
121 EXERCISES ON LOCALLY COMPACT ABELIAN GROUPS:
AN INVITATION TO HARMONIC ANALYSIS

by

Clark Barwick

This is a collection of challenging exercises designed to motivate interested students of general topology to con-
template Pontryagin duality and the structure of locally compact abelian groups. The idea is to use the topology
background students have acquired as a jumping off point to the study of (abstract) harmonic analysis.

Harmonic analysis is a towering edifice, and the story here will take us on a tour of some of the most significant
theorems of the first half of the 20th century. Accordingly, these exercises become very involved and (especially in
later chapters) require some fairly sophisticated background in analysis and algebra. (At times, I will simply have
to appeal to certain facts, which as exercises would be absurd or heroic undertakings.) The student with limited
background in these areas may wish simply to read through the remainder of these notes, and to return to them at a
later date in his/her career, when the needed facts are part of his/her repertoire. In any case, any topology student
(given enough time) should be able to complete the exercises from § 2.

The order of presentation here closely mirrors the beautiful two-volume treatise of Hewitt and Ross, though I
have also added a number of special topics.
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1. Challenges and curiosities

Example 1.1. — Try to compute the integrals
∫ ∞

−∞

sin2 t

t 2
dt and

∫ ∞

0

t 2

(1+ t 2)2
dt

Can you manage them?

Example 1.2. — Suppose s ∈C; here’s a series that depends on s :

ζ (s) =
∞
∑

n=1

1

n s .

One can show that this series converges absolutely for ℜ(s) > 1. The resulting function is called the Riemann zeta
function. So what is its value at, say, s = 2? This question was originally known as the Basel problem. More generally,
if m is a positive integer, can you compute

ζ (2m) =
∞
∑

n=1

1

n2m
?

Here’s something even more unusual. In Srinivasa Ramanujan’s second letter to G. H. Hardy [27 February
1913], he wrote:

Dear Sir, I am very much gratified on perusing your letter of the 8th February 1913. I was expect-
ing a reply from you similar to the one which a Mathematics Professor at London wrote asking
me to study carefully Bromwich’s Infinite Series and not fall into the pitfalls of divergent series.
. . . I told him that the sum of an infinite number of terms of the series: 1+2+3+4+ · · ·=−1/12
under my theory. If I tell you this you will at once point out to me the lunatic asylum as my goal.
I dilate on this simply to convince you that you will not be able to follow my methods of proof if
I indicate the lines on which I proceed in a single letter.

He seems to have written that ζ (−1) =− 1
12 . But the series above is plainly divergent whenℜ(s)≤ 1. What on earth

can he have meant?

2. Topological groups

Definition 2.1. — A topological group G is a topological space that is also a group if the following conditions are
satisfied.

(2.1.1) The multiplication map G×G //G , (g , h) � // g h , is continuous.
(2.1.2) The inverse map G //G , g � // g−1 , is continuous.

2.2. — Recall that a space X is said to be Kolmogoroff or T0 if for any two distinct points x, y ∈X , there is an open
neighborhood of one that does not contain the other. For our purposes, all topological groups will be assumed,
without further comment, to be Kolmogoroff.

Definition 2.3. — If G and G′ are topological groups, then a continuous homomorphism φ : G′ //G is a homo-
morphism of groups that is also a continuous map of topological spaces. A topological isomorphism φ : G′ //G is
an isomorphism of groups that is both continuous and open.

2.4. — The structure consisting of a collection of objects (in this case, topological groups) and morphisms (in this
case, continuous homomorphisms) with an associative composition law is called a category. Most subjects in math-
ematics can be described as the study of a certain category or the relationship between two categories.

In these notes, there’s no need to use the theory of categories in any serious way, but it is helpful to be able to
refer to the category of topological groups, which we will denote TopGp.
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Examples. — One of the many great beauties of the study of topological groups is the large number of explicit,
interesting examples that one can write down.

Example 2.5. — (2.5.1) Discrete groups are topological groups.
(2.5.2) The set Q with the subspace topology is a topological group under addition.
(2.5.3) Any finite-dimensional vector space E over R can be given a topology by lifting the euclidean space topology

along an isomorphism E ∼= Rn . (Check that this topology does not depend on the choice of isomorphism.)
The result is a topological group under vector addition. In this case, E is said to be a vector group.

(2.5.4) The set of positive real numbers R>0 (with the subspace topology) is a topological group under multiplica-
tion.

(2.5.5) For any integer n > 0, the set

GLn(R) :=
�

A∈Matn×n(R) | detA 6= 0
	

of invertible n×n matrices with real entries is a group under matrix multiplication. It is a topological group
when endowed with the subspace topology from Matn×n(R)∼=Rn2

. It is called the real general linear group.
(2.5.6) For any integer n > 0, the set

SLn(R) :=
�

A∈Matn×n(R) | detA= 1
	

of n×n matrices of determinant 1 with real entries is a group under matrix multiplication. It is a topological
group when endowed with the subspace topology from Rn2

. It is called the real special linear group.
(2.5.7) For any integer n > 0, the set

GLn(C) :=
�

A∈Matn×n(C) | detA 6= 0
	

of invertible n× n matrices with complex entries is a group under matrix multiplication. It is a topological
group when endowed with the subspace topology from Cn2

. It is called the complex general linear group.
(2.5.8) For any integer n > 0, the set

SLn(C) :=
�

A∈Matn×n(C) | detA= 1
	

of n × n matrices of determinant 1 with complex entries is a group under matrix multiplication. It is a
topological group when endowed with the subspace topology from Cn2

. It is called the complex special linear
group.

(2.5.9) For any integer n > 0, the set

O(n) :=
�

A∈Matn×n(R) | A is orthogonal
	

of n × n real orthogonal matrices (i.e., invertible matrices A with real coefficients such that tA = A−1) is
a group under matrix multiplication. It is a topological group when endowed with the subspace topology
from Rn2

. It is called the orthogonal group.
(2.5.10) For any integer n > 0, the set

SO(n) :=
�

A∈Matn×n(R) | A is orthogonal and detA= 1
	

of n×n real orthogonal matrices of determinant 1 is a group under matrix multiplication. It is a topological
group when endowed with the subspace topology from Rn2

. It is called the special orthogonal group.
(2.5.11) For any integer n > 0, the set

Sp2n(R) :=
�

A∈Mat2n×2n(R) | A is symplectic
	

of 2n× 2n real symplectic matrices (i.e., invertible matrices A such that tAΩA=Ω, where

Ω=
�

0 In
−In 0

�

is a 2n× 2n block matrix, with In the identity n× n matrix) is a group under matrix multiplication. It is a
topological group when endowed with the subspace topology from R4n2

. It is called the real symplectic group.
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(2.5.12) For any integer n > 0, the set

Sp2n(C) :=
�

A∈Mat2n×2n(C) | A is symplectic
	

of 2n × 2n complex symplectic matrices is a group under matrix multiplication. It is a topological group
when endowed with the subspace topology from C4n2

. It is called the complex symplectic group.
(2.5.13) For any integer n > 0, the set

U(n) :=
�

A∈Matn×n(C) | A is unitary
	

of n× n unitary matrices (i.e., invertible matrices A such that tA=A−1) is a group under matrix multiplica-
tion. It is a topological group when endowed with the subspace topology from Cn2

. It is called the unitary
group.

(2.5.14) For any integer n > 0, the set

SU(n) :=
�

A∈Matn×n(R) | A is unitary and detA= 1
	

of n× n unitary matrices of determinant 1 is a group under matrix multiplication. It is a topological group
when endowed with the subspace topology from Cn2

. It is called the special unitary group.
(2.5.15) Finally, there is one additional topological group worth mentioning here, namely

Sp(n) :=U(2n)∩Sp2n(C).

It is sometimes called the hyperunitary group, but we will call it the compact symplectic group, for reasons that
will quickly become clear.

Exercise 2.6. — Show that the topological groups O(n), SO(n), U(n), SU(n), and Sp(n) are all compact. What
about the others?

Exercise 2.7. — Show that the topological groups GLn(R), SLn(R), GLn(C), SLn(C), O(n), SO(n), Sp2n(R), Sp2n(C),
U(n), SU(n), and Sp2n(C) are all locally euclidean, in the sense that they each possess a neighborhood of the iden-
tity that is homeomorphic to an open ball in euclidean space of dimension n2, n2 − 1, 2n2, 2n2 − 2, n(n − 1)/2,
n(n−1)/2, n(2n+1), 2n(2n+1), n2, n2−1, and n(2n+1) respectively. (In particular, each of these groups is locally
compact.) This particular collection of topological groups are sometimes called the linear groups.

To demonstrate this, introduce the exponential of a matrix A ∈ Matd×d (C) ∼= Cd 2
in the following manner.

Observe that if A= (ai j ), and α= sup{ai j }i , j , then no element of A` has absolute value greater than (dα)`. Use this
to verify that the sequence (expm)m≥0 of continuous functions Matd×d (C) //Matd×d (C) given by the formula

expm(A) :=
m
∑

`=0

1

`!
A`

converges for the compact-open topology on C (Matd×d (C),Matd×d (C)). Now define exp as the limit, so that

exp(A) = eA :=
∞
∑

`=0

1

`!
A`

for any A∈Matn×n(C).
Now verify the following facts about the exponential.

(2.7.1) For any A∈Matd×d (C), the matrix eA is invertible.
(2.7.2) For any A∈Matd×d (C) and B ∈GLn(C), one has eB−1AB = B−1eAB .
(2.7.3) If A∈Matd×d (C) has eigenvalues λ1,λ2, . . . ,λd , then eA has eigenvalues eλ1 , eλ2 , . . . , eλd .
(2.7.4) For any A∈Matd×d (C), one has det eA= e trA.
(2.7.5) If A,B ∈Matd×d (C), and AB = BA, then eA+B = eAeB .
(2.7.6) For any A∈Matd×d (C), one has e

tA= t(eA).

(2.7.7) For any A∈Matd×d (C), one has eA= (eA).
Use this exponential and these facts to give a homeomorphism to a neighborhood of the identity in each of these

linear groups from an open ball in euclidean space of the appropriate dimension.
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2.8. — Let us summarize what we have learned about our linear groups in the following table.

Linear group Name Compact? Dimension
GLn(R) real general linear group no n2

SLn(R) real special linear group no n2− 1
GLn(C) complex general linear group no 2n2

SLn(C) complex special linear group no 2n2− 2
O(n) orthogonal group yes n(n− 1)/2
SO(n) special orthogonal group yes n(n− 1)/2

Sp2n(R) real symplectic group no n(2n+ 1)
Sp2n(C) complex symplectic group no 2n(2n+ 1)

U(n) unitary group yes n2

SU(n) special unitary group yes n2− 1
Sp(n) compact symplectic group yes n(2n+ 1)

Exercise 2.9. — Show that U(1) is topologically isomorphic to the group of complex numbers of norm 1 under the
usual multiplication in C, with the usual subspace topology. Hence the assignment θ � // e2πθ

p
−1 permits us to

identify U(1) topologically with the quotient [0,1]/{0,1}.

Exercise 2.10. — Show that SO(3) can be interpreted as the group of all possible rotations in R3. In particular, for
any φ ∈ [0,2π], and any θ ∈ [0,π], we have

X (φ) :=







1 0 0
0 cosφ − sinφ
0 sinφ cosφ






and Z(θ) :=







cosθ − sinθ 0
sinθ cosθ 0

0 0 1






,

the rotations around the x- and z-axes. Show that any element of SO(3) can be written uniquely as a product
Z(ψ)X (θ)Z(φ), for φ,ψ ∈ [0,2π] and θ ∈ [0,π]. The angles φ,ψ,θ are known as Euler angles.

Exercise 2.11. — More generally, show that for any positive integer n, the group SO(n) acts transitively on the
sphere Sn−1.

The topology of groups. — One of the main themes of the study of topological groups is the insight that the
topology of a topological group is completely controlled by small neighborhoods of the identity.

Exercise 2.12. — Suppose G is a group with a T1 topology (so that any point is closed in G). Suppose that the map
G×G //G , (g , h) � // g−1h , is continuous. Show that G is a topological group.

Exercise 2.13. — Suppose G a topological group with identity element e ∈ G, and suppose Be a fundamental
system of open neighborhoods of e . Then verify that the set

{g U | g ∈G, U ∈U }∪ {U g | g ∈G, U ∈U }

is a base for the topology of G.

Definition 2.14. — Suppose G a topological group. Then a family A of neighborhoods of the identity element
e ∈G is said to be coherent if it satisfies the following properties:

(2.14.1) For every U ∈A , there exists a V ∈A such that V 2 ⊂U .
(2.14.2) For every U ∈A , there exists a V ∈A such that V −1 ⊂U .

One says that a coherent familyA is translatable if, moreover,

(2.14.3) For every U ∈A and every g ∈U , there exists a V ∈A such that gV ⊂U .

One says that a coherent familyA is normalizable if, moreover,

(2.14.4) For every U ∈A and every g ∈G, there exists a V ∈Be such that gV g−1 ⊂U .
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Exercise 2.15. — Suppose G a topological group, and supposeBe a fundamental system of open neighborhoods of
e . Then check thatBe is a translatable, normalizable, coherent family.

Conversely, suppose G a group, and supposeA a normalizable, translatable, coherent family of open neighbor-
hoods of e with the finite intersection property. Show that the set {g U | g ∈ G, U ∈A} (or, equivalently, the set
{g U | g ∈G, U ∈A}) is a subbase for a topology on G relative to which G is a topological group.

Exercise 2.16. — Suppose G is a topological group, and suppose A and B subsets of G. Prove the following.

(2.16.1) If A is open, then AB and BA are open.
(2.16.2) If A and B are compact, then AB and BA are compact.
(2.16.3) If A is closed and B is compact, then AB and BA are closed.
(2.16.4)

�

A
��

B
�

⊂AB .

(2.16.5)
�

A
�−1
=A−1.

(2.16.6) gAh = gAh for any g , h ∈G.
(2.16.7) If ab = ba for any a ∈A and b ∈ B , then ab = ba for any a ∈A and b ∈ B .

Example 2.17. — If A and B are closed, it does not follow that AB is closed. In R, consider the closed sets Z and
αZ, where α is an irrational number. Then Z+αZ is dense and not closed in R.

Exercise 2.18. — Show that every topological group G has a fundamental system of open neighborhoodsBe at e
such that any U ∈Be is symmetric in the sense that one has U =U−1.

Exercise 2.19. — Use what you have shown so far to demonstrate that every topological group G (only assumed to
be Kolmogoroff!) is regular or T3.(1) In particular, G is Hausdorff (or T2).

Theorem 2.20. — Suppose G a topological group, suppose U any neighborhood of e, and suppose K ⊂ G any compact
subset. Then there is a neighborhood V of e such that for any g ∈K, one has gV g−1 ⊂U .

Proof. — LetUe be the collection of all neighborhoods U of e such that U =U−1. It is enough to show that for any
element h ∈ G, there is an element V ∈ Ue such that for any g ∈V h, one has gV g−1 ⊂ U . (Why is this enough?
Hint: Use the compactness of K .)

Using the exercises above, we may find W ∈Ue such that W 3 ⊂ U and W ′ ∈Ue such that hW ′h−1 ⊂W . Now
set V =W ∩W ′; then for any g ∈V h, one has g h−1 ∈W and thus h g−1 ∈W , whence

gV g−1 ⊂ gW ′ g−1 = g h−1 gW ′h−1h g−1 ⊂W 3 ⊂U ,

as desired.

Subgroups and quotients of a topological group. — One wishes to see that topological groups are closed under
the usual operations of group theory. We begin with subgroups and quotient groups It will be especially important
to analyze under what circumstances a subgroup or quotient group inherits good properties from a give topological
group.

Exercise 2.21. — Suppose G a topological group. Show that if H is a subgroup, normal subgroup, or abelian sub-
group of G, then so is H .

Exercise 2.22. — Show that a subgroup H of a topological group G is open if and only if its interior is nonempty;
if H is open, then it is also closed.

Exercise 2.23. — Show that the subgroup of a topological group generated by a symmetric neighborhood of the
identity is open (hence closed).

(1)A space X is said to be regular if it is T1 and for any closed set C ⊂G and every point g ∈G not contained in C , there exist disjoint open sets
containing C and g , respectively
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Exercise 2.24. — Suppose G a topological group, and suppose A a coherent family of open neighborhoods of e
such that for any elements U ,V ∈A , there exists an element W ∈A such that W ⊂U ∩V . Show the set

H :=
⋂

U∈A

U

is a closed subgroup of G, which is normal ifA is normalizable.

Exercise 2.25. — Suppose G a topological group, H a subgroup of G. Show that H is closed in G if and only if
there is a neighborhood U of e such that U ∩H is closed. Conclude that if H is locally compact (in the subspace
topology), then H is closed.

Exercise 2.26. — Show that a subgroup H of a topological group G is discrete if and only if it has an isolated point.
If H is discrete, check that H is closed.

Exercise 2.27. — Suppose G a locally compact topological group. Show that the following are equivalent.
(2.27.1) There is a compact subspace F ⊂G that generates G.
(2.27.2) There is an open subset U ⊂G that generates G such that the closure U is compact.
(2.27.3) There is a neighborhood V of e that generates G such that the closure V is compact.
A locally compact topological group satisfying any, and hence all, of the above conditions is said to be compactly
generated.(2)

Example 2.28. — A discrete group is compactly generated if and only if it is finitely generated.

Exercise 2.29. — Suppose G a topological group, and suppose F ⊂ G a compact subspace. Show that there is an
open, closed, compactly generated subgroup H of G containing F .

Definition 2.30. — Suppose G a topological group, and suppose H a subgroup of G. Then the group-theoretic
quotient G/H (i.e., the set of left cosets g H for g ∈G) can be topologized in the following manner:

Op(G/H ) := {U ⊂G/H | φ−1(U ) ∈ Op(G)},

where φ : G //G/H is the usual quotient map.(3)

Exercise 2.31. — Suppose G a topological group, and suppose H a subgroup of G. Show that the quotient map
φ : G //G/H is open and continuous, and if H is compact, then φ is also closed.

Exercise 2.32. — Suppose G a topological group, and suppose H a subgroup of G. Show that H is open if and only
if G/H is discrete. Show that the following are equivalent.
(2.32.1) The space G/H is Kolmogoroff.
(2.32.2) The subgroup H is closed.
(2.32.3) The space G/H is regular (T3).

Exercise 2.33. — Suppose G a compact (respectively, locally compact) topological group, and suppose H a sub-
group of G. Show that G/H is compact (resp., locally compact).

Lemma 2.34. — Suppose G a topological group and suppose H a subgroup of G. Letφ : G //G/H the quotient map.
Suppose we are given the following additional pieces of data:

(2.34.1) a symmetric neighborhood V of e such that
�

V
3�

∩H is compact, and
(2.34.2) a subset W ⊂G such that {wH | w ∈W } ⊂G/H is compact, and {wH | w ∈W } ⊂ {vH | v ∈V }.
Then the subspace V ∩W H ⊂G is compact.

(2)This is not to be confused with the inherently topological notion of compactly generated space, which plays a key role in modern homotopy
theory.
(3)Warning: the space G/H is not a group unless H is normal in G, and the space G/H almost never coincides with the identification space
obtained by identifying all points of H to a single point.
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Exercise 2.35. — Suppose G a topological group, and suppose H a subgroup of G. Show that if both H and G/H
are compact (respectively, locally compact), then so is G itself. [Hint: for the “compact” statement, apply the previ-
ous lemma to V =W =G.]

Exercise 2.36. — Suppose G a topological group, and suppose H a normal subgroup of G. Show G/H is a topo-
logical group (possibly not Kolmogoroff). Check that G/H is Kolmogoroff (hence regular) if and only if H is
closed.

Exercise 2.37. — Suppose G and G′ two topological groups, and suppose f : G′ //G an open, continuous, surjec-
tive homomorphism. Then ker f is a closed, normal subgroup of G′, and there is a unique topological isomorphism
ef : G′/H //G such that the diagram

G′

�������� f

��???????

G′/H
ef

// G

commutes.

Lemma 2.38. — Suppose G′ is a locally compact, σ -compact topological group, and suppose G a locally countably com-
pact topological group.(4) Then every continuous epimorphism f : G′ //G is open.

Exercise 2.39. — Suppose G a topological, suppose A a subgroup of G, and suppose H a normal subgroup of G.
Suppose that A is locally compact and σ -compact and that AH is locally compact as well. Show that the canonical
homomorphism

(AH )/H //A/(A∩H )
is a topological isomorphism.

Example 2.40. — The conditions of the previous exercise are, unfortunately, necessary. Suppose a ∈R an irrational
number. Then aZ/(aZ∩Z) is discrete, while (aZ+Z)/Z is not discrete.

Exercise 2.41. — Suppose G a topological group, and suppose H and K normal subgroups such that K ⊂H . Then
the canonical homomorphism

G/H //(G/K)/(H/K)
is a topological isomorphism.

Products and limits. — Also important are the operations of product, restricted product, and limit. We study
these here.

Definition 2.42. — Suppose G = {Gα | α ∈A} a family of topological groups. Then the product group
∏

G∈G G is a
topological group as well, equipped with the product topology. Contained therein is the subspace

∏∐

G∈G
G := {(gα)α∈A | for all but finitely many α ∈A, gα = e} ⊂

∏

G∈G
G.

This is known as the restricted product.
More generally, if Hα ⊂Gα is a closed subgroup for every α ∈Λ, then one may form the subspace

{Hα}
∏∐

G∈G
G := {(gα)α∈A | for all but finitely many α ∈A, gα ∈Hα} ⊂

∏

G∈G
G.

Exercise 2.43. — Suppose G = {Gα | α ∈ A} a family of topological groups. Show that
∏

G∈G G is a topological
group, and the restricted product

∏∐

G∈G G ⊂
∏

G∈G G is a dense subgroup. Show that
∏

G∈G G and
∏∐

G∈G G ⊂
∏

G∈G G are locally compact if each Gα is.
Moreover, show that if Hα ⊂Gα is a closed subgroup for every α ∈ Λ, then the restricted product Hα

∏∐

G∈G G ⊂
∏

G∈G G is a dense subgroup, which is locally compact if each Gα is locally compact, and each Hα is compact.

(4)Recall that a space X is said to be σ -compact if it can be written as the union of countably many compact spaces, and a space X is said to be
locally countably compact if every point has a countably compact neighborhood
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Exercise 2.44. — Suppose G = {Gα | α ∈ A} a family of topological groups, and suppose, for any α ∈ A, that Hα is
a subgroup of Gα. Show that the canonical homomorphism

∏

α∈A(Gα/Hα) // �∏
α∈A Gα

�

/
�∏

α∈A Hα

�

is a topological isomorphism.

Exercise 2.45. — Suppose G a topological group, and suppose {Ni}m
i=1 a finite set of normal subgroups of G with

the following properties;
(2.45.1) N1N2 · · ·Nm =G;
(2.45.2) for any k ∈ {1,2, . . . , m− 1}, the intersection (N1N2 · · ·Nk )∩Nk+1 = 1;
(2.45.3) the product U1U2 · · ·Um of any neighborhoods Ui of e in Ni (for i ∈ {1,2, . . . , m}) is a neighborhood of e

in X .
Then the canonical homomorphism

∏m
i=1 Ni

//G

is a topological isomorphism.

Exercise 2.46. — Suppose G a locally countably compact topological group, and suppose {Ni}m
i=1 a finite set of

locally compact, σ -compact normal subgroups of G satisfying conditions (2.45.1-2). Use 2.38 to verify the remaining
condition of the previous exercise, and deduce that the canonical homomorphism

∏m
i=1 Ni

//G

is a topological isomorphism.

Definition 2.47. — Suppose Λ a poset, and suppose G : Λop // TopGp a functor. That is, we are given the follow-
ing data:
(2.47.1) for any element α ∈Λ, a topological group Gα, and
(2.47.2) for any α≤β, a continuous homomorphism

φβα : Gβ
//Gα ,

subject to the following axioms:
(2.47.3) φαα = idGα

, and
(2.47.4) φγα =φβα ◦φγβ for any α≤β≤ γ .

This is sometimes called an inverse system of topological groups (though the term functor strikes me as substantially
clearer).

The limit (sometimes called the inverse limit or projective limit) of the functor G is the subspace

limG = lim
α∈Λop

Gα := {(gα)α∈Λ | for any α≤β, gα =φβα(gβ)} ⊂
∏

α∈Λ
Gα.

Exercise 2.48. — For any functor G : Λop // TopGp , show that the limit limG ⊂
∏

α∈ΛGα is a closed subgroup.
Suppose G′ a topological group. Then a collection {ψα}α∈Λ of topological homomorphisms ψα : G′ //Gα is

said to be a compatible system of topological homomorphisms if, for any α≤β, the following diagram commutes:

G′
ψβ

~~}}}}}} ψα

  AAAAAA

Gβ
φβα

// Gα.

Verify that the projection maps
prα : limG ⊂

∏

α∈ΛGα
//Gα

provide a compatible system {prα}α∈Λ of topological homomorphisms limG //Gα . Moreover, verify that {prα}α∈Λ
is universal in the following sense: for any compatible system {ψα}α∈Λ of topological homomorphismsψα : G′ //Gα ,
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there exists a unique topological homomorphism ψ : G′ // limG with the property that for any α ∈ Λ, the fol-
lowing diagram commutes:

G′
ψ

||yyyyyyy ψα

!!BBBBBB

limG prα
// Gα.

Further topological properties of topological groups. — It is frequently very helpful to understand the nature
of the connectedness of a topological group.

Notation 2.49. — Suppose G a topological group. Then the connected component of G containing the identity
element e will be denoted G0.

Exercise 2.50. — For any topological group G, the connected component G0 ⊂ G is a closed normal subgroup.
The quotient group G/G0 is totally disconnected.(5)

Exercise 2.51. — Suppose G a topological group, and suppose U a neighborhood of e . Use 2.23 to show that G0 is
contained in the group generated by U .

Exercise 2.52. — Suppose G a topological group. Any compact neighborhood U of e contains a subgroup that
both compact and open. If G is itself compact, then U contains an open (hence closed) normal subgroup N , and
G/N is finite.

Exercise 2.53. — Suppose G a topological group. Show that G0 is the intersection of all open subgroups of G.

Exercise 2.54. — Show that a locally compact group G is compactly generated if G/G0 is compact.

Exercise 2.55. — Use what you have shown so far in this subsection to show that the following are equivalent for a
locally compact group G.
(2.55.1) G is connected.
(2.55.2) There is a connected subgroup H of G such that G/H is connected.
(2.55.3) G contains no proper open subgroups.
(2.55.4) Every neighborhood of e generates G.

Exercise 2.56. — Suppose G′ and G two topological groups, and assume that G′ is locally compact. Show that the
inverse image of G0 under any open continuous epimorphism G′ //G is G′0.

Theorem 2.57 (Paracompactness of locally compact groups). — Every locally compact group is paracompact, hence
normal.(6)

Exercise 2.58. — Verify that the following are equivalent for a topological group G.
(2.58.1) G can be written as the limit of finite discrete groups.
(2.58.2) G is compact and the unit e ∈G has a fundamental system of neighborhood comprised of open and closed

normal subgroups.
(2.58.3) G is compact and G0 = 1.
(2.58.4) G is compact and totally disconnected (i.e., the connected components of G are one-point spaces).
A topological group G satisfying any (and hence all) of these conditions is called profinite.

Example 2.59. — Consider the set Z>0 of positive integers, ordered by division. Then there is a functor Zop
>0

// TopGp ,
which to any positive integer m assigns the finite discrete group Z/m, and for any positive integers m and n with
m|n, the canonical projection Z/n //Z/m . We may therefore form the limit:

bZ := lim
m

Z/m.

(5)A space is said to be totally disconnected if its connected components are one-point spaces.
(6)A space X is said to be paracompact if for every open coverU of X , there is a locally finite open refinement ofU . A space is said to be normal
(or T4) if it is T1 and for any two closed subsets C , D ⊂X there exist disjoint open sets containing C and D , respectively.
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[Unfortunately, there is some potential for confusion here with the notation for Pontryagin duality. Luckily, the
Pontryagin dual of bZ already has a nice name, so there will be no notational conflict.] This is the profinite completion
of Z.

Example 2.60. — Suppose p is a prime number; we now consider a “ p-local” version of the above construc-
tion. We can consider the set Z>0 ordered in the usual fashion, and one may define the functor Zop

>0
// TopGp ,

which to andy positive integer m assigns the finite discrete group Z/p m , and for any m ≤ n, there is a projection
Z/pn //Z/p m . Hence we form the limit:

Zp := lim
m

Z/p m .

This is a profinite group, known as the p-adic integers.

Example 2.61. — For any positive integer n, the set Z/n comes equipped with a product as well. We can therefore
speak of the set (Z/n)× of units in Z/n, i.e., elements a ∈ Z/n such that there exists an element a−1 ∈ Z/n for which
aa−1 = 1. These too yield a functor Zop

>0
// TopGp , where Z>0 is ordered by division. We may therefore form this

limit:
bZ× := lim

m
(Z/m)×.

Similarly, for any prime number p, one may form the limit:

Z×p := lim(Z/p m)×.

Example 2.62 (For students with experience in field theory). — Suppose k a field, and suppose kalg a fixed alge-
braic closure. Then the set of all finite Galois extensions k ⊂ ` form an inverse system of finite groups Gal(` : k) :=
Autk (`), where, if `′ ⊂ `, then Gal(` : k) //Gal(`′ : k) is simply the restriction. Thus one may form the limit:

Gk =Gal(kalg : k) = lim
k⊂`

Gal(` : k).

This is manifestly a profinite group.

Structure theory of locally compact abelian groups. — We now show how to reduce the study of locally compact
abelian (LCA) groups to compact abelian groups and discrete groups.

Exercise 2.63. — Recall that every LCA group A contains an open compactly generated subgroup H . Show that A
can be written as the union of its compactly generated open subgroups. Hence our structure theory focuses on the
compactly generated case, to which we now turn.

Definition 2.64. — Suppose G a topological group. Then an element g ∈ G specifies a unique homomorphism
Z //G (automatically continuous) under which g � //1. The image of this homomorphism (the subgroup gen-
erated by g ) is called a cyclic subgroup of G. If G contains a dense cyclic subgroup then G is said to be monothetic.

Similarly, the image of a continuous homomorphism R //G is called a one-parameter subgroup of G. If G
contains a dense one-parameter subgroup, then G is said to be solenoidal.

Exercise 2.65 (Weil’s lemma). — Suppose G a monothetic locally compact group. Show that either G is compact,
or else the corresponding homomorphism Z //G is a topological isomorphism.

Exercise 2.66. — Suppose G a solenoidal locally compact group. Show that either G is compact, or else the corre-
sponding continuous homomorphism R //G is a topological isomorphism.

Exercise 2.67. — Suppose A a compactly generated, LCA group. Then A contains a finitely generated discrete sub-
group N such that A/N is compact. [Hint: Find a symmetric neighborhood U of e and a finite collection of elements
{ai}ni=1 generating a subgroup H such that A=H U . Now show that some of the ai ’s generated the desired discrete
subgroup.]
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Definition 2.68. — Suppose G a topological group. An element g ∈ G is said to be compact if the closure of the
cyclic subgroup it generates is compact. Denote by c(G)⊂G the subset of compact elements.

Now assume A an abelian topological group; letF (A) be the set of all finitely generated, free abelian subgroups
W of A such that there is a compact subset K ⊂ A such that A= KW , and W ∩ c(A) = {e}. For any nonnegative
integer r , letF≤r (A)⊂F (A) be the subset of subgroups W ∈F (A) of rank≤ r . Denote by m(A) = inf{rkW |W ∈
F (A)}.

Exercise 2.69. — Suppose G a locally compact group. Show that c(G) is a subgroup, and it contains any compact
normal subgroup.

Exercise 2.70. — Use the structure theorem for finitely generated abelian groups to show that for any compactly
generated LCA group A, F (A) is nonempty. Use Weil’s lemma to deduce that every subgroup W ∈ F≤m(A)(A) is
discrete, and the quotient A/W is compact.

Exercise 2.71. — Suppose A a compactly generated LCA group that contains an open compact subgroup. Use the
structure theorem for finitely generated abelian groups to show that A has a maximal compact subgroup K such that
A∼=K ×W , where W ∈F≤m(A)(A).

Exercise 2.72. — Show that every compactly generated LCA group A is topologically isomorphic to A′×E , where
A′ is a compactly generated LCA group with an open compact subgroup, and E is a vector group.

Theorem 2.73 (Structure theorem for compactly generated LCA groups). — Every compactly generated LCA group
A is topologically isomorphic to K × E ×Zm(A), where K is a compact abelian group and E is a vector group.

Proof. — Immediate from the two exercises above.

Theorem 2.74. — Any connected LCA group A is topologically isomorphic to K × E, where E is a vector group, and
K ⊂A is a connected, maximal compact subgroup of A.

Proof. — Also immediate.

More examples. — We finish this section with some further examples of topological groups.

Exercise 2.75. — Show that R/Z is topologically isomorphic to U(1). We write Tn = (R/Z)n for any nonnegative
integer n. These LCA groups are called tori.

Exercise 2.76. — Show that, for any positive integer n, the group SO(n) contains a closed subgroup that is topo-
logically isomorphic to SO(n− 1) for which the quotient SO(n)/SO(n− 1) is topologically isomorphic to Sn−1.

Exercise 2.77. — Show that SO(2) and U(1) are topologically isomorphic.

Exercise 2.78. — Show that Sp(1) and SU(2) are topologically isomorphic.

Exercise 2.79 (For students with experience with covering spaces). — For any positive integer n, show that the
group SO(n) admits a two-fold covering homomorphism Spin(n) // SO(n) , where Spin(n) is a locally compact
group. The kernel of this continuous homomorphism is thus Z/2.

Exercise 2.80 (For students with experience with field theory). — Suppose K an algebraic number field. A place
v of K is an equivalence class of nontrivial absolute values | · |v on K . Each place v gives K the structure of a metric
space; one can complete K with respect to | · |v to get a complete metric space Kv . Show that each Kv is an LCA
group (under addition).

A place v is said to be finite if the resulting metric on K is an ultrametric in the sense that |a+b |v ≤ sup{|a|v , |b |v};
otherwise it is said to be infinite. Write P for the set of finite places of K . For any finite place v, consider the
subspace Ov ⊂ Kv comprised of elements x ∈ Kv such that |x|v ≤ 1. This is the ring of integers in Kv . Show that Ov
is a compact subgroup of Kv for every v ∈P .

Define now the adèles of the field K :
AK := {Ov}

∏∐

v∈P
Kv .
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One can embed K ⊂AK by x � //(x, x, x, . . . ) as a closed subgroup, since for any x ∈ K , the absolute value x ∈ Ov
for all but finitely many places. Consequently, one may form AK/K . This object plays an important role in modern
number theory.

3. Haar measure

Warning 3.1. — From this point on, we must assume a background in measure theory, integration, and elementary
functional analysis.

Notation 3.2. — Suppose X a locally compact Hausdorff space. Let us fix the following notations.

(3.2.1) LetB(X ) denote the family of Borel sets of X .(7) A measure onB(X ) will be called a Borel measure on X .
(3.2.2) Let C(X ) denote the set of complex-valued continuous functions on X . This is a complex Banach space under

pointwise addition and scalar multiplication, with the sup-norm || f ||u := sup{|| f (x)|| | x ∈X }.(8)
(3.2.3) Let C0(X )⊂ C(X ) denote the set of complex-valued functions f on X such that for any ε > 0, there exists a

compact subspace K ⊂X such that || f (x)||< ε for any x ∈ ûX K . This too is a Banach space.
(3.2.4) Denote by C00(X ) ⊂ C0(X ) the set of complex-valued functions with compact support, i.e., those functions

f such that there exists a compact subspace K ⊂ X such that f (x) = 0 for any x ∈ ûX K . This is a normed
vector space, dense in C00(X ).

(3.2.5) Denote by C+00(X )⊂ C00(X ) the set of real-valued functions f on X such that f (x)≥ 0 for any x ∈X .
(3.2.6) For any Borel measure µ on X and any number 1 ≤ p ≤ ∞, we have the Banach space Lp (X ,µ) of a.e.-

equivalence classes of measurable complex-valued functions on (X ,µ) such that
∫

X || f ||
p dµ < ∞, when

p <∞, or, respectively, of locally a.e.-equivalence classes of measurably complex-valued functions on (X ,µ)
when p =∞. These are equipped with the usual norms || · ||p .

(3.2.7) Let M(X ) be the set of all complex Borel measures on G obtained by the Riesz–Markov theorem; these are
the unique complex measures µΦ that correspond to complex linear functionals Φ on C0(X )

∗ such that

Φ( f ) =
∫

X
f dµΦ.

The assignment Φ � //µΦ is an isomorphism of Banach spaces C0(X )
∗ ∼=M(X ).

(3.2.8) If ι is a fixed measure on X , let Ma(X , ι)⊂M(X ) be the subset of M(X ) comprised of all complex measures
µ ∈ M(X ) that are absolutely continuous with respect to ι. By the Radon–Nikdoym theorem, for any
µ ∈Ma(X , ι), there is an a.e.-unique complex-valued function w ∈L(X , ι) such that

dµ= u dλ.

This defines an isomorphism of Banach spaces Ma(X , ι)∼=L(X , ι).

Construction of Haar measure. — It is a remarkable fact that in any locally compact group, there is a notion of
volume that is translation invariant; that is, if you move a set around using elements of the group, the volume of the
set does not change. This is the beginning of harmonic analysis.

Definition 3.3. — Suppose G a topological group. A Borel measure µ on G is said to be a left (repectively, right)
Haar measure if the following conditions are satisfied.
(3.3.1) For any compact subset K ⊂G, µ(K) is finite.
(3.3.2) There exists an open set U ⊂G for which µ(U )> 0.
(3.3.3) For any Borel set V and any g ∈G, the equalityµ(gV ) =µ(V ) (resp., the equalityµ(V g ) =µ(V )) obtains.
(3.3.4) The measure µ is regular in the sense that for any open set U ⊂G,

µ(U ) = sup{µ(K) | K is compact and K ⊂U },

(7)The collection of Borel sets is here the smallest σ -algebra containing the set Op(X ) of open sets of X . Other authors (e.g., Halmos) use a slightly
different convention.
(8)Note that the resulting topology on C(X ) is the compact-open topology!
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and for any Borel set V ,

µ(V ) = inf{µ(U ) | U is open and V ⊂U }.

The set of all left (resp., right) Haar measures on G will be denotedH `(G) (resp.,H r (G)).
If G is abelian, then left Haar measures are right Haar measures and vice versa; consequently, we may in this case

simply refer to these as Haar measures, and the set of all Haar measures on G will be denotedH (G).

Exercise 3.4. — For any topological group G, define a map R>0×H `(G) //H `(G) , (c ,µ) � // cµ . Show that
this defines an action of the group R>0 (2.5.4) onH `(G). The analogous result obviously holds for the setH r (X )
of right Haar measures.

Theorem 3.5 (Existence and unicity of Haar measure). — Suppose G a locally compact group. Then the setH `(G)
(respectively,H r (G)) is nonempty, and with the action above,H `(G) (resp.,H r (G)) is a torsor under R>0.(9)

Proof. — The proof employs the Riesz representation theorem; hence our Haar measures will correspond to certain
linear functionals on C00(X ). We begin with a definition:

Definition 3.6. — Suppose S any set. If f is any complex-valued function on G, then for any element g ∈ G, the
left translate (respectively, the right translate) of f by g is the function g f defined by the formula g f (h) := f (g h)
(resp., the function fg defined by the formula fg (h) := f (h g )). The inversion of f is the function f ? defined by the
formula f ?(h) := f (h−1).

Suppose now F any set of complex-valued functions on G with the property that if f ∈ F, then for any element
g ∈G, one has g f ∈ F (resp., one has fg ∈ F). Suppose I : F //T a map. Then I is said to be left invariant (resp.,
right invariant) if for any f ∈ F and g ∈ G, the equality I (g f ) = I ( f ) obtains (resp., the equality I ( fg ) = I ( f )
obtains). If I is both left and right invariant, then it is said to be bi-invariant. One says that I is inversion invariant
if for any f ∈ F, the equality I ( f ?) = I ( f ) obtains.

Our first task is thus to construct a left (resp., right) invariant linear functional on C00(G). We restrict ourselves
to the left invariant case; the right invariant case is in no way different. It now suffices (by using standard results on
extending functionals) to construct a functional I on C+00(G) with the following properties.

(3.5.1) For any nonzero f ∈ C00(G), the complex number I ( f ) is real and positive.
(3.5.2) For any f , g ∈ C00(G), one has I ( f + g ) = I ( f )+ I (g ).
(3.5.3) For any α≥ 0 and any f ∈ C00(G), one has I (α f ) = αI ( f ).
(3.5.4) For any g ∈G and f ∈ C00(G), the equality I (g f ) = I ( f ) obtains.

Definition 3.7. — A functional I on C+00(G) satisfying (3.5.1-4) above will be called a Haar integral.

The existence of a Haar integral will suffice show thatH `(G) is nonempty; by the Riesz representation theorem,
µ will be the unique Borel measure on G such that

I ( f ) =
∫

G
f dµ

for any f ∈ C+00(G). To confirm thatH `(G) is a torsor under R>0, it is enough to show that for any Haar measure
J , there is a positive real number c such that I = cJ . (Why does this suffice?)

Suppose f1, f2 ∈ C+00(G); assume f2 is nonzero. Write R(∞)>0 for the restricted product
∏∐∞

j=1 R>0, and write G(∞)

for the restricted product
∏∐∞

j=1 G. Now set

( f1 : f2) := inf







∞
∑

j=1

c j | (c j )
∞
j=1 ∈R(∞)>0 and there exists (s j )

∞
j=1 ∈G(∞) such that for any g ∈G, f1(x)≤

∞
∑

j=1

c j f2(s j g )







.

(9)A torsor under a group H is a set S with an action a : H // Aut S such that the shear map H × S // S × S , (h, s) � // (a(h, s), s) is a
bijection.
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Exercise 3.8. — Use the fact that f1 is compactly supported to deduce that ( f1 : f2) is finite. Moreover, verify the
following, for any f1, f2, f3, f4 ∈ C+00(G) with f3 and f4 nonzero, any g ∈G, and any α≥ 0:

(g f1 : f3) = ( f1 : g f3) = ( f1 : f3);

(α f1 : f3) = α( f1 : f3);
( f1+ f2 : f3) ≤ ( f1 : f3)+ ( f2 : f3);
( f1 : f4) ≤ ( f1 : f3)( f3 : f4).

Now we fix a nonzero function f0 ∈ C+00(G). For any nonzero functionφ ∈ C+00(G), and any function f ∈ C+00(G),

Iφ( f ) :=
( f :φ)

( f0 :φ)
;

This defines a map Iφ : C+00(G) //R . It is easy to see that Iφ(0) = 0, and for any nonzero f ∈ C+00(G), one checks
that Iφ( f ) ∈ [( f0 : f )−1, ( f : f0)]. The following facts for any f , f1, f2 ∈ C+00(G) with || f1||u ≤ || f2||u , any g ∈G, and
any α > 0, are immediate consequences of the previous exercise:

Iφ(g f ) = Iφ( f );

Iφ(α f ) = αIφ( f );

Iφ( f1+ f2) ≤ Iφ( f1)+ Iφ( f2);

Iφ( f1) ≤ Iφ( f2).

Now contemplate the product

X :=
∏

f ∈C+00(G), f 6=0

�

1

( f0 : f )
, ( f : f0)

�

.

By the Tychonoff product theorem, X is compact. For any nonzero function φ ∈ C+00(G), the function Iφ can
be viewed as a point whose f -th component is Iφ( f ) for any nonzero f ∈ C+00(G). Now let U be the set of all
neighborhoods of e in G. For each U ∈U , choose a function φU ∈ C+00(G) such that for any g ∈ ûG U , φU (g ) = 0.
Now U can be given a partial order by reverse inclusion, so that U ≤ V if and only if V ⊃ U , so the assignment
U � // IφU

is a net in X . Since X is compact, there is a subnet that converges to an element I ∈ X , which can be
regarded as a map I : C+00(G) //R≥0 (sending 0 to 0).

It is easy to see that I is real and positive on nonzero functions; I also automatically left-invariant. So it remains
to show that I satisfies (3.5.2-3). This follows from the following (challenging) exercise.

Exercise 3.9. — Suppose f1, f2, . . . , fn ∈ C+00(G) be nonzero functions, and suppose δ,ε two positive real numbers.
Then there is a neighborhood U of e in G such that for any nonzero φ ∈ C+00(G) with the property that for any
g ∈ ûG U , φ(g ) = 0, and any finite set {λ j }m

j=1 of elements of [0,ε], the inequality

m
∑

j=1

λ j Iφ( f j )≤ Iφ







m
∑

j=1

λ j f j






+δ.

obtains.

Exercise 3.10. — Show that for any functional J on C+00(G) satisfying (3.5.1-4), then for any nonzero functions
f1, f2 ∈ C+00(G), the equality

J ( f1)

I ( f1)
=

J ( f2)

I ( f2)
obtains.

This completes the proof.
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Exercise 3.11. — Show that if G is discrete, then a (left or right) Haar measure on G is a constant multiple of the
counting measure. For G discrete, the counting measure will be called the conormalized Haar measure.(10)

Exercise 3.12. — Show that if G is a nondiscrete locally compact group, then for any Haar measure λ on G, the
measure λ(A) of any countable subset A⊂G is zero.

Exercise 3.13. — Suppose G = {Gα}α∈Λ a family of locally compact groups, and suppose, for every α ∈ Λ, that λα
is a Haar measure on Gα. Show the product measure on

∏

α∈ΛGα is a Haar measure, and show that there is a unique
Haar measure on the restricted product

∏∐

α∈ΛGα whose restriction to
∏

α∈K Gα is the product measure for every
finite subset K ⊂Λ.

Exercise 3.14. — Suppose G a compact group. Then show that there is a unique left Haar measure λ on G such
that λ(G) = 1. This will be called the normalized Haar measure for G.

Exercise 3.15. — Suppose G a locally compact group, suppose λ a left Haar measure on G, and suppose H a topo-
logical group that is either σ -comopact or else contains a countable dense subset. Suppose ρ : G //H a homomor-
phism such that there exists a λ-measurable set A⊂G of finite, nonzero measure for which the set ρ−1(U∩ρ(G))∩A
is λ-measurable for any open set U ⊂H . Then show that ρ is in fact continuous.

Deduce that any homomorphism ρ : G //GLn(C) , g � //(ai j (g ))i , j , for which there is a λ-measurable set
A⊂G of finite, nonzero measure such that each function g � //ai j (g ) is measurable on A, is continuous.

Exercise 3.16. — Suppose G a locally compact group, and let µ be a left Haar measure on G. For any nonzero
function f ∈ C+00(G), and for any g ∈G, set

∆(g ) :=

∫

G fg−1 dµ
∫

G f dµ
.

Show that∆(x) is independent of the choice ofµ or f . Moreover, check that∆(g ) is positive for any g ∈G, and that
∆ : G //R>0 is continuous. Finally, show that ∆ is a group homomorphism. This continuous homomorphism
is called the modular function of G. If ∆ is the constant function at 1, then G is said to be unimodular. A group
G is thus unimodular if and only if every left Haar measure is a right Haar measure. Of course any LCA group is
unimodular.

Exercise 3.17. — Show that any compact group is unimodular. [Hint: what can you say about the image of∆?]

Exercise 3.18. — For any subset A of G, any g ∈G, and any left Haar measure µ on G, show that

µ(Ax) =∆(x)µ(A).

Conclude that if f is a nonnegative µ-measurable function on G, then for any g ∈G,
∫

G
fg dµ=

1

∆(g )

∫

G
f dµ.

Definition 3.19. — Suppose now G a locally compact group, and suppose H a closed subgroup of G. A function
ψ on the quotient set G/H can be left translated by an element g ∈ G, yielding a function gψ on G/H defined
by gψ(kH ) = ψ(g kH ). A nonzero functional J on C00(G/H ) is said to be relatively invariant if the following
conditions are satisfied.
(3.19.1) For any ψ ∈ C+00(G/H ), one has J (ψ) ∈ [0,∞).
(3.19.2) For any ψ1,ψ2 ∈ C00(G/H ), one has J (ψ1+ψ2) = J (ψ1)+ J (ψ2).
(3.19.3) For any α ∈C and ψ ∈ C00(G/H ), one has J (αψ) = αJ (ψ).
(3.19.4) For any g ∈ G there is a number χJ (g ) such that for any ψ ∈ C00(G/H ), the equality I (gψ) = χJ (g )I (ψ)

obtains.

(10)The logic behind this slightly odd terminology will be explained in due course.
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Exercise 3.20. — Suppose G a locally compact group, and suppose H a closed subgroup of G. Suppose J a relatively
invariant functional on C00(G/H ). Then the associated function χJ on G is real, positive, and continuous. [Hint:
for continuity, show that χ is continuous at e by verifying the following Lemma: Supposeψ a continuous, complex-
valued function on G/H such that for any δ > 0 there is a compact subset F of G outside of whose image in G/H
one has ||ψ|| < δ. Then for any ε > 0, there is a symmetric neighborhood V of e ∈ G such that for any g , k ∈ G
with k g−1 ∈V , one has ||ψ(g H )−ψ(kH )||< ε.]

Exercise 3.21. — Suppose G a locally compact group, and suppose H a closed subgroup of G. Suppose I a left Haar
integral on H . Show the map ΨI : C00(G) //C00(G/H ) defined by

(ΨI f )(g H ) := I (g f )

is a surjective linear map. Deduce that if J is a relatively invariant linear functional on C00(G/H ), then for any
h ∈H ,

χJ (h) =
∆G(h)

∆H (h)
,

where∆G is the modular function of G, and∆H is the modular function of H . [Hint: show the functional K( f ) :=
J (ΨI (χJ f )) is a Haar integral for G.]

Exercise 3.22. — Suppose G a locally compact group, and suppose H a closed normal subgroup of G. Show that
the Haar integral on G/H defines a relatively invariant linear functional on C00(G/H ), so that χI = 1. Conclude
that∆G =∆H in this case.

Exercise 3.23. — Suppose G a locally compact group, and suppose H a closed subgroup of G. Suppose, more-
over, that there is an extension of the homomorphism ∆G/∆H : H //R>0 to a continuous homomorphism
χ : G //R>0 . Then show that there is a relatively invariant functional J on C00(G/H ) such that χJ = χ . [Hint: if
q : G //G/H is the quotient map, show that J ( f ) = I (χ−1(q ◦ f )) is desired functional.]

Convolutions. — On any locally compact group G, we may contemplate the space of continuous functions that
vanish at∞. The linear dual to this space carries an important algebra structure, called convolution, which reflects
certain properties of G itself.

Definition 3.24. — Suppose G a group, and suppose F a vector space of complex-valued functions on G. Suppose
F is closed under left translations in the sense that g f ∈ F whenever f ∈ F and g ∈G. If Ψ ∈ F∗ is a complex-valued

linear functional on F, then for any function f ∈ F, write Ψ f for the complex-valued function on G defined by the
formula Ψ f (g ) := M (g f ). If Ψ f ∈ F, then for any linear functional Φ ∈ F∗, there is a linear functional Φ ∗Ψ ∈ F∗

such that (Φ ∗Ψ) f :=Φ(Ψ f ).
Put differently, our assumption thatF is closed under left translations is the claim that the assignment (g , f ) � // g f

defines a map G×F //F , which can be reinterpreted as a map F //Map(G,F) ; the assignment f � //Ψ f is
the composite

F //Map(G,F) Ψ◦− //Map(G,C).

If Ψ f ∈ F for every f ∈ F, then this map factors through F⊂Map(G,C), whence we have a map F //F . Now if
Φ ∈ F∗ is a linear functional, then composition with yields a new linear functional Φ?Ψ. This new linear functional
is called the convolution of Φ and Ψ.

A vector subspace E ⊂ F∗ is called a convolution algebra if for any Φ,Ψ ∈ E, the convolution Φ ∗Ψ exists and is
an element of E.

3.25. — Suppose, for the remainder of this section, that G is a locally compact group, and λ is a chosen left Haar
measure on G.

Exercise 3.26. — Show that for any function f ∈ C0(G) and any linear functional Φ ∈ C0(G)
∗, the function Φ f is

in C0(G)
∗. Conclude that C0(G)

∗ is a convolution algebra, and in fact it is a Banach algebra.
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Exercise 3.27. — Consider, for any element g ∈G, the functional Eg ∈ C0(G)
∗ defined by Eg ( f ) = f (g ); i.e., Eg is

evaluation at g . Show that for any elements g , h ∈ G, the identity Eg ∗ Eh = Eg h obtains. Moreover, Ee is the unit
for −∗−.

Exercise 3.28. — By the Riesz-Markov theorem, on the Banach space M(G) there is a convolution product on
−∗−, giving M(G) the structure of a Banach algebra. Show that if Φ,Ψ ∈ C0(G)

∗, then

(Φ ∗Ψ)( f ) =
∫

G
f d (µΦ ∗µΨ) =

∫

G

∫

G
f (g h) dµΦ(g ) dµΨ(h).

Conclude that for any µ, ν ∈M(G), and for any ||µ ∗ ν ||-measurable subset A⊂X ,

(µ ∗ ν)(A) = (µ× ν)(τ−1A) =
∫

G
ν(g−1A) dµ(g ) =

∫

G
µ(Ah−1) d ν(h),

where τ : G×G //G is the group multiplication.

Exercise 3.29. — Suppose G a locally compact group, and suppose H a closed normal subgroup of G. Suppose λG
and λH fixed Haar measures on G and H , respectively. Show that a Haar measure λG/H can be chosen so that

∫

G
f (x) dλG(x) =

∫

G/H

∫

H
f (xξ ) dλH (ξ ) dλG(xH ).

This is sometimes known as Weil’s identity.

Exercise 3.30. — Show that if A is an LCA group, use Fubini to show that the Banach algebra M(A) is commutative.

Exercise 3.31. — Show that if µ ∈M(G) and ν ∈Ma(G,λ), then both µ∗ν and ν ∗µ are also absolutely continuous
with respect to λ. Hence Ma(G,λ) is a two-sided Banach ideal in M(G).

Deduce that for any µ ∈M(G) and any f ∈L1(G,λ), there are convolutions µ ∗ f , f ∗µ ∈L1(G,λ) such that

(µ ∗ f )(g ) =
∫

G
f (h−1 g ) dµ(h) and ( f ∗µ)(g ) =

∫

G

1

∆(h)
f (g h−1) dµ(h)

for almost all g ∈G. In particular, for any f1, f2 ∈L1(G,λ), there is a convolution f1 ∗ f2 ∈L1(G,λ) such that

( f1 ∗ f2)(g ) =
∫

G
f1(h) f2(h

−1 g ) dλ(h) =
∫

G
f1(g h) f2(h

−1) dλ(h)

=
∫

G

1

∆(h)
f1(g h−1) f2(h) dλ(h) =

∫

G

1

∆(h)
f1(h

−1) f2(h g ) dλ(h).

Exercise 3.32. — Suppose now 1≤ p ≤∞. Show that for any Borel measurable function f ∈Lp (G,λ) and for any
complex measure µ ∈M(G), there is a subset Z ⊂ G that is λ-null if p <∞ and locally λ-null if p =∞ such that
for any g ∈ ûGZ , the integral

(µ ∗ f )(g ) =
∫

G
f (h−1 g ) dµ(h)

exists and is finite. Defining µ ∗ f as 0 where it is not defined, show that µ ∗ f ∈Lp (G,λ), with

||µ ∗ f ||p ≤ ||µ|| · || f ||p .

Hence Lp (G,λ) is a left Banach module over the Banach algebra M(G), and consequently over L1(G,λ) as well.
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Examples of Haar measure. — Let us look at a few examples of Haar measure. These examples get pretty compli-
cated pretty quickly (evidence for the power of the theory!), so we will stick with simple examples for now.

Exercise 3.33. — Consider the additive group R. Show that the ordinary Lebesgue measure on R is a Haar measure.
More generally, the Lebesgue measure is a Haar measure on any Rn .

Given a vector group E (i.e., a finite-dimensional real vector space), the choice of a basis specifies an isomorphism
E ∼= Rn , under which we can transport the Haar measure. The group GL(E) therefore acts transitively onH (E).
However, this action is not faithful: since the action GL(E)×H (E) //H (E) is (φ,µ) � // ||detφ||µ , the action
factors through GL(E)/(SL(E)×Z/2)∼=R.

Example 3.34. — Consider the circle U(1). This is a compact group, so there is a unique left Haar measure λ on
U(1) such that λ(U(1)) = 1. For any f ∈ C+00(U(1)), one may interpret f as a function on the interval [0,1] so that

I ( f ) =
1

2π

∫ 2π

0
f (e2πθ

p
−1) dµ(θ)

is the normalized Haar integral, where µ is usual Lebesgue measure on [0,1].

Exercise 3.35. — Suppose n a nonnegative integer. Then we can regard GLn(R) as a subspace of Rn2
. Verify that

the formula

µ(S) =
∫

S

1

||detA||n
dµ(A),

where µ is the usual Lebesgue measure on Rn2
.

Exercise 3.36. — Using the Euler angles, show that, for any f ∈ C+00(G),

I ( f ) =
1

8π2

∫ π

0

∫ 2π

0

∫ 2π

0
f (Z(ψ)X (θ)Z(φ)) sinθ dµ(ψ) dµ(φ) dµ(θ)

is the normalized Haar integral on SO(3), where µ is the usual Lebesgue measure.

4. Pontryagin duality

Character groups of locally compact abelian groups. — The set of 1-dimensional representations, or characters of
a locally compact abelian (LCA) group completely characterize that group. We now discuss the theory of characters
of and LCA group now.

Definition 4.1. — Suppose G a locally compact group. Then a character of G is a continuous homomorphism

χ : G //U(1) .

The character group, (Pontryagin) dual group of G is the (abelian) group bG of characters of G, under the pointwise
product, equipped with the compact-open topology.

Exercise 4.2. — Suppose G a locally compact group. Show that the topology on bG is generated by sets of the form

{h ∈G | for any g ∈K , ||g h −χ (g )||< ε},

where K ⊂G is compact, χ ∈ bG, and ε > 0.

Exercise 4.3. — For any locally compact group G, show that the map

bG×G // U(1)

(χ , g ) � // χ (g )

is continuous.
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Exercise 4.4. — Show that bG is an LCA group for any group G. Moreover, show that the assignment G � //
bG is a

contravariant functor, in the sense that for any continuous homomorphismφ : G′ //G , there is a dual continuous
homomorphism

bφ : bG //
bG′

given by bφ(χ ) = χ ◦φ.

Exercise 4.5. — Suppose G a locally compact group. Show that the intersection
⋂

χ∈ bG kerχ is the closure C of the

commutator subgroup [G : G] of G.(11) Deduce that the groups bG andÖG/C are topologically isomorphic.

4.6. — It follows from the previous exercise that the character group of a locally compact group only sees the
abelian topological quotient. Let us assume from now on that A is an LCA group with chosen Haar measure λ.(12)

Exercise 4.7. — The topological group bA is an LCA group. If A is discrete, then bA is compact, and if A is compact,
then bA is discrete. In particular, show that if A is profinite, then bA is torsion discrete, and if A is torsion discrete,
then bA is profinite.

Exercise 4.8. — Suppose A a compact abelian group, and suppose Γ ⊂ bA a subgroup such that for every g ∈ A,
either g = e or else there is a character χ ∈ Γ such that χ (g ) 6= 1. Then Γ= bA. [Hint: Stone-Weierstraß.]

Exercise 4.9. — Suppose A an LCA group, suppose B a closed subgroup of A, and suppose ψ ∈ bB a character of B .
Then if B is either compact or open, there is a character χ of G extending ψ.

Exercise 4.10. — SupposeA = {Aα}α∈Λ any family of compact abelian groups. Then show that there is a natural
topological isomorphism

∏∐

α∈Λ

bAα ∼=
Ø

∏

α∈Λ
Aα.

Show that the same result holds ifA = {Aα}α∈Λ is a finite family of LCA groups. [Hint: define a homomorphism
from the left to the right by the sending any tuple (χα)α∈Λ of characters in the restricted product to the function
(gα)α∈Λ

� //∏
α∈Λχα(gα) .]

Definition 4.11. — Suppose A an LCA group, and suppose B a closed subgroup. Define the annihilator B⊥ ⊂ bA of
B in bA as the subset of characters χ ∈ bA such that χ (h) = 1 for any h ∈A.

Exercise 4.12. — Suppose A an LCA group, and suppose B a closed subgroup; write q : A //A/B for the quotient
map. Show that B⊥ is a closed subgroup of bA, and show that the map χ � //χ ◦ q is a topological isomorphism
ÔA/B ∼= B⊥. Deduce that if g ∈ A is an element not contained in B , then there exists a character χ ∈ bA such that
χ (g ) 6= 1.

Exercise 4.13. — Suppose A an LCA group, and suppose B an open subgroup. Show that the natural continuous
homomorphism bA //

bB induced by the inclusion is open. Deduce that bB ∼= bA/B⊥.

Exercise 4.14. — (4.14.1) Show that the character group of any vector group E is isomorphic to the dual vector
space E∗. [Hint: For any ξ ∈ E∗, contemplate the map χξ : x � // e2π

p
−1ξ (x) .]

(4.14.2) Show that for every nonnegative integer m, the Pontryagin dual of Zm is the torus Tm .
(4.14.3) Show that, in the other direction, for every nonnegative integer m, the Pontryagin dual of Tm is Zm .

(11)The commutator subgroup [G : G] of a group G is the group generated by elements of the form g h g−1 h−1. If C is the closure of [G : G]
in G, then G/C is the abelian topological quotient, in the sense that for any LCA group A, any continuous homomorphism G //A factors
uniquely through the quotient G //G/C .
(12)I no longer have to say “left” or “right” Haar measure, because A is a abelian!
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(4.14.4) If A is a finite abelian group, show that bA is (noncanonically) isomorphic with itself. [Hint: show this first
for cyclic groups Z/m by contemplating the map k � // e2π

p
−1(k/m) ; then use the classification of finite

abelian groups.]
(4.14.5) Show that the dual group of bZ (the profinite completion of the integers!) is the discrete group Q/Z. [Hint:

if we write bZ as a limit of its finite quotient, then its dual group must contain each of these finite groups as
a subgroup.]

(4.14.6) Show that, in the other direction, the dual group of Q/Z is bZ.
(4.14.7) For any prime number p, show that the dual group of Zp is the Prüfer p-group(13) Z[ 1

p ]/Z, and show that

dual group of Z[ 1
p ]/Z is Zp .

Exercise 4.15 (For students with experience with field theory). — Here is a more exotic example. Suppose K a
number field, and recall the group of adèles AK of ??; this an LCA group. Show that AK is its own Pontryagin dual,
and use this to show that the Pontryagin dual of K with the discrete topology is AK .

The Fourier transform and the inverse Fourier transform. — Fourier analysis is one of the cornerstones of
modern mathematics. In this subsection, we generalize the basic constructions — the Fourier transform and the
inverse Fourier transform — to their most natural context: that of LCA groups.

4.16. — Suppose here A an LCA group.

Exercise 4.17. — Suppose λ ∈ H (A), and suppose Φ a (nonzero) multiplicative linear functional on Ma(A,λ).
Show that there is a unique character χΦ of G such that for any µ ∈Ma(A,λ),

Φ(µ) =
∫

A
χΦ dµ.

This defines a homeomorphism between the set of multiplicative linear functionals on Ma(A,λ) (with the subspace
topology inherited from Ma(A,λ)∗) and the character group bA.

Exercise 4.18. — Suppose now A compact, and suppose λ ∈H (A). Verify that for any χ ∈ bA,
∫

A
χ dλ= δ1(χ )λ(A),

where δ1 is the Kronecker delta function at 1 on the discrete group bA.

Definition 4.19. — For any µ ∈M(A), denote by µ̂ the complex-valued function on bA such that

µ̂(χ ) :=
∫

A
χ (g ) dµ(g ).

This is called the Fourier–Stieltjes transform of µ. If now µ ∈ Ma(A,λ) for a Haar measure λ ∈ H (A), so that
dµ= f dλ for some f ∈L1(A,λ), then we may write f̂ for µ̂, and we call f̂ the Fourier transform of f relative to λ.

Dually, for any µ ∈M( bA), denote by µ̌ the complex-valued function on A such that

µ̌(g ) :=
∫

bA
χ (g ) dµ(χ ).

This is called the inverse Fourier–Stieltjes transform of µ. If now µ ∈Ma( bA,λ) for a Haar measure λ ∈ H ( bA), so
that dµ= f dλ for some f ∈ L1( bA,λ), then we may write f̂ for µ̂, and we call f̂ the inverse Fourier transform of f
relative to λ.

Exercise 4.20. — Confirm the following properties about the Fourier–Stieltjes transform (respectively, about the
inverse Fourier–Stieltjes transform) for any µ, ν ∈M(A) (resp., for any µ, ν ∈M( bA)) and any α ∈C:

(4.20.1) Öµ+ ν = µ̂+ ν̂ (resp., (µ+ ν)∨ = µ̌+ ν̌);

(13)The Prüfer p-group is the subgroup of the circle consisting of the set of all pn -th roots of unity for n > 0.
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(4.20.2) Óαµ= αµ̂ (resp., (αµ)∨ = αµ̌);
(4.20.3) Õµ ∗ ν = µ̂ ∗ ν̂ (resp., (µ ∗ ν)∨ = µ̌ ∗ ν̌);
(4.20.4) sup{||µ̂(χ )|| | χ ∈ bA} ≤ ||µ|| (resp., sup{||µ̌(g )|| | g ∈A} ≤ ||µ||).
(4.20.5) If µ 6= 0, then µ̂ 6= 0 (resp., µ̌ 6= 0).

Exercise 4.21. — Show that if f ∈ L1(A,λ) (respectively, if f ∈ L1( bA,λ)) for a Haar measure λ ∈ H (A) (resp., a
Haar measure λ ∈H ( bA)), then f̂ ∈ C0( bA) (resp., f̌ ∈ C0(A)). [Hint: show that for any ε > 0, there is a neighborhood
U of e in G such that ||g f − f ||1 < ε for any g ∈U .]

Definition 4.22. — For any measure µ ∈M(A), denote by T(A) the vector space of complex-valued functions on A
spanned by the characters χ ∈ bA. The elements of T(A) will be called trigonometric polynomials.

Exercise 4.23. — Show that for any measure µ ∈M(A) and for any 1 ≤ p <∞, the vector space T(A) is a dense
subspace of Lp (A, ||µ||). [Hint: Stone–Weierstraß.]

Exercise 4.24. — Use the previous exercise to show that the Fourier–Stieltjes transform µ � //µ̂ (respectively, the
inverse Fourier–Stieltjes transform µ � //µ̌ ) is an isomorphism

M(A) //Cu ( bA) (resp., M( bA) //Cu (A) )

that restricts to an isomorphism from L1(A) (resp., from L1( bA)) onto a dense subalgebra of C0( bA) (resp., a dense
subalgebra of C0(A)). This subalgebra is known as the Wiener algebra A( bA) (resp., A(A)).

Exercise 4.25. — Recall that if E is a vector group, then its dual group is the dual vector space E∗; a vector ξ can
be regarded as a character x � // e2π

p
−1ξ (x) . Now for any Haar measure λ ∈ H (E), the Fourier transform of any

function f ∈L1(E ,λ)may be written as

f̂ (ξ ) =
∫

E
f (x)e−2π

p
−1ξ (x) dλ(x).

Similarly, the inverse Fourier transform of any function f ∈L1(E
∗,λ)may be written as

f̌ (x) =
∫

E∗
f (ξ )e2π

p
−1ξ (x) dλ(ξ ).

Exercise 4.26. — The dual group to the torus Tn is Zn . Let us take the normalized Haar measure λ on Tn and
the conormalized (counting) Haar measure on Zn . Show that for any sequence a = (am)m∈Zn ∈ `1(Z

n) of complex
numbers, the function

ǎ(θ1,θ2, . . . ,θn) =
1

(2π)n
∑

m∈Zn

am e2π
p
−1(m1θ1+···+mnθn )

is a continuous function on Tn .

Pontryagin duality. —

Exercise 4.27. — Suppose A an LCA group. Denote by A′ the double dual
b

bA of A. For any g ∈ A, let ηA(g ) be the
function on bA defined by the formula ηA(g )(χ ) := χ (g ). Show that this defines a continuous homomorphism

ηA : A //A′

Theorem 4.28. — For any LCA group A, the map ηA is a topological isomorphism.

Proof. — The proof proceeds in stages.

Exercise 4.29. — Use 4.8 to show that the theorem holds for any compact group and any discrete group.

Exercise 4.30. — Use the structure theorem 2.73 of compactly generated LCA groups to show that the theorem
holds for any compactly generated LCA group.

Exercise 4.31. — Use 2.63 to complete the proof.
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4.32. — It would be nice to have a proof that doesn’t rely on classification results, but I do not know of one.

Exercise 4.33 (For students who have experience with elementary category theory)
Show that the category LCA of LCA groups is equivalent to its opposite. Moreover, since any finite-dimensional

real vector space is also an LCA group, show that the equivalence LCA ' LCAop restricts to the equivalence
VectR 'Vectop

R given by taking the dual vector space.

Fourier inversion, Plancherel theorem, and Parseval’s identity. — Now we quickly extract three seminal results
in harmonic analysis. We are forced to begin by quoting a key technical lemma.

4.34. — Suppose A an LCA group.

Lemma 4.35. — Suppose A∼= A′ × E, where A′ is an LCA group with an open compact subgroup K ⊂ A′, and E is a
vector group of real dimension d . Suppose ∆ ⊂ bA a σ -compact subgroup of the form E∗×∆0, where ∆0 is a σ -compact
subgroup containing K⊥. Then there are a sequence {wn}∞n=1 of functions in C+0 (

bA)∩L1( bA) and a sequence {φn}∞n=1 in
C+0 (A)∩L1(A) with the following properties:
(4.35.1) the image of wn is contained in [0,1] for any n;
(4.35.2) wn ≤ χ∆, where χ∆ denotes the characteristic function of∆, for any n;
(4.35.3) wn = w?

n [3.6] for any n;
(4.35.4) limn→∞wn = χ∆;
(4.35.5) w̌n =φn for any n;
(4.35.6)

∫

Gφn dλ for any n;
(4.35.7) φn =φ

?
n for any n;

(4.35.8) if ψ ∈∆, then limn→∞ψ ∗φn =ψ;
(4.35.9) if ψ ∈ û

bA∆, then ψ ∗φn = 0 for any n;

(4.35.10) if f ∈ C00(A) and {ψ ∈ bA | f̂ (ψ) 6= 0} ⊂∆, then limn→∞ f ∗φn = f .

Exercise 4.36. — Suppose λ ∈H (A). Use the technical lemma above along with Fatou’s lemma to show that there
is a Haar measure µ ∈ H ( bA) such that for any function f ∈ L1(A,λ) ∩ L2(A,λ), the Fourier transform f̂ is an
element of C0( bA)∩L2( bA,µ), and

|| f̂ ||2 ≤ || f ||2.

Dually, for any function φ ∈L1( bA,µ)∩L2( bA,µ), the inverse Fourier transform φ̌ is an element of C0(A)∩L2(A,λ),
and

||φ̌||2 ≤ ||φ||2.

4.37. — Suppose λ ∈ H (A), and suppose µ ∈ H ( bA) as above. Then since L1(A,λ)∩L2(A,λ) is dense in L2(A,λ),
the Fourier transform f � // f̂ can be extended uniquely to a linear continuous map L2(A,λ) //L2( bA,µ) . Dually,

the inverse Fourier transform f � // f̌ can be extended uniquely to a linear continuous map L2( bA,µ) //L2(A,λ) .

Exercise 4.38 (Fourier inversion formula). — Use our technical lemma again to show that for any λ ∈ H (A),
there is a unique µ ∈H ( bA) such that any f ∈L2(A,λ),

ˇ̂
f = f ,

and for any φ ∈L2( bA,µ),
ˆ̌
φ=φ.

4.39. — Given a Haar measure λ ∈H (A), the unique measure µ ∈H ( bA) for which the Fourier inversion formula
obtains is called the dual measure. It follows from Pontryagin duality that the formation of the dual measure is a
bijection H (A) //H ( bA) . We will simply refer to elements of the graph of this bijection as dual pairs of Haar

measures on A and bA.
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Exercise 4.40 (Plancherel’s theorem). — Suppose (λ,µ) a dual pair of measures on A and bA. Use the Fourier in-
version formula to show that the Fourier transformation is a linear isometry L2(A,λ) //L2( bA) whose inverse is
the inverse Fourier transformation.

Exercise 4.41 (Parseval’s identity). — Show that for any f1, f2 ∈L2(A), the identity
∫

A
f1 f2 dλ=

∫

bA
f̂1 f̂2 dµ.

obtains.

Exercise 4.42. — Use Parseval’s identity to solve the first riddle posed in 1.1 in the following way. Consider the
characteristic function

χ[−1,1](x) =

(

1 if |x| ≤ 1;
0 else

on R. Contemplate its Fourier transform and use Parseval’s identity to show that
∫ ∞

−∞

sin2 t

t 2
dt =π.

Exercise 4.43. — Use Parseval’s identity to address the other riddle from 1.1. [Hint: the answer is π/4.]

Exercise 4.44. — For any positive integer m, compute
∫ ∞

−∞

sin2m t

t 2m
dt .

Exercise 4.45. — Now let’s discuss the second riddle, 1.2. For any positive integer m, write

ζ (2m) =
∞
∑

n=1

1

n2m
=

1

2

∑

n∈Z

1

n2m
.

This suggests we should use Parseval’s identity with A=U(1) and bA= Z. Using this thought, show that

ζ (2m) =
(−1)m+1(2π)mB2m

2(2m)!
,

where B2m is the 2m-th Bernoulli number. The k-th Bernoulli number is defined as the k-th coefficient in the power
series expansion of t/(e t − 1):

t

e t − 1
=
∞
∑

k=0

Bk

t k

k!
.

They can be described with a simple closed formula:

Bk =
k
∑

i=0

i
∑

j=0

�i

j

� j k

i + 1
.

We haven’t addressed Ramanujan’s mysterious remarks. I hope it has piqued your curiosity!

CLARK BARWICK


