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Introduction

In this talk I’ll compare the structure of the set of values of three
height functions on different algebraic numbers:

Part 1. Pisot numbers: the numbers themselves

Part 2. Sums of roots of unity (= cyclotomic integers): the Cassels
height;

Part 3. All algebraic numbers: the Mahler measure.

The results on Pisot numbers are ‘classical’.
The new results on the Cassels height are joint work with James
McKee (Royal Holloway) and Byeong-Kweon Oh (National
University, Seoul).
The results on Mahler measure are partial and speculative.
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Part 1: Pisot numbers
Recall: a Pisot number is a real algebraic integer > 1 whose other
conjugates all lie in |z | < 1.

Examples

α0 := 1.3247 · · · , with minimal polynomial z3 − z − 1;

ϕ := 1
2(1 +

√
5) = 1.6180 · · · ,

with minimal polynomial z2 − z − 1;

2, with minimal polynomial z − 2. (!)

Pisot numbers were discovered by Thue (1912), then Hardy
(1916). In the late 1930’s Pisot and Vijayaraghavan considered the
set S of all Pisot numbers.

Theorem (Salem(1944))

The set S is a closed subset of the real line.

What does S look like?
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Limits of Pisot numbers

Denote by S (1) the set of limit points of S (its so-called derived
set), and for k ≥ 2 let S (k) be the derived set of S (k−1).

Facts:

α0 = 1.3247 · · · is the smallest Pisot number (Siegel 1945);

ϕ = 1.6180 · · · is the smallest element of S (1)

(Dufresnoy and Pisot 1955);

2 is the smallest element of S (2)(Grandet-Hugot 1965).

So this is what the start of S looks like, with • ∈ S \ S (1),
� ∈ S (1) \ S (2), � = 2.

••· · ·� · · ·•••• · · ·� · · ·•••• · · ·� · · ·•••• · · ·� · · ·� · · ·� · · ·�

Furthermore, the least element of S (k) is > k1/2 (Boyd 1979).
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Limits of Pisot numbers (continued 1)
How are convergent sequences of Pisot numbers obtained?

Theorem
Suppose that Mα(z) is the minimal polynomial of a Pisot number,
and that A(z) is an integer polynomial with A(0) > 0 and
|Mα(z)| > |A(z)| on |z | = 1. Then znMα(z)± A(z) is the minimal
polynomial of a Pisot number α(n,±) say, with, as n→∞,
α(n,+) → α from below, and α(n,−) → α from above.

This result comes from two applications of Rouché’s Theorem:

‘If analytic functions f and g satisfy |f | > |g | on a circle in C then
f and f + g have the same number of zeros inside the circle.’

Firstly, we apply Rouché with f = znMα and g = ±A, first to the
unit circle |z | = 1. This shows that znMα(z)± A(z) has all zeros
except one in |z | < 1, so is the minimal polynomial of a Pisot
number.
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Limits of Pisot numbers (continued 2)

Secondly, we apply it to a circle of radius ε with centre α. This
shows that, for k sufficiently large, that znMα(z)± A(z) has a
zero within that circle. Hence α(n,±) → α as n→∞.

More generally, for k ≥ 2 can construct elements of S (k) that are
limits, from both sides, of elements of S (k−1). In fact all elements
of S (k) have this property (Boyd and Mauldin 1996).
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The order type of S

Recall start of S :

••· · ·� · · ·•••• · · ·� · · ·•••• · · ·� · · ·•••• · · ·� · · ·� · · ·� · · ·�

We can now describe the order type of S , i.e., which ordinal
describes its topological structure.
Let ρ be the order type of N := {1, 2, 3 · · · }, and ρ∗ be its reverse
order type. Then the order type of S , up to halfway between its
first and second limit point, is a1 := ρ+ 1 + ρ∗. Then this pattern
is repeated up to the first element 2 of S (2) , so that the order
type of S ∩ [1, 2] is a1ρ+ 1.
Defining an+1 := anρ+ 1 + (anρ)∗, get that the order type of S is∑∞

n=1 an.
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Thue sets

Recalling that Axel Thue was the discoverer of the Pisot numbers,
we define a Thue set T to be a subset of the positive real line with
the following properties:

(i) The set T is a closed subset of R+;

(ii) For k ≥ 1 the kth derived set T (k) is nonempty, and every
element of it is a limit from both sides of elements of T (k−1);

(iii) tk := min{t | t ∈ T (k)} → ∞ as k →∞.

Note that all derived sets T (k) of a Thue set are also Thue sets.

So the set S of Pisot numbers is a Thue set.

Indeed, all derived sets S (k) are Thue sets!
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Part 2: Cassels heights of cyclotomic integers

A cyclotomic integer is an algebraic integer β that can be written
as a sum of roots of unity. Any such β lies in Z[ωn] for some n,
where ωn is a primitive nth root of unity, and it is well known that
Z[ωn] is the ring of integers of the field Q(ωn).

If β1 = β, β2, . . . , βd are the Galois conjugates of β, define M (β)
by

M (β) =
1

d

d∑
j=1

|βj |2. (Cassels 1969)

Let us call this value the Cassels height of β. Because the |βj |2 are
the conjugates of |β|2, M (β) is rational, with denominator
dividing d .

From the AM-GM inequality: M (β) ≥ 1 for β 6= 0.
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Let
C = {M (β) | β a nonzero cyclotomic integer}.

The nine smallest elements of C are

1, 32 ,
5
3 ,

7
4 ,

9
5 ,

11
6 ,

15
8 ,

17
9 ,

19
10 .
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A limit point of C

Easily calculate that

M (1 + ωn) = 2

(
1 +

µ(n)

ϕ(n)

)
.

Restricting n to being squarefree, and letting n→∞, we see that
M (1 + ωn)→ 2 from above or from below, depending on whether
it has an even or odd number of prime factors.

Thus 2 is a limit point of C .
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M of sums of pth roots of unity

Given an odd prime p, let

Cp = {M (β) | β ∈ Z[ωp]},

where ωp is a primitive pth root of unity.

Theorem (McKee,Oh,S. 2020 [3] )

For all primes p ≥ 5 the set Cp is given by

Cp =

{
1

p′
(
1
2s(p − s) + rp

)
| s = 0, 1, . . . , p′ and r ≥ 0

}
.

Here p′ := (p − 1)/2.

For p = 3, C3 is easily seen to be the set of integers N with prime
factorisation of the form N =

∏
q q

eq , where eq is even for all
primes q ≡ 2 (mod 3).
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Universal quadratic polynomials

For the proof in the case p = 5 we need to prove the universality of
two ternary quadratic polynomials.

Proposition

Both of the quadratic polynomials

a2 + ab + b2 + c2 + a + b + c

and
a2 + b2 + c2 + ab + bc + ca + a + b + c

represent all positive integers for integer values of their variables
(i.e., they are universal).

Of course it would be interesting to study
Cn := {M (β) | β ∈ Z[ωn]} for n composite, too.
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Closure, additivity of C

Th set C of Cassels heights has an interesting structure. In 2009
Stan and Zaharescu [5, Theorem 4] proved the following results
concerning C :

(i) Closure. The set C is a closed subset of Q. (See also [2,
Theorem 9.1.1]).

(ii) Additivity. The set C is closed under addition.
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The kth derived set of C

We extend (i) and (ii) to obtain the following results, connecting
the kth derived set C (k) of C and the Minkowski sumset

(k + 1)C := {c1 + c2 + · · ·+ ck+1 | c1, c2, . . . , ck+1 ∈ C }. (1)

Theorem
For k ≥ 1 the kth derived set C (k) of C is equal to the sumset
(k + 1)C .Furthermore every element of C (k) is a limit from both
sides of elements of C (k−1).

The following is an immediate consequence.

Corollary

The smallest element of C (k) (k ≥ 0) is k + 1. Furthermore, a
stronger version of additivity holds, namely that
C (k) + C (`) = C (k+`+1) (k , ` ≥ 0).
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Idea of proof

The proof of the theorem is a generalisation of the following result:

Proposition

Let J be an infinite increasing sequence of positive integers, and γ1
and γ2 be nonzero cyclotomic integers. Then

lim
`→∞
j∈J

M (γ1 + ωjγ2) = M (γ1) + M (γ2).

Also, J can be chosen so that infinitely many of the values
M (γ1 + ωjγ2) are distinct, so that M (γ1) + M (γ2) is a genuine
limit point of the sequence {M (γ1 + ωjγ2)}j∈J .
Furthermore, J can be chosen so that the limit is approached
either from above or from below.
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A consequence of a result of Loxton

The following result is also important in the proof:
For a given cyclotomic integer β with M (β) ≤ B there is a bound
N such that β can be expressed as the sum of at most N roots of
unity.
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Corollary

The set C is a Thue set.

Since all derived sets of a Thue set are again Thue sets, all the
derived sets C (k) for k ≥ 1 are also Thue sets.
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Part 3: The set L of Mahler measures of integer
polynomials

Let k ≥ 1, zk := (z1, . . . , zk) and F (zk) be a nonzero Laurent
polynomial with integer coefficients. Then its Mahler measure
M(F ) is defined as

M(F ) = exp

{∫ 1

0
· · ·
∫ 1

0
log |F (e2πit1 , . . . , e2πitk )|dt1 · · · dtk

}
.

(2)

If F is a 1-variable polynomial, say F (z) =
∏

j(z − αj), then

M(F ) =
∏

j :|αj |≥1

|αj |.

What does the set L of all Mahler measures of such polynomials
look like?
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In 1981 Boyd [1] conjectured that L is closed.

Boyd also showed that

logM(zn + z + 1) = logM(z1 + z2 + 1) +
c(n)

n2
+ O

(
1

n3

)
,

where

c(n) :=

{
−π
√
3

6 if n ≡ 1 (mod 3)
π
√
3

18 otherwise

Thus the 2-variable Mahler measure M(z1 + z2 + 1) is a limit from
both sides of 1-variable Mahler measures.
This is essentially the only proven known example of this
phenomenon! But there is strong evidence for more structure in L,
in the light of another result of Boyd and Lawton:
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Theorem
Given a k-variable polynomial F (z1, . . . , zk) and an infinite

sequence of integer vectors (r
(n)
1 , . . . , r

(n)
k ), then

M(F (z r
(n)
1 , . . . , z r

(n)
k ))→ M(F (z1, . . . , zk))

as n→∞ provided that the length of the shortest nonzero integer

k-vector orthogonal to (r
(n)
1 , . . . , r

(n)
k ) tends to ∞ as n→∞.

The missing ingredient in this result is that we don’t know that the
difference

M(F (z r
(n)
1 , . . . , z r

(n)
k ))−M(F (z1, . . . , zk))

takes both signs infinitely often.

Or indeed that it is not zero infinitely often.
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Example

In fact, for some F it can be zero infinitely often:

Let F (z1, z2) := z1 + z2 − 2. Then M(F ) = 2 and that if r(n) ∈ Z2

has positive components for all n then M (Fr(n)(z)) = 2 for all n.

Also, can show by Rouché’s Theorem that for r(n) = (1,−n) the
numbers {M (Fr(n)(z))}n∈N form a strictly increasing sequence of
Pisot numbers, with limit 2.
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The closure of the set of all M(F (z r1, . . . , z rk))
This closure can be described explicitly, as follows:
Given F (z1, . . . , zk), an integer ` ≥ 0 and an `× k integer matrix
A = (aij), define the k-tuple zA` by

zA` := (z1, . . . , z`)
A := (za111 · · · z

a`1
` , . . . , za1k1 · · · z

a`k
` ) (3)

and FA(z`) = F (zA` ), a polynomial in ` variables z1, . . . , z`.
Further define

M(F ) := {M(FA) : A ∈ Z`×k , ` ≥ 0,FA 6= 0} , (4)

Theorem ( S. 2018 [4] )

The set M(F ) is the closure of the set of all 1-variable
polynomials M(F (z r1 , . . . , z rk )).

I tentatively conjecture that the set L of all Mahler measures of
polynomials in any number of variables and having integer
coefficients also forms a Thue set.
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