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Abstract

Symmetrisable matrices are those that are a real diagonal change of basis away from

being symmetric. Restricting to matrices that have integer entries (symmetrisable in-

teger matrices — SIMs) we enter the worlds of combinatorics and number theory. It

is known that quotients of equitable partitions of graphs provide examples of SIMs

(with all entries nonnegative). We note a converse result, that every SIM comes from a

quotient of an equitable partition of a signed graph (in the nonnegative case, a graph).

There is a beautiful well-known combinatorial description of SIMs, which leads to a

necessary combinatorial/number-theoretic property of their symmetrisations. We show

that this property in fact classifies the matrices that are symmetrisations of SIMs. We

then turn to the trace problem for totally positive algebraic integers. The analogous

problem for eigenvalues of positive definite integer symmetric matrices (ISMs) was

recently solved. We extend this to SIMs, showing that if A is a connected positive def-

inite n× n SIM, then tr(A) ≥ 2n− 1, and that if equality holds then A must in fact be

symmetric. We explore the structure of minimal-trace examples, in both the symmetric

and asymmetric cases.
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1. Introduction

The theory of symmetrisable matrices was developed largely in the context of Lie

theory: generalised Cartan matrices are important special cases of symmetrisable ma-

trices. There is a beautiful combinatorial classification of these matrices as those that

are sign symmetric and satisfy a certain cycle condition (Proposition 11, [3, Corollary

15.15]).

We shall explore connections with equitable partitions of signed graphs. It will

transpire that symmetrisable integer matrices (SIMs) are precisely those that occur as

quotient matrices for these equitable partitions. It is known that equitable partitions of

graphs provide examples of symmetrisable matrices (for example, this is implicit in [4,

Lemma 9.3.1] along with the preceding discussion), but the converse (even for graphs)

does not appear to have been noted before.

The Schur-Siegel-Smyth trace problem [2, Open Problem 17] concerning the ab-

solute traces of totally positive algebraic integers remains open. See also the survey

paper [1] of Aguirre and Peral. The analogous problem for characteristic polynomi-

als of positive definite integer symmetric matrices was recently settled [5]. Moving

to symmetrisable matrices there are many more possible characteristic polynomials,

but here we shall establish the same trace bound as for the symmetric case. More-

over we shall see that this bound can only be attained by symmetric matrices, so that

for symmetrisable but asymmetric matrices a stronger bound holds. We shall describe

a structure theory for minimal-trace examples in both the symmetric and asymmetric

cases.

2. Statement of main results

We start with the definition of a symmetrisable matrix. In fact there are at least two

other equivalent definitions in the literature, but the one we give here seems the most

natural.

Definition 1. An n× n real matrix B is said to be symmetrisable if there is a real
diagonal matrix D = diag(d1, . . . ,dn) with each di > 0 such that

S = D−1BD (1)
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is symmetric. We call S the symmetrisation of B.
If the entries of a symmetrisable matrix B are integers, then we call B a SIM (sym-

metrisable integer matrix).

Our next definition describes a property of a matrix which combines combinatorics

and number theory.

Definition 2. Let S = (si j) be real symmetric n×n matrix. We say that S satisfies the
rational cycle condition if for every t ≥ 2 and every sequence i1, . . . , it of elements of
{1, . . . ,n} there holds

si1i2si2i3 · · ·sit−1it sit i1 ∈Q . (2)

We also define

√
N0 = {a ∈ R | a2 ∈ N0}= {0, 1, −1,

√
2, −
√

2,
√

3, −
√

3, . . .} . (3)

With these definitions, we can now state our first preliminary result.

Proposition 1. Let S = (si j) be a symmetric matrix with entries in
√
N0 that satisfies

the rational cycle condition. Then there exists some SIM B such that S is the symmetri-
sation of B.

We shall define below (Definition 6) what it means to say that a matrix is the quo-

tient matrix of an equitable partition of a signed graph. Then we shall establish the

following characterisation of SIMs.

Theorem 2. A matrix is a SIM if and only if it is the quotient matrix of an equitable
partition of a signed graph.

A matrix with all entries non-negative is a SIM if and only if it is the quotient matrix
of an equitable partition of a graph.

In the final part of the paper, we turn to the SIM analogue of the trace problem. We

start by proving the following general trace bound.

Theorem 3. Let A be an n×n positive definite connected SIM. Then trA ≥ 2n−1. If
moreover A is asymmetric, then trA≥ 2n.

There is an immediate consequence regarding possible minimal polynomials of

SIMs.

Corollary 4. Let m be a monic irreducible polynomial with integer coefficients, degree
n, and with all roots real and strictly positive. If the trace of m is strictly less than
2n−1, then m is not the minimal polynomial of a SIM.
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We can also settle the analogue of the trace problem for SIMs.

Definition 3. The absolute trace of an n×n matrix A, is defined to be tr(A)/n, where
tr(A) is the usual trace (the sum of the diagonal entries).

Corollary 5. Let X be the set of absolute traces of connected positive definite SIMs,
and let Y be the set of absolute traces of connected positive definite real symmetric
matrices that have entries in

√
N0 and satisfy the rational cycle condition (2). Then

X = Y , and the smallest limit point of X is 2.

3. Definitions and elementary remarks

The final section of the paper develops a structure theory for minimal-trace SIMs,

and for this endeavour it will be convenient to work up to a suitable notion of equiva-

lence. In this section we define the relevant concept of equivalence for matrices gen-

erally and show that any matrix that is equivalent to a SIM is itself a SIM (Lemma 8).

The results in this section are elementary, and are surely essentially known, but as we

could find no explicit reference we give all the proofs.

A symmetrisable matrix (Definition 1) can be transformed to a symmetric matrix by

a diagonal change of basis. In particular, all the eigenvalues of a symmetrisable matrix

are real, since they equal those of the symmetrisation. Note that if B is symmetrisable

then the corresponding D is certainly not uniquely determined, as we may scale all the

entries by any positive real number, but any such scaling preserves D−1BD.

It feels artificial to require that all the diagonal entries of D in (1) are positive, but

we lose no generality in doing so. If D−1BD = S is symmetric, where now D is an

arbitrary invertible diagonal real matrix, then define the diagonal matrix E that has as

its diagonal entries the signs of those of D:

E = diag
(
sgn(d1), . . . ,sgn(dn)

)
.

Then DE has all diagonal entries strictly positive, E−1 = E, and the matrix

(DE)−1B(DE) = ESE

is symmetric. One convenience of restricting to positive diagonal entries as a canonical

choice is that this makes the symmetrisation matrix unique.

Lemma 6. If B = (bi j) is symmetrisable then then it has a unique symmetrisation.
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Proof. Let S = D−1BD = (si j) be any symmetrisation of B, with

D = diag(d1, . . . ,dn)

and each di > 0. We have
si j = d−1

i bi jd j . (4)

One immediate consequence of (4) is that the signs of the entries of B and S agree:

sgn(si j) = sgn(bi j) for all i and j . (5)

Using (4) and the symmetry of S we have

s2
i j = si js ji = d−1

i bi jd jd−1
j b jidi = bi jb ji . (6)

Hence |si j| is determined by B. Together with (5) this shows that S is uniquely deter-
mined by B.

Lemma 7. If B is symmetrisable, then so is BT, and the symmetrisations of B and BT

are the same.

Proof. If B is symmetrisable, then there is diagonal D with positive diagonal entries
such that S = D−1BD is symmetric. Transposing we see that

S = DTBT(DT)−1

so that BT is indeed symmetrisable, and with the same symmetrisation.

When the symmetrisable matrix B has integer entries (i.e., B is a SIM) we shall see

below in Lemma 9 that the diagonal entries of D in (1) can be chosen to be square-roots

of positive integers.

Definition 4. We shall say that two n×n matrices A and B are equivalent if A can be
transformed to ±B by conjugating by an element of On(Z).

Note that On(Z) is the set of signed permutation matrices, namely those matrices

P for which row and each column contain precisely one nonzero entry, and that each

nonzero entry is either 1 or −1.

Lemma 8. If an integer matrix B is symmetrisable, then so is any matrix equivalent to
B.

Proof. Suppose that D−1BD = S, where D is diagonal with positive diagonal entries,
and let P be any signed permutation matrix of the same size. Then we compute that
P−1DP = PTDP is also diagonal with positive diagonal entries. Since

(P−1D−1P)(P−1BP)(P−1DP) = PTSP

is symmetric, we see that P−1BP is symmetrisable. Moreover D−1(−B)D = −S is
symmetric, so that the negative of a symmetrisable matrix is symmetrisable. Hence
any matrix equivalent to B is symmetrisable.
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We shall have occasion to represent SIMs as digraphs, and to apply the language

of graph theory to properties of matrices. To any square matrix A = (ai j) with entries

in R, we associate a digraph, also called A. (We shall refer to A interchangeably as a

digraph and as a matrix, sometimes within the same sentence.) To the ith row of the

matrix A we associate a vertex i of the digraph. The diagonal entry aii represents a

charge on the vertex i. The only charges of interest to us will be integral ones, and

the only ones we shall need to draw are 0, 1 and −1, which we draw as , + and −

respectively. The directed edge weights ai j (from i to j) are arbitrary real numbers. We

represent the pairs of directed edges (ai j,a ji) by drawing a single labelled edge (or no

edge) as shown (here picturing all the vertices with zero charge).

i j

ai j = 0
a ji = 0

i j

ai j = 1
a ji = 1

a
ij

a
ji

i j

general
case

In the general case, the value ai j is written on the left of the edge as we travel from i to

j (and a ji is on the left as we travel from j to i).

Given a digraph A, the matrix A is determined only once the vertices have been

given an ordering, but we regard all possible such matrices as equivalent (Definition

4).

4. The structure of symmetrisable matrices

Both our characterisation of SIMs as quotients of equitable partitions of signed

graphs (Section 6) and our work on the trace problem (Section 7) require some detail

of the structure of symmetrisable matrices. In this section we recall the classical char-

acterisation Proposition 11, giving the detail which will be needed later. In particular

we highlight a balancing condition (9) that is equivalent to symmetrisability (Lemma

10).

Definition 5. A real n×n matrix B = (bi j) is called sign symmetric if

sgn(bi j) = sgn(b ji) (7)

holds for all i, j ∈ {1, . . . ,n}.
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Let B be a symmetrisable matrix, with symmetrisation S. One immediate conse-

quence of (5), together with symmetry of S, is that any symmetrisable matrix is sign

symmetric.

Lemma 9. If B is an n×n SIM, then we can choose D = diag(d1, . . . ,dn) in (1) to have
all entries being positive square-roots of integers (i.e., di ∈ {1,

√
2,
√

3, . . .} for each
i).

Proof. Writing B = (bi j), D = diag(d1, . . . ,dn) and S = (si j), we get from symmetry of
S and (11) that

d2
j = (b ji/bi j)d2

i when bi j 6= 0 . (8)

Thus for all indices i, k in the same connected component of B, we see by considering a
chain of such identities that d2

i /d2
k is rational. Thus on fixing some i in this component,

for an appropriate positive integer N we can scale by N/di all the dk in this component
to make the d2

k all integers. The relation S =D−1BD is preserved by this scaling. Doing
this for all connected components of B makes D a diagonal matrix with all its diagonal
entries being (positive) square-roots of integers.

From (8) we get the condition

bi jd2
j = b jid2

i , (1≤ i≤ n, 1≤ j ≤ n) . (9)

Lemma 10. An n×n matrix B = (bi j) is symmetrisable if and only if there exist d1 > 0,
. . . , dn > 0 such that (9) holds.

Proof. We have seen that if B is symmetrisable then (9) holds for some d1 > 0, . . . ,
dn > 0. Conversely, suppose that there exist d1 > 0, . . . , dn > 0 such that (9) holds, and
let D = diag(d1, . . . ,dn). Then S = D−1BD = (si j) is symmetric (for si j = d−1

i bi jd j,
and then (9) gives si j = s ji), and hence B is symmetrisable.

Suppose that B is an n×n symmetrisable matrix. Take any i1, i2, . . . , it ∈ {1, . . . ,n}.

Multiplying (9) for (i, j) = (i1, i2), (i2, i3), . . . , (it−1, it), (it , i1), then dividing by the

(nonzero) product of all the d2
i j

we get

bi1i2bi2i3 · · ·bit−1it bit i1 = bi2i1 bi3i2 · · ·bit it−1bi1it (10)

for all sequences i1, i2, . . . , it of elements of {1, . . . ,n}.

An n×n real matrix B = (bi j) is said to satisfy the cycle condition if (10) holds for

all sequences i1, i2, . . . , it of elements of {1, . . . ,n}.

Thus any symmetrisable matrix is sign symmetric and satisfies the cycle condition.

In fact that these two conditions together are sufficient for a matrix to be symmetrisable.
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Proposition 11 (Essentially [3, Corollary 15.15]). An n×n real matrix B is symmetris-
able if and only if it is sign symmetric and satisfies the cycle condition.

Proof. We have seen that any symmetrisable matrix is sign symmetric and satisfies the
cycle condition.

Now suppose that B = (bi j) satisfies both these conditions. For simplicity suppose
that B is connected (else treat each component separately). Set d1 = 1. For each neigh-
bour i of vertex 1, sign symmetry gives both b1i and bi1 non-zero, so that we can define
di = d1

√
b1i/bi1 =

√
b1i/bi1. Then the balancing condition (9) holds when j = 1 (if

any b1 j in (9) is zero, then both sides are zero). Next for neighbours k of neighbours
i of 1, define dk by dk = di

√
bik/bki. By the cycle condition, any vertex k for which

dk has been defined more than once will have received the same value each time. The
balancing condition now holds for j = 1 and for j any neighbour of 1. And so on, we
grow our labelling to all the vertices (consistently, thanks to (10)), and produce positive
numbers di such that (9) holds, and hence B is symmetrisable by Lemma 10.

5. The symmetrisation map

We have seen that if B is symmetrisable, then its symmetrisation S is uniquely

determined. We saw in the proof of Lemma 6 that the entries in S can be computed

without knowledge of D.

Lemma 12. For B an n× n real matrix that is sign symmetric, define the real n× n
matrix ϕ(B) by

ϕ
(
(bi j)

)
=
(
sgn(bi j)

√
bi jb ji

)
. (11)

Then ϕ(B) is symmetric. If in addition B is symmetrisable, then ϕ(B) is its symmetri-
sation.

Proof. It is clear that ϕ(B) is symmetric. The rest follows from the proof of Lemma
6.

When applied to symmetrisable matrices, we call the map ϕ in Lemma 12 the

symmetrisation map. Generally we have a fixed n in mind, but we may view ϕ as

being defined on the set of all sign symmetric matrices of any size – even on matrices

that are not symmetrisable (because they do not satisfy the cycle condition).

Lemma 13. If B is a SIM, then its symmetrisation has all entries in
√
N0 (defined in

(3)).

Proof. Clear from (11).

The cycle condition for SIMs implies a corresponding cycle condition for their

symmetrisations, namely the rational cycle condition (2).
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Lemma 14. If B is a symmetrisable integer matrix, then ϕ(B) satisfies the rational
cycle condition.

Proof. Let S = (si j) = ϕ(B), where B = (bi j) is an n×n symmetrisable integer matrix.
Take any t ≥ 2 and any i1, . . . , it ∈ {1, . . . ,n}. From (11) we have

si1i2si2i3 · · ·sit−1it sit i1 =±
√

bi1i2bi2i1 · · ·bit i1bi1it .

By (10) this is rational, indeed in Z, given that the bi j are all in Z.

Lemma 15. If C = (ci j) is any matrix satisfying the rational cycle condition (2), then
its diagonal entries are all rational.

Proof. Taking t = 2 and i1 = i2 = i in the rational cycle condition gives c2
ii ∈Q. Taking

t = 3 and i1 = i2 = i3 = i gives c3
ii ∈Q. Hence cii ∈Q.

It is easily possible that a matrix B fails the cycle condition whilst ϕ(B) = S satisfies

the rational cycle condition. For example, consider

B1 =


0 1 −2

3 0 1

−3 2 0

 .

The matrix B1 is sign symmetric, and even has all eigenvalues real, but it fails the cycle

condition and is not symmetrisable. Yet ϕ(B1) satisfies the rational cycle condition.

Proposition 1 is rather more positive: it shows that if a symmetric matrix S with entries

in
√
N0 satisfies the rational cycle condition then there is at least one SIM B such that

ϕ(B) = S. For example, the symmetrisable matrix

B2 =


0 1 −2

3 0 2

−3 1 0


has the same image under ϕ as the nonsymmetrisable B1 above.

We now prove Proposition 1, which shows that the symmetrisation map from the

set of all SIMs to the set of symmetric matrices with entries in
√
N0 and satisfying the

rational cycle condition is surjective.

Proof of Proposition 1. We are given that S is symmetric, and may suppose that S is
connected. If not, then tackle each component in turn and glue things together. By
Lemma 15 the diagonal entries of S lie in Q∩

√
N0 = N0. For each i and j, define
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positive integers di j and non-negative integers ei j by s2
i j = di je2

i j, with di j square-free
(if si j = 0, then di j = 1 and ei j = 0). Define

A0 =
(
sgn(si j)ei j

)
.

Since S is symmetric, so is A0. Note that the diagonal entries of A0 agree with those of
S (see Lemma 15).

Choose a spanning tree T for the underlying graph G of S (or of A0: the underlying
graphs are the same), and choose some vertex v as the root.

For each prime p, define a colouring (depending on p) of the vertices of G as
follows. Colour the root vertex v red. For each other vertex of G, there is a unique path
in T to the root; if an odd number of edges (i, j) on this path have p | di j, then colour
the vertex blue; if an even number, then red. Then for nonzero di j, we have that p | di j if
and only if the vertices i and j have different colours. This is clear if the edge between
i and j is in the tree T . If not, consider the closed walk in G defined as follows: start at
i, use the edge from i to j, then follow the unique path in T to v, then follow the unique
path in T to i. By the rational cycle condition, this closed walk uses an even number
of edges xy with p dividing dxy. If p | di j, then the edge from i to j is one of this even
number, and there must be an odd number in the rest of the closed walk; but that part
of the closed walk is in T , and hence i and j must have opposite colours. If p - di j, then
there is an even number of edges xy in the rest of the closed walk for which p | dxy, and
since all these edges are in T we deduce that i and j have the same colour.

Now for each (i, j) with p | di j do the following:

• if vertex i is red and vertex j is blue, multiply (A0)i j by p;

• if vertex i is blue and vertex j is red, multiply (A0) ji by p.

Repeat this for each prime p dividing any of the di j, and let A = (ai j) be the final
matrix produced from A0 having done all the required multiplications of elements.

If i1, i2, . . . , it , i1 is any closed walk in G, then for each prime p the number of
changes from red to blue (using the colouring for p) must equal the number of changes
from blue to red (since the walk is closed). Hence each side of (10) is divisible by the
same power of p. Since this holds for all p, the matrix A satisfies the cycle condition
(and sign symmetry is trivial from the initial construction of A0), and A is in M1.

Note that the colouring of the vertices in this construction (given A0 and p) is in-

dependent of the spanning tree chosen, and of the root, except that the colours red and

blue might be swapped. There could easily be elements in the fibre of ϕ over S that

cannot be generated by the above procedure, but in any event this fibre is finite. For we

must have bi jb ji = s2
i j, giving a finite number of possibilities for each bi j. The force of

the Lemma is that provided S satisfies the rational cycle condition, there is at least one

choice of these bi j that makes B symmetrisable.
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6. Equitable partitions of signed graphs

Our goal in the section is to prove Theorem 2.

Let G be a signed graph (edges may have weight +1 or −1), with vertex set V =

{1, . . . ,n}. Thus its adjacency matrix A has all entries in {−1,0,1}. A partition of V

is simply a partitioning of the vertex set as a disjoint union of nonempty subsets: V =

V1∪·· ·∪Vr, where Vi∩Vj =∅ if i 6= j and Vi 6=∅ for any i. An arbitrary partition may

not be very informative. By contrast, an equitable partition reflects a strong symmetry

within the signed graph.

Definition 6. A partition V = V1 ∪ ·· · ∪Vr is equitable if there are constants bi j (i,
j ∈ {1, . . . ,r}) such that for any i and j in {1, . . . ,r} (perhaps i = j), and any vertex
x ∈ Vi, the sum of the weights of the edges from x to vertices in Vj is bi j. (If G is a
graph (only positive edges) then bi j is simply the number of neighbours that x ∈Vi has
in Vj.)

The matrix B = (bi j) is called the quotient matrix of the equitable partition. We
briefly describe any such matrix as ‘a quotient matrix’.

In this section we show that quotient matrices are precisely symmetrisable inte-

ger matrices (Theorem 2). It is easy to see that quotient matrices are symmetrisable

(Lemma 16; this is certainly known for graphs, and the extension to signed graphs is

trivial). However, the reverse implication that every symmetrisable integer matrix is in

fact a quotient (Lemma 17) requires a little more work (and does not even appear to

have been known for graphs).

If the vertices are ordered to reflect an equitable partition of G, then the adjacency

matrix A of G has block form

A =


A11 A12 · · · A1r

A21 A22 · · · A2r
...

...
. . .

...

Ar1 Ar2 · · · Arr

 (12)

where each submatrix Ai j has constant row sum bi j.

Since A is symmetric, we have A ji = AT
i j, and Aii is always square. If |Vi|= ci, then

Ai j is a ci× c j matrix. Since Ai j = AT
ji, each Ai j also has constant column sum, namely

b ji.
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While A is symmetric, has zeros on the diagonal, and has all off-diagonal entries

in the set {−1,0,1}, none of these properties need hold for the quotient matrix (bi j).

Certainly the bi j are all integers, but the matrix need not be symmetric, and there are

no general bounds on any of the entries.

Recall that if B is a quotient matrix for an equitable partition of a signed graph G

with adjacency matrix A then (after permuting rows/columns so that the order of the

vertices reflects the partition) A has block structure as in (12) with Ai j having constant

row sum bi j. If Vi contains ci vertices, then the sum of all the entries in Ai j = AT
ji can

be computed either as cibi j or as c jb ji:

cibi j = c jb ji . (13)

Comparing with (9) setting di = 1/
√

ci, and using Lemma 10, we see that if B is a

quotient matrix then it is symmetrisable. We record this as a Lemma.

Lemma 16. Let B be the quotient matrix of an equitable partition of a signed graph.
Then B is symmetrisable.

Since quotient matrices are symmetrisable, they must satisfy the sign symmetry

condition (7) and the cycle condition (10). We now show that the existence of ci such

that (13) holds is sufficient to imply that B is a quotient matrix.

Lemma 17. Let B = (bi j) be an r× r integer matrix. If there are positive integers
c1, . . . , cr such that (13) holds for all 1 ≤ i, j ≤ r, then B is the quotient matrix of an
equitable partition of a signed graph. If in addition the entries of B are all nonnegative,
then B is the quotient matrix of an equitable partition of a graph.

Proof. Suppose that we have B= (bi j) and c1, . . . , cr as in the hypothesis of the lemma.
Define

M =
r

∏
i=1

(1+ |bii|) ∏
1≤i, j≤r, i6= j

max(1, |bi j|) . (14)

For 1 ≤ i ≤ r, put c′i = Mci. We shall define a signed graph G on n = c′1 + · · ·+
c′r vertices which has an equitable partition for which B is the quotient matrix. The
construction will be such that if all the bi j are nonnegative then the signed graph is
actually a graph.

Take disjoint sets V1, . . . , Vr with |Vi| = c′i. The elements of these will be the
vertices of G, and we shall now describe how to allocate signed edges so as to achieve
our desired equitable partition.

For each i, split Vi (arbitrarily) into subsets of size 1+ |bii| (note from (14) that
1+ |bii| divides c′i). Within each subset, put signed edges between every pair of vertices
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in the subset, all with the same sign sgn(bii). These will be the only edges between
vertices in the same Vi, so the sum of the weights of the edges between any one vertex
in Vi and all other vertices in Vi is the constant bii.

For each i < j for which bi j 6= 0, split Vi into subsets Ui1, . . . , Uik of size |b ji|. We
have k = c′i/|b ji| = Mci/|b ji| = Mc j/|bi j| = c′j/|bi j|, using (13) (which implies that
b ji 6= 0 too; and note from (14) that k is a positive integer). Hence with the same k we
can split Vj into subsets Wj1, . . . , Wjk of size |bi j|. For each 1 ≤ l ≤ k, we put signed
edges, all of sign sgn(bi j), between every vertex in Uil and every vertex in Wjl . Hence
the sum of the weights of the edges between any vertex in Vi and all vertices in Vj is
the constant bi j, and the sum of the weights of the edges between any vertex in Vj and
all vertices in Vi is the constant b ji.

We have therefore constructed a signed graph G that admits an equitable partition
of its vertices as V1 ∪ ·· · ∪Vr such that the quotient matrix is B, and if all entries of B
are nonnegative then the construction produces a graph.

Combining this with Lemma 16 gives Theorem 2: SIMs and quotients of signed

graphs are precisely the same objects.

7. The trace problem for symmetrisable matrices

A SIM is called positive definite if all its eigenvalues are real and strictly positive.

Naturally we speak of a SIM, or a real symmetric matrix, as being connected if the

associated digraph is connected. For a digraph associated to a real symmetric matrix,

the properties of being connected or strongly connected coincide. By sign symmetry,

the same is true for the digraphs associated to SIMs.

SIMs admit more possibilities for their characteristic polynomials than do integer

symmetric matrices. For example, x2− d is the characteristic polynomial of a SIM

for any integer d ≥ 0, whereas x2− d is the characteristic polynomial of an integer

symmetric matrix if and only if d can be written as a sum of two squares of integers.

In [5] it was shown that if A is a positive definite connected integer n×n symmetric

matrix, then its trace is at least 2n− 1. We revisit this question in the context of the

larger class of characteristic polynomials of SIMs: perhaps we can manage to make

the trace smaller. It turns out that we cannot. Moreover if the trace of an n×n positive

definite connected SIM is 2n− 1, then in fact the matrix must be symmetric. In the

asymmetric case, the lower bound on the trace can be improved to 2n.
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Given n, we define a chain of sets of n×n integer matrices

M0 ⊇M1 ⊇M2 ⊇M+
2

by imposing increasingly stringent conditions on the matrices.

• The set M0 comprises those n×n integer matrices A = (ai j) that satisfy the sign

symmetry condition (7).

• M1 is the set of n× n SIMs: those matrices in M0 that additionally satisfy the

cycle condition (10).

• We define M2 to be the subset of M1 comprising those SIMs that are connected.

• Let M+
2 be the subset of M2 comprising the positive definite matrices in M2.

Thus M0 is the set of n×n integer matrices for which the symmetrisation map ϕ is

defined. The set M1 has been our primary object of study until now, but in this section

we switch our focus to M+
2 .

Note that membership of M0, M1, or M2 is completely independent of the values

of the diagonal entries: these can be varied freely without affecting whether or not the

matrix is in any given Mi. In particular we can add any multiple of the identity matrix

without affecting whether or not a matrix is connected, or satisfies either or both of

(7) and (10). On the other hand, the diagonal entries certainly affect whether or not a

matrix is in M+
2 .

We now define a parallel chain

Q0 ⊇ Q1 ⊇ Q2 ⊇ Q+
2

of sets of n×n matrices whose entries come from the larger set
√
N0. All the matrices

in Q0, . . . , Q+
2 will be symmetric.

• The set Q0 comprises symmetric n×n matrices with elements from
√
N0 whose

diagonal entries are in Z.

• Q1 is the set of those B = (bi j) in Q0 that satisfy the rational cycle condition (2).

14



• The set Q2 comprises those elements of Q1 that are connected.

• Q+
2 is the set of those elements of Q2 that are positive definite.

One easily sees that ϕ : M0→Q0 is surjective, and Proposition 1 says that ϕ : M1→

Q1 is surjective. Since ϕ preserves connectedness and eigenvalues, ϕ : M2→ Q2 and

ϕ : M+
2 → Q+

2 are also surjective.

Our first result in this section is stronger than the statement that any element of Q+
2

has trace at least 2n− 1, as the hypothesis involves a weakened form of the rational

cycle condition.

Proposition 18. Let B = (bi j) be a connected symmetric n× n matrix with entries
in
√
N0. Suppose also that B is positive definite, and satisfies the rational triangle

condition (a special case of the rational cycle condition):

∀i1, i2, i3 ∈ {1, . . . ,n}, bi1i2bi2i3bi3i1 ∈Q . (15)

Then tr(B)≥ 2n−1.

In particular, this Proposition applies to all matrices in Q+
2 . Note that by Lemma

15, the condition (15) implies that each diagonal entry is in Z.

Using the symmetrisation map ϕ that sends each Mi to the corresponding Qi, we

shall deduce Theorem 3.

To help with the proof of Proposition 18, we shall use the following lemma.

Lemma 19. Suppose that B = (bi j) is a connected symmetric positive definite n× n
matrix with entries in

√
N0 that satisfies the rational triangle condition (15). Let e1,

. . . , en be a basis for Rn, and let 〈·, ·〉 be the positive definite symmetric bilinear form
defined via 〈ei,e j〉= bi j. Define

e′2 = e2−b12e1 ,

and let B′ be the matrix of 〈·, ·〉 with respect to the basis e1, e′2, e3, . . . , en. Then:

• B′ is positive definite;

• B′ has all entries in
√
N0 ;

• B′ satisfies the rational triangle condition.

Before commencing the proof, we define the core of a positive integer n, written

core(n) as follows. Write n = rs2 with r square-free. Then core(n) = r.
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Proof. The form is positive definite, so B′ is positive definite.
The only entries of B′ that are not simply copied from B are those in the second row

and column. The new diagonal entry is

〈e2−b12e1,e2−b12e1〉= b22− (2−b11)b2
12 ∈ Z . (16)

For the new off-diagonal entries b′2i (i 6= 2) we have

b′2i = b2i−b12b1i . (17)

The rational triangle condition gives

b12b2ibi1 ∈Q ,

and hence core(b2
2i) = core(b2

12b2
i1), whence b′2i ∈

√
N0.

Moreover, either b′2i = 0 or core(b′2i) = core(b2i), and hence B′ satisfies the rational
triangle condition.

Proof of Proposition 18. We suppose that B = (bi j) is a minimal counterexample to
the Proposition, in the following strong sense: B is n×n, symmetric, connected, pos-
itive definite, has trace less than 2n− 1, with n minimal, and moreover with the trace
minimal for this n. By Lemma 15, each bi j ∈ N. We have that B has entries in

√
N0

and satisfies the rational triangle condition (15). Since B is positive definite, each bii is
strictly positive.

Given tr(B)≤ 2n−2, at least two of the diagonal entries must equal 1. In particular,
n≥ 2, and we may reorder the rows and columns to achieve b11 = 1 and b12 6= 0.

Let e1, . . . , en be a basis for Rn. The matrix B defines a positive definite symmetric
bilinear form 〈·, ·〉 on Rn×Rn via 〈ei,e j〉= bi j.

Perform the base change of Lemma 19. By that lemma, the matrix B′ of 〈·, ·〉 with
respect to this new basis is positive definite, has all entries in

√
N0, and satisfies the

rational triangle condition. Moreover from (16) we see that the new diagonal entry b′22
is strictly smaller than b22, so B′ has smaller trace than B.

By our minimality conditions in choosing B, we must have that B′ is not connected.
Using B and B′ to refer to either the matrix or the corresponding digraph, the only

possible changes to edge weights when we move from B to B′ are those involving
vertex 2. We shall show that every vertex in B′ is in the same connected component
as one of the vertices 1 or 2, and hence that B′ (being disconnected) has exactly two
components. The argument here follows that in [5].

Let K1, K2 be the components of B′ containing vertices 1, 2 respectively. A priori
we might have K1 = K2, but once we have shown that every vertex is in either K1 or K2
then since B′ is not connected these components must be distinct.

Take any j ∈ {3,4, . . . ,n}. Taking language from graph theory, there is a path in
B from j to 2 (B is connected). If all of the edges of this path lie in B′ then j ∈ K2.
Otherwise, the path in B must finish with an edge from some vertex i to the vertex 2
that is not present in B′ (no other edges in the path can involve the vertex 2). Then from
(17) we see that b1i 6= 0 (else b′2i = b2i 6= 0). Then we can follow our path along edges
in B′ from j as far as i, and from there to 1, to see that j ∈ K1. Hence, as claimed, B′

has exactly two components (and the components K1 and K2 must be different).
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The matrix of each component is positive definite (since the form is positive defi-
nite), and of course each component is connected. If K1, K2 have r1, r2 vertices respec-
tively (r1 + r2 = n), and their matrices have traces t1, t2 respectively, then (recall that
B′ has smaller trace than B) t1 + t2 < t < 2n−1, so t1 + t2 ≤ 2(r1 + r2)−3. Thus either
t1 < 2r1− 1 or t2 < 2r2− 1, and one of the two components would give a counterex-
ample to the Proposition, contradicting our minimality assumptions on B.

On applying the map ϕ , the first part of Theorem 3 follows immediately from

Proposition 18. If A is a connected symmetrisable matrix that is positive definite, i.e.,

if A ∈M+
2 , then ϕ(A) ∈Q+

2 has the same trace as A. Being in Q+
2 ⊆Q1, ϕ(A) certainly

satisfies the rational triangle condition, and the Proposition applies to give tr(ϕ(A))≥

2n−1, and hence tr(A)≥ 2n−1.

For the second part of Theorem 3, we need a further lemma.

Lemma 20. Let S be an n× n matrix satisfying the hypotheses of Proposition 18.
Suppose that tr(S) = 2n− 1 (the minimal possible trace, given Proposition 18). Then
every off-diagonal entry of S is either −1, 0, or 1.

Proof. At least one diagonal entry of S = (si j) is 1, and we may suppose that s11 = 1.
If n = 1 then there is nothing to prove. If n ≥ 2, then vertex 1 is connected to at
least one other vertex, which we may suppose is vertex 2: s12 = s21 6= 0. As in the
proof of Proposition 18, we make a change of basis that transforms S to a disconnected
matrix S′ = (s′i j), trace 2n−1−s2

12. As in that proof, one argues that S′ has exactly two
components, say on r and s vertices (r+s = n), and by Proposition 18 these have traces
at least 2r−1 and 2s−1 respectively. Then 2n−1− s2

12 ≥ 2r−1+2s−1 = 2n−2, so
s12 =±1. Moreover each of the two components of S′ has minimal trace for its size. By
an inductive argument, each off-diagonal entry of each component of S′ has modulus at
most 1, and hence the same holds for all off-diagonal entries of S′. Moreover vertices 1
and 2 are in different components of S′, so that if s′2i 6= 0 then s′1i = s1i = 0. Therefore,
for i 6= 2,

s2i = s′2i + s12s1i =

{
s12s1i if s′2i = 0 ,
s′2i if s′2i =±1 .

We see inductively that all off-diagonal entries of S have modulus at most 1.

Now we complete the proof of Theorem 3. Suppose that B is an n× n positive

definite connected SIM that has trace 2n− 1. The symmetrisation S = ϕ(B) = (si j)

also has trace 2n− 1, and satisfies the hypotheses of Lemma 20. By that lemma, all

off-diagonal entries of ϕ(B) are 0, −1, or 1. This implies that the same holds for B

itself (bi jb ji = s2
i j), which implies that B is symmetric. Hence we get an improved
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lower bound for the trace in the asymmetric case, namely 2n, completing the proof of

the theorem.

The lower bound of 2n in the asymmetric case of Theorem 3 is best-possible. Let

B be the adjacency matrix of the weighted digraph

••••

1

2

on n vertices. Then B+2I is positive definite, symmetrisable, connected, and has trace

2n.

We get an immediate corollary concerning possible traces of minimal polynomials.

Corollary 21. Let m be a monic irreducible polynomial with integer coefficients, de-
gree n, and with all roots real and strictly positive. If the trace of m is strictly less than
2n−1, then m is not the minimal polynomial of a SIM, and nor is m the minimal poly-
nomial of any symmetric matrix with entries in

√
N0 that satisfies the rational cycle

condition (2).

Proof. Let t < 2n− 1 be the trace of m. If m were the minimal polynomial of a SIM,
then it would be the minimal polynomial of its symmetrisation, so we may suppose by
way of contradiction that m is the minimal polynomial of a symmetric matrix S with
entries in

√
N0 that satisfies the rational cycle condition. Since m is irreducible, the

characteristic polynomial of S must be mr for some r. If S is not connected, then m is
the minimal polynomial of each component; moving to a component we may suppose
that S is connected. Then S has trace rt, and is positive definite. From Theorem 3,
rt ≥ 2nr−1≥ r(2n−1), contradicting t < 2n−1.

We can also settle the analogue of the trace problem in our setting, namely Corol-

lary 5.

Proof of Corollary 5. If B ∈ M+
2 , then ϕ(B) ∈ Q+

2 has the same absolute trace. Con-
versely, if S ∈ Q+

2 , then by Lemma 1 there is a symmetrisable matrix B ∈ M1 with
ϕ(B) = S. Since ϕ preserves the eigenvalues of symmetrisable matrices, and preserves
the underlying graph, B ∈M+

2 and has the same absolute trace as S. Thus X = Y .
Let A be the adjacency matrix of the n-vertex path with one negatively charged

vertex at one end:
− •••• .

One checks that A+ 2I is positive definite, connected, symmetric (hence symmetris-
able), and has absolute trace 2−1/n, so that 2 is a limit point of X . It will be enough
to show that for any ε > 0, only finitely many positive definite connected SIMs have
absolute trace below 2−ε . Suppose that B is such a SIM. By Theorem 3, n is bounded.
The trace is then also bounded, and hence the set of possible diagonals for B is finite.
Positive definiteness of each principal 2× 2 submatrix then bounds the off-diagonal
entries, so there are finitely many possibilities for those too, and we are done.
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One consequence of Theorem 3 is that if a symmetrisable positive definite con-

nected n× n integer matrix has trace 2n− 1 then it is in fact symmetric. Thus, for

example, if A is the matrix in the proof of Corollary 5, and the characteristic poly-

nomial of A+ 2I is presented as the characteristic polynomial of a positive definite

connected SIM B, then B must in fact be symmetric.

The argument in the proof of Theorem 3 is a proof by contradiction, showing that

no counterexamples exist. The idea of that proof can be put to constructive use, to

generate all examples that have minimal trace from smaller ones. We explore this in

the final section of the paper.

8. The structure of minimal-trace examples

We have seen already that an n× n positive definite connected SIM that has trace

2n−1 must in fact be symmetric, and moreover all the off-diagonal entries have mod-

ulus at most 1. Note that one can have a diagonal entry as large as n:

n 1 1 1 · · · 1

1 1 0 0 · · · 0

1 0 1 0 · · · 0

1 0 0 1 · · · 0
...

...
...

...
. . .

...

1 0 0 0 · · · 1


.

We now describe a method to glue together minimal-trace symmetric examples to pro-

duce larger minimal-trace symmetric examples. Then we shall show that working up to

equivalence all minimal-trace symmetric examples can be produced this way (starting

from the trivial 1×1 case).

Suppose that A = (ai j) and B = (bi j) are positive definite connected integer sym-

metric matrices, A is r× r with trace 2r− 1, and B is s× s with trace 2s− 1. At least

one diagonal entry of A must equal 1, and we suppose that a11 = 1. The construction

is asymmetric in A and B, and we do not care whether or not b11 = 1.

Pick a basis e1, . . . , er, f1, . . . , fs for Rr+s, and define a symmetric bilinear form
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〈·, ·〉 on Rr+s×Rr+s via

〈ei,e j〉= ai j , 1≤ i≤ r , 1≤ j ≤ r ,

〈fi, f j〉= bi j , 1≤ i≤ s , 1≤ j ≤ s ,

〈ei, f j〉= 0 , 1≤ i≤ r , 1≤ j ≤ s .

This bilinear form is positive definite, since the eigenvalues of its matrix with respect

to this basis pool those of A and B. The matrix with respect to this basis has trace

2(r+ s)−2, and is not connected: there are two components, corresponding to A and

B.

Change basis, replacing f1 by f1 + e1. The matrix C = (ci j) of the bilinear form

with respect to this new basis is positive definite, and now connected. Most diagonal

entries are unchanged, but 〈f1, f1〉 has been replaced by

〈f1 + e1, f1 + e1〉= 〈f1, f1〉+1 .

Hence C has trace 2(r+ s)−1, and is another minimal-trace example.

We give a gory description of the entries of C = (ci j), as it will be convenient later

to indicate which small details change as we vary the construction.

ci j =



ai j 1≤ i≤ r, 1≤ j ≤ s ,

bi−r, j−r r+1≤ i≤ r+ s, r+1≤ j ≤ r+ s,

(i, j) 6= (r+1,r+1) ,

br+1,r+1 +1 i = r+1, j = r+1 ,

a1, j i = r+1, 1≤ j ≤ r ,

ai,1 1≤ i≤ r, j = r+1 ,

0 otherwise.

(18)

Now we claim that every minimal-trace example that has at least two rows can be

grown in this way (working up to equivalence: Definition 4). Suppose that C = (ci j)

is an n× n positive definite connected integer symmetric matrix, having trace 2n− 1,

and n ≥ 2. We may assume that c11 = 1, and that c12 6= 0, indeed by our bound on
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off-diagonal entries we may assume that c12 =±1. Working up to equivalence we may

assume that c12 = 1. Performing the change of basis idea in the proof of Proposition

18, we produce a new matrix with two components A and B. To comply with the

trace bound of Theorem 3, A and B both have minimal trace for their size. Then, after

shuffling rows, C is formed from A and B by our growing construction above.

The asymmetric case is more delicate. Let C = (ci j) be an n× n positive definite

connected SIM that is not symmetric, and has trace 2n (necessarily n≥ 2).

We can no longer assume that there is a diagonal entry equal to 1, and deal first with

the special case where every diagonal entry equals 2. Take two vertices in the digraph

corresponding to C that are as far apart as possible in terms of the minimal length of

a path between them. Unless n = 2, deleting a suitable choice of one of these vertices

will leave a subgraph that is not only connected but remains asymmetric (if there is

only one asymmetric edge it must be an isthmus, by the cycle condition). The matrix

corresponding to this subgraph is connected, positive definite, and has minimal trace in

this asymmetric case (all diagonal entries equal 2). Hence, working up to equivalence,

we can ‘grow’ all minimal-trace examples in this subcase from smaller ones, starting

from the 2×2 cases 2 2

1 2

 and

2 3

1 2

 ,

or their transposes.

Now consider the case where C has some diagonal entry equal to 1. Working

up to equivalence, we may assume that c11 = 1 and c12 > 0. Let S = (si j) be the

symmetrisation of C. Performing the basis change of the proof of Proposition 18,

the matrix S changes to S′, where tr(S′) < tr(S). The argument in the proof of that

Proposition shows that S′ has at most two components, and there are two possibilities:

tr(S′) = 2n−2 or tr(S′) = 2n−1.

If tr(S′) = 2n− 2, then it is not connected and must decompose into exactly two

components, say A (r× r) and B (s× s), where tr(A) = 2r− 1, tr(B) = 2s− 1. Then

A and B are symmetric minimal-trace examples (the last part of Theorem 3). We have

in this case that s12 =
√

2 (since tr(S′) = tr(S)− 2 and sgn(s12) = sgn(c12)). After

permuting, we see that S is built from A and B in essentially the same way as in our
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symmetric construction (18), but with

si j =


br+1,r+1 +2 i = r+1, j = r+1 ,

a1, j
√

2 i = r+1, 1≤ j ≤ r ,

ai,1
√

2 1≤ i≤ r, j = r+1 .

(19)

Note the factors of
√

2 (the change of basis here is to replace f1 by f1 +
√

2e1), and the

addition of 2 to the (r+ 1,r+ 1) diagonal entry rather than 1. We need to recover C

from its symmetrisation S. The subgraph corresponding to A must be symmetric, by

its trace, and similarly for B (adjusting the special diagonal entry does not break the

symmetry). Thus the only asymmetry comes in the (r+ 1)th row and column. Here

we have ci,r+1cr+1,i = s2
i,r+1 = 2a2

i,r+1, which is either 0 or 2. If 2, then we need to

choose which of ci,r+1 and cr+1,i is 2sgn(si,r+1) and which is sgn(si,r+1). Since A and

B are symmetric, we must either always put the factor of 2 in the row, or always in the

column, to satisfy the cycle condition (10):

vertical paths are symmetric; horizontal edges have sign symmetry

these satisfy the cycle condition these fail the cycle condition

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

±
2

±
1

±
1

±
2

±
1

±
2

±
2

±
1

±
2

±
1

±
1

±
2

±
2

±
1

±
1

±
2

Hence the values for ci j are as for si j in (19) except for

ci j =

2a1, j i = r+1, 1≤ j ≤ r ,

ai,1 1≤ i≤ r, j = r+1 ,

or the transpose of this.

If tr(S′) = 2n−1, then s12 = 1. Note that a priori S′ might be connected in this case.

But if so, then being minimal trace all off-diagonal entries would have modulus at most

1, so would equal 0, 1 or−1, and reversing the change of basis would produce the same

conclusion for S (as in the proof of Lemma 20), implying that C was symmetric, which
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it is not. So we still must have S′ falling into two components, say A′ (r× r) and B′

(s× s), with the first vertex of S′ corresponding to the first vertex of A′. Let A and B

be the subgraphs of C corresponding to A′, B′ respectively. We permute rows/vertex

labels so that the first r rows of C correspond to A (and with a11 = 1) and the final

s rows correspond to B. Our challenge is to complete the first r entries in row r + 1

and column r+1. There are two subcases: tr(A′) = 2r−1, tr(B′) = 2s, or tr(A′) = 2r,

tr(B′) = 2s−1.

If tr(A′) = 2r− 1, then A must be symmetric, and the formula for C is as in (18).

(Here B must be asymmetric, else C would be symmetric.)

If tr(A′) = 2r, then it is a minimal-trace asymmetric example with a 1 on the diag-

onal. We have a formula analogous to (18) for the si j, and in particular

sr+1,i = s1,i (1≤ i≤ r) , si,r+1 = si,1 (1≤ i≤ r) . (20)

For 1 ≤ i ≤ r we have cr+1,ici,r+1 = s1,isi,1 = s2
1,i, which is known, and the signs of

the ci, j are all known, but in the asymmetric case this formula does not tell us how the

factors of s2
1,i are to be shared between cr+1,i and ci,r+1. The cycle condition for C for

the triangle 1, i, r+1 gives

c1,ici,r+1cr+1,1 = ci,1cr+1,ic1,r+1 ,

which with c1,r+1 = cr+1,1 = 1 gives c1,ici,r+1 = ci,1cr+1,i. Together with (20) and sign

symmetry, we find that cr+1,i = c1,i = a1,i and ci,r+1 = ci,1 = ai,1 (1 ≤ i ≤ r), so that

(18) holds in this case too.
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