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These are notes for a talk for ΘΣ. I’ll describe a weight filtration on the algebraic K -theory of
a regular scheme, due to Grayson. I’ll describe it again using the slice filtration of Voevodsky. Fi-
nally, I’ll sketch a proof that the graded pieces of this filtration are given by motivic cohomology,
in the sense described in Jacob Lurie’s lecture.
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1. Motivation from topology

Notation 1.1. — For any spectrum E and any space (i.e., simplicial set) X , write E(X ) for the
function spectrum F(Σ∞X+, E), and write

E∗(X ) = E−∗(X ) =π−∗E(X ).

1.2. — The skeletal filtration

X 0 ⊂X 1 ⊂ · · · ⊂X n−1 ⊂X n ⊂ · · · ⊂X

induces a limit sequence

E(X ) · · · E(X n) E(X n−1) · · · E(X 1) E(X 0),

whence, if lim1
r≥1 E s ,t

r = 0, we have a strongly convergent spectral sequence

E s ,t
1 = E s+t (X s/X s−1) =⇒ E s+t (X ),

called the Atiyah–Hirzebruch spectral sequence.
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Lemma 1.3. — One may identify the E1 term thus:

E s ,t
1 = E s+t (X s/X s−1)∼= eH s (X s/X s−1, E t ).

Lemma 1.4. — For any abelian group π, the cohomology of the complex

· · · eH s (X s/X s−1,π) eH s+1(X s+1/X s ,π) · · · ,
where the differential is the composite

eH s (X s/X s−1,π) H s+1(X s+1,π) eH s+1(X s+1/X s ,π),

is precisely H ∗(X ,π).

Corollary 1.5. — The E2 page of the Atiyah–Hirzebruch spectral sequence can be identified thus:

E s ,t
2
∼=H s (X , E t ) =⇒ E s+t (X ).

Example 1.6. — When E is even periodic, this spectral sequence is particularly simple. In par-
ticular, for complex K -theory, one has

E s ,t
2
∼=
¨

H s (X ,Z) if t is even;

0 if t is odd.

«

=⇒KU s+t (X ).

The differentials of this spectral sequence are torsion; hence it degenerates rationally.

1.7. — Inspired by this observation, Beilinson offered a provisional definition of motivic coho-
mology with rational coefficints as the weight j Adams eigenspace

H i (X ,Q( j )) =K2 j−i (X )
( j )
Q .

2. K -theory as a (1,1)-periodic P1-spectrum

Suppose S a separated, noetherian scheme of finite Krull dimension. Then K : X K(X )
defines a presheaf of spectra on the category (Sch/S) of noetherian schemes of finite Krull di-
mension over S.

Theorem 2.1 (Nisnevich descent). — The presheaf K satisfies Nisnevich descent on (Sch/S).

Corollary 2.2. — The presheaf K extends uniquely to a functor

K : S (Sm/S)op
Nis Sp

that sends colimits of sheaves on the Nisnevich site (Sm/S)Nis of smooth, noetherian S-schemes of
finite Krull dimension to limits of spectra.

Proposition 2.3 (Homotopy invariance). — On regular schemes, algebraic K-theory is A1-invariant;
that is, for any regular scheme X , the projection X ×A1 X induces an equivalence K(X ) '
K(X ×A1).

Corollary 2.4. — The presheaf K descends uniquely to a functor

K : LA1S (Sm/S)op
Nis Sp

that sends colimits in LA1S (Sm/S)Nis to limits of spectra.
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Corollary 2.5. — The presheaf K extends to a unique pointed functor

eK :
�

?/LA1S (Sm/S)Nis

�op Sp

that sends colimits to limits such that for any smooth S-scheme X , one has eK(X+) =K(X ).

Corollary 2.6. — The functor Ω∞K is representable; that is, there is a unique A1-invariant sheaf
BGL and an equivalence of Nisnevich sheaves

Ω∞K 'Map(?/L
A1 S (Sm/S)Nis)

�

(−)+,BGL
�

.

2.7. — To construct BGL, one may begin by contemplating the sheaf B GL∗ =
∐

n≥0 B GLn.
This is an E∞ monoid in LA1S (Sm/S)Nis. Hence it admits a classifying space B(B GL∗) and a
group completion ΩB(B GL∗). One sees, almost by definition, that

BGL'ΩB(B GL∗).

It is also not difficult to construct an equivalence

B GL∞×Z'ΩB(B GL∗).

Here, the main point is that each B GLn is A1-connected; this follows from the fact that for any
Nisnevich sheaf X , the morphism eπ0(X ) eπA1

0 (X ) of sheaves of sets is an epimorphism.
Consider the Grassmannian of k-planes in N -space GS(k ,N ). One can form the colimits

GS(k ,∞) = colimN≥k GS(k ,N )

as well as
GS(∞,∞) = colimk≥0 GS(k ,∞) = colimN≥k≥0 GS(k ,N )

as ind-schemes. It is not hard to see that GS(k ,N ) is the quotient (Uk ,N/GLk)ét, where Uk ,N is the
scheme of monomorphisms O k

S O N
S . Likewise GS(k ,∞) is the quotient (Uk ,∞/GLk)ét, and

this quotient is in turn a model for p? p?B GLk , where p is the projection (Sm/S)ét (Sm/S)Nis.
By Hilbert Theorem 90, we now have

GS(k ,∞)' (Uk ,∞/GLk)ét ' p? p?B GLk ' B GLk

We conclude that GS(∞,∞)×Z represents the K -theory space functor in the sense that there is
a equivalence of Nisnevich sheaves

Ω∞K 'Map(?/L
A1 S (Sm/S)Nis)((−)+,GS(∞,∞)×Z)

Proposition 2.8 (Projective bundle). — Suppose V a vector bundle of rank r + 1 on a noetherian
scheme X of finite Krull dimension. Then there is a canonical equivalence

K(PX V )'K(X )∨(r+1).

In particular, K(P1×X )'K(X )∨K(X ).

Corollary 2.9. — In particular, for any pointed smooth scheme (X , x), one has

eK
�

P1 ∧ (X , x)
�

' eK(X , x).

(Here we think of P1 as pointed at∞.)
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Corollary 2.10. — The functor eK extends canonically to a unique stable functor

eK : SpP1

�

?/LA1S (Sm/S)Nis

�op Sp

that sends colimits to limits such that for any pointed smooth S-scheme (X , x), one has eK(Σ∞
P1(X , x)) =

eK(X , x).

Corollary 2.11. — There exists a P1-spectrum BGL ∈ SpP1

�

?/LA1S (Sm/S)Nis

�

such that for any
smooth S-scheme X ,

K p−q(X ) = [Σ∞
P1X+, S p ∧G∧q

m ∧BGL].

Moreover, BGL is (1,1)-periodic in the sense that there is a canonical equivalence

BGL' BGL∧P1 ' BGL∧ S1 ∧Gm.

2.12. — We way construct BGL using BGL in the following manner. Observe that

Map(P1 ∧BGL,BGL) ' lim
N≥k≥0

Map(P1 ∧GS(k ,N ),BGL)

' lim
N≥k≥0

eK(P1 ∧GS(k ,N ))

' lim
N≥k≥0

eK(GS(k ,N ))

' lim
N≥k≥0

eK(GS(k ,N ))

' lim
N≥k≥0

Map(GS(k ,N ),BGL)

' Map(BGL,BGL).

Now we may contemplate the map α : P1 ∧BGL BGL that corresponds to the identity under
the identifications above. Now it is easy to check that BGL is the “constant” P1-spectrum whose
structrue maps are all α.

3. Grayson’s filtration by commuting automorphisms

Suppose X a quasiseparated, quasicompact scheme. Goodwillie and Lichtenbaum introduced
a exhaustive filtration on the homotopy K -theory of X :

· · · W 2KH (X ) W 1KH (X ) W 0KH (X ) =KH (X ).

3.1. — For any two quasicompact and quasiseparated schemes X and Y , define the∞-category
P (X ,Y ) as the∞-category of pseudocoherent complexes M on X ×Y such that supp M is finite
over X and pr1,? M is a perfect complex on X . We contemplate the bivariant K-theory spectrum

K(X ,Y ) :=KP (X ,Y ).

Note that K(X , SpecZ) = K(X ) and K(SpecZ,Y ) = G(Y ). Observe also that the assignment
(M ,N ) pr13,?(pr?12 M ⊗ pr?23 N ) defines a morphism K(X ,Y )∧K(Y,Z) K(X ,Z). One can
show that this gives the category of quasicompact and quasiseparated schemes the structure of a
category enriched in spectra.
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Now for a fixed quasicompact and quasiseparated scheme X , define, for any finite set I , the
dual I -th cross-effects crI K(X ;−) : (?/Sch)×I Sp as the functor

crI K(X ;YI ) := cofib






colim

J$I
K






X ,
∏

j∈J

Y j






K

 

X ,
∏

i∈I

Yi

!






.

Now write
W I KH (X ) := colim

∆
crI K(∆•X ;P1,P1, . . . ,P1).

For any integer k, the assignment M pr12,?(M ⊗ pr?3O (k)) defines a morphism

m(k) : K(X ,Y ×P1) K(X ,Y ).

Now the difference m−m(−1) descends to a morphism

W j+1KH (X ) W j KH (X ),

defining a filtration W •KH (X ) on

KH (X ) := colim
∆

K(∆•X ).

3.2. — Suppose now X is regular and noetherian. Then KH (X ) ' K(X ), and the filtration can
be regarded as a filtration on K(X ) itself.

The following result will be a consequence of our main theorem, in the last section.

Theorem 3.3. — Suppose S = Spec k. Then the successive quotients can be expressed as

W t/t+1KH (X ) ' colim
∆

cr j K0(∆
•
X ;P1,P1, . . . ,P1)

' colim
∆

coker







n
∑

j=1

K0

�

∆•X × (P
1)×( j−1)

�

K0

�

∆•X × (P
1)×t
�






.

In particular, they are simplicial Z-modules.

Definition 3.4. — For any j ≥ 0, let us write Z( j ) :=Ω2 j W j/ j+1KH (X ).

3.5. — The filtration W •KH (X ) gives rise to a spectral sequence

E s ,t
1 =πs+tW

t/t+1KH (X ) =⇒Ks+t (X ).

This is the Atiyah-Hirzebruch spectral sequence for algebraic K-theory. Using our Z( j ), the E2 page
can be reindexed to take a more familiar form for geometers:

E s ,t
2 =H s−t (X ,Z(−t )) =⇒K s+t (X ).

Observe that the differentials are torsion, and so this spectral sequence degenerates rationally.

We will prove the following result and its corollaries in a later seminar.

Theorem 3.6. — The actions of the Adams operations of Z( j ) are pure of weight j .
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Corollary 3.7. — The filtration on K∗(X ) given by the spectral sequence

E s ,t
2 =H s−t (X ,Z(−t )) =⇒K s+t (X )

coincides rationally with the γ -filtration on K∗(X ).

Corollary 3.8. — One has
H s−t (X ,Q(−t ))'K s+t (X )(−t )

Q ,

as expected by Beilinson.

Proposition 3.9. — The quotient W 0/ j (X ) is the K-theory of the following symmetric monoidal
virtual Waldhausen∞-category: for any n ∈∆, denote byW j

n (X ) the ind-∞-category indexed on
closed subschemes Z ⊂X × (P1)× j ×An

S that are finite over X ×An
S defined by

W j
n (X )Z :=Perf

�

(X × (P1)× j ×An)−Z
�

3.10. — Note that this very same definition defines a filtration on any presheaf E of spectra:

W j F (X ) := colim
n∈∆

colim
Z⊂X×(P1)× j×An

S

E
�

(X × (P1)× j ×An)−Z
�

.

4. Voevodsky’s slice filtration

Suppose now S a regular noetherian scheme, and abbreviate

Sp(Sm/S) :=Sp
�

?/LA1S (Sm/S)Nis

�

and SpP1(Sm/S) :=SpP1

�

?/LA1S (Sm/S)Nis

�

Voevodsky defines the so-called slice filtration on SpP1(Sm/S), which bears some resemblance to
the usual Postnikov t -structure on spectra.

Definition 4.1. — Consider the P1 suspension

Σ∞
P1 : (S/Sm/S) SpP1(Sm/S),

and denote by SpP1(Sm/S)≥0 the full subcategory generated by extensions and colimits by the
essential image of Σ∞

P1 . Now, for any n ∈ Z, set

SpP1(Sm/S)≥n :=Σn
P1SpP1(Sm/S)≥0.

Denote by SpP1(Sm/S)≤n−1 the full subcategory spanned by those P1-spectra B such that
Mor(A,B) = 0 for any A∈SpP1(Sm/S)≥n.

Example 4.2. — The presheaf of spectra W nK on (Sm/S) is represented by a P1 spectrum

W nBGL ∈SpP1(Sm/k)≤n.

Definition 4.3. — We also have the adjunction

Σ∞Gm
:Sp(Sm/S) SpP1(Sm/S) :Ω∞Gm

.

We pull back the categories SpP1(Sm/S)≥n along Σ∞Gm
, so that Sp(Sm/S)/≥n is the full subcate-

gory spanned by those spectra A such that Σ∞Gm
(A) ∈SpP1(Sm/S)≥n. Note in particular that

Sp(Sm/S)/≥0 =Sp(Sm/S).
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Denote bySp(Sm/S)/≤n−1 the full subcategory spanned by those spectra B such that Mor(A,B) =
0 for any A∈Sp(Sm/S)/≥n.

The following is a result of a delooping machine for n-fold Gm-loop spaces.

Lemma 4.4. — The functor Ω∞Gm
preserves the filtrations, so that

Ω∞Gm

�

SpP1(Sm/S)≥n

�

⊂Sp(Sm/S)/≥n

Lemma 4.5. — The inclusion SpP1(Sm/S)≥n SpP1(Sm/S) admits a right adjoint τ≥n . Simi-
larly, the inclusion SpP1(Sm/S)≤n−1 SpP1(Sm/S) admits a right adjoint

τ≤n−1 = cofib
�

τ≥n id
�

.

Definition 4.6. — We can use these functors to define the slice tower

· · · τ≥n+1 τ≥n τ≥n−1 · · ·

and its subquotients, the slice functors

σn = τ≤nτ≥n.

The following result will be a direct consequence of our main theorem.

Theorem 4.7. — Suppose S = Spec k. Then the 0-slice σ0(1) of the sphere spectrum is the motivic
Eilenberg-Mac Lane spectrum HZ.

Corollary 4.8. — The 0-slice σ0BGL of BGL is the motivic Eilenberg-Mac Lane spectrum HZ.

Proof. — The unit map 1 BGL induces a map

HZ= σ0(1) σ0BGL.

Since HZ ∈SpP1(Sm/k)≥0, it’s easy to see that it suffices to show that

Ω∞Gm
HZ Ω∞Gm

σ0BGL

is an equivalence ofSp(Sm/k). Note that HZ=Ω∞Gm
HZ, since weight zero motivic cohomology

is

H i (X ,Z(0)) =
¨

Z if i = 0
0 else

for smooth connected k-schemes.
Now we’re reduced to showing that

Σ∞B GL∞ ∈Sp(Sm/S)≥1.

So the claim is that for any N ≥ k ≥ 0, the spectrum Σ∞GS(k ,N ) lies in Sp(Sm/S)/≥1. For this,
we find a divisor with normal crossings in GS(m, n) whose complement is affine N -space, and
we employ homotopy purity.
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Corollary 4.9. — The E2 page of the spectral sequence associated to the slice filtration

· · · τ≥n+1BGL τ≥nBGL τ≥n−1BGL · · · BGL

can be written as

E s ,t
2 =H s−t (X ,Z(−t ))∼= [Σ∞P1X+, S s ∧G∧−t

m ∧σ0BGL(X )] =⇒K s+t (X ).

4.10. — Note that even though the filtration on the P1 spectrum BGL is biinfinite, the induced
filtration F •K(X ) on the spectrum K(X ) is finite, since

πq−p F nK(X ) = [Σ∞
P1X+, S p ∧G∧q

m ∧BGL]' [Σ∞X+, S p ∧G∧q
m ∧Ω

∞
Gm
τ≤nBGL].

5. Comparison theorems

Now we wish to describe the relations among Grayson’s filtration, Voevodsky’s slice filtration,
and the motivic Eilenberg-Mac Lane spectrum. Fix a perfect field k.

Theorem 5.1. — The natural morphism W nBGL τ≥nBGL is an equivalence.

Proof. — It’s enough to find a map τ≥nBGL W nBGL that factors the counit τ≥nBGL BGL,
and for this, it suffices to show that the composite τ≥nBGL W 0/nBGL is zero.

To finish the proof, one employs a somewhat subtle geometric argument (and moving lemma)
to finish the proof.

Notation 5.2. — Recall that we have the∞-category

Mot(Sm/k) :=SpP1

�

LA1Ztr(Sm/k)Nis

�

of P1-spectra in A1-local presheaves with transfer on Sm/k, and we have an adjunction

F :SpP1(Sm/k) Mot(Sm/k) :H .

We defined:
HZ :=HF (1).

Theorem 5.3. — The slice endofunctors σn on Sp(Sm/k) factor asH ◦ sn for a functor

sn : SpP1(Sm/k) Mot(Sm/k).
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