Workshop 23 Nov 2012
 Working with p-adic numbers

Recall that the standard form of a nonzero p-adic number a is $a=p^{k}\left(a_{0}+a_{1} p+\cdots+\right.$ $a_{n} p^{n}+\ldots$), where $k \in \mathbb{Z}$ and all the a_{i} are in $\{0,1,2, \ldots, p-1\}$, with $a_{0} \neq 0$.
(1) (a) Write 5 as a p-adic number in standard form.
(You will need to do the cases $p=2, p=3, p=5$ and $p>5$ separately.)
(b) Write -5 as a p-adic number in standard form.
(2) Calculate $1 / 3$ as a 5 -adic number, and $1 / 5$ as a 3 -adic number.
(3) In \mathbb{Q}_{p}, which rational number is represented by the sum

$$
2+3 p+5 p^{2}+2 p^{3}+3 p^{4}+5 p^{5}+2 p^{6}+3 p^{7}+5 p^{8}+\ldots ?
$$

[Note: While this will be a standard representation of a p-adic number only for $p>5$, it nevertheless gives a nonstandard representation of a p-adic number for $p=2,3$ and 5.]
(4) For $\sqrt{7}=a_{0}+a_{1} 3+a_{2} 3^{2}+a_{3} 3^{3}+a_{4} 3^{4}+\ldots$ in \mathbb{Q}_{3}, find $a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \in\{0,1,2\}$.
(5) The field $\mathbb{Q}_{p}(\sqrt{p})$
(a) Let p be prime. Show that there is no $x \in \mathbb{Q}_{p}$ with $x^{2}=p$, and so $\mathbb{Q}_{p}(\sqrt{p})$ is a quadratic extension of \mathbb{Q}_{p}.
(b) Show how to extend $|\cdot|_{p}$ to $\mathbb{Q}_{p}(\sqrt{p})$ (i.e., to define $|\cdot|_{p}$ on $\mathbb{Q}_{p}(\sqrt{p})$ so that it still equals the original $|\cdot|_{p}$ on $\mathbb{Q}_{p} \subset \mathbb{Q}_{p}(\sqrt{p})$.)
(c) Show that every nonzero element of $\mathbb{Q}_{p}(\sqrt{p})$ can be written in standard form

$$
p^{k}\left(a_{0}+a_{1} p^{1}+a_{2} p^{2}+\cdots+a_{i} p^{i}+\cdots+\sqrt{p}\left(b_{0}+b_{1} p^{1}+b_{2} p^{2}+\cdots+b_{i} p^{i}+\ldots\right)\right),
$$

where $k \in \mathbb{Z}$ and all the a_{i} are in $\{0,1,2, \ldots, p-1\}$, with a_{0} and b_{0} not both 0 .

Handin: due Friday, week 11, 30 Nov, before 12.10 lecture. Please hand it in at the lecture The field $\mathbb{Q}_{p}(\sqrt{n})$

You are expected to write clearly and legibly, giving thought to the presentation of your answer as a document written in mathematical English.
(6) (a) Let p be an odd prime, and $n>0$ be a fixed quadratic nonresidue $\bmod p$. Show that there is no $x \in \mathbb{Q}_{p}$ with $x^{2}=n$, and so $\mathbb{Q}_{p}(\sqrt{n})$ is a quadratic extension of \mathbb{Q}_{p}.
(b) Show how to extend $|\cdot|_{p}$ to $\mathbb{Q}_{p}(\sqrt{n})$ (i.e., to define $|\cdot|_{p}$ on $\mathbb{Q}_{p}(\sqrt{n})$ so that it still equals the original $|\cdot|_{p}$ on $\mathbb{Q}_{p} \subset \mathbb{Q}_{p}(\sqrt{n})$.) To do this, apply the valuation axioms ZER, HOM and MAX to show successively that

- $|\sqrt{n}|_{p}=1$;
- $|a+b \sqrt{n}|_{p} \leq 1$ for $a, b \in \mathbb{Z}_{p}$;
- For $a, b \in \mathbb{Z}_{p}$, we have $\left|a^{2}-n b^{2}\right|_{p}=1$ unless $|a|_{p}<1$ and $|b|_{p}<1$;
- For $a, b \in \mathbb{Z}_{p}$, we have $|a \pm b \sqrt{n}|_{p}=1$ unless $|a|_{p}<1$ and $|b|_{p}<1$;
- For $a, b \in \mathbb{Z}_{p}$ not both divisible by p we have $\left|p^{k}(a+b \sqrt{n})\right|_{p}=p^{-k}$;
(c) Show that every nonzero number in $\mathbb{Q}_{p}(\sqrt{n})$ can be written in the form

$$
p^{k}\left(A_{0}+A_{1} p+A_{2} p^{2}+\cdots+A_{i} p^{i}+\ldots\right)
$$

where $k \in \mathbb{Z}$, and all $A_{i}=a_{i}+b_{i} \sqrt{n}$, where $0 \leq a_{i} \leq p-1,0 \leq b_{i} \leq p-1$, with $A_{0} \neq 0$.
(d) Let n^{\prime} be any other quadratic nonresidue of p. Show that $\sqrt{n^{\prime}} \in \mathbb{Q}_{p}(\sqrt{n})$.
(e) Show that $\mathbb{Q}_{p}(\sqrt{n})=\mathbb{Q}_{p}\left(\sqrt{n^{\prime}}\right)$.

Further p-adic problems

(7) The field $\mathbb{Q}_{p}(\sqrt{n p})$.
(a) Let p be an odd prime, and $n>0$ be a fixed quadratic nonresidue $\bmod p$. Show that there is no $x \in \mathbb{Q}_{p}$ with $x^{2}=n p$, and so $\mathbb{Q}_{p}(\sqrt{n p})$ is a quadratic extension of \mathbb{Q}_{p}.
(b) Show how to extend $|\cdot|_{p}$ to $\mathbb{Q}_{p}(\sqrt{n p})$.
(c) Show that every nonzero element of $\mathbb{Q}_{p}(\sqrt{n p})$ can be written in standard form

$$
p^{k}\left(a_{0}+a_{1} p+a_{2} p^{2}+\cdots+\sqrt{n p}\left(b_{0}+b_{1} p+b_{2} p^{2}+\ldots\right)\right),
$$

where $k \in \mathbb{Z}$ and all the a_{i} and b_{i} are in $\{0,1,2, \ldots, p-1\}$, with a_{0} and b_{0} not both 0 .
(8) \mathbb{Q}_{p} has only three quadratic extensions.

Let p be an odd prime. Recall from lectures that a p-adic integer $\beta=a_{0}+a_{1} p+$ $a_{2} p^{2}+\ldots$ not divisible by p^{2} (ie with β / p^{2} not a p-adic integer) is a square iff a_{0} is nonzero and a quadratic residue $(\bmod p)$.
(a) Let $n \in\{1,2, \ldots, p-1\}$ be a fixed quadratic nonresidue $(\bmod p)$. Show that $x^{2}=\beta$ has a solution in one of the fields $\mathbb{Q}_{p}, \mathbb{Q}_{p}(\sqrt{n}), \mathbb{Q}_{p}(\sqrt{p})$ or $\mathbb{Q}_{p}(\sqrt{n p})$.
(b) Deduce that there are at most 3 quadratic extensions of \mathbb{Q}_{p}.
(c) Prove that the fields in (a) are distinct, so that \mathbb{Q}_{p} has exactly 3 quadratic extensions.
(9) \mathbb{Q}_{2} has 7 quadratic extensions.
[Recall from lectures that a 2-adic integer not divisible by 4 is a square iff it is congruent to $1(\bmod 8)$.]
(a) Show that every unit in the 2-adic integers \mathbb{Z}_{2} is congruent $(\bmod 8)$ to some $u \in\{1,-1,3-3\}$.
(b) Show that every number in \mathbb{Q}_{2} can be written in the form $2^{\nu} u s^{2}$ for some u as in (a), $\nu \in \mathbb{Z}$ and some unit $s \in \mathbb{Z}_{2}$.
(c) Deduce that there are exactly 7 quadratic extensions of \mathbb{Q}_{2}, namely $\mathbb{Q}_{2}(\sqrt{k})$ for $k=2,-1,-2,3,6,-3$ or -6 .
(10) Given $c \in \mathbb{Q}_{p}, c \neq 0$, show that every $c^{\prime} \in \mathbb{Q}_{p}$ sufficiently close to c (in fact, with $\left|c-c^{\prime}\right|_{p}<|c|_{p}$) has $\left|c^{\prime}\right|_{p}=|c|_{p}$.
(11) Show that in \mathbb{Q}_{p} every ball $B(a, r):=\left\{x \in \mathbb{Q}_{p}:|x-a|_{p} \leq r\right\}$ is both open (contains a ball of positive radius around each point) and closed (contains all its limit points).
(12) Series in \mathbb{Q}_{p} whose terms tend to zero always converge!

Suppose that $c_{1}, c_{2}, \ldots, c_{n}, \cdots \in \mathbb{Q}_{p}$ with $\left|c_{n}\right|_{p} \rightarrow 0$ as $n \rightarrow \infty$. Show that the partial sums $s_{n}=c_{1}+\cdots+c_{n}$ form a p-Cauchy sequence. Deduce that $\sum_{n} c_{n}$ converges in \mathbb{Q}_{p}.

Conversely, show that the condition $\left|c_{n}\right|_{p} \rightarrow 0(n \rightarrow \infty)$ is necessary for convergence of the series. [The proof of this last part is the same as for the real case.]
(13) \mathbb{Q}_{p} contains all the $(p-1)$-th roots of unity.

Let p be an odd prime.
(a) Let $g \in\{1,2, \ldots, p-1\}$ be a primitive root $(\bmod p)$. Show that there is a p-adic number $\omega=g+a_{1} p+a_{2} p^{2}+\cdots$ such that $\omega^{p-1}=1$.
(b) (easy!) Deduce the fact that \mathbb{Q}_{p} contains $p-1(p-1)$-th roots of unity.
(c) Show that every number in \mathbb{Q}_{p} has an alternative representation $\sum_{i=-k}^{\infty} a_{i} p^{i}$ for some $k \in \mathbb{Z}$, where $a_{i} \in\left\{0,1, \omega, \omega^{2}, \ldots, \omega^{p-2}\right\}$.
(14) The 6-adic numbers.

Define the ring \mathbb{Q}_{6} of 6 -adic numbers as for the p-adic numbers but with 6 replacing p. Show that \mathbb{Q}_{6} not a field by finding a 6 -adic number $\alpha \neq 0,-1$ satisfying $\alpha(\alpha+1)=0$.
[Suggestion: put $\alpha=2+a_{1} .6+a_{2} \cdot 6^{2}+\cdots$, and show that you can solve $\alpha(\alpha+1)=$ $0\left(\bmod 6^{k}\right)$ for $k=2,3, \ldots$. (This shows too that the 6 -adic integers don't form an integral domain.)]

