Finding the Potential Response Trees in the Potential Response Forest

Ian Jones
Mathematics Education Centre, Loughborough University STACK Conference 2019, Edinburgh

Feedback literature

Feedback Both Helps and Hinders Learning: The Causal Role of Prior Knowledge

Emily R. Fyfe and Bethany Rittle-Johnson
Vanderbilt University

Feedback can be a powerful learning tool, but its effects vary widely. Research has suggested that learners' prior knowledge may moderate the effects of feedback; however, no causal link has been established. In Experiment 1, we randomly assigned elementary schoolchildren $(N=108)$ to a condition based on a crossing of 2 factors: induced strategy knowledge (yes vs. no) and immediate, verification feedback (present vs. absent). Feedback had positive effects for children who were not taught a correct strategy, but negative effects for children with induced knowledge of a correct strategy. In Experiment 2, we induced strategy knowledge in all children $(N=101)$ and randomly assigned them to 1 of 3 conditions: no feedback, immediate correct-answer feedback, or summative correct-answer feedback. Again, feedback had negative effects relative to no feedback. Results provide evidence for a causal role of prior knowledge and indicate that minimal feedback can both help and hinder learning.

Keywords: feedback, problem solving, prior knowledge, mathematics learning

Feedback literature

- Hinders or helps?
- High vs low achievers
- Immediate vs delayed
- Correct vs worked solution vs none
- Increased over time

Feedback literature

- Exclusively generic feedback (correctness, worked solutions)
- Misconceptions literature not incorporated

Feedback literature

- Exclusively generic feedback (correctness, worked solutions)
- Misconceptions literature not incorporated

$$
\begin{aligned}
& \frac{1}{10}+\frac{2}{3}=\frac{3}{13} \\
& (x+y)^{2}=x^{2}+y^{2} \\
& (\text { Kirshner \& Awtry, 2004) }
\end{aligned}
$$

STACK feedback

- Potential Response Trees
- Send student answers to CAS
- Identify patterns of common errors
- Provide personalised feedback

STACK feedback

Enter your answers as fractions in lowest terms, or as
Tidy question | Question tests \& deployed versions integers.

1. $\frac{1}{3}+\frac{1}{6}=2 / 9$

Your last answer was interpreted as follows: $\frac{2}{9}$
Incorrect answer.
It looks like you simply added the numerators and the denominators. To add fractions you need to find a common denominator and then add the numerators.

STACK feedback

Enter your answers as fractions in lowest terms, or as integers.

1. $\frac{1}{3}+\frac{1}{6}=2 / 9$

Your last answer was interpreted as follows: $\frac{2}{9}$
Incorrect answer.
It looks like you simply added the numerators and the denominators. To add fractions you need to find a common denominator and then add the numerators.

Potential
 Response Tree

 output
Potential Response Forest

- Sources of common student errors
- Expert experience
- Research literature
- ... and responses to STACK questions?

Pilot study

- Online STACK test with randomisation
- Foundation module ($N=93$)
- Simple differentiation questions $\left(N_{Q}=30\right)$

Differentiation Rule Tested	Number of Questions	Mean Score \%	SD \%
Single Function	8	87.23	11.55
Sum Rule	3	91.40	10.23
Second Derivative	4	67.20	6.56
Product Rule	5	64.94	9.20
Quotient Rule	5	46.02	13.82
Chain Rule	5	67.96	11.21

Example question

Find the following derivative:

$$
\frac{d}{d z}[\cos (z) \cdot \cos (2 \cdot z)]
$$

Example question

Find the following derivative:

$$
\begin{gathered}
\frac{d}{d z}[\cos (z) \cdot \cos (2 \cdot z)] . \\
\frac{d}{d z}(\cos (z) \cdot \cos (6 \cdot z))=-6 \cdot \cos (z) \cdot \sin (6 \cdot z)-\sin (z) \cdot \cos (6 \cdot z) \\
\frac{d}{d z}(\cos (z) \cdot \cos (4 \cdot z))=-4 \cdot \cos (z) \cdot \sin (4 \cdot z)-\sin (z) \cdot \cos (4 \cdot z) \\
\frac{d}{d z}(\cos (z) \cdot \cos (2 \cdot z))=-2 \cdot \cos (z) \cdot \sin (2 \cdot z)-\sin (z) \cdot \cos (2 \cdot z) \\
\frac{d}{d z}(\cos (z) \cdot \cos (3 \cdot z))=-3 \cdot \cos (z) \cdot \sin (3 \cdot z)-\sin (z) \cdot \cos (3 \cdot z)
\end{gathered}
$$

Example question

Find the following derivative:

W	(z) $\cdot \cos (2 \cdot z)]$.
Response 20). $\cdot \sin (6 \cdot z)-\sin (z) \cdot \cos (6 \cdot z)$
ans1: -2* $\sin \left(2^{*} \mathrm{z}\right)^{*} \cos (\mathrm{z})-\sin (\mathrm{z})^{*} \cos \left(2^{*} \mathrm{z}\right)$ [score]	
ans1: $-6^{*} \sin \left(6^{*} \mathrm{z}\right)^{*} \cos (\mathrm{z})-\sin (\mathrm{z})^{*} \cos \left(6^{*} \mathrm{z}\right)$ [score]	
ans1: $(-\sin (z))^{*}\left(\cos \left(3^{*} z\right)+3^{*} \cos (z)\right)$ [score]	
ans1: - $\sin (\mathrm{z})^{*} \cos \left(4^{*} \mathrm{z}\right)-4^{*} \cos (\mathrm{z})^{*} \sin \left(4^{*} \mathrm{z}\right)$ [score]) $\cdot \sin (4 \cdot z)-\sin (z) \cdot \cos (4 \cdot z)$
ans1: $-6^{*} \cos (\mathrm{z})^{*} \sin \left(6^{*} \mathrm{z}\right)$ - $\sin (\mathrm{z})^{*} \cos \left(6^{*} \mathrm{z}\right)$ [score]	
ans1: -2* $\cos ^{*} \mathrm{z}^{*} \sin ^{*} 2^{*} \mathrm{z}-\left(\cos ^{*} 2^{*} \mathrm{z}^{*} \sin ^{*} \mathrm{z}\right)$ [score]	
ans1: -6* $\cos (\mathrm{z})^{*} \sin \left(6^{*} \mathrm{z}\right)-\cos \left(6^{*} \mathrm{z}\right)^{*} \sin (\mathrm{z})$ [score]	
ans1: (-4* $\left.\cos (z)^{*} \sin \left(4^{*} \mathrm{z}\right)\right)-\left(\sin (\mathrm{z})^{*} \cos \left(4^{*} \mathrm{z}\right)\right)$ [score]) $\cdot \sin (2 \cdot z)-\sin (z) \cdot \cos (2 \cdot z)$
ans1: (-4* $\left.\cos (z)^{*} \sin \left(4^{*} \mathrm{z}\right)\right)$-(sin$\left.(\mathrm{z})^{*} \cos \left(4^{*} \mathrm{z}\right)\right)$ [score]	
ans1: $\cos (\mathrm{z})^{*}-6^{*} \sin \left(6^{*} \mathrm{z}\right)-\sin (\mathrm{z})^{*} \cos \left(6^{*} \mathrm{z}\right)$ [score]	
ans1: $-\mathrm{z}^{*} \sin ^{*}(\mathrm{z})^{*}-4^{*} \sin \left(4^{*} \mathrm{z}\right)$ [score]	
ans1: -6* $\sin \left(6^{*} x\right)^{*} \cos (x)-\sin (x)^{*} \cos \left(6^{*} x\right)$ [score]	
ans1: -(sin $(\mathrm{z}) * ⿻ \cos \left(6^{*} \mathrm{z}\right)+6^{*} \cos (\mathrm{z})^{*} \sin \left(6^{*} \mathrm{z}\right)$) [scorel) $\cdot \sin (3 \cdot z)-\sin (z) \cdot \cos (3 \cdot z)$

Number

$$
\begin{gathered}
\hline \text { Question } \\
\frac{d^{2}(a-n x)}{d x^{2}} \\
\frac{d}{d x}(\cos (n) \cos (n z)) \\
\frac{d^{2}\left(e^{n x}-e^{-n x}\right)}{d z^{2}} \\
\frac{d^{2}(\cos (n x))}{d x^{2}} \\
\frac{d^{2}\left(-n x+\frac{a}{x}+\frac{a}{x^{3}}\right)}{d x^{2}}
\end{gathered}
$$

Differentiate $\ln (n x)$ Differentiate $x^{\frac{a}{b}} e^{-n x}$
Differentiate $(n x+a)^{2}$
Differentiate $x^{a} \cos (n x)$
Differentiate $\sin ^{n}(x)$
Differentiate $\frac{a}{(n x+b)^{c}}$
Differentiate $\sqrt{n x+a}$
Differentiate $\frac{x}{a-x^{2}}$
Differentiate $\sqrt{x} \ln (n x)$

$$
\frac{d}{d x}\left[\frac{\ln (x)}{x^{\frac{a}{b}}}\right]
$$

Differentiate $\frac{x^{\frac{a}{b}}+c}{x^{\frac{a}{b}}-x}$
Differentiate $\left(a-x^{b}\right)^{2}$
Differentiate $\frac{x^{2}}{a-x}$

$$
\frac{d}{d x} \frac{(\sin (n x))}{n x}
$$

Differentiate $x \sin (x)$
Differentiate $\sin (n x)$
Differentiate $\frac{\sin (n x)}{a}$
$\%$
39.4

$$
\frac{d}{d x} \sin ^{n}(x)=n \sin ^{n}(x) \text { and } \frac{d}{d x} \sin ^{n}(x)=\cos ^{n}(x) \| 37.8
$$

$$
\begin{equation*}
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x)}{g^{\prime}(x)} \tag{29}
\end{equation*}
$$

$$
\sqrt{a b}=\sqrt{a}+\sqrt{b} \text { and }(x+y)^{a}=x^{a}+y^{a}
$$

$$
\frac{a}{b+c}=\frac{a}{b}+\frac{a}{c} \text { and } \frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

$$
\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g^{\prime}(x)^{\prime}
$$

$$
\begin{equation*}
\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x)}{g^{\prime}(x)} \tag{22}
\end{equation*}
$$

$$
\frac{a}{b+c}=\frac{a}{b}+\frac{a}{c} \text { and } \frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

$$
\begin{equation*}
(x+y)^{2}=x^{2}+y^{2} \tag{20}
\end{equation*}
$$

$$
\frac{a}{b+c}=\frac{a}{b}+\frac{a}{c} \text { and } \frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

$$
\frac{\sin (n x)}{x}=\sin (n)
$$

$$
\frac{d}{d x} f(x) g(x)=f^{\prime}(x) g^{\prime}(x)
$$

$$
\frac{d}{d x} \sin (n x)=x \cos (n x)
$$

$$
\frac{d}{d x} \sin (n x)=\cos (n x)
$$

Reproduced published findings

$$
(x+y)^{2}=x^{2}+y^{2}
$$

$$
\sqrt{a b}=\sqrt{a}+\sqrt{b} \text { and }(x+y)^{a}=x^{a}+y^{a}
$$

$$
(x+y)^{2}=x^{2}+y^{2}
$$

Reproduced published findings

We can decide what PRTs to programme...

And which not to bother with...

We can theorise errors to decide how to feedback.

Implications

- We can analyse catalogues of STACK responses to identify common errors and their prevalence.
- We can theorise common errors (slips, rule ignorance, overgeneralisation, visual salience, natural number bias, and so on).
- We can write more and better PRTs.
- We can contribute to the literature on misconceptions and the literature on feedback.

Thank you!

Ian Jones
 Mathematics Education Centre
 Loughborough University
 I.Jones@lboro.ac.uk

Thank you to Michael Bennett.
This talk is based on his third year mathematics project.

