
series of study and test trials. In other words, material is
presented for study (S) and a test.(T) is subsequently given to
determine what was learned. After this procedure is repeat-
ed over numerous ST trials, performance (e.g. the number of
items recalled) is plotted against trials to depict the rate of
learning; the outcomeis referred to as alearning curve and it
isnegatively accelerated and is fit by a power function. Thus,
most learning occurs on early ST trials, and the amount of
learning decreases with additional trials. The critical as-
sumption is that learning occurs during the study phases of
the ST ST ST. .. sequence, and the test phase is simply there
to measure what has been learned during previous occasions
of study. The test is usually considered a neutral event. For
examnole. researchers in the 1960 s debated whether learn-

the conditions under which retrieval practice is
most effective, as well as evidence demonstrating that the
mnemonic benefits of retrieval practice are transferrable to
different contexts. We also describe current theories on the
mechanisms underlying the beneficial effects of testing.
Finally, we discuss educational implications of thisresearch,
arguing that more frequent retrieval practice in the class-
room would increase long-term retention and transfer.

The testing effect and repeated retrieval

The finding that retrieval of information from memory
produces better retention than restudying the same infor-
mation for an equivalent amount of time has been termed
the testing effect [6]. Although the phenomenon was first
reported over 100 years ago [ 7], research on the testing effect
has been sporadic at best until recently (but see Box 1 for
some classic studies). Inthe last 10 years, much research has
shown powerful mnemonic benefits of retrieval practice
[8-10] . The data in Figure 1 come from a study in which
two groups of students retrieved information several times

Glossary

Expanding retrieval schedule: testing of retention shortly after learning to
make sure encoding is accurate, then waiting longer to retrieve again, then
waiting still longer for a third retrieval and s on.

Feedback: providing information after a question. General (right or wrong)
feedback is not very helpful if the correct answer is not provided. Correct
answer feedback usually produces robust gains on a final criterion measure.
Negative suggestion effect: taking a test that provides subtly wrong answers
(e.g. true or false, multiple choice) can lead students to select 8 wrong answer,
believe it is right, and thus learn an error from taking the test

Retrieval practice: act of calling information to mind rather than rereading it or
hearing it. The idea is to produce “an effort from within' to induce better
retention.



Retrieval practice

 This can be combined
with the idea of
distributed practice

“spaced retrieval practice
can have a meaningful,
long-lasting impact on
educational outcomes”

THE UNIVERSITY quDINBURGH
School of Mathematics
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INTERVENTION STUDY

Spaced Retrieval Practice Increases College Students’
Short- and Long-Term Retention of Mathematics
Knowledge

Robin F. Hopkins' « Keith B. Lyle" « Jeff L. Hieb? «
Patricia A. S. Ralston?

Published online: 12 December 2015
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Abstract A major challenge college students face is retaining the knowledge they acquire in
their classes, especially in cumulative disciplines such as engineering, where ultimate success
depends on long-term retention of foundational content. Cognitive psychologists have recently
recommended various techniques educators might use to increase retention. One technique
(spaced retrieval practice) involves extending opportunities to retrieve course content beyond
a customarily short temporal window following initial learning. Confirming the technique’s
utility requires demonstrating that it increases retention in real classroom settings, with
commonly encountered educational content, and that gains endure into subsequent semesters.
‘We manipulated spaced versus massed retrieval practice in a precalculus course for engineer-
ing students and followed a subset of students who proceeded into a calculus class the
following semester. Spacing versus massing was manipulated within- and between-subjects.
Within-subjects, students retained spaced content better than massed content in the precalculus
course. Between-subjects, students for whom some retrieval practice was spaced, compared to
those for whom all practice was massed, performed better on the final exam in the precalculus
class and on exams in the calculus class. These findings suggest that spaced retrieval practice
can have a meaningful, long-lasting impact on educational outcomes.

Keywords Memory - Spacing - Retrieval practice - Mathematics - Engineering



Complete the following table of standard derivatives. Try to do this without checking your notes --
which of the most important standard derivatives can you remember?

Function Derivative
r N
e At the start of integration (Week 4) —

‘ recall practice of differentiation (Week 2)
$- THE UNIVERSITY of EDINBURGH
School of Mathematics \. -




Summary

Distributed “Textbook in Specifications Timing of

- - grading /
practice the quiz Mastery feedback

Faded
worked
examples

“Give an Retrieval
example” practice

- Kinnear, G. (2019)
:‘\0%’; THE UNIVERSITY of EDINBURGH DeIivering an online course using STACK
Wy Scnooiet Nathematice http://doi.org/10.5281/zenodo.2565969




Evaluation
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Year 1 Curriculum
Introduction to Linear | -
Algebra Y Calculus and its Applications

Fundamentals of Algebra Proofs and Problem Solving
and Calculus

Option Option

. il :4’1,
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Diagnostic Test - Before

Took FAC _
(n=69)

No FAC
(n=352)

0 10 20 30 40 50 60 70 80 90 100
Diagnostic Test Score (September)
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Diagnostic Test - After

Took FAC
(n=69)
No FAC
(n=352)

0 10 20 30 40 50 60 70 80 9 100

Diagnostic Test Score (January)




Diagnostic Test Gains

Pre-test Post-test Gain
FAC 62.1 77.4 15.3
Non-FAC 76.1 78.1 2.0
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Diagnostic Test Gains
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Effect of FAC

100
|
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Test (Post)
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ILA Results
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Diagnostic Test Result (September)
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CAP Coursework (Online)
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CAP Coursework (Written)
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CAP Exam
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Calculus and
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Applications ¥
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Time on task?

%
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Example students
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Hours spent each week

5

1 2 3 4 5 6 7 8 9 10
Week

N
<

Total duration
S
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Activity by day of week
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Activity versus results

100- . I .
90- .
= 80- = ® : - ‘ - °
(% [&] . e [ ] .. [ ] ]
9 g° . ® « °®
O 70- ® ® ® oo eee o' = == =
< . o e o . . o®
L . . 5
60- . . - o: : °
50- ° 1 ° .
25 50 75 100 125 150

Total activity time (hours)

—

HE UNIVERSITY ngDIN BURGH
School of Mathematics




FAC result
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Thoughts for next year

» Tweak the weekly test regime

* Make use of new STACK features
— Interactive diagrams
— Line-by-line reasoning

* Do more with autonomous learning
groups

< gail s
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Conclusions

* FAC has been successful in boosting
students’ skills

* The design worked well, underpinned
by STACK

 Lots of scope for further analysis...
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Thank youl!
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