THE FUNDAMENTAL GROUPOID AND THE POSTNIKOV TOWER

18.904

1. NUMERICALLY GENERATED SPACES

Let us agree now that the word *space* means "topological space," and the word *map* means "continuous map." If we wish to speak of an ordinary mapping between sets, with no continuity demands, we will use the phrase *set map*.

1.1. **Definition.** For any space Y, a *test map* is a map $V \rightarrow Y$, where V is an open subset of some Euclidean space \mathbb{R}^{N} .

Suppose X a (topological) space. A subset $U \subset X$ is *numerically open* if for any test map $\phi \colon V \longrightarrow X$, the inverse image $\phi^{-1}(U) \subset V$ is open.

1.2. **Lemma.** Any open set of a space is numerically open; however, there exist spaces that contain numerically open sets that are not open.

1.3. Definition. We will say that a space X is *numerically generated* if every numerically open set is open.

1.4. **Example.** Any open subset of a Euclidean space \mathbf{R}^{N} is numerically generated.

1.5. Lemma. Any open subset of a numerically generated space is numerically generated.

1.6. **Lemma.** Suppose X and Y numerically generated spaces. Then a function $X \rightarrow Y$ is continuous just in case, for any test map $V \rightarrow X$, the composite $V \rightarrow Y$ is continuous.

1.7. **Proposition.** *The disjoint union of any family of numerically generated spaces is numerically generated.*

1.8. Notation. Let us write $I := [0, 1] \subset \mathbf{R}$.

1.9. **Proposition.** *The following are equivalent for a space* X.

Date: Spring 2014.

(1.9.1) X is numerically generated.

- (1.9.2) A subset $U \subset X$ is open if, for any map $\phi: I \longrightarrow X$, the inverse image $\phi^{-1}(U) \subset I$ is open.
- (1.9.3) A subset $U \subset X$ is open if, for any map $\phi \colon \mathbf{R} \longrightarrow X$, the inverse image $\phi^{-1}(U) \subset \mathbf{R}$ is open.

1.10. Example. The poorly named "topologist's sine curve"

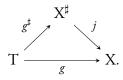
$$\{(x, y) \in \mathbf{R}^2 \mid [x \neq 0] \land [y = \sin(1/x)]\} \cup \{(0, 0)\} \subset \mathbf{R}^2$$

is not numerically generated.

1.11. **Proposition.** The collection of numerically open subsets of a space X form a new topology that is as fine as the original topology on X.

1.12. **Definition.** Suppose X a space. The set X equipped with the topology on a space X given by the previous proposition will be called the *numericalization* of X, and it will be denoted X^{\sharp} . (So an open set of X^{\sharp} is precisely a numerically open set of X.)

1.13. **Proposition.** For any space X, the space X^{\sharp} is numerically generated. Furthermore, the identity on X is a map $j_X : X^{\sharp} \longrightarrow X$ with the following property: for any numerically generated space T and any map $g : T \longrightarrow X$, there exists a unique map $g^{\sharp} : T \longrightarrow X^{\sharp}$ such that the triangle



commutes.

1.13.1. Corollary. For any space X, one has

$$(\mathbf{X}^{\sharp})^{\sharp} = \mathbf{X}^{\sharp}.$$

1.13.2. Corollary. For any map $g: X \longrightarrow Y$, there exists a unique map

$$g^{\sharp}\colon \mathbf{X}^{\sharp} \longrightarrow \mathbf{Y}^{\sharp}$$

2

such that following diagram commutes:

1.14. **Example.** Consider $\mathbf{Q} \subset \mathbf{R}$ with its subspace topology. Then \mathbf{Q} is not numerically generated, as \mathbf{Q}^{\sharp} is discrete.

1.15. **Definition.** Suppose that X, Y, and Z are three sets, and suppose that $p: X \longrightarrow Z$ and $q: Y \longrightarrow Z$ are two maps of sets. Then the subset

$$\mathbf{X} \times_{\mathbf{Z}} \mathbf{Y} := \{ (x, y) \in \mathbf{X} \times \mathbf{Y} \mid p(x) = q(y) \} \subset \mathbf{X} \times \mathbf{Y}$$

is called the *fiber product of* X *and* Y *over* Z. (When Z is the one-point space *, of course $X \times_Z Y = X \times Y$.)

Suppose X, Y, and Z numerically generated spaces, and suppose that p and q are continuous. If we endow X × Y with the product topology, then we can equip X ×_Z Y with the subspace topology. However, we will go one step further and consider the numericalization of these topologies. We will just denote the resulting numerically generated spaces as

$$X \times_Z Y \subset X \times Y$$

(without any further decoration). We will call this the *numerically generated fiber product* of X and Y over Z.

1.16. Notation. For any spaces X and Y, write Map(X, Y) for the set of maps $X \longrightarrow Y$.

1.17. **Proposition.** Suppose that X, Y, and Z are numerically generated spaces, and suppose that $p: X \longrightarrow Z$ and $q: Y \longrightarrow Z$ are two maps. Then the numerically generated fiber product $X \times_Z Y$ enjoys the following universal property: for any numerically generated space U, the maps $X \times_Z Y \longrightarrow X$ and $X \times_Z Y \longrightarrow Y$ induce a bijection

$$\operatorname{Map}(U, X \times_Z Y) \xrightarrow{\sim} \operatorname{Map}(U, X) \times_{\operatorname{Map}(U, Z)} \operatorname{Map}(U, Y).$$

1.18. **Definition.** Suppose X and Y two numerically generated spaces. For any compact subset $K \subset X$, and any open subset $W \subset Y$, write

$$U(K, V) := \{g \in Map(X, Y) \mid \forall x \in K, g(x) \in W\}.$$

Then we may generate a topology on Map(X, Y) by the subbase consisting of all the sets U(K, W), called the *compact-open topology*. Again we will go one step

further and consider the numericalization Map(X, Y) of this space. We will call this the *numerically generated mapping space* from X to Y.

1.19. **Proposition.** Suppose that X, Y, and Z are numerically generated spaces. Then there is a natural homeomorphism

$$Map(X \times Y, Z) \cong Map(X, Map(Y, Z)).$$

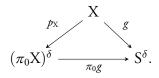
2. Existence and connectedness

2.1. **Notation.** For any set S, denote by S^{δ} the set S equipped with the discrete topology. Note that S^{δ} is numerically generated. For any set map $F: S \longrightarrow T$, we denote the corresponding map of spaces $S^{\delta} \longrightarrow T^{\delta}$ by F^{δ} .

2.2. **Definition.** Suppose X a space. Consider the equivalence relation \sim on the points of X generated by declaring that $x \sim y$ if there exists a map $\gamma: I \longrightarrow X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. Write $\pi_0 X$ for the set of equivalence classes of points of X under this equivalence relation. The elements of $\pi_0 X$ will be called *path components* of X. Write p_X for the set map $X \longrightarrow \pi_0 X$ that carries a point of X to its equivalence class.

2.3. **Example.** For any set S, one has $\pi_0(S^{\delta}) = S$. Any Euclidean space \mathbf{R}^N has $\pi_0 \mathbf{R}^N = \{*\}$.

2.4. **Theorem.** Suppose X a numerically generated space. Then the set map p_X is continuous as a map $X \rightarrow (\pi_0 X)^{\delta}$. Furthermore, it has the following universal property: for any set S and any map $g: X \longrightarrow S^{\delta}$, there exists a unique set map $\pi_0 g: \pi_0 X \longrightarrow S$ such that the following diagram commutes:

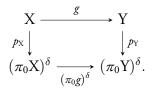


2.4.1. **Corollary.** For any map $g: X \longrightarrow Y$ between numerically generated spaces, there exists a unique set map

$$\pi_0 g: \pi_0 X \longrightarrow \pi_0 Y$$

4

such that following diagram commutes:



2.4.2. **Corollary.** *The following are equivalent for a numerically generated space* X.

- (2.4.2.1) The set $\pi_0 X$ consists of exactly one point.
- (2.4.2.2) There exists a point $x \in X$ such that for any point $y \in X$, there exists a map $\gamma \colon I \longrightarrow X$ such that $\gamma(0) = x$ and $\gamma(1) = y$.
- (2.4.2.3) There is exactly one nonempty subset of X that is both open and closed.

2.5. **Example.** The (still poorly named) "topologist's sine curve" of Ex. 1.10 satisfies condition (2.4.2.3) but not condition (2.4.2.2).

2.6. **Definition.** A numerically generated space will be said to be *connected* if the equivalent conditions of Cor. 2.4.2 hold.

2.7. **Example.** *The empty space is not connected.*

2.8. **Proposition.** Suppose $g: X \longrightarrow Y$ a surjective map between numerically generated spaces. Then Y is connected if X is.

2.9. **Example.** For any natural number $n \ge 1$, the *n*-sphere

$$\mathbf{S}^n \mathrel{\mathop:}= \{x \in \mathbf{R}^{n+1} \mid ||x|| = 1\}$$

is connected. However, S^0 is not connected.

2.10. Lemma. For any numerically generated space X, the set map

$$\pi_0 \operatorname{id}_X \colon \pi_0 X \longrightarrow \pi_0 X$$

is the identity map.

2.11. **Proposition.** Suppose that X, Y, and Z are numerically generated spaces, and suppose $p: X \longrightarrow Y$ and $q: Y \longrightarrow Z$ are two maps. Then the two set maps $\pi_0 X \longrightarrow \pi_0 Z$ given by $\pi_0(q \circ p)$ and $(\pi_0 q) \circ (\pi_0 p)$ are equal.

2.11.1. **Corollary.** If $g: X \longrightarrow Y$ is a homeomorphism between numerically generated spaces, then $\pi_0 g: \pi_0 X \longrightarrow \pi_0 Y$ is a bijection.

2.12. **Example.** For any integer $n \neq 1$, the Euclidean spaces **R** and **R**ⁿ are not homeomorphic.

2.13. Example. The capital letters T and X are not homeomorphic.

2.14. **Example.** For any integer $n \neq 1$, the Euclidean spaces S^1 and S^n are not homeomorphic.

2.15. **Proposition.** For any numerically generated space X and any set S, the numerically generated space $Map(X, S^{\delta})$ is discrete.

2.15.1. **Corollary.** For any numerically generated spaces X and Y, the two maps $X \times Y \longrightarrow X$ and $X \times Y \longrightarrow Y$ together induce a bijection

$$\pi_0(\mathbf{X} \times \mathbf{Y}) \xrightarrow{\sim} \pi_0 \mathbf{X} \times \pi_0 \mathbf{Y}.$$

2.16. **Proposition.** For any family $\{X_i\}$ of numerically generated spaces, the inclusions $X_i \hookrightarrow \prod_i X_i$ together induce a bijection

$$\coprod_i \pi_0(\mathbf{X}_i) \cong \pi_0\left(\coprod_i \mathbf{X}_i\right)$$

2.17. **Definition.** For any two numerically generated spaces X and Y, we will say that two maps $p, q: X \longrightarrow Y$ are *homotopic* if the images of p and q in $\pi_0 \operatorname{Map}(X, Y)$ are equal. In this case we write $p \simeq q$.

2.18. **Lemma.** Two maps $p, q: X \longrightarrow Y$ are homotopic just in case there exists a map

$$h: X \times I \longrightarrow Y$$

such that for any $x \in X$, one has

$$h(x, 0) = p(x)$$
 and $h(x, 1) = q(x)$.

2.19. **Definition.** We say that a map $\phi \colon X \longrightarrow Y$ between numerically generated spaces is a *homotopy equivalence* if there exists a map $\psi \colon Y \longrightarrow X$ such that both $\psi \circ \phi \simeq id_X$ and $\phi \circ \psi \simeq id_Y$.

2.20. **Proposition.** A homotopy equivalence $X \rightarrow Y$ between numerically generated spaces induces a bijection

$$\pi_0 X \xrightarrow{\sim} \pi_0 Y.$$

3. GROUPOIDS AND GROUPS

3.1. **Notation.** Suppose that X, Y, and Z are three sets, and suppose that $p: X \longrightarrow Z$ and $q: Y \longrightarrow Z$ are two set maps. Should we need to emphasize the role of the set maps *p* and *q*, we will denote the fiber product of X and Y over Z as

$$\mathbf{X} \underset{p, \mathbf{Z}, q}{\times} \mathbf{Y}.$$

We will write

$$\operatorname{pr}_1 \colon \operatorname{X}_{p, \mathbb{Z}, q} \operatorname{Y} \longrightarrow \operatorname{X}$$

for the projection $(x, y) \mapsto x$ and

$$\operatorname{pr}_2 \colon \operatorname{X}_{p, Z, q} \times \operatorname{Y} \longrightarrow \operatorname{Y}$$

for the projection $(x, y) \mapsto y$.

3.2. **Definition.** A groupoid
$$\Gamma = (M, O, s, t, i, c)$$
 consists of the following data:

- (3.2.A) a set M, whose elements are called *isomorphisms* or *paths*,
- (3.2.B) a set O, whose elements are called *objects*,
- (3.2.C) two set maps $s, t: M \rightarrow O$, which are called *source* and *target*, respectively,
- (3.2.D) a set map $i: O \rightarrow M$, called the *identity*, and
- (3.2.E) a set map

$$c: \mathbf{M} \underset{s,\mathbf{O},t}{\times} \mathbf{M} \longrightarrow \mathbf{M},$$

called *composition*.

These data are subject to the following axioms.

(3.2.1) One has $s \circ i = t \circ i = id$.

(3.2.2) One has

$$s \circ c = s \circ \operatorname{pr}_1$$
 and $t \circ c = t \circ \operatorname{pr}_2$.

(3.2.3) If $\phi \in M$, then

$$c(i(t(\phi)), \phi) = \phi$$
 and $c(\phi, i(s(\phi))) = \phi$.

(3.2.4) For any elements $\phi, \chi, \psi \in M$ such that $s(\phi) = t(\chi)$ and $s(\chi) = t(\psi)$, we have

$$c(\phi, c(\chi, \psi)) = c(c(\phi, \chi), \psi).$$

(3.2.5) For any element $\phi \in M$, there exists an element $\phi^{-1} \in M$ such that both

$$s(\phi) = t(\phi^{-1})$$
 and $t(\phi) = s(\phi^{-1})$,

and both

$$c(\phi, \phi^{-1})$$
 and $c(\phi^{-1}, \phi)$

are in the image of *i*.

3.3. **Notation.** In a groupoid $\Gamma = (M, O, s, t, i, c)$, if $\phi, \psi \in M$ are morphisms such that $s(\phi) = t(\psi)$, then we typically write

$$\phi \circ \psi := c(\phi, \psi).$$

Furthermore, for any two objects $x, y \in O$, we will denote by

$$\operatorname{Isom}_{\Gamma}(x, y)$$

for the fiber of the map (s, t): M \rightarrow O \times O over the point (x, y). An element $\gamma \in \text{Isom}_{\Gamma}(x, y)$ will typically be denoted

$$\gamma \colon x \xrightarrow{\sim} y.$$

3.4. **Lemma.** A groupoid is precisely the same thing as a category in which every morphism is isomorphism.

3.5. In general, when we specify a groupoid, we simply describe the objects, we describe the set of isomorphisms between any two objects, and, if necessary, we describe the composition.

3.6. **Example.** For any set S, we obtain a groupoid $S^{\delta} = (S, S, id, id, id, id)$, which we may call the discrete groupoid corresponding to S.

3.7. **Example.** We may consider the groupoid Σ of finite sets: the objects are finite sets, and an isomorphism

 $S \xrightarrow{\sim} T$

is simply a bijection.

3.8. **Example.** If k is a field, we may consider Vect(k), the groupoid of finite dimensional vector spaces: the objects are finite dimensional vector spaces over k, and an isomorphism

$$V \xrightarrow{\sim} W$$

is simply an isomorphism of k-vector spaces.

3.9. **Example.** A group G gives rise to a groupoid (which we will also denote G)

(G, *, !, !, e, c),

where * denotes a set with one element, ! denotes the unique map $G \rightarrow *$, the map $e: * \rightarrow G$ carries the unique element of * to $e \in G$, and the map

 $c: G \times G \longrightarrow G$

is given by c(g, h) = gh. So $Isom_G(*, *) \cong G$.

Every groupoid with exactly one object is of this form, so a group is nothing more than a groupoid with exactly one object.

8

3.10. **Example.** Suppose $\Gamma = (M, O, s, t, i, c)$ and $\Gamma' = (M', O', s', t', i', c')$ two groupoids; then the product

$$\Gamma \times \Gamma' = (\mathbf{M} \times \mathbf{M}', \mathbf{O} \times \mathbf{O}', s \times s', t \times t', i \times i', c \times c'),$$

is a groupoid.

3.11. **Definition.** If $\Gamma = (M, O, s, t, i, c)$ is a groupoid and $x \in O$ an object, then the composition law

$$M \underset{s,O,t}{\times} M \longrightarrow M$$

restricts to a group law $Isom_{\Gamma}(x, x) \times Isom_{\Gamma}(x, x) \longrightarrow Isom_{\Gamma}(x, x)$. This group is called the *isotropy group* Γ_x of Γ at x.

3.12. **Example.** Suppose G a group, and suppose X a G-set, i.e., a set with an action of G on the left. Write α for the action map $G \times X \longrightarrow X$ Then the action groupoid is the tuple

$$\mathbf{G} \ltimes \mathbf{X} := (\mathbf{G} \times \mathbf{X}, \mathbf{X}, \mathbf{pr}_2, \alpha, i, c),$$

where $i: X \longrightarrow G \times X$ is simply the map $x \longmapsto (e, x)$, and the composition map

$$\mathit{c}\colon (\mathsf{G}\times\mathsf{X}) \underset{\mathrm{pr}_2,\mathsf{X},\alpha}{\times} (\mathsf{G}\times\mathsf{X}) {\,\longrightarrow\,} \mathsf{G}\times\mathsf{X}$$

is given by the assignment $(g, hy, h, y) \mapsto (gh, y)$. So for any elements $x, y \in X$, we may identify

$$\operatorname{Isom}_{\mathbf{G}\ltimes\mathbf{X}}(x,y)\cong\{g\in\mathbf{G}\mid gx=y\}.$$

The isotropy group of $G \ltimes X$ at a point $x \in X$ is the stabilizer of x.

3.13. **Definition.** Suppose $\Gamma = (M, O, s, t, i, c)$ and $\Gamma' = (M', O', s', t', i', c')$ two groupoids; then a *morphism* $F \colon \Gamma' \longrightarrow \Gamma$ of groupoids is a pair of maps $F \colon M' \longrightarrow M$ and $F \colon O' \longrightarrow O$ such that

 $F \circ s' = s \circ F$, $F \circ t' = t \circ F$, $F \circ i' = i \circ F$,

and, for any $\phi, \psi \in M$ with $s(\phi) = t(\psi)$, we have

$$\mathbf{F}(c'(\phi,\psi)) = c(\mathbf{F}(\phi),\mathbf{F}(\psi)).$$

Composition of morphisms of groupoids is defined in the obvious manner, and a morphism $F: \Gamma' \longrightarrow \Gamma$ of groupoids is said to be an *isomorphism* if there exists a morphism $G: \Gamma \longrightarrow \Gamma'$ of groupoids such that $G \circ F = id_{\Gamma'}$ and $F \circ G = id_{\Gamma}$.

3.14. **Example.** For any groupoid Γ and any object x thereof, the inclusion $\Gamma_x \hookrightarrow \Gamma$ is a morphism of groupoids.

3.15. Notation. Suppose $\Gamma = (M, O, s, t, i, c)$ and $\Gamma' = (M', O', s', t', i', c')$ two groupoids. Then we may define a new groupoid $Mor(\Gamma', \Gamma)$ as follows. The objects are morphisms of groupoids $\Gamma' \longrightarrow \Gamma$, and for two morphisms F, G: $\Gamma' \longrightarrow \Gamma$ of groupoids, let

$$\operatorname{Isom}_{\operatorname{Mor}(\Gamma',\Gamma)}(F,G) \subset \prod_{x \in O'} \operatorname{Isom}_{\Gamma}(Fx,Gx)$$

be the subset consisting of those tuples $(\eta_x \colon Fx \xrightarrow{\sim} Gx)_{x \in O'}$ such that for any isomorphism $\gamma \colon x \xrightarrow{\sim} \gamma$ of Γ' , one has

$$\mathbf{G}(\gamma) \circ \eta_{\mathbf{x}} = \eta_{\mathbf{y}} \circ \mathbf{F}(\gamma).$$

3.16. **Proposition.** Suppose $\Gamma, \Gamma', \Gamma''$ three groupoids. Then there is a natural isomorphism of groupoids

$$\operatorname{Mor}(\Gamma''\times\Gamma',\Gamma)\cong\operatorname{Mor}(\Gamma'',\operatorname{Mor}(\Gamma',\Gamma)).$$

3.17. **Notation.** Write \overline{I} for the groupoid that contains two objects 0 and 1 such that $\operatorname{Isom}_{\overline{I}}(x, y) = \{*\}$ for any $x, y \in \{0, 1\}$.

3.18. **Proposition.** Suppose Γ and Γ' two groupoids, and suppose $F, G: \Gamma' \longrightarrow \Gamma$ two morphisms of groupoids. Then there is a natural bijection between

 $Isom_{Mor(\Gamma',\Gamma)}(F,G)$

and the set of morphisms of groupoids

 $H\colon \Gamma' \times \overline{I} \longrightarrow \Gamma$

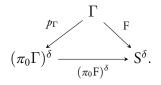
such that $H|(\Gamma' \times \{0\}^{\delta}) = F$ and $H|(\Gamma' \times \{1\}^{\delta}) = G$.

3.19. **Definition.** A morphism $F: \Gamma' \longrightarrow \Gamma$ of groupoids will be said to be an *equivalence of groupoids* if there exists a morphism $G: \Gamma \longrightarrow \Gamma'$ of groupoids such that both $\text{Isom}_{Mor(\Gamma',\Gamma')}(\text{id}_{\Gamma'}, G \circ F)$ and $\text{Isom}_{Mor(\Gamma,\Gamma)}(\text{id}_{\Gamma}, F \circ G)$ are nonempty. If such an equivalence exists, then Γ and Γ' are said to be *equivalent*.

3.20. **Definition.** Suppose $\Gamma = (M, O, s, t, i, c)$ a groupoid. Consider the equivalence relation \sim on the objects of Γ given by declaring that $x \sim y$ just in case the set Isom_{Γ}(x, y) is nonempty. Write $\pi_0\Gamma$ for the set of equivalence classes of objects under this equivalence relation. The elements of Γ will be called *connected components* of Γ . Write p_{Γ} for the set map $O \longrightarrow \pi_0\Gamma$ that carries an object of Γ to its equivalence class.

3.21. **Example.** For any set S, one has $\pi_0(S^{\delta}) = S$. Any group G has $\pi_0G = \{*\}$.

3.22. **Theorem.** For any groupoid Γ , the set map p_{Γ} extends uniquely to a morphism of groupoids $\Gamma \longrightarrow (\pi_0 \Gamma)^{\delta}$. Furthermore, it has the following universal property: for any set S and any morphism of groupoids $F \colon \Gamma \longrightarrow S^{\delta}$, there exists a unique set map $\pi_0 F \colon \pi_0 \Gamma \longrightarrow S$ such that the following diagram of groupoids commutes:



3.22.1. Corollary. For any morphism of groupoids $F: \Gamma \longrightarrow \Gamma'$, there exists a unique set map

$$\pi_0 F \colon \pi_0 \Gamma \longrightarrow \pi_0 \Gamma'$$

such that following diagram commutes:

$$\begin{array}{c} \Gamma \xrightarrow{F} \Gamma' \\ \downarrow^{p_{\Gamma}} \downarrow & \downarrow^{p_{\Gamma'}} \\ (\pi_0 \Gamma)^{\delta} \xrightarrow{(\pi_0 \Gamma)^{\delta}} (\pi_0 \Gamma')^{\delta}. \end{array}$$

3.23. **Lemma.** For any groupoid Γ , the set map

$$\pi_0 \operatorname{id}_{\Gamma} \colon \pi_0 \Gamma \longrightarrow \pi_0 \Gamma$$

is the identity map.

3.24. **Lemma.** Suppose that Γ , Γ' , and Γ'' are groupoids, and suppose $F \colon \Gamma' \longrightarrow \Gamma$ and $G \colon \Gamma'' \longrightarrow \Gamma'$ are two maps. Then the two set maps $\pi_0 \Gamma'' \longrightarrow \pi_0 \Gamma$ given by $\pi_0(F \circ G)$ and $(\pi_0 F) \circ (\pi_0 G)$ are equal.

3.25. **Proposition.** An equivalence $\Gamma' \longrightarrow \Gamma$ between groupoids induces a bijection $\pi_0 \Gamma' \xrightarrow{\sim} \pi_0 \Gamma$.

3.25.1. **Corollary.** *The following are equivalent for a groupoid* Γ *.*

(3.25.1.1) The set $\pi_0 \Gamma$ consists of exactly one point.

- (3.25.1.2) There exists an object x of Γ such that for any object y of Γ , the set $\operatorname{Isom}_{\Gamma}(x, y)$ is nonempty.
- (3.25.1.3) There exists a group G and an equivalence of groupoids $G \rightarrow \Gamma$.

3.26. **Definition.** A groupoid will be said to be *connected* if the equivalent conditions of Cor. 3.25.1 hold.

3.27. **Proposition.** A morphism $F: \Gamma' \longrightarrow \Gamma$ of groupoids is an equivalence if and only if the following two conditions obtain.

- (3.27.1) The morphism F induces a bijection $\pi_0 \Gamma' \longrightarrow \pi_0 \Gamma$.
- (3.27.2) For any object $x \in \Gamma'$, the induced homomorphism $\Gamma'_x \longrightarrow \Gamma_{F(x)}$ is an isomorphism.

4. The Poincaré groupoid and the fundamental group

4.1. **Definition.** Suppose X a numerically generated space. Then a *path* in X from a point *x* to a point *y* is a map $\gamma \colon I \longrightarrow X$ such that $\gamma(0) = x$ and $\gamma(1) = y$. The *space of paths* from *x* to *y* is the fiber $P_{x,y}(X)$ of the map

$$Map(I, X) \longrightarrow X \times X$$

given by $\gamma\longmapsto(\gamma(0),\gamma(1))$ (As usual, we use the numerically generated fiber product.)

4.2. **Proposition.** Suppose X a numerically generated space, and suppose $x, y, z \in X$. Then the map

$$c_{x,y,z} \colon P_{y,z}(X) \times P_{x,y}(X) \longrightarrow P_{x,z}(X)$$

given by the formula

$$c_{x,y,z}(\beta,\alpha)(t) := \begin{cases} \alpha(2t) & \text{if } t \in [0, 1/2] \\ \beta(2t-1) & \text{if } t \in [1/2, 1] \end{cases}$$

is continuous.

4.3. **Proposition.** For any map $g: X \longrightarrow Y$ of numerically generated spaces, and for any points $x, y \in X$ the map $Map(I, X) \longrightarrow Map(I, Y)$ restricts to a map

$$g_{\star} \colon \mathrm{P}_{x,y}(\mathrm{X}) \longrightarrow \mathrm{P}_{g(x),g(y)}(\mathrm{Y}).$$

4.4. **Theorem.** Suppose X a numerically generated space. Then there is a groupoid $\Pi_1 X$ whose objects are points of X, in which

$$\operatorname{Isom}_{\Pi_1 X}(x, y) := \pi_0 P_{x, y}(X),$$

and composition is given by taking π_0 of the map $c_{x,y,z}$ of the previous proposition: $\pi_0 c_{x,y,z} \colon \pi_0 P_{y,z}(X) \times \pi_0 P_{x,y}(X) \cong \pi_0(P_{y,z}(X) \times P_{x,y}(X)) \longrightarrow \pi_0 P_{x,z}(X)$

4.5. **Definition.** Suppose X a numerically generated space. The groupoid $\Pi_1(X)$ of the previous theorem is called the *fundamental groupoid* of the numerically generated space X. For any point $x \in X$, the isotropy group

$$\pi_1(\mathbf{X}, \mathbf{x}) := (\Pi_1 \mathbf{X})_{\mathbf{x}}$$

is called the *fundamental group* of X.

4.6. **Proposition.** For any map $g: X \longrightarrow Y$ of numerically generated spaces, the set maps

$$g: X \longrightarrow Y$$
 and $\pi_0 g_\star \colon \pi_0 P_{x,y}(X) \longrightarrow \pi_0 P_{g(x),g(y)}(Y)$

define a morphism of groupoids

$$\Pi_1 g: \Pi_1 X \longrightarrow \Pi_1 Y.$$

4.7. **Example.** Consider the coproduct $X := S^1 \sqcup S^1$, and consider the action of $\mathbb{Z}/2$ on X obtained by switching the two summands. Then there is an induced action of $\mathbb{Z}/2$ on $\Pi_1(X)$, but for no point $x \in X$ is it the case that we obtain an induced action on $\pi_1(X, x)$.

4.8. Lemma. For any numerically generated space X, the set map

 $\Pi_1 \operatorname{id}_X \colon \Pi_1 X \longrightarrow \Pi_1 X$

is the identity map.

4.9. **Proposition.** Suppose that X, Y, and Z are numerically generated spaces, and suppose $p: X \longrightarrow Y$ and $q: Y \longrightarrow Z$ are two maps. Then the two set maps $\Pi_1 X \longrightarrow \Pi_1 Z$ given by $\Pi_1(q \circ p)$ and $(\Pi_1 q) \circ (\Pi_1 p)$ are equal.

4.10. **Proposition.** For any numerically generated space X, there is a natural bijection

$$\pi_0 \Pi_1 \mathbf{X} \cong \pi_0 \mathbf{X}.$$

4.11. **Proposition.** A homotopy equivalence $g: X \xrightarrow{\sim} Y$ induces an equivalence

 $\Pi_1 g \colon \Pi_1 \mathbf{X} \longrightarrow \Pi_1 \mathbf{Y}$

of groupoids.

4.12. **Example.** If $m \ge 1$, the groupoid $\Pi_1(\mathbf{R}^m)$ is equivalent but not isomorphic to the trivial group.

4.13. **Example.** For any $m \neq 2$, the spaces \mathbb{R}^2 and \mathbb{R}^m are not homeomorphic.

4.14. **Example.** For any $m \ge 2$, the map $S^m \longrightarrow *$ induces an equivalence of fundamental groupoids.

4.15. Proposition. For any two numerically generated spaces X and Y, the two maps $\Pi_1(\text{pr}_1) \colon \Pi_1(X \times Y) \longrightarrow \Pi_1X$ and $\Pi_1(\text{pr}_2) \colon \Pi_1(X \times Y) \longrightarrow \Pi_1Y$ induce an isomorphism

$$\Pi_1(X \times Y) \xrightarrow{\sim} \Pi_1 X \times \Pi_1 Y.$$

4.16. **Definition.** A *pointed space* (X, x) consists of a space X and a point (called the *basepoint*) $x \in X$. For any two pointed numerically generated spaces (X, x) and (Y, y), a pointed map is a map $g: X \longrightarrow Y$ such that g(x) = y. We write

 $\operatorname{Map}_{*}((\mathbf{X}, x), (\mathbf{Y}, y))$

for the (numerically generated) fiber product

$$Map(X, Y) \times_{Map(\{x\}, Y)} Map(\{x\}, \{y\})$$

4.17. Notation. Consider the pointed space $(S^1, 1)$. For any pointed numerically generated space (X, x), write

$$\Omega_x \mathbf{X} := \mathrm{Map}_*(\mathbf{S}^1, \mathbf{X}).$$

If the chosen point $x \in X$ is clear from the context, we may write ΩX for $\Omega_x X$.

Furthermore, we may regard ΩX as a pointed (numerically generated) space, where the basepoint is the constant map $c_x \colon S^1 \longrightarrow X$ at x. Consequently, we may iterate this construction to obtain, for every $n \ge 0$, a pointed space

$$\Omega^n \mathbf{X} := \Omega \Omega^{n-1} \mathbf{X}.$$

Now for any $n \ge 2$, write

$$\pi_n(\mathbf{X}, \mathbf{x}) := \pi_0 \Omega^n \mathbf{X}.$$

4.18. **Proposition.** For any pointed numerically generated space (X, x), there exists a natural isomorphism

$$\pi_1(\mathbf{X}, \mathbf{x}) \cong \pi_0 \Omega_{\mathbf{x}} \mathbf{X}.$$

4.19. Proposition. For any pointed numerically generated space (X, x), the group $\pi_1(\Omega_x X, c_x)$ is abelian.

4.19.1. **Corollary.** For any pointed numerically generated space (X, x) and for any $n \ge 2$, the group $\pi_n(X, x)$ is abelian.

5. Sheaves and the étale fundamental groupoid

5.1. Notation. For any space X, write Op(X) for the following category. The objects are open sets of X, and a map $U \rightarrow V$ is an inclusion $U \rightarrow V$; that is, there is a unique morphism $U \rightarrow V$ if and only if $U \subset V$.

5.2. **Definition.** Suppose X a space. Then a *presheaf* \mathcal{F} on X is a functor

$$\mathscr{F}: \operatorname{Op}(X)^{\operatorname{op}} \longrightarrow \operatorname{Set}.$$

For any open sets $U, V \in Op(X)$, if $U \subset V$, we write $\rho_{U \subset V}$ for the set map $\mathscr{F}(V) \longrightarrow \mathscr{F}(U)$.

For an open set $U \in Op(X)$, an element $s \in \mathcal{F}(U)$ is sometimes called a *section of* \mathcal{F} *over* U. An element of $\mathcal{F}(X)$ will be called a *global section*.

5.3. **Example.** Suppose X and Y spaces. For any open set $U \in Op(X)$, write

 $\mathscr{O}_X^Y(U)$

for the set of maps $U \longrightarrow Y$. This defines a presheaf \mathscr{C}_X^Y on X.

5.4. **Example.** Suppose $p: Y \longrightarrow X$ a continuous map. Then for any open set $U \in Op(X)$, set

$$\Gamma(p)(\mathbf{U}) = \Gamma(\mathbf{Y}/\mathbf{X})(\mathbf{U}) := \{ s \in \mathscr{C}_{\mathbf{X}}^{\mathbf{Y}}(\mathbf{U}) \mid p \circ s = \mathrm{id}_{\mathbf{U}} \}.$$

We call $\Gamma(Y/X)(U)$ is the set of sections of p over U, and we call $\Gamma(X/Y)$ the presheaf of local sections of p.

5.5. **Proposition.** Suppose S a set and suppose X a numerically generated space. For any open set $U \in Op(X)$, there is a natural bijection

$$\operatorname{Map}(\pi_0 \mathrm{U}, \mathrm{S}) \cong \mathscr{O}_{\mathrm{X}}^{\mathrm{S}^{\diamond}}(\mathrm{U}).$$

5.6. **Example.** Write $\mathbf{C}^{\times} := \mathbf{C} - \{0\}$. Consider the map sq: $\mathbf{C}^{\times} \longrightarrow \mathbf{C}^{\times}$ given by $\xi \longmapsto \xi^2$. Then the presheaf $\Gamma(sq)$ admits no global sections.

5.7. **Example.** Consider the exponential map $\exp: \mathbb{C} \longrightarrow \mathbb{C}^{\times}$. Then the presheaf $\Gamma(\exp)$ admits no global sections.

5.8. **Example.** For any set S, one may form the constant presheaf \mathscr{P}_S at S, which assigns to any open set U the set S, and to any open sets $U, V \in Op(X)$ with $V \subset U$ the identity map on S.

5.9. **Example.** Suppose X a space, and suppose $V \in Op(X)$ a particular fixed open set. We have a presheaf \mathcal{H}_V defined by the rule

$$\mathscr{H}_{\mathrm{V}}(\mathrm{U}) := egin{cases} \{*\} & \textit{if} \quad \mathrm{U} \subset \mathrm{V} \ arnothing & \textit{otherwise.} \end{cases}$$

In this case, the restriction maps are unique: for any open sets $U, U' \in Op(X)$ with $U' \subset U$, there is a unique map $\mathscr{H}_V(U) \longrightarrow \mathscr{H}_V(U')$.

The presheaf \mathscr{H}_V is called the presheaf represented by $V \in Op(X)$.

5.10. **Definition.** A *morphism* of presheaves $\phi: \mathscr{F} \longrightarrow \mathscr{G}$ is a natural transformation. That is, ϕ consists of a tuple $(\phi_U)_{U \in Op(X)}$ of set maps

$$\phi_{\mathsf{U}}\colon\mathscr{F}(\mathsf{U})\longrightarrow\mathscr{G}(\mathsf{U}),$$

subject to the following condition: for any open sets $U,V\in Op(X)$ with $V\subset U,$ the following diagram commutes:

$$\begin{array}{ccc} \mathscr{T}(\mathsf{U}) \xrightarrow{\phi_{\mathsf{U}}} \mathscr{G}(\mathsf{U}) \\ & & & \downarrow \rho_{\mathsf{V}\subset\mathsf{U}} \\ & & & \downarrow \rho_{\mathsf{V}\subset\mathsf{U}} \\ & & & \mathcal{T}(\mathsf{V}) \xrightarrow{\phi_{\mathsf{V}}} \mathscr{G}(\mathsf{V}). \end{array}$$

Write $Mor_X(\mathcal{F}, \mathscr{G})$ for the set of all morphisms of presheaves $\mathcal{F} \longrightarrow \mathscr{G}$.

Given morphisms of presheaves $\phi: \mathscr{F} \longrightarrow \mathscr{G}$ and $\psi: \mathscr{G} \longrightarrow \mathscr{H}$, we can form the composite $\psi \circ \phi: \mathscr{F} \longrightarrow \mathscr{H}$ in the following manner: for any open set $U \in Op(X)$, set

$$(\psi \circ \phi)_{\mathbf{U}} := \psi_{\mathbf{U}} \circ \phi_{\mathbf{U}}$$

This defines a morphism of presheaves $\mathcal{F} \longrightarrow \mathcal{H}$ as desired.

A morphism of presheaves $\phi: \mathscr{F} \longrightarrow \mathscr{G}$ is said to be an *isomorphism* if there exists a morphism of sheaves $\psi: \mathscr{G} \longrightarrow \mathscr{F}$ such that both

$$\psi \circ \phi = \mathrm{id}_{\mathscr{F}} \quad \mathrm{and} \quad \phi \circ \psi = \mathrm{id}_{\mathscr{G}} \;.$$

5.11. **Proposition.** For any presheaf \mathcal{F} on a space X and for any open set $U \in Op(X)$, there is a natural bijection

$$\operatorname{Mor}_{X}(\mathscr{H}_{U},\mathscr{F})\cong\mathscr{F}(U).$$

5.11.1. **Corollary.** For any space X and any two open sets $U, V \in Op(X)$, there is a morphism $\iota : \mathcal{H}_U \longrightarrow \mathcal{H}_V$ if and only if one has $U \subset V$, in which case ι is unique.

5.12. **Example.** For any two spaces X and Y, the presheaf \mathscr{C}_X^Y is isomorphic to the presheaf of local sections $\Gamma(Y \times X/X)$ of the projection map $pr_2: Y \times X \longrightarrow X$.

5.13. **Example.** Suppose S is a set, and suppose X a space with a distinguished point $x \in X$. Then the skyscraper presheaf at x with value S is defined by the rule

$$S^{x}(U) := egin{cases} S & if \quad x \in U; \ \star & otherwise. \end{cases}$$

5.14. **Definition.** Suppose X a space, and suppose \mathcal{T} a presheaf on X. Then for any point $x \in X$, consider the set

$$\prod_{x \in U \in Op(X)} \mathscr{F}(U) = \{ (U, s) \mid x \in U \in Op(X), \ s \in \mathscr{F}(U) \}$$

On this set we may impose an equivalence relation \sim in the following manner. For any two elements (U, s) and (V, t), we say that $(U, s) \sim (V, t)$ if and only if there exists an open neighborhood $W \subset U \cap V$ of x such that $\rho_{W \subset U}(s) = \rho_{W \subset V}(t)$. Now define the *stalk* of \mathscr{F} at x to be the set

$$\mathscr{T}_{x} := \left(\coprod_{x \in \mathrm{U} \in \mathrm{Op}(\mathrm{X})} \mathscr{T}(\mathrm{U}) \right) \Big/ \sim .$$

The equivalence class of a section *s* under this equivalence relation is called the *germ* of *s*, and is denoted s_x .

5.15. **Lemma.** Suppose X a space, and suppose $x \in X$ a point. For any morphism $\phi: \mathcal{F} \longrightarrow \mathcal{G}$ of presheaves on X, the set map

$$\coprod_{e \in Op(X)} \mathscr{F}(U) \longrightarrow \coprod_{x \in U \in Op(X)} \mathscr{G}(U)$$

descends to a set map on the stalks $\phi_x \colon \mathscr{T}_x \longrightarrow \mathscr{G}_x$.

x

5.16. **Proposition.** Suppose X a space, and suppose $x \in X$ a point. Then for any presheaf \mathcal{F} on X and any set S, there is a natural isomorphism

$$\operatorname{Map}(\mathscr{F}_x, S) \cong \operatorname{Mor}(\mathscr{F}, S^x).$$

5.17. Notation. Suppose U a space, and suppose $\{U_{\alpha}\}_{\alpha \in \Lambda}$ an open cover of U. For any $\eta, \theta \in \Lambda$, write

$$\mathbf{U}_{\eta\theta} := \mathbf{U}_{\eta} \cap \mathbf{U}_{\theta}.$$

5.18. **Definition.** A presheaf \mathscr{T} on a space X is said to be a *sheaf* if, for any open set $U \in Op(X)$ and any open cover $\{U_{\alpha}\}_{\alpha \in \Lambda}$ of U, the map

$$\prod_{\alpha \in \Lambda} \rho_{\mathbf{U}_{\alpha} \subset \mathbf{U}} \colon \mathscr{F}(\mathbf{U}) \longrightarrow \prod_{\alpha \in \Lambda} \mathscr{F}(\mathbf{U}_{\alpha})$$

is an injection that identifies $\mathcal{F}(U)$ with the set of tuples

$$(\mathfrak{s}_{\alpha})_{\alpha\in\Lambda}\in\prod_{\alpha\in\Lambda}\mathscr{F}(\mathsf{U}_{\alpha})$$

such that for any $\eta, \theta \in \Lambda$, one has

$$\rho_{\mathbf{U}_{\eta\theta}\subset\mathbf{U}_{\eta}}(s_{\eta})=\rho_{\mathbf{U}_{\eta\theta}\subset\mathbf{U}_{\theta}}(s_{\theta})$$

5.19. **Lemma.** Suppose \mathcal{F} a sheaf on a space X. Then $\mathcal{F}(\emptyset) = \{*\}$.

5.20. **Example.** Any sheaf on the one-point space $\{*\}$ is uniquely determined (up to isomorphism) by its set of global sections, so we will make no distinction between sets and sheaves on $\{*\}$.

5.21. **Example.** For any two spaces X and Y, the presheaf \mathscr{C}_X^Y is a sheaf, called the sheaf of local continuous functions on X with values in Y.

5.22. **Example.** For any continuous map $p: Y \longrightarrow X$, the presheaf of local sections $\Gamma(Y/X)$ is a sheaf, called the sheaf of local sections of *p*.

5.23. **Example.** For any space X, any point $x \in X$, and any set S, the skyscraper presheaf S^x is a sheaf, called the skyscraper sheaf.

5.24. **Example.** For any space X and any open set $U \in Op(X)$, the presheaf \mathcal{H}_U is a sheaf, called the sheaf represented by U.

5.25. **Example.** For any space X and any set $S \neq \{*\}$, the constant presheaf on X at S is not a sheaf.

5.26. **Theorem.** Suppose X a space, and suppose \mathcal{T} a sheaf on X. For any open set $U \in Op(X)$, the map

$$\mathscr{F}(\mathsf{U}) \longrightarrow \prod_{x \in \mathsf{U}} \mathscr{F}_x$$

that carries a section s to the equivalence class of the pair (U, s) is injective.

5.26.1. Corollary. Suppose F and I sheaves on a space X. Then if

$$\phi, \psi \colon \mathscr{F} \longrightarrow \mathscr{G}$$

are two morphisms such that for every point $x \in X$, the induced maps

 $\phi_x, \ \psi_x \colon \mathscr{F}_x \longrightarrow \mathscr{G}_x$

on stalks coincide (so that $\phi_x = \psi_x$), then $\phi = \psi$.

5.27. **Theorem.** Suppose \mathcal{F} and \mathcal{G} sheaves on a space X. Then a morphism

 $\phi\colon \mathscr{T} \longrightarrow \mathscr{G}$

is a bijection or an injection if and only if, for every point $x \in X$, the set map on stalks $\phi_x : \mathscr{F}_x \longrightarrow \mathscr{G}_x$ is so.

5.28. Warning. If \mathscr{F} and \mathscr{G} are sheaves on a space X such that there are bijections $\mathscr{F}_x \cong \mathscr{G}_x$ for every point $x \in X$, it does *not* follow that \mathscr{F} and \mathscr{G} are isomorphic.

5.29. Notation. Suppose X a space and \mathcal{F} a presheaf on X. Consider the set

$$\acute{\mathrm{Et}}(\mathscr{F}) := \coprod_{x \in \mathbf{X}} \mathscr{F}_x;$$

there is an obvious map $p_{\mathcal{T}}$: Ét(\mathscr{F}) \longrightarrow X whose fibers are precisely the stalks of \mathscr{F} . For any open set U and any section $s \in \mathscr{F}(U)$, there is a corresponding map

$$\sigma_s\colon \mathbf{U}\longrightarrow \acute{\mathrm{Et}}(\mathscr{F}),$$

given by the assignment $x \mapsto s_x$, such that $p \circ s = id$.

5.30. **Definition.** Suppose X a space and \mathscr{F} a presheaf on X. The *espace étalé* of \mathscr{F} is the set $\acute{\text{Et}}(\mathscr{F})$ equipped with the finest topology such that for any section $s \in \mathscr{F}(U)$, the corresponding map

$$\sigma_s \colon \mathbf{U} \longrightarrow \acute{\mathrm{E}t}(\mathscr{F})$$

is continuous. That is, we declare a subset $V \subset \text{Ét}(\mathscr{F})$ to be open if and only if, for any open set $U \in \text{Op}(X)$ and any section $s \in \mathscr{F}(U)$, the inverse image $\sigma_s^{-1}(V)$ is open in U.

5.31. **Definition.** A continuous map $p: Y \longrightarrow X$ is said to be a *local homeomorphism* if every point $y \in Y$ is contained in a neighborhood V such that p is open and injective.

5.32. **Proposition.** For any space X and any presheaf \mathcal{F} on X, the natural morphism $p_{\mathcal{F}}$: Ét $(\mathcal{F}) \longrightarrow X$ is a local homeomorphism.

5.33. **Proposition.** Suppose S a set, and suppose \mathcal{P}_S is the constant presheaf at S on a space X. Then the éspace étalé of \mathcal{P}_S is the projection $pr_1: X \times S^{\delta} \longrightarrow X$.

5.34. **Lemma.** Suppose $p: Y \longrightarrow X$ a local homeomorphism. Then the éspace étalé $Z := \text{Ét}(\Gamma(Y|X))$ of the sheaf of local sections $\Gamma(Y|X)$ is canonically homeomorphic over X to Y. That is, there is a unique homeomorphism $Y \longrightarrow Z$ such that the diagram

commutes.

5.35. **Definition.** Suppose X a space and \mathscr{F} a presheaf on X. The *sheafification* of \mathscr{F} is the sheaf

$$\mathfrak{aF} := \Gamma(\acute{\mathrm{Et}}(\mathscr{F})/\mathrm{X})$$

of local sections of the projection map $p \colon \text{Ét}(\mathscr{T}) \longrightarrow X$. The morphism of presheaves

$$\eta_{\mathcal{F}} \colon \mathcal{F} \longrightarrow a\mathcal{F}$$

that assigns to any section $s \in \mathscr{F}(U)$ the section $x \mapsto s_x$ over U is called the *unit morphism*.

5.36. **Proposition.** For any presheaf \mathcal{F} on a space X, the natural morphism

 $\eta_{\mathcal{F}} \colon \mathcal{F} \longrightarrow a\mathcal{F}$

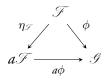
induces a bijection $\eta_{\mathcal{F},x}$: $\mathcal{F}_x \longrightarrow (a\mathcal{F})_x$ on stalks for every $x \in X$.

5.36.1. **Corollary.** For any sheaf \mathcal{F} on a space X, the unit morphism $\eta_{\mathcal{F}} \colon \mathcal{F} \longrightarrow a\mathcal{F}$ is an isomorphism.

5.37. **Example.** The constant sheaf \mathscr{F}_S at a set S on a space X is the sheafification of the constant presheaf \mathscr{P}_S at S. It is isomorphic to the sheaf of local sections $\Gamma(X \times S^{\delta}/X)$. Consequently, the constant sheaf is not really constant: it takes many different values on an open set $U \subset X$.

5.38. **Proposition.** Suppose X a numerically generated space. Then there exists a global section $u \in \mathcal{F}_{\pi_0 X}(X)$ such that for any set S and any global section $\sigma \in \mathcal{F}_S(X)$, there exists a unique set map $\pi_0 \longrightarrow S$ such that the induced morphism of sheaves $\tilde{\sigma} \colon \mathcal{F}_{\pi_0 X} \longrightarrow \mathcal{F}_S$ has the property that $\tilde{\sigma}(u) = \sigma$.

5.39. **Theorem.** Suppose X a space, suppose \mathcal{F} a presheaf on X, and suppose \mathcal{G} a sheaf on X. Then for any morphism $\phi: \mathcal{F} \longrightarrow \mathcal{G}$, there exists a unique morphism $a\phi: a\mathcal{F} \longrightarrow \mathcal{G}$ such that the diagram

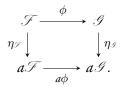


commutes.

5.39.1. **Corollary.** Suppose X a space. For any morphism $\phi: \mathcal{F} \longrightarrow \mathcal{G}$ of presheaves, there exists a unique morphism

$$a\phi: a\mathcal{F} \longrightarrow a\mathcal{G}$$

such that following diagram commutes:



- 5.40. **Definition.** Suppose $g: X \longrightarrow Y$ a map.
- (5.40.1) For any sheaf \mathscr{T} on X, define the *direct image* $g_{\star}\mathscr{T}$ of \mathscr{T} as the sheaf that assigns to any open set $V \in Op(Y)$ the set

$$g_{\star}\mathscr{F}(\mathrm{V}) := \mathscr{F}(g^{-1}\mathrm{V}).$$

(5.40.2) For any sheaf \mathscr{G} on Y, we define the *inverse image* $g^* \mathscr{G}$ as the sheaf of local sections of the pullback

$$X \times_Y \acute{Et}(\mathscr{G}) \longrightarrow X$$

of the map $p_{\mathscr{G}} : \acute{\mathrm{Et}}(\mathscr{G}) \longrightarrow \mathrm{Y}$

5.41. **Example.** Suppose $A \subset X$ a subspace of a space X. Then for any sheaf \mathcal{F} on X, if *i* denotes the inclusion map, the sheaf $i^* \mathcal{F}$ on A is denoted $\mathcal{F}|_A$ and is called the restriction of \mathcal{F} to A. If, in particular, A is an open set, then the restriction $\mathcal{F}|_A$ assigns to any open set $U \subset A$ the set $\mathcal{F}(U)$.

5.42. **Example.** Suppose X a space. We have a unique map $!: X \rightarrow \{*\}$. For any set S, there is a natural isomorphism

$$!^*S \cong \mathscr{F}_S$$

between the inverse image along ! and the constant sheaf. For any sheaf \mathcal{F} on X, there is a natural isomorphism

$$!_{\star}\mathscr{F}\cong\mathscr{F}(\mathbf{X})$$

between the direct image along ! and the set of global sections.

On the other hand, suppose $x \in X$ a point, and write $x: \{*\} \longrightarrow X$ for the corresponding inclusion. For any set S, there is a natural isomorphism

$$x_{\star}S \cong S^{x}$$

between the direct image along x and the skyscraper sheaf. For any sheaf \mathcal{F} on X, there is a natural isomorphism

$$x^{\star} \mathscr{F} \cong \mathscr{F}_{x}$$

between the inverse image along x and the stalk of \mathcal{F} at x.

5.43. **Theorem.** Suppose $g: X \longrightarrow Y$ a map, \mathcal{F} a sheaf on X and \mathcal{G} a sheaf on Y. Then there exists a natural bijection

$$\operatorname{Mor}_{\mathcal{X}}(g^{\star}\mathscr{G},\mathscr{F})\cong \operatorname{Mor}_{\mathcal{Y}}(\mathscr{G},g_{\star}\mathscr{F}).$$

5.44. **Definition.** Suppose X a space. A sheaf \mathscr{F} on X will be said to be *locally constant* if every point $x \in X$ is contained in an open neighborhood U such that the sheaf $\mathscr{F}|_U$ is constant.

5.45. Notation. For any space X, denote by LC(X) the category whose objects are locally constant sheaves on X and whose morphisms are morphisms of sheaves.

5.46. **Example.** For any natural number n, consider the map $p_n: \mathbb{C}^{\times} \longrightarrow \mathbb{C}^{\times}$ given by $\xi \longmapsto \xi^n$. Then the sheaf of local sections $\Gamma(p_n)$ is locally constant, but it is not constant.

5.47. **Proposition.** Suppose X a connected numerically generated space. Then a locally constant sheaf \mathcal{F} on X is a constant sheaf if and only if for any point $x \in X$, the set map $\mathcal{F}(X) \longrightarrow \mathcal{F}_x$ that carries a global section s to its equivalence class in \mathcal{F}_x is a bijection.

5.48. **Proposition.** *The only locally constant sheaves on* I *are constant.*

5.49. **Definition.** Suppose X a space. Write **Set** for the category whose objects are sets and whose morphisms are set maps. For any point $x \in X$, the *fiber functor* for x is the functor $\omega_x := x^* : \mathbf{LC}(X) \longrightarrow \mathbf{Set}$.

5.50. Notation. Suppose X a numerically generated space, suppose $x, y \in X$, and suppose $\gamma: I \longrightarrow X$ a path such that $\gamma(0) = x$ and $\gamma(1) = y$. If \mathscr{F} is a locally constant sheaf on X, then we obtain a bijection $\omega_{\gamma}(\mathscr{F})$:

$$\omega_{x}(\mathscr{F}) \cong (\gamma^{\star}\mathscr{F})_{0} \stackrel{\cong}{\leftarrow} (\gamma^{\star}\mathscr{F})(\mathbf{I}) \stackrel{\cong}{\longrightarrow} (\gamma^{\star}\mathscr{F})_{1} \cong \omega_{y}(\mathscr{F}).$$

5.51. **Proposition.** Suppose X a numerically generated space, suppose $x, y \in X$, and suppose $\gamma: I \longrightarrow X$ a path such that $\gamma(0) = x$ and $\gamma(1) = y$. If $\phi: \mathscr{F} \longrightarrow \mathscr{G}$ is a morphism of locally constant sheaves on X, one has

$$\phi_{\gamma} \circ \omega_{\gamma}(\mathscr{F}) = \omega_{\gamma}(\mathscr{G}) \circ \phi_{x}.$$

5.51.1. **Corollary.** Suppose X a numerically generated space, suppose $x, y \in X$, and suppose $\gamma: I \longrightarrow X$ a path such that $\gamma(0) = x$ and $\gamma(1) = y$. Then ω_{γ} is a natural isomorphism $\omega_x \xrightarrow{\sim} \omega_y$.

5.52. **Proposition.** Suppose X a numerically generated space, and suppose $x, y \in X$. If $\eta, \theta \in P_{x,y}(X)$ lie in the same connected component, then one has

$$\omega_{\eta} = \omega_{\theta}.$$

5.53. **Definition.** Suppose X a space. Write **Fib**(X) for the following groupoid. The objects are points $x \in X$, and for any two points $x, y \in X$, the set

$$Isom_{Fib(X)}(x, y)$$

is the set of natural isomorphisms $\omega_x \xrightarrow{\sim} \omega_y$.

5.54. **Definition.** Suppose X a numerically generated space. Then we say that X is *locally contractible* if, for any point $x \in X$ and any open neighborhood U of x, there exists a neighborhood $x \in V \subset U$ such that the inclusion $\{x\} \hookrightarrow V$ is a homotopy equivalence.

5.55. **Theorem.** Suppose X a locally contractible numerically generated space. Then the assignment $\gamma \mapsto \omega_{\gamma}$ defines an equivalence of groupoids

$$\Pi_1(\mathbf{X}) \xrightarrow{\sim} \mathbf{Fib}(\mathbf{X}).$$

5.55.1. Corollary. For any locally contractible numerically generated space X and any point $x \in X$, the assignment $\gamma \mapsto \omega_{\gamma}$ defines an isomorphism

$$\pi_1(\mathbf{X}, \mathbf{x}) \xrightarrow{\sim} \operatorname{Aut}(\omega_{\mathbf{x}}).$$

6. Simplicial sets and higher groupoids

6.1. **Definition.** Consider the following category Δ . The objects are nonempty totally ordered finite sets, and a morphism $K \longrightarrow J$ in Δ is a nondecreasing map $K \longrightarrow J$.

For any natural number n, denote by [n] the totally ordered finite set

$$\{0,\ldots,n\}$$

(whose order is the usual one). We regard [n] as an object of Δ .

6.2. **Lemma.** For every object J of Δ , there exists a unique integer n_J and a unique isomorphism J \cong $[n_J]$. For any two objects J and K of Δ , the set $Isom_{\Delta}(K, J)$ of isomorphisms K \cong J is given by

$$\operatorname{Isom}_{\Delta}(\mathrm{K},\mathrm{J}) \cong \begin{cases} \{*\} & \text{if } n_{\mathrm{K}} = n_{\mathrm{J}} \\ \varnothing & \text{if } n_{\mathrm{K}} \neq n_{\mathrm{J}} \end{cases}$$

6.3. **Lemma.** Every morphism $g: K \longrightarrow J$ of Δ can be factored in a unique fashion as $g = g_+ \circ g_-$, where g_+ is an injective nondecreasing map, and g_- is a surjective nondecreasing map.

6.4. **Lemma.** Suppose *n* a natural number. For any integer $0 \le i \le n$, there is a unique nondecreasing injection

$$\delta_i \colon [n-1] \longrightarrow [n]$$

such that *i* is not contained in the image of δ_i . Similarly, there is a unique nondecreasing surjection

$$\sigma_i\colon [n+1] \longrightarrow [n]$$

such that $\sigma_i(i) = \sigma_i(i+1)$.

6.5. **Definition.** A simplicial set is a functor X: $\Delta^{\text{op}} \longrightarrow \text{Set}$. The set X([n]) will usually be denoted X_n . Its elements will be called *n*-simplices. We sometimes call 0-simplices vertices and 1-simplices edges.

A morphism $g: X \longrightarrow Y$ of simplicial sets is a natural transformation. That is, it is a tuple $(g_J)_{J \in \Delta}$ of set maps $g_J: X(J) \longrightarrow Y(J)$ such that for any morphism $\phi: K \longrightarrow J$ of Δ , the diagram

$$\begin{array}{ccc} X(J) & \stackrel{g_{J}}{\longrightarrow} & Y(J) \\ X(\phi) & & & \downarrow & Y(\phi) \\ X(K) & \stackrel{g_{K}}{\longrightarrow} & Y(K) \end{array}$$

commutes. We write Mor(X, Y) for the set of morphisms $X \rightarrow Y$.

6.6. Lemma. A simplicial set X is uniquely identified by the following data:

- (6.6.A) for any natural number n, a set X_n ;
- (6.6.B) for any natural number n and any integer $0 \le i \le n$, a map $d_i := X(\delta_i): X_n \longrightarrow X_{n-1};$
- (6.6.C) for any natural number n and any integer $0 \le i \le n$, a map $s_i := X(\sigma_i): X_n \longrightarrow X_{n+1};$

subject to the following axioms.

(6.6.1) If i < j, then $d_i d_j = d_{j-1} d_i$. (6.6.2) If i > j, then $s_i s_j = s_j s_{i-1}$. (6.6.3) Lastly,

$$d_{i}s_{j} = \begin{cases} s_{j-1}d_{i} & \text{if } i < j; \\ \text{id} & \text{if } i = j \text{ or } i = j+1; \\ s_{j}d_{i-1}\text{if } i > j+1. \end{cases}$$

6.7. **Example.** For any set S, the discrete simplicial set S^{δ} at S is constant functor

 $J \mapsto S.$

6.8. **Example.** For any object J of Δ , the simplicial set Δ^{J} is given by the assignment $K \mapsto Mor_{\Delta}(K, J).$

For any simplicial set X, there is a natural bijection

$$Mor(\Delta^J, X) \cong X(J).$$

For any natural number n, we write Δ^n for $\Delta^{[n]}$, and we call it the standard *n*-simplex.

6.9. **Example.** For any category C, the nerve NC is defined in the following manner. Any object J of Δ can be regarded as a category whose objects are the elements of I and whose morphisms are given by

$$\operatorname{Mor}_{J}(i,j) \cong \begin{cases} \{*\} & \text{if } i \leq j \\ \varnothing & \text{if } i > j. \end{cases}$$

Now NC is given by the assignment

 $J \mapsto Fun(J, C),$

where Fun(J, C) denotes the set of functors $J \rightarrow C$.

6.10. **Lemma.** For any object J of Δ , there is a natural isomorphism NJ $\cong \Delta^{J}$.

6.11. **Proposition.** For any categories C and D, the natural map

 $Fun(C, D) \longrightarrow Mor(NC, ND)$

is a bijection.

6.12. **Example.** For any two simplicial sets X and Y, the product $X \times Y$ is the functor given by the assignment

$$J \mapsto X(J) \times Y(J).$$

More generally, for any morphisms $X \longrightarrow Z$ and $Y \longrightarrow Z$ of simplicial sets, the fiber product $X \times_Z Y$ is the functor given by the assignment

$$J \mapsto X(J) \times_{Z(J)} Y(J).$$

6.13. **Example.** If X and Y are two simplicial sets, then the coproduct $X \sqcup Y$ is the functor given by the assignment

$$J \longmapsto X(J) \sqcup Y(J).$$

6.14. **Definition.** Suppose X a simplicial set. Suppose *n* a natural number and $\tau \in X_n$. For an integer $0 \le i \le n$, the *i*-th face of τ is the (n - 1)-simplex $d_i(\tau)$, and the *i*-th degeneracy of τ is the (n + 1)-simplex $s_i(\tau)$.

An (n+1)-simplex is *degenerate* if it lies in the essential image of X(σ_i); we'll say that it is *nondegenerate* if it is not degenerate.

6.15. **Lemma.** Suppose X a simplicial set, and suppose that for every natural number n, one has a subset $Y_n \subset X_n$. If $\tau \in Y_n$ implies that for any integer $0 \le i \le n$, one has $d_i(\tau) \in Y_{n-1}$ and $s_i(\tau) \in Y_{n+1}$, then the assignment $I \mapsto Y_{n_1}$ defines a simplicial set, and the inclusions $Y_n \hookrightarrow X_n$ define a morphism of simplicial sets.

6.16. **Definition.** A simplicial set Y constructed as above will be called a *simplicial subset* of X, and we will write $Y \subset X$.

6.17. **Example.** For any morphisms $X \rightarrow Z$ and $Y \rightarrow Z$ of simplicial sets, the fiber product $X \times_Z Y$ is naturally a simplicial subset of $X \times Y$.

6.18. **Example.** For any natural number n and any integer $0 \le i \le n$, the inclusion

$$\{0,\ldots,i-1,i+1,\ldots,n\} \hookrightarrow [n]$$

defines a simplicial subset

$$\Delta^{\{0,\ldots,i-1,i+1,\ldots,n\}} \subset \Delta^n.$$

which we call the *i*-th face of Δ^n .

6.19. **Example.** For any natural number n, denote by $\partial \Delta^n \subset \Delta^n$ the smallest simplicial subset that contains all the faces of Δ^n . That is, the set of m-simplices of $\partial \Delta^n$ is given by

$$(\partial \Delta^n)_m := \bigcup_{0 \le i \le n} \Delta_m^{\{0, \dots, i-1, i+1, \dots, n\}}.$$

6.20. **Example.** For any natural number n and any integer $0 \le k \le n$, denote by $\Lambda_k^n \subset \partial \Delta^n$ the smallest simplicial subset that contains all the faces of Δ^n except for the k-th. That is, the set of m-simplices of Λ_k^n is given by

$$(\Lambda_k^n)_m := \bigcup_{0 \le i \le n, \ i \ne k} \Delta_m^{\{0,\dots,i-1,i+1,\dots,n\}}.$$

6.21. **Example.** For any simplicial set X and any integer $n \ge 0$, let $sk_n X \subset X$ be the smallest simplicial subset of X that contains all the n-simplices of X. That is, the

set of *m*-simplices of $sk_n X$ is given by

$$(\operatorname{sk}_n X)_m := \begin{cases} X_m & \text{if } m \leq n; \\ \bigcup_{i_1, \dots, i_{m-n}} s_{i_{m-n}} \cdots s_{i_1}(X_m) & \text{if } m > n. \end{cases}$$

6.22. **Definition.** Suppose *n* a natural number, and write $\Delta_{\leq n} \subset \Delta$ for the full subcategory spanned by those objects J of Δ such that $n_J \leq n$. For any simplicial set X, write $X_{\leq n}$ for the restriction of X to $\Delta_{\leq n}^{\text{op}}$.

6.23. Lemma. For any natural number n, one has

$$\operatorname{sk}_{n-1}\Delta^n\cong\partial\Delta^n$$
,

and for any integer $0 \le k \le n+1$,

$$\operatorname{sk}_{n-1}\Lambda_k^{n+1}\cong\operatorname{sk}_{n-1}\Delta^{n+1}.$$

6.24. **Definition.** For any natural number n and any simplicial set X, define a simplicial set $cosk_n X$ as the functor given by the assignment

$$J \mapsto Mor(sk_n \Delta^J, X).$$

The inclusions $sk_n \Delta^J \hookrightarrow \Delta^J$ induce a morphism $X \longrightarrow cosk_n X$. We say that X is *n*-coskeletal if this morphism is an isomorphism.

6.25. **Proposition.** For any natural number n and any two simplicial sets X and Y, there are natural bijections

$$Mor(sk_n X, Y) \cong Nat(X_{\leq n}, Y_{\leq n}) \cong Mor(X, cosk_n Y),$$

where $Nat(X_{\leq n}, Y_{\leq n})$ is the set of natural transformations $X_{\leq n} \longrightarrow Y_{\leq n}$.

6.26. **Proposition.** The nerve of any category is 2-coskeletal.

6.27. **Definition.** A simplicial set X is a *Kan complex* or an ∞ -*groupoid* if for any natural number $n \ge 1$ and any integer $0 \le k \le n$, the inclusion morphism $\Lambda_k^n \hookrightarrow \Delta^n$ induces a surjection

$$\operatorname{Mor}(\Delta^n, X) \longrightarrow \operatorname{Mor}(\Lambda^n_k, X).$$

For a natural number m, we say that an ∞ -groupoid X is a *m*-groupoid if, in addition, for any natural number $n \ge m + 1$ and any integer $0 \le k \le n$, the inclusion morphism $\Lambda_k^n \hookrightarrow \Delta^n$ induces a bijection

$$X_n \cong Mor(\Delta^n, X) \longrightarrow Mor(\Lambda^n_k, X).$$

6.28. **Example.** The standard simplex Δ^n is a Kan complex if and only if n = 0.

6.29. Example. A 0-groupoid is precisely a discrete simplicial set.

6.30. **Proposition.** The nerve of a category C is a Kan complex if and only C is a groupoid, in which case NC is a 1-groupoid.

6.31. **Proposition.** An *m*-groupoid is (m+1)-coskeletal, and an *m*-coskeletal Kan complex is a (m+1)-groupoid.

6.32. **Proposition.** Any 1-groupoid is the nerve of a groupoid.

6.33. **Proposition.** If X and Y are m-groupoids $(0 \le m \le \infty)$, then the product X × Z is an m-groupoid as well.

6.34. **Proposition.** If X and Y are m-groupoids ($0 \le m \le \infty$), then the coproduct X \sqcup Y is an m-groupoid as well.

6.35. **Proposition.** Suppose X: $\Delta^{op} \longrightarrow \mathbf{Grp}$ a simplicial group, *i.e.*, a simplicial set in which each X_n is equipped with a group structure and the maps $d_i: X_n \longrightarrow X_{n-1}$ and $s_i: X_n \longrightarrow X_{n+1}$ are all group homomorphisms. Then X is a Kan complex.

6.36. **Definition.** Suppose X and Y two simplicial sets. Define a simplicial set Map(X, Y) as the functor given by the assignment

 $J \mapsto Mor(X \times \Delta^J, Y).$

6.37. Lemma. For any simplicial sets X, Y, and Z, there is a natural bijection

 $Mor(X \times Y, Z) \cong Mor(X, Map(Y, Z)).$

6.38. **Proposition.** Suppose C and D two categories. Then there is a natural isomorphism

$$NFun(C, D) \cong Map(NC, ND),$$

where Fun(C, D) denotes the category whose objects are functors $C \rightarrow D$ and whose morphisms are natural transformations.

6.39. **Theorem.** Suppose X a simplicial set, and suppose Y an m-groupoid ($0 \le m \le \infty$). Then Map(X,Y) is an m-groupoid as well.

6.39.1. **Corollary.** For any simplicial set X and for any groupoid Γ , the simplicial set Map(X, N Γ) is the nerve of a groupoid.

6.39.2. **Corollary.** For any simplicial set X and for any set S, the simplicial set $Map(X, S^{\delta})$ is discrete.

7. The Postnikov tower

7.1. **Definition.** Suppose X a simplicial set. Consider the equivalence relation \sim on X₀ generated by declaring two vertices $x, y \in X_0$ to be equivalent if there exists a 1-simplex $\tau \in X_1$ such that $d_0(\tau) = x$ and $d_1(\tau) = y$. Denote by $\pi_0 X := X/\sim$ the set of equivalence classes under this equivalence relation, and write $p_{X,0}: X_0 \longrightarrow \pi_0 X$ the projection of the vertices of X onto their equivalence classes.

7.2. **Example.** For any set S, one has $\pi_0(S^{\delta}) = S$.

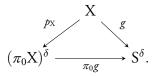
7.3. **Lemma.** If X is a Kan complex, then two vertices are equivalent in the sense above if and only if there exists a 1-simplex $\tau \in X_1$ such that $d_0(\tau) = x$ and $d_1(\tau) = y$.

7.4. **Lemma.** Suppose X a simplicial set. For any natural number $n \ge 1$, any *n*-simplex $\tau \in X_n$, and any two morphisms $\phi, \psi : [0] \longrightarrow [n]$ of Δ , we have

$$\mathbf{X}(\phi)(\tau) \sim \mathbf{X}(\psi)(\tau).$$

Consequently, there exists a unique morphism $p_X \colon X \longrightarrow (\pi_0 X)^{\delta}$ that on vertices is the map $p_{X,0}$ above.

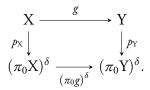
7.5. **Theorem.** Suppose X a simplicial set. Then the morphism p_X has the following universal property: for any set S and any morphism $g: X \longrightarrow S^{\delta}$, there exists a unique set map $\pi_0 g: \pi_0 X \longrightarrow S$ such that the following diagram commutes:



7.5.1. **Corollary.** For any morphism $g: X \longrightarrow Y$ between simplicial sets, there exists a unique set map

$$\pi_0 g: \pi_0 X \longrightarrow \pi_0 Y$$

such that following diagram commutes:



7.5.2. **Corollary.** The assignment $X \mapsto \pi_0 X$ defines a functor s**Set** \longrightarrow **Set** that is left adjoint to the functor given by the assignment $S \longmapsto S^{\delta}$.

7.6. **Proposition.** For any simplicial sets X and Y, the two maps $X \times Y \longrightarrow X$ and $X \times Y \longrightarrow Y$ together induce a bijection

$$\pi_0(\mathbf{X} \times \mathbf{Y}) \xrightarrow{\sim} \pi_0 \mathbf{X} \times \pi_0 \mathbf{Y}.$$

7.7. **Proposition.** For any family $\{X_i\}$ of numerically generated spaces, the inclusions $X_i \hookrightarrow \coprod_i X_i$ together induce a bijection

$$\coprod_i \pi_0(\mathbf{X}_i) \cong \pi_0\left(\coprod_i \mathbf{X}_i\right).$$

7.8. **Definition.** Suppose X a simplicial set and Y a Kan complex. We will say that two morphisms $p, q: X \longrightarrow Y$ are *homotopic* if the images of p and q in $\pi_0 \operatorname{Map}(X, Y)$ are equal. In this case we write $p \simeq q$.

7.9. **Lemma.** Suppose X a simplicial set and Y a Kan complex. Two morphisms $p, q: X \rightarrow Y$ of simplicial sets are homotopic just in case there exists a map

$$h: \mathbf{X} \times \Delta^1 \longrightarrow \mathbf{Y}$$

such that one has

$$b|(\mathbf{X} \times \Delta^{\{0\}}) = p$$
 and $b|(\mathbf{X} \times \Delta^{\{1\}}) = q$.

7.10. **Definition.** We say that a morphism $\phi: X \longrightarrow Y$ of simplicial sets is a *homotopy equivalence* if there exists a map $\psi: Y \longrightarrow X$ such that both $\psi \circ \phi \simeq id_X$ and $\phi \circ \psi \simeq id_Y$.

7.11. **Proposition.** A homotopy equivalence $X \rightarrow Y$ between simplicial sets induces a bijection

$$\pi_0 X \xrightarrow{\sim} \pi_0 Y.$$

30

7.12. **Definition.** Suppose Y a Kan complex, and suppose $X' \subset X$ a simplicial subset. We say that *p* and *q* are *homotopic relative to* X' if there exists a morphism

$$h: \mathbf{X} \times \Delta^1 \longrightarrow \mathbf{Y}$$

such that

$$h|(\mathbf{X} \times \Delta^{\{0\}}) = p \text{ and } h|(\mathbf{X} \times \Delta^{\{1\}}) = q,$$

and $h|(X' \times \Delta^1)$ factors through the projection $X' \times \Delta^1 \longrightarrow X'$.

7.13. **Definition.** Suppose X a Kan complex. Consider the equivalence relation \sim_1 on the set X₁ generated by declaring two 1-simplices $\tau, v \in X_1$ to be equivalent if the corresponding maps $\tau, v \colon \Delta^1 \longrightarrow X$ are homotopic relative to $\partial \Delta^1$.

Define a groupoid $\Pi_1 X$ as follows. The objects of $\Pi_1 X$ are vertices of X, and for any vertices $x, y \in X_0$, the set $\text{Isom}_{\Pi_1 X}(x, y)$ is the set of equivalence classes of 1-simplices.

7.14. **Example.** For any groupoid Γ , there is an isomorphism of groupoids

$$\Gamma \cong \Pi_1(N\Gamma)$$

7.15. **Proposition.** Suppose X a Kan complex. Then the following are equivalent for two 1-simplices $\tau, \upsilon \in X_1$.

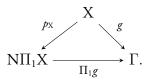
(7.15.1) $\tau \sim_1 v$.

- (7.15.2) There exists a 2-simplex η such that $d_0(\eta) = \tau$ and $d_1(\eta) = v$, and $d_2(\eta)$ is degenerate.
- (7.15.3) There exists a 2-simplex η such that $d_1(\eta) = \tau$ and $d_0(\eta) = v$, and $d_2(\eta)$ is degenerate.
- (7.15.4) There exists a 2-simplex η such that $d_1(\eta) = \tau$ and $d_2(\eta) = v$, and $d_0(\eta)$ is degenerate.
- (7.15.5) There exists a 2-simplex η such that $d_2(\eta) = \tau$ and $d_1(\eta) = v$, and $d_0(\eta)$ is degenerate.

7.16. **Proposition.** Suppose X a Kan complex. Then there exists a unique morphism $p_X \colon X \longrightarrow N\Pi_1 X$ of simplicial sets such that $p_{X,0}$ is the identity map from the set X_0 to the set of objects of $\Pi_1 X$, and $p_{X,1}$ is the projection from $X_1 \longrightarrow X_1 / \sim_1$.

7.17. **Theorem.** Suppose X a simplicial set. Then the morphism p_X has the following universal property: for any groupoid Γ and any morphism $g: X \longrightarrow N\Gamma$, there exists a unique morphism of groupoids $\Pi_1 g: \Pi_1 X \longrightarrow \Gamma$ such that the following diagram

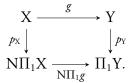
commutes:



7.17.1. **Corollary.** For any morphism $g: X \longrightarrow Y$ between simplicial sets, there exists a unique morphism of groupoids

 $\Pi_1 g \colon \Pi_1 X \longrightarrow \Pi_1 Y$

such that following diagram commutes:



7.17.2. **Corollary.** The assignment $X \mapsto \Pi_1 X$ defines a functor **Kan** \longrightarrow **Gpd** that is left adjoint to the functor given by the assignment $\Gamma \mapsto N\Gamma$.

7.18. **Proposition.** For any simplicial sets X and Y, the two maps $X \times Y \longrightarrow X$ and $X \times Y \longrightarrow Y$ together induce an isomorphism

$$\Pi_1(\mathbf{X} \times \mathbf{Y}) \xrightarrow{\sim} \Pi_1 \mathbf{X} \times \Pi_1 \mathbf{Y}.$$

7.19. **Proposition.** For any family $\{X_i\}$ of numerically generated spaces, the inclusions $X_i \hookrightarrow \coprod_i X_i$ together induce an isomorphism

$$\coprod_i \Pi_1(\mathbf{X}_i) \cong \Pi_1\left(\coprod_i \mathbf{X}_i\right)$$

7.20. **Definition.** Suppose X a Kan complex, and suppose *m* a natural number. Consider the morphism $\operatorname{cosk}_{m+1} X \longrightarrow \operatorname{cosk}_m X$, and consider the simplicial subset $X^{(m)} \subset \operatorname{cosk}_m X$ whose set of *k*-simplices is the image of the set map $(\operatorname{cosk}_{m+1} X)_k \longrightarrow (\operatorname{cosk}_m X)_k$.

Now let \sim_m be the equivalence relation on the simplices of $X^{(m)}$ generated by declaring two k-simplices $\tau, \upsilon \in (X^{(m)})_k$ to be equivalent if the corresponding morphisms $\tau, \upsilon \colon \operatorname{sk}_m \Delta^k \longrightarrow X$ are homotopic relative to $\operatorname{sk}_{m-1} \Delta^k$.

Now let $\Pi_m X$ denote the simplicial set whose *k* simplices are given by the set of equivalence classes

$$(\Pi_m \mathbf{X})_k := (\mathbf{X}^{(m)}) / \sim_k .$$

32

There is a natural morphism $X \longrightarrow X^{(m)}$, and thus a morphism $p_X \colon X \longrightarrow \prod_m X$.

7.21. **Proposition.** For any Kan complex X, the simplicial set $\Pi_m X$ is an *m*-groupoid.

7.22. Example. For any m-groupoid X, there is an isomorphism

 $X \cong \prod_m X.$

7.23. Example. For any Kan complex X, one has

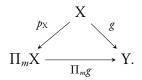
 $\Pi_0 \mathbf{X} \cong (\pi_0 \mathbf{X})^{\delta}.$

7.24. Example. For any Kan complex X, one has

$$\Pi_1 X \cong N \Pi_1 X.$$

(Note the abuse of notation.)

7.25. **Theorem.** Suppose X a simplicial set and m a natural number. Then the morphism p_X has the following universal property: for any m-groupoid Y and any morphism $g: X \longrightarrow Y$, there exists a unique morphism of groupoids $\Pi_m g: \Pi_m X \longrightarrow Y$ such that the following diagram commutes:



7.25.1. Corollary. For any natural number m and any morphism $g: X \longrightarrow Y$ between simplicial sets, there exists a unique morphism of m-groupoids

$$\Pi_m g \colon \Pi_m \mathbf{X} \longrightarrow \Pi_m \mathbf{Y}$$

such that following diagram commutes:

$$\begin{array}{c} X \xrightarrow{g} Y \\ p_X \downarrow & \downarrow p_Y \\ \Pi_m X \xrightarrow{\Pi_m g} \Pi_m Y. \end{array}$$

7.25.2. Corollary. For any natural number m, the assignment $X \mapsto \prod_m X$ defines a functor Kan $\longrightarrow {}_m Gpd$ that is left adjoint to the inclusion functor ${}_m Gpd \hookrightarrow Kan$.

7.26. **Proposition.** For any natural number m and any simplicial sets X and Y, the two maps $X \times Y \longrightarrow X$ and $X \times Y \longrightarrow Y$ together induce an isomorphism

$$\Pi_m(\mathbf{X} \times \mathbf{Y}) \xrightarrow{\sim} \Pi_m \mathbf{X} \times \Pi_m \mathbf{Y}.$$

7.27. **Proposition.** For any natural number m and any family $\{X_i\}$ of numerically generated spaces, the inclusions $X_i \hookrightarrow \coprod_i X_i$ together induce an isomorphism

$$\coprod_{i} \Pi_{m}(\mathbf{X}_{i}) \cong \Pi_{m}\left(\coprod_{i} \mathbf{X}_{i}\right).$$

8. The singular simplicial set

8.1. **Lemma.** For any object $J \in \Delta$, order the set $\Delta_J^1 = Mor(J, [1])$ so that for any $\sigma, \tau \colon J \longrightarrow [1]$, one has $\sigma < \tau$ just in case there exists $j \in J$ such that

$$\sigma(j) < \tau(j).$$

Then Δ_J^1 is totally ordered and contains a minimum and maximum element, and for any morphism $K \longrightarrow J$ in Δ , the induced map

$$\Delta^1_I \longrightarrow \Delta^1_K$$

preserves the order and minimum and maximum elements.

8.2. **Definition.** Define a functor

$$\Delta_{top}^{\bullet} \colon \Delta \longrightarrow \mathbf{Num}$$

as follows: for any object $J \in \Delta$, let

$$\Delta^{\mathrm{J}}_{\mathrm{top}} \subset \mathrm{Map}((\Delta^{1}_{\mathrm{J}})^{\delta}, \mathrm{I})$$

be the subspace consisting of those maps that preserve the order and minimum and maximum elements.

Now for any numerically generated space X, the *singular simplicial set* or *Poincaré* ∞ *-groupoid* $\Pi_{\infty}(X)$ is the simplicial set defined by the formula

$$\Pi_{\infty}(\mathbf{X})_{\mathsf{J}} := \operatorname{Map}(\Delta^{\mathsf{J}}_{\operatorname{top}}, \mathbf{X}).$$

This defines a functor

$$\Pi_{\infty} \colon \mathbf{Num} \longrightarrow \mathbf{Set}.$$

8.3. Theorem. For any numerically generated space X, the simplicial set $\Pi_{\infty}(X)$ is, in fact, an ∞ -groupoid.

8.4. **Theorem.** Two maps $\phi, \psi \colon X \longrightarrow Y$ of numerically generated spaces are homotopic if and only if the corresponding morphisms

$$\Pi_{\infty}(\phi), \Pi_{\infty}(\psi) \colon \Pi_{\infty} \mathbf{X} \longrightarrow \Pi_{\infty} \mathbf{Y}$$

are homotopic.

8.5. **Theorem.** For any numerically generated space X, there is a natural bijection $\pi_0 X \cong \pi_0 \Pi_{\infty}(X).$

8.6. **Theorem.** For any numerically generated space X, there is a natural equivalence of groupoids

$$\Pi_1 X \simeq \Pi_1 \Pi_\infty(X) \simeq N \Pi_1 \Pi_\infty(X).$$

8.7. **Definition.** For any integer $m \ge 2$ and any numerically generated space X, write $\Pi_m(X)$ for the *m*-groupoid $\Pi_m\Pi_\infty(X)$.

8.8. **Definition.** For any simplicial set X, let \sim be the equivalence relation on the coproduct

$$\prod_{n\geq 0} (\mathbf{X}_n^\delta \times \Delta_{\mathrm{top}}^n)$$

generated by declaring that for any morphism $\phi \colon [m] \longrightarrow [n]$ of Δ and for any $(\sigma, x) \in X_n^{\delta} \times \Delta_{top}^m$, one has

 $(\mathbf{X}(\phi)(\sigma), \mathbf{x}) \sim (\sigma, \Delta^{\bullet}_{top}(\phi)(\mathbf{x})).$

The geometric realization of X is the (numerically generated) quotient space

$$\mathbf{X}_{\mathrm{top}} := \left(\prod_{n \ge 0} (\mathbf{X}_n^{\delta} \times \Delta_{\mathrm{top}}^n) \right) / \sim .$$

This defines a functor $(\cdot)_{top}$: $Set \rightarrow Num$.

8.9. **Proposition.** The geometric realization functor $(\cdot)_{top}$ is left adjoint to the Poincaré ∞ -groupoid functor Π_{∞} ; that is, for any simplicial set X and any numerically generated space Y, there is a natural bijection

$$Map(X_{top}, Y) \cong Mor(X, \Pi_{\infty}(Y)).$$