THE ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE FOR ALGEBRAIC *K*-THEORY

by

Clark Barwick

These are notes for a talk for $\Theta\Sigma$. I'll describe a weight filtration on the algebraic K-theory of a regular scheme, due to Grayson. I'll describe it again using the slice filtration of Voevodsky. Finally, I'll sketch a proof that the graded pieces of this filtration are given by motivic cohomology, in the sense described in Jacob Lurie's lecture.

Contents

1. Motivation from topology	1
2. <i>K</i> -theory as a $(1, 1)$ -periodic P ¹ -spectrum	2
3. Grayson's filtration by commuting automorphisms	4
4. Voevodsky's slice filtration	6
5. Comparison theorems	8

1. Motivation from topology

Notation 1.1. — For any spectrum E and any space (i.e., simplicial set) X, write E(X) for the function spectrum $\mathbf{F}(\Sigma^{\infty}X_{+}, E)$, and write

$$E^*(X) = E_{-*}(X) = \pi_{-*}E(X).$$

1.2. — The skeletal filtration

$$X^{0} \subset X^{1} \subset \dots \subset X^{n-1} \subset X^{n} \subset \dots \subset X$$

induces a limit sequence

$$E(X) \longrightarrow \cdots \longrightarrow E(X^n) \longrightarrow E(X^{n-1}) \longrightarrow \cdots \longrightarrow E(X^1) \longrightarrow E(X^0),$$

whence, if $\lim_{r\geq 1}^{1} E_r^{s,t} = 0$, we have a strongly convergent spectral sequence

$$E_1^{s,t} = E^{s+t}(X^s/X^{s-1}) \Longrightarrow E^{s+t}(X),$$

called the Atiyah-Hirzebruch spectral sequence.

Lemma 1.3. — One may identify the E_1 term thus:

$$E_1^{s,t} = E^{s+t}(X^s/X^{s-1}) \cong \widetilde{H}^s(X^s/X^{s-1}, E^t).$$

Lemma 1.4. — For any abelian group π , the cohomology of the complex

$$\cdots \longrightarrow \widetilde{H}^{s}(X^{s}/X^{s-1},\pi) \longrightarrow \widetilde{H}^{s+1}(X^{s+1}/X^{s},\pi) \longrightarrow \cdots,$$

where the differential is the composite

$$\widetilde{H}^{s}(X^{s}/X^{s-1},\pi) \longrightarrow H^{s+1}(X^{s+1},\pi) \longrightarrow \widetilde{H}^{s+1}(X^{s+1}/X^{s},\pi),$$

is precisely $H^*(X, \pi)$.

Corollary 1.5. — The E_2 page of the Atiyah–Hirzebruch spectral sequence can be identified thus: $E_2^{s,t} \cong H^s(X, E^t) \Longrightarrow E^{s+t}(X).$

Example 1.6. — When E is even periodic, this spectral sequence is particularly simple. In particular, for complex K-theory, one has

$$E_2^{s,t} \cong \left\{ \begin{array}{ll} H^s(X, \mathbb{Z}) & \text{if } t \text{ is even;} \\ 0 & \text{if } t \text{ is odd.} \end{array} \right\} \Longrightarrow KU^{s+t}(X)$$

The differentials of this spectral sequence are torsion; hence it degenerates rationally.

1.7. — Inspired by this observation, Beilinson offered a provisional definition of motivic cohomology with rational coefficients as the weight *j* Adams eigenspace

$$H^{i}(X, \mathbf{Q}(j)) = K_{2j-i}(X)_{\mathbf{Q}}^{(j)}.$$

2. *K*-theory as a (1, 1)-periodic P¹-spectrum

Suppose S a separated, noetherian scheme of finite Krull dimension. Then $K: X \mapsto K(X)$ defines a presheaf of spectra on the category (Sch/S) of noetherian schemes of finite Krull dimension over S.

Theorem 2.1 (Nisnevich descent). — The presheaf K satisfies Nisnevich descent on (Sch/S).

Corollary 2.2. — The presheaf K extends uniquely to a functor

$$K\colon \mathscr{S}(\mathrm{Sm}/S)^{\mathrm{op}}_{\mathrm{Nis}} \longrightarrow \mathscr{Sp}$$

that sends colimits of sheaves on the Nisnevich site $(Sm/S)_{Nis}$ of smooth, noetherian S-schemes of finite Krull dimension to limits of spectra.

Proposition 2.3 (Homotopy invariance). — On regular schemes, algebraic K-theory is A^1 -invariant; that is, for any regular scheme X, the projection $X \times A^1 \longrightarrow X$ induces an equivalence $K(X) \simeq K(X \times A^1)$.

Corollary 2.4. — The presheaf K descends uniquely to a functor

$$K: L_{\mathbf{A}^1} \mathscr{S}(\mathbf{Sm}/S)^{\mathrm{op}}_{\mathrm{Nis}} \longrightarrow \mathscr{Sp}$$

that sends colimits in $L_{A^1} \mathscr{S}(Sm/S)_{Nis}$ to limits of spectra.

Corollary 2.5. — The presheaf K extends to a unique pointed functor

$$\widetilde{K}: (\star/L_{\mathbf{A}^1} \mathscr{S}(\mathbf{Sm}/S)_{\mathrm{Nis}})^{\mathrm{op}} \longrightarrow \mathscr{Sp}$$

that sends colimits to limits such that for any smooth S-scheme X, one has $\widetilde{K}(X_+) = K(X)$.

Corollary 2.6. — The functor $\Omega^{\infty} \mathcal{K}$ is representable; that is, there is a unique A^1 -invariant sheaf BGL and an equivalence of Nisnevich sheaves

$$\Omega^{\infty} \mathscr{K} \simeq \operatorname{Map}_{\left(\star/L_{\star^{1}} \mathscr{S}(\operatorname{Sm}/S)_{\operatorname{Nis}}\right)} \left((-)_{+}, \operatorname{BGL} \right).$$

2.7. — To construct BGL, one may begin by contemplating the sheaf $B \operatorname{GL}_* = \coprod_{n \ge 0} B \operatorname{GL}_n$. This is an E_{∞} monoid in $L_{A^1} \mathscr{S}(\operatorname{Sm}/S)_{\operatorname{Nis}}$. Hence it admits a classifying space $B(B \operatorname{GL}_*)$ and a group completion $\Omega B(B \operatorname{GL}_*)$. One sees, almost by definition, that

$$BGL \simeq \Omega B(B GL_*)$$

It is also not difficult to construct an equivalence

$$B\operatorname{GL}_{\infty} \times \mathbb{Z} \simeq \Omega B(B\operatorname{GL}_{*}).$$

Here, the main point is that each $B \operatorname{GL}_n$ is A^1 -connected; this follows from the fact that for any Nisnevich sheaf X, the morphism $\widetilde{\pi}_0(X) \longrightarrow \widetilde{\pi}_0^{A^1}(X)$ of sheaves of sets is an epimorphism.

Consider the Grassmannian of k-planes in N-space $G_{S}(k, N)$. One can form the colimits

$$G_{S}(k,\infty) = \operatorname{colim}_{N > k} G_{S}(k,N)$$

as well as

$$G_{\mathcal{S}}(\infty,\infty) = \operatorname{colim}_{k \ge 0} G_{\mathcal{S}}(k,\infty) = \operatorname{colim}_{N \ge k \ge 0} G_{\mathcal{S}}(k,N)$$

as ind-schemes. It is not hard to see that $G_S(k, N)$ is the quotient $(U_{k,N}/\operatorname{GL}_k)_{\acute{e}t}$, where $U_{k,N}$ is the scheme of monomorphisms $\mathscr{O}_S^k \hookrightarrow \mathscr{O}_S^N$. Likewise $G_S(k, \infty)$ is the quotient $(U_{k,\infty}/\operatorname{GL}_k)_{\acute{e}t}$, and this quotient is in turn a model for $p_*p^*B\operatorname{GL}_k$, where p is the projection $(\operatorname{Sm}/S)_{\acute{e}t} \longrightarrow (\operatorname{Sm}/S)_{\operatorname{Nis}}$. By Hilbert Theorem 90, we now have

$$G_{\mathcal{S}}(k,\infty) \simeq (U_{k,\infty}/\operatorname{GL}_k)_{\mathrm{\acute{e}t}} \simeq p_{\star} p^{\star} B \operatorname{GL}_k \simeq B \operatorname{GL}_k$$

We conclude that $G_s(\infty, \infty) \times \mathbb{Z}$ represents the *K*-theory space functor in the sense that there is a equivalence of Nisnevich sheaves

$$\Omega^{\infty} \mathscr{K} \simeq \operatorname{Map}_{(\star/L_{A^{1}} \mathscr{S}(\operatorname{Sm}/S)_{\operatorname{Nis}})}((-)_{+}, G_{S}(\infty, \infty) \times \mathbf{Z})$$

Proposition 2.8 (Projective bundle). — Suppose V a vector bundle of rank r + 1 on a noetherian scheme X of finite Krull dimension. Then there is a canonical equivalence

$$K(\mathbf{P}_X V) \simeq K(X)^{\vee (r+1)}$$

In particular, $K(\mathbf{P}^1 \times X) \simeq K(X) \lor K(X)$.

Corollary 2.9. — In particular, for any pointed smooth scheme (X, x), one has

$$\widetilde{K}(\mathbf{P}^1 \wedge (X, x)) \simeq \widetilde{K}(X, x).$$

(Here we think of \mathbf{P}^1 as pointed at ∞ .)

Corollary 2.10. — The functor \tilde{K} extends canonically to a unique stable functor

$$\widetilde{K}: \mathscr{Sp}_{\mathbf{P}^1}(\star/L_{\mathbf{A}^1}\mathscr{S}(\mathrm{Sm}/S)_{\mathrm{Nis}})^{\mathrm{op}} \longrightarrow \mathscr{Sp}$$

that sends colimits to limits such that for any pointed smooth S-scheme (X, x), one has $\widetilde{K}(\Sigma_{\mathbf{P}^1}^{\infty}(X, x)) = \widetilde{K}(X, x)$.

Corollary 2.11. — There exists a \mathbb{P}^1 -spectrum $\mathbb{BGL} \in \mathscr{Sp}_{\mathbb{P}^1}(\star/L_{\mathbb{A}^1} \mathscr{S}(\mathbb{Sm}/S)_{\mathbb{Nis}})$ such that for any smooth S-scheme X,

$$K^{p-q}(X) = [\Sigma_{\mathbf{P}^1}^{\infty} X_+, S^p \wedge \mathbf{G}_m^{\wedge q} \wedge \mathbf{BGL}].$$

Moreover, **BGL** is (1, 1)-periodic in the sense that there is a canonical equivalence

$$\mathbf{BGL} \simeq \mathbf{BGL} \wedge \mathbf{P}^1 \simeq \mathbf{BGL} \wedge S^1 \wedge \mathbf{G}_m$$

2.12. - We way construct BGL using BGL in the following manner. Observe that

$$\begin{split} \operatorname{Map}(\mathbf{P}^{1} \wedge \operatorname{BGL}, \operatorname{BGL}) &\simeq \lim_{N \geq k \geq 0} \operatorname{Map}(\mathbf{P}^{1} \wedge G_{S}(k, N), \operatorname{BGL}) \\ &\simeq \lim_{N \geq k \geq 0} \widetilde{K}(\mathbf{P}^{1} \wedge G_{S}(k, N)) \\ &\simeq \lim_{N \geq k \geq 0} \widetilde{K}(G_{S}(k, N)) \\ &\simeq \lim_{N \geq k \geq 0} \widetilde{K}(G_{S}(k, N)) \\ &\simeq \lim_{N \geq k \geq 0} \operatorname{Map}(G_{S}(k, N), \operatorname{BGL}) \\ &\simeq \operatorname{Map}(\operatorname{BGL}, \operatorname{BGL}). \end{split}$$

Now we may contemplate the map $\alpha: \mathbf{P}^1 \wedge BGL \longrightarrow BGL$ that corresponds to the identity under the identifications above. Now it is easy to check that **BGL** is the "constant" \mathbf{P}^1 -spectrum whose structrue maps are all α .

3. Grayson's filtration by commuting automorphisms

Suppose X a quasiseparated, quasicompact scheme. Goodwillie and Lichtenbaum introduced a exhaustive filtration on the homotopy K-theory of X:

$$\cdots \longrightarrow W^2 KH(X) \longrightarrow W^1 KH(X) \longrightarrow W^0 KH(X) = KH(X).$$

3.1. — For any two quasicompact and quasiseparated schemes X and Y, define the ∞ -category $\mathscr{P}(X, Y)$ as the ∞ -category of pseudocoherent complexes M on $X \times Y$ such that supp M is finite over X and $\operatorname{pr}_{1,x} M$ is a perfect complex on X. We contemplate the *bivariant K-theory spectrum*

$$K(X,Y) := K\mathscr{P}(X,Y).$$

Note that $K(X, \operatorname{Spec} \mathbb{Z}) = K(X)$ and $K(\operatorname{Spec} \mathbb{Z}, Y) = G(Y)$. Observe also that the assignment $(M, N) \mapsto \operatorname{pr}_{13,\star}(\operatorname{pr}_{12}^{\star} M \otimes \operatorname{pr}_{23}^{\star} N)$ defines a morphism $K(X, Y) \wedge K(Y, Z) \longrightarrow K(X, Z)$. One can show that this gives the category of quasicompact and quasiseparated schemes the structure of a category enriched in spectra.

Now for a fixed quasicompact and quasiseparated scheme X, define, for any finite set I, the dual I-th cross-effects $\operatorname{cr}^{I} K(X; -): (*/\operatorname{Sch})^{\times I} \longrightarrow \operatorname{Sp}$ as the functor

$$\operatorname{cr}^{I} K(X; Y_{I}) := \operatorname{cofib} \left[\operatorname{colim}_{J \subsetneq I} K\left(X, \prod_{j \in J} Y_{j}\right) \longrightarrow K\left(X, \prod_{i \in I} Y_{i}\right) \right]$$

Now write

$$W^{I}KH(X) := \operatorname{colim}_{\Delta} \operatorname{cr}^{I} K(\Delta_{X}^{\bullet}; \mathbf{P}^{1}, \mathbf{P}^{1}, \dots, \mathbf{P}^{1}).$$

For any integer k, the assignment $M \mapsto \operatorname{pr}_{12,\star}^*(M \otimes \operatorname{pr}_3^* \mathcal{O}(k))$ defines a morphism

$$m(k): K(X, Y \times \mathbf{P}^1) \longrightarrow K(X, Y).$$

Now the difference m - m(-1) descends to a morphism

$$W^{j+1}KH(X) \longrightarrow W^{j}KH(X),$$

defining a filtration $W^{\bullet}KH(X)$ on

$$KH(X) := \operatorname{colim}_{\Delta} K(\Delta_X^{\bullet}).$$

3.2. — Suppose now X is regular and noetherian. Then $KH(X) \simeq K(X)$, and the filtration can be regarded as a filtration on K(X) itself.

The following result will be a consequence of our main theorem, in the last section.

Theorem 3.3. — Suppose S = Spec k. Then the successive quotients can be expressed as

$$W^{t/t+1}KH(X) \simeq \operatorname{colim}_{\Delta} \operatorname{cr}^{j} K_{0}(\Delta_{X}^{\bullet}; \mathbf{P}^{1}, \mathbf{P}^{1}, \dots, \mathbf{P}^{1})$$

$$\simeq \operatorname{colim}_{\Delta} \operatorname{coker}\left[\sum_{j=1}^{n} K_{0}\left(\Delta_{X}^{\bullet} \times (\mathbf{P}^{1})^{\times (j-1)}\right) \longrightarrow K_{0}\left(\Delta_{X}^{\bullet} \times (\mathbf{P}^{1})^{\times t}\right)\right].$$

In particular, they are simplicial Z-modules.

Definition 3.4. — For any $j \ge 0$, let us write $\mathbf{Z}(j) := \Omega^{2j} W^{j/j+1} K H(X)$.

3.5. — The filtration $W^{\bullet}KH(X)$ gives rise to a spectral sequence

$$E_1^{s,t} = \pi_{s+t} W^{t/t+1} K H(X) \Longrightarrow K_{s+t}(X).$$

This is the Atiyah-Hirzebruch spectral sequence for algebraic K-theory. Using our Z(j), the E_2 page can be reindexed to take a more familiar form for geometers:

$$E_2^{s,t} = H^{s-t}(X, \mathbf{Z}(-t)) \Longrightarrow K^{s+t}(X).$$

Observe that the differentials are torsion, and so this spectral sequence degenerates rationally.

We will prove the following result and its corollaries in a later seminar.

Theorem 3.6. — The actions of the Adams operations of $\mathbf{Z}(j)$ are pure of weight j.

Corollary 3.7. — The filtration on $K_*(X)$ given by the spectral sequence

$$E_2^{s,t} = H^{s-t}(X, \mathbf{Z}(-t)) \Longrightarrow K^{s+t}(X)$$

coincides rationally with the γ -filtration on $K_*(X)$.

Corollary 3.8. — One has

$$H^{s-t}(X, \mathbf{Q}(-t)) \simeq K^{s+t}(X)_{\mathbf{O}}^{(-t)},$$

as expected by Beilinson.

Proposition 3.9. — The quotient $W^{0/j}(X)$ is the K-theory of the following symmetric monoidal virtual Waldhausen ∞ -category: for any $\mathbf{n} \in \Delta$, denote by $\mathcal{W}_n^j(X)$ the ind- ∞ -category indexed on closed subschemes $Z \subset X \times (\mathbf{P}^1)^{\times j} \times \mathbf{A}_S^n$ that are finite over $X \times \mathbf{A}_S^n$ defined by

$$\mathscr{W}_n^j(X)_Z := \mathscr{P}erf\left((X \times (\mathbf{P}^1)^{\times j} \times \mathbf{A}^n) - Z\right)$$

3.10. — Note that this very same definition defines a filtration on any presheaf E of spectra:

$$W^{j}F(X) := \operatorname{colim}_{n \in \Delta} \operatorname{colim}_{Z \subset X \times (\mathbf{P}^{1})^{\times j} \times \mathbf{A}_{S}^{n}} E\left((X \times (\mathbf{P}^{1})^{\times j} \times \mathbf{A}^{n}) - Z \right).$$

4. Voevodsky's slice filtration

Suppose now S a regular noetherian scheme, and abbreviate

 $\mathscr{Sp}(\mathrm{Sm}/S) := \mathscr{Sp}(\star/L_{\mathrm{A}^{1}}\mathscr{S}(\mathrm{Sm}/S)_{\mathrm{Nis}})$ and $\mathscr{Sp}_{\mathrm{P}^{1}}(\mathrm{Sm}/S) := \mathscr{Sp}_{\mathrm{P}^{1}}(\star/L_{\mathrm{A}^{1}}\mathscr{S}(\mathrm{Sm}/S)_{\mathrm{Nis}})$ Voevodsky defines the so-called *slice filtration* on $\mathscr{Sp}_{\mathrm{P}^{1}}(\mathrm{Sm}/S)$, which bears some resemblance to the usual Postnikov *t*-structure on spectra.

Definition 4.1. — Consider the \mathbf{P}^1 suspension

$$\Sigma_{\mathbf{P}^1}^\infty: (S/\mathrm{Sm}/S) \longrightarrow \mathscr{Sp}_{\mathbf{P}^1}(\mathrm{Sm}/S),$$

and denote by $\mathscr{S}p_{\mathbf{P}^1}(\mathbf{Sm}/S)_{\geq 0}$ the full subcategory generated by extensions and colimits by the essential image of $\Sigma_{\mathbf{p}^1}^{\infty}$. Now, for any $n \in \mathbf{Z}$, set

$$\mathscr{Sp}_{\mathbf{P}^1}(\mathrm{Sm}/S)_{\geq n} := \sum_{\mathbf{P}^1}^n \mathscr{Sp}_{\mathbf{P}^1}(\mathrm{Sm}/S)_{\geq 0}.$$

Denote by $\mathscr{S}p_{\mathbf{P}^1}(\mathrm{Sm}/S)_{\leq n-1}$ the full subcategory spanned by those \mathbf{P}^1 -spectra B such that $\mathrm{Mor}(A, B) = 0$ for any $A \in \mathscr{S}p_{\mathbf{P}^1}(\mathrm{Sm}/S)_{\geq n}$.

Example 4.2. — The presheaf of spectra $W^n K$ on (Sm/S) is represented by a \mathbf{P}^1 spectrum $W^n \mathbf{BGL} \in \mathscr{Sp}_{\mathbf{P}^1}(Sm/k)_{\leq n}.$

Definition 4.3. — We also have the adjunction

$$\Sigma^{\infty}_{\mathbf{G}_m}: \mathscr{Sp}(\mathrm{Sm}/S) \longleftrightarrow \mathscr{Sp}_{\mathbf{P}^1}(\mathrm{Sm}/S): \Omega^{\infty}_{\mathbf{G}_m}.$$

We pull back the categories $\mathscr{S}p_{\mathbf{P}^1}(\mathbf{Sm}/S)_{\geq n}$ along $\Sigma^{\infty}_{\mathbf{G}_m}$, so that $\mathscr{S}p(\mathbf{Sm}/S)_{\geq n}$ is the full subcategory spanned by those spectra A such that $\Sigma^{\infty}_{\mathbf{G}_m}(A) \in \mathscr{S}p_{\mathbf{P}^1}(\mathbf{Sm}/S)_{\geq n}$. Note in particular that

$$\mathcal{S}p(\mathrm{Sm}/S)_{\geq 0} = \mathcal{S}p(\mathrm{Sm}/S)$$

Denote by $\mathcal{S}p(\operatorname{Sm}/S)_{|\leq n-1}$ the full subcategory spanned by those spectra *B* such that $\operatorname{Mor}(A, B) = 0$ for any $A \in \mathcal{S}p(\operatorname{Sm}/S)_{|>n}$.

The following is a result of a delooping machine for *n*-fold \mathbf{G}_m -loop spaces.

Lemma 4.4. — The functor $\Omega_{G_m}^{\infty}$ preserves the filtrations, so that

 $\Omega^{\infty}_{\mathbf{G}_m}\left(\mathscr{Sp}_{\mathbf{P}^1}(\mathrm{Sm}/S)_{\geq n}\right) \subset \mathscr{Sp}(\mathrm{Sm}/S)_{\geq n}$

Lemma 4.5. — The inclusion $\mathscr{S}p_{\mathbf{P}^1}(\mathrm{Sm}/S)_{\geq n} \hookrightarrow \mathscr{S}p_{\mathbf{P}^1}(\mathrm{Sm}/S)$ admits a right adjoint $\tau_{\geq n}$. Similarly, the inclusion $\mathscr{S}p_{\mathbf{P}^1}(\mathrm{Sm}/S)_{< n-1} \hookrightarrow \mathscr{S}p_{\mathbf{P}^1}(\mathrm{Sm}/S)$ admits a right adjoint

$$\tau_{\leq n-1} = \operatorname{cofib} \left[\tau_{\geq n} \longrightarrow \operatorname{id} \right].$$

Definition 4.6. — We can use these functors to define the *slice tower*

$$\cdots \longrightarrow \tau_{\geq n+1} \longrightarrow \tau_{\geq n} \longrightarrow \tau_{\geq n-1} \longrightarrow \cdots$$

and its subquotients, the slice functors

$$\sigma_n = \tau_{\leq n} \tau_{\geq n}.$$

The following result will be a direct consequence of our main theorem.

Theorem 4.7. — Suppose S = Spec k. Then the 0-slice $\sigma_0(1)$ of the sphere spectrum is the motivic Eilenberg-Mac Lane spectrum HZ.

Corollary 4.8. — The 0-slice σ_0 BGL of BGL is the motivic Eilenberg-Mac Lane spectrum HZ.

Proof. — The unit map $1 \rightarrow BGL$ induces a map

$$H\mathbf{Z} = \sigma_0(\mathbf{1}) \longrightarrow \sigma_0 \mathbf{B}\mathbf{G}\mathbf{L}.$$

Since $H\mathbf{Z} \in \mathscr{S}p_{\mathbf{P}^1}(\mathrm{Sm}/k)_{>0}$, it's easy to see that it suffices to show that

$$\Omega^{\infty}_{\mathbf{G}_m} H\mathbf{Z} \longrightarrow \Omega^{\infty}_{\mathbf{G}_m} \sigma_{\mathbf{0}} \mathbf{B}\mathbf{G}\mathbf{I}$$

is an equivalence of $\mathcal{S}p(\mathrm{Sm}/k)$. Note that $H\mathbf{Z} = \Omega^{\infty}_{\mathbf{G}_m} H\mathbf{Z}$, since weight zero motivic cohomology is

$$H^{i}(X, \mathbf{Z}(0)) = \begin{cases} \mathbf{Z} & \text{if } i = 0\\ 0 & \text{else} \end{cases}$$

for smooth connected k-schemes.

Now we're reduced to showing that

$$\Sigma^{\infty} B \operatorname{GL}_{\infty} \in \mathscr{Sp}(\operatorname{Sm}/S)_{>1}.$$

So the claim is that for any $N \ge k \ge 0$, the spectrum $\Sigma^{\infty}G_{S}(k,N)$ lies in $\mathcal{S}p(\mathrm{Sm}/S)_{\ge 1}$. For this, we find a divisor with normal crossings in $G_{S}(m,n)$ whose complement is affine N-space, and we employ homotopy purity.

Corollary 4.9. — The E_2 page of the spectral sequence associated to the slice filtration

$$\longrightarrow \tau_{\geq n+1} BGL \longrightarrow \tau_{\geq n} BGL \longrightarrow \tau_{\geq n-1} BGL \longrightarrow \cdots \longrightarrow BGL$$

can be written as

. . .

$$E_2^{s,t} = H^{s-t}(X, \mathbf{Z}(-t)) \cong [\Sigma_{\mathbf{P}^1}^{\infty} X_+, S^s \wedge \mathbf{G}_m^{\wedge -t} \wedge \sigma_0 \mathbf{BGL}(X)] \Longrightarrow K^{s+t}(X).$$

4.10. — Note that even though the filtration on the \mathbf{P}^1 spectrum **BGL** is biinfinite, the induced filtration $F^{\bullet}K(X)$ on the spectrum K(X) is finite, since

$$\pi_{q-p}F^nK(X) = [\Sigma_{\mathbf{P}^1}^{\infty}X_+, S^p \wedge \mathbf{G}_m^{\wedge q} \wedge \mathbf{BGL}] \simeq [\Sigma^{\infty}X_+, S^p \wedge \mathbf{G}_m^{\wedge q} \wedge \Omega_{\mathbf{G}_m}^{\infty} \tau_{\leq n}\mathbf{BGL}].$$

5. Comparison theorems

Now we wish to describe the relations among Grayson's filtration, Voevodsky's slice filtration, and the motivic Eilenberg-Mac Lane spectrum. Fix a perfect field k.

Theorem 5.1. — The natural morphism W^n **BGL** $\rightarrow \tau_{>n}$ **BGL** is an equivalence.

Proof. — It's enough to find a map $\tau_{\geq n}$ BGL $\longrightarrow W^n$ BGL that factors the counit $\tau_{\geq n}$ BGL \longrightarrow BGL, and for this, it suffices to show that the composite $\tau_{>n}$ BGL $\longrightarrow W^{0/n}$ BGL is zero.

To finish the proof, one employs a somewhat subtle geometric argument (and moving lemma) to finish the proof. $\hfill \Box$

Notation 5.2. — Recall that we have the ∞ -category

$$\mathcal{M}ot(\mathrm{Sm}/k) := \mathscr{Sp}_{\mathbf{P}^{1}} \left(L_{\mathrm{A}^{1}} \mathbf{Z}_{\mathrm{tr}}(\mathrm{Sm}/k)_{\mathrm{Nis}} \right)$$

of \mathbf{P}^1 -spectra in \mathbf{A}^1 -local presheaves with transfer on Sm/k , and we have an adjunction

$$\mathscr{F}:\mathscr{Sp}_{\mathbf{P}^{1}}(\mathrm{Sm}/k) \Longrightarrow \mathscr{M}ot(\mathrm{Sm}/k):\mathscr{H}$$

We defined:

$$H\mathbf{Z} := \mathscr{HF}(1)$$

Theorem 5.3. — The slice endofunctors σ_n on $\mathcal{Sp}(\mathrm{Sm}/k)$ factor as $\mathcal{H} \circ s_n$ for a functor $s_n : \mathcal{Sp}_{\mathbf{P}^1}(\mathrm{Sm}/k) \longrightarrow \mathcal{M}ot(\mathrm{Sm}/k).$

CLARK BARWICK, Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA • *E-mail* : clarkbar@gmail.com