Finding the Potential Response Trees in the Potential Response Forest

Ian Jones Mathematics Education Centre, Loughborough University STACK Conference 2019, Edinburgh

Journal of Educational Psychology

© 2015 American Psychological Association 0022-0663/15/\$12.00 http://dx.doi.org/10.1037/edu0000053

Feedback Both Helps and Hinders Learning: The Causal Role of Prior Knowledge

Emily R. Fyfe and Bethany Rittle-Johnson Vanderbilt University

Feedback can be a powerful learning tool, but its effects vary widely. Research has suggested that learners' prior knowledge may moderate the effects of feedback; however, no causal link has been established. In Experiment 1, we randomly assigned elementary schoolchildren (N = 108) to a condition based on a crossing of 2 factors: induced strategy knowledge (yes vs. no) and immediate, verification feedback (present vs. absent). Feedback had positive effects for children who were not taught a correct strategy, but negative effects for children with induced knowledge of a correct strategy. In Experiment 2, we induced strategy knowledge in all children (N = 101) and randomly assigned them to 1 of 3 conditions: no feedback, immediate correct-answer feedback, or summative correct-answer feedback. Again, feedback had negative effects relative to no feedback. Results provide evidence for a causal role of prior knowledge and indicate that minimal feedback can both help and hinder learning.

Keywords: feedback, problem solving, prior knowledge, mathematics learning

- Hinders or helps?
- High vs low achievers
- Immediate vs delayed
- Correct vs worked solution vs none
- Increased over time

- Exclusively generic feedback (correctness, worked solutions)
- Misconceptions literature not incorporated

- Exclusively generic feedback (correctness, worked solutions)
- Misconceptions literature not incorporated

$$\frac{1}{10} + \frac{2}{3} = \frac{3}{13}$$

(van Dooren et al., 2015)

$$(x+y)^2 = x^2 + y^2$$

(Kirshner & Awtry, 2004)

STACK feedback

- Potential Response Trees
 - Send student answers to CAS
 - Identify patterns of common errors
 - Provide personalised feedback

STACK feedback

Tidy question Question tests & deployed versions

Enter your answers as fractions in lowest terms, or as integers.

1. $\frac{1}{3} + \frac{1}{6} = \frac{2}{9}$

Your last answer was interpreted as follows: $\frac{2}{9}$

Incorrect answer.

It looks like you simply added the numerators and the denominators. To add fractions you need to find a common denominator and then add the numerators.

STACK feedback

Enter your answers as fractions in lowest terms, or as integers.

1. $\frac{1}{3} + \frac{1}{6} = \frac{2}{9}$

Your last answer was interpreted as follows: $\frac{2}{9}$

Incorrect answer.

It looks like you simply added the numerators and the denominators. To add fractions you need to find a common denominator and then add the numerators.

Potential Response Tree output

Tidy question Question tests & deployed versions

Potential Response Forest

- Sources of common student errors
 - Expert experience
 - Research literature
 - ... and responses to STACK questions?

Pilot study

- Online STACK test with randomisation
- Foundation module (N = 93)
- Simple differentiation questions ($N_Q = 30$)

Differentiation Rule Tested	Number of Questions	Mean Score %	SD %
Single Function	8	87.23	11.55
Sum Rule	3	91.40	10.23
Second Derivative	4	67.20	6.56
Product Rule	5	64.94	9.20
Quotient Rule	5	46.02	13.82
Chain Rule	5	67.96	11.21

Example question

Find the following derivative:

 $\frac{d}{dz}[\cos(z)\cdot\cos(2\cdot z)].$

Example question

Find the following derivative:

 $\frac{d}{dz}[\cos(z)\cdot\cos(2\cdot z)].$

$$\frac{d}{dz}(\cos(z)\cdot\cos(6\cdot z)) = -6\cdot\cos(z)\cdot\sin(6\cdot z) - \sin(z)\cdot\cos(6\cdot z)$$

 $\frac{d}{dz}(\cos(z)\cdot\cos(4\cdot z)) = -4\cdot\cos(z)\cdot\sin(4\cdot z) - \sin(z)\cdot\cos(4\cdot z)$

 $\frac{d}{dz}(\cos(z)\cdot\cos(2\cdot z)) = -2\cdot\cos(z)\cdot\sin(2\cdot z) - \sin(z)\cdot\cos(2\cdot z)$

 $\frac{d}{dz}(\cos(z)\cdot\cos(3\cdot z)) = -3\cdot\cos(z)\cdot\sin(3\cdot z) - \sin(z)\cdot\cos(3\cdot z)$

Example question

Find the following derivative:	
W	$(z) \cdot \cos(2 \cdot z)].$
Response 20	
ans1: -2*sin(2*z)*cos(z)-sin(z)*cos(2*z) [score]	
ans1: -6*sin(6*z)*cos(z)-sin(z)*cos(6*z) [score]	z) $\cdot \sin(6 \cdot z) - \sin(z) \cdot \cos(6 \cdot z)$
ans1: (-sin(z))*(cos(3*z)+3*cos(z)) [score]	
ans1: -sin(z)*cos(4*z)-4*cos(z)*sin(4*z) [score]	
ans1: -6*cos(z)*sin(6*z)-sin(z)*cos(6*z) [score]	$(z) \cdot \sin(4 \cdot z) - \sin(z) \cdot \cos(4 \cdot z)$
ans1: -2*cos*z*sin*2*z-(cos*2*z*sin*z) [score]	,,(,(.,(.,
ans1: -6*cos(z)*sin(6*z)-cos(6*z)*sin(z) [score]	
ans1: (-4*cos(z)*sin(4*z))-(sin(z)*cos(4*z)) [score]	
ans1: (-4*cos(z)*sin(4*z))-(sin(z)*cos(4*z)) [score]	$(z) \cdot \sin(2 \cdot z) - \sin(z) \cdot \cos(2 \cdot z)$
ans1: cos(z)*-6*sin(6*z)-sin(z)*cos(6*z) [score]	
ans1: -z*sin*(z)*-4*sin(4*z) [score]	
ans1: -6*sin(6*x)*cos(x) - sin(x)*cos(6*x) [score]	
ans1: -(sin(z)*cos(6*z)+6*cos(z)*sin(6*z)) [score]	z) $\cdot \sin(3 \cdot z) - \sin(z) \cdot \cos(3 \cdot z)$

Number	Question	Misconception	%
14	$\frac{d^2(a-nx)}{dx^2}$	$\frac{d^2f}{dx^2} = \frac{df}{dx}$	90.9
20	$\frac{d}{dx}(\cos(n)\cos(nz))$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	71.4
13	$\frac{\frac{d}{dx}(\cos(n)\cos(nz))}{\frac{d^2(e^{nx}-e^{-nx})}{dz^2}}$	$\frac{d^2f}{dx^2} = \frac{df}{dx}$	65.7
12	$\frac{d^2(\cos(nx))}{dx^2}$	$\frac{\frac{d^2f}{dx^2} = \frac{df}{dx}}{\frac{d^2f}{dx^2} = \frac{df}{dx}}$	63.3
15	$\frac{\frac{d^2(-nx+\frac{a}{x}+\frac{a}{x^3})}{dx^2}}{dx^2}$	$\frac{d^2f}{dx^2} = \frac{df}{dx}$	62.9
8	Differentiate $\ln(nx)$	$\frac{d}{dx}\ln(nx) \stackrel{ax}{=} \frac{1}{nx}$	44.4
18	Differentiate $x^{\frac{a}{b}}e^{-nx}$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x) (x+y)^2 = x^2 + y^2$	42.9
26	Differentiate $(nx+a)^2$		41.2
17	Differentiate $x^a \cos(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	39.4
30	Differentiate $\sin^n(x)$	$\frac{d}{dx}\sin^n(x) = n\sin^n(x)$ and $\frac{d}{dx}\sin^n(x) = \cos^n(x)$	37.8
28	Differentiate $\frac{a}{(nx+b)^c}$	$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	29
29	Differentiate $\sqrt{nx+a}$	$\sqrt{ab} = \sqrt{a} + \sqrt{b}$ and $(x+y)^a = x^a + y^a$	28.1
21	Differentiate $\frac{x}{a-x^2}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c} \text{ and } \frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	27
19	Differentiate $\sqrt{x} \ln(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	26.7
25	$\frac{d}{dx} \left[\frac{\ln(x)}{x^{\frac{a}{b}}}\right]$	$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	22
23	Differentiate $\frac{x \frac{a}{b} + c}{x \frac{a}{b} - x}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	20.6
27	Differentiate $(a - x^{\tilde{b}})^2$	$(x+y)^2 = x^2 + y^2$	20
22	Differentiate $\frac{x^2}{a-x}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	16.7
24	$\frac{d}{dx}\frac{(\sin(nx))}{nx}$	$\frac{\sin(nx)}{x} = \sin(n)$	15.6
16	Differentiate $x \sin(x)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	13.7
6	Differentiate $\sin(nx)$	$\frac{d}{dx}\sin(nx) = x\cos(nx)$	9.5
5	Differentiate $\frac{\sin(nx)}{a}$	$\frac{d}{dx}\sin(nx) = \cos(nx)$	6.1

Number	Question	Misconception	
14		lood putblichod	90.9
20	neproat	iced published	71.4
13	$\frac{d^2(e^{nx}-e^{-nx})}{1-2}$	$d^2 f \ _ \ df$	65.7
12	$\frac{\frac{d^2(\cos(nx))}{dx^2}}{d^2(-nx+\frac{a}{x}+\frac{a}{x^3})}$	indings $\frac{dx^2}{dx} = \frac{dx}{dx}$	63.3
15	$d^2(-nx + \frac{a}{x} + \frac{a}{x^3})$	$d^2 f \ df$	62.9
8	Differentiate $\ln(nx)$	$\frac{d}{dx} \frac{dx^2}{\ln(nx)} = \frac{1}{nx}$	44.4
18	Differentiate $m(nx)$ Differentiate $x^{\frac{a}{b}}e^{-nx}$	$\frac{dx}{dt} \frac{dx}{dt} dx$	42.9
26	Differentiate $(nx+a)^2$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x) (x+y)^2 = x^2 + y^2$	$\parallel 41.2 \mid$
17	Differentiate $x^a \cos(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	39.4
30	Differentiate $\sin^n(x)$	$\frac{d}{dx}\sin^n(x) = n\sin^n(x) \text{ and } \frac{d}{dx}\sin^n(x) = \cos^n(x)$	37.8
28	Differentiate $\frac{a}{(nx+b)^c}$		29
29	Differentiate $\sqrt{nx+a}$	$\sqrt{ab} = \sqrt{a} + \sqrt{b} \text{ and } (x+y)^a = x^a + y^a$	$\mid\mid 28.1\mid$
21	Differentiate $\frac{x}{a-r^2}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	27
19	Differentiate $\sqrt{x} \ln(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	26.7
25	$\frac{d}{dx} \left[\frac{\ln(x)}{x^{\frac{a}{b}}} \right]$	$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	22
23	Differentiate $\frac{x \frac{a}{b} + c}{x \frac{a}{b} - x}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	20.6
27	Differentiate $(a - x^b)^2$	$(x+y)^2 = x^2 + y^2$	20
22	Differentiate $\frac{x^2}{a-x}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	16.7
24	$rac{d}{dx}rac{(\sin(nx))}{nx}$	$\frac{\sin(nx)}{n} = \sin(n)$	15.6
16	Differentiate $x \sin(x)$	Kirshner & Awtry (2004)	13.7
6	Differentiate $sin(nx)$	$\frac{d}{dx}\sin(nx) = x\cos(nx)$	9.5
5	Differentiate $\frac{\sin(nx)}{a}$	$\frac{d}{dx}\sin(nx) = \cos(nx)$	6.1

Number	Question	Misconception	
14		lood nublichod	90.9
20	nepiouu	iced published	71.4
13	$\frac{d^2(e^{\pi x}-e^{-nx})}{4x^2}$	$d^2 f \ _ \ df$	65.7
12	$\frac{\frac{d^2(\cos(nx))}{dx^2}}{d^2(-nx+\frac{a}{x}+\frac{a}{x^3})}$	inding $\mathbf{S}_{x^2}^{\frac{dx^2}{f}} = \frac{dx}{dt}$	63.3
15	$\frac{d^2(-nx+\frac{a}{x}+\frac{a}{x^3})}{1-2}$	$\frac{d^2 f}{dt} = \frac{df}{dt}$	62.9
	Differentiate $\ln(nx)$	$\frac{d}{dx}\ln(nx) \stackrel{dx^2}{=} \frac{1}{nx}$	44.4
18	Differentiate $x^{\frac{a}{b}}e^{-nx}$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	42.9
26	Differentiate $(nx + a)^2$	$(x+y)^2 = x^2 + y^2$	41.2
17	Differentiate $x^a \cos(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	39.4
30	Differentiate $\sin^n(x)$	$\frac{d}{dx}\sin^n(x) = n\sin^n(x)$ and $\frac{d}{dx}\sin^n(x) = \cos^n(x)$	37.8
28	Differentiate $\frac{a}{(nx+b)^c}$		29
29	Differentiate $\sqrt{nx+a}$	$\sqrt{ab} = \sqrt{a} + \sqrt{b}$ and $(x + y)^a = x^a + y^a$	28.1
21	Differentiate $\frac{x}{a-x^2}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	27
19	Differentiate $\sqrt{x} \ln(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	26.7
25	$\frac{d}{dx} \left[\frac{\ln(x)}{x \frac{a}{b}} \right]$	$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	22
23	Differentiate $\frac{x^{\frac{a}{b}} + c}{x^{\frac{a}{b}} - x}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	20.6
27	Differentiate $(a - x^b)^2$	$(x+y)^2 = x^2 + y^2$	20
22	Differentiate $\frac{x^2}{a-x}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	16.7
24	$rac{d}{dx}rac{(\sin(nx))}{nx}$	$\frac{\sin(nx)}{n} = \sin(n)$	15.6
16	Differentiate $x \sin(x)$	Luneta & Makonye (2010)	13.7
6	Differentiate $\sin(nx)$	$\frac{d}{dx}\sin(nx) = x\cos(nx)$	9.5
5	Differentiate $\frac{\sin(nx)}{a}$	$\frac{d}{dx}\sin(nx) = \cos(nx)$	6.1

Number	Question	Misconception	%
14	$d^2(a-nx)$	ecide what PRTs	90.9
20			71.4
13			65.7
12		Ogram $\overset{a^{2}f}{\underset{a^{2}f}{\overset{a^{2}f}}{\overset{a^{2}f}{\overset{a^{2}f}}{\overset{a^{2}f}{\overset{a^{2}f}{\overset{a^{2}f}}{\overset{a^{2}f}}{\overset{a^{2}f}}}{\overset{a^{2}f}}{\overset{a^{2}f}{\overset{a^{2}f}}{\overset{a^{2}f}}{\overset{a^{2}f}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	63.3
15	$\frac{d^2(-nx+\frac{a}{x}+\frac{a}{x^3})}{1-2}$	$\frac{d^2f}{d^2} = \frac{df}{d}$	62.9
	Differentiate $\ln(nx)$	$\frac{d}{dx} \ln(nx) \stackrel{dx^2}{=} \frac{1}{nx}$	44.4
18	Differentiate $x^{\frac{a}{b}}e^{-nx}$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	42.9
26	Differentiate $(nx + a)^2$	$(x+y)^2 = x^2 + y^2$	41.2
17	Differentiate $x^a \cos(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	39.4
30	Differentiate $\sin^n(x)$	$\frac{d}{dx}\sin^n(x) = n\sin^n(x)$ and $\frac{d}{dx}\sin^n(x) = \cos^n(x)$	37.8
28	Differentiate $\frac{a}{(nx+b)^c}$	$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	29
29	Differentiate $\sqrt{nx+a}$	$\sqrt{ab} = \sqrt{a} + \sqrt{b}$ and $(x+y)^a = x^a + y^a$	28.1
21	Differentiate $\frac{x}{a-x^2}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	27
19	Differentiate $\sqrt{x} \ln(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	26.7
25	$\frac{d}{dx} \left[\frac{\ln(x)}{x \frac{a}{b}} \right]$	$rac{d}{dx}f(x)g(x) = f'(x)g'(x)$ $rac{d}{dx}rac{f(x)}{g(x)} = rac{f'(x)}{g'(x)}$	22
23	Differentiate $\frac{x}{a} \frac{b}{b} + c}{x^{\frac{a}{b}} - x}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	20.6
27	Differentiate $(a - x^b)^2$	$(x+y)^2 = x^2 + y^2$	20
22			16.7
$_2\mathbf{A}$	na which	not to bother	15.6
16	Differentiate $x \sin(x)$	$\frac{d}{dt}f(x)g(x) = f'(x)g'(x)$	13.7
6	Differentiate $\sin(n)$	$\frac{d}{dx}\sin(nx) = x\cos(nx)$	9.5
5	Differentiate $sin(a)$ Differentiate $sin(nx)$ Differentiate $\frac{sin(nx)}{a}$	$\frac{d}{dx}\sin(nx) = \cos(nx)$	6.1

Number	Question	Misconception	%
14	$M_{0} \stackrel{d^{2}(a-nx)}{000} + k$	oorioo dorroro to	90.9
20		neorise errors to	71.4
13	$\frac{d^2(e^{nx}-e^{-nx})}{dz^2}$	$\frac{d^2f}{dx^2} = \frac{df}{dt}$	65.7
12	decide h	ow to feedback.	63.3
15		$\frac{d^2f}{dx^2} = \frac{df}{dx}$	62.9
8	Differentiate $\ln(nx)$	$\frac{d}{dx}\ln(nx) = \frac{1}{nx}$	44.4
18	Differentiate $x^{\frac{a}{b}}e^{-nx}$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	42.9
26	Differentiate $(nx + a)^2$	$(x+y)^2 = x^2 + y^2$	41.2 $ $
17	Differentiate $x^a \cos(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	39.4
30	Differentiate $\sin^n(x)$	$\frac{d}{dx}\sin^n(x) = n\sin^n(x)$ and $\frac{d}{dx}\sin^n(x) = \cos^n(x)$	37.8
28	Differentiate $\frac{a}{(nx+b)^c}$	$rac{d}{dx}rac{f(x)}{g(x)} = rac{f'(x)}{g'(x)}$	29
29	Differentiate $\sqrt{nx+a}$	$\sqrt{ab} = \sqrt{a} + \sqrt{b}$ and $(x+y)^a = x^a + y^a$	28.1
21	Differentiate $\frac{x}{a-x^2}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	27
19	Differentiate $\sqrt{x} \ln(nx)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	26.7
25	$rac{d}{dx} [rac{\ln(x)}{x^{rac{a}{b}}}]$	$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	22
23	Differentiate $\frac{x \frac{a}{b} + c}{x \frac{a}{b} - x}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	20.6
27	Differentiate $(a - x^{b})^{2}$	$(x+y)^2 = x^2 + y^2$	20
22	Differentiate $\frac{x^2}{a-x}$	$\frac{a}{b+c} = \frac{a}{b} + \frac{a}{c}$ and $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)}{g'(x)}$	16.7
24	$rac{d}{dx}rac{(\sin(nx))}{nx}$	$\frac{\sin(nx)}{x} = \sin(n)$	15.6
16	Differentiate $x \sin(x)$	$\frac{d}{dx}f(x)g(x) = f'(x)g'(x)$	13.7
6	Differentiate $sin(nx)$	$\frac{d}{dx}\sin(nx) = x\cos(nx)$	9.5
5	Differentiate $\frac{\sin(nx)}{a}$	$\frac{d}{dx}\sin(nx) = \cos(nx)$	6.1

Implications

- We can analyse catalogues of STACK responses to identify common errors and their prevalence.
- We can theorise common errors (slips, rule ignorance, overgeneralisation, visual salience, natural number bias, and so on).
- We can write more and better PRTs.
- We can contribute to the literature on misconceptions and the literature on feedback.

Thank you!

Ian Jones Mathematics Education Centre Loughborough University

I.Jones@lboro.ac.uk

Thank you to Michael Bennett. This talk is based on his third year mathematics project.