
THE FUNDAMENTAL GROUPOID AND THE POSTNIKOV
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1. Numerically generated spaces

Let us agree now that the word spacemeans “topological space,” and the word
map means “continuous map.” If we wish to speak of an ordinary mapping
between sets, with no continuity demands, we will use the phrase set map.

1.1. Definition. For any space Y, a test map is a map V Y, where V is an
open subset of some Euclidean space RN.

Suppose X a (topological) space. A subset U ⊂ X is numerically open if for
any test map ϕ : V X, the inverse image ϕ−1(U) ⊂ V is open.

1.2. Lemma. Any open set of a space is numerically open; however, there exist spaces
that contain numerically open sets that are not open.

1.3. Definition.We will say that a space X is numerically generated if every
numerically open set is open.

1.4. Example. Any open subset of a Euclidean space RN is numerically generated.

1.5. Lemma. Any open subset of a numerically generated space is numerically gen-
erated.

1.6. Lemma. Suppose X and Y numerically generated spaces. Then a function
X Y is continuous just in case, for any test map V X, the composite V Y
is continuous.

1.7. Proposition.The disjoint union of any family of numerically generated spaces
is numerically generated.

1.8. Notation. Let us write I := [0, 1] ⊂ R.

1.9. Proposition.The following are equivalent for a space X.
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(1.9.1) X is numerically generated.
(1.9.2) A subset U ⊂ X is open if, for any map ϕ : I X, the inverse image

ϕ−1(U) ⊂ I is open.
(1.9.3) A subset U ⊂ X is open if, for any map ϕ : R X, the inverse image

ϕ−1(U) ⊂ R is open.

1.10. Example.The poorly named “topologist’s sine curve”

{(x, y) ∈ R2 | [x ̸= 0] ∧ [y = sin(1/x)]} ∪ {(0, 0)} ⊂ R2

is not numerically generated.

1.11. Proposition.The collection of numerically open subsets of a space X form a
new topology that is as fine as the original topology on X.

1.12.Definition. Suppose X a space. The set X equipped with the topology on
a space X given by the previous proposition will be called the numericalization
of X, and it will be denoted X♯. (So an open set of X♯ is precisely a numerically
open set of X.)

1.13. Proposition. For any space X, the space X♯ is numerically generated. Fur-
thermore, the identity on X is a map jX : X♯ X with the following property: for
any numerically generated space T and any map g : T X, there exists a unique
map g♯ : T X♯ such that the triangle

X♯

T X.

g♯

g

j

commutes.

1.13.1. Corollary. For any space X, one has

(X♯)♯ = X♯.

1.13.2. Corollary. For any map g : X Y, there exists a unique map

g♯ : X♯ Y♯
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such that following diagram commutes:

X♯ Y♯

X Y.

g♯

jX jY

g

1.14. Example. Consider Q ⊂ R with its subspace topology. Then Q is not nu-
merically generated, as Q♯ is discrete.

1.15. Definition. Suppose that X, Y, and Z are three sets, and suppose that
p : X Z and q : Y Z are two maps of sets. Then the subset

X×Z Y := {(x, y) ∈ X× Y | p(x) = q(y)} ⊂ X× Y
is called the fiber product of X and Y over Z. (When Z is the one-point space ∗,
of course X×Z Y = X× Y.)

Suppose X, Y, and Z numerically generated spaces, and suppose that p and
q are continuous. If we endow X × Y with the product topology, then we can
equip X×ZY with the subspace topology. However, we will go one step further
and consider the numericalization of these topologies. We will just denote the
resulting numerically generated spaces as

X×Z Y ⊂ X× Y
(without any further decoration). We will call this the numerically generated
fiber product of X and Y over Z.

1.16. Notation. For any spaces X and Y, write Map(X,Y) for the set of maps
X Y.

1.17. Proposition. Suppose that X, Y, and Z are numerically generated spaces,
and suppose that p : X Z and q : Y Z are two maps. Then the numerically
generated fiber product X ×Z Y enjoys the following universal property: for any
numerically generated space U, the maps X×Z Y X and X×Z Y Y induce
a bijection

Map(U,X×Z Y) ∼ Map(U,X)×Map(U,Z) Map(U,Y).

1.18. Definition. Suppose X and Y two numerically generated spaces. For any
compact subset K ⊂ X, and any open subset W ⊂ Y, write

U(K,V) := {g ∈ Map(X,Y) | ∀x ∈ K, g(x) ∈ W}.
Then we may generate a topology on Map(X,Y) by the subbase consisting of
all the sets U(K,W), called the compact-open topology. Again we will go one step
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further and consider the numericalization Map(X,Y) of this space. We will call
this the numerically generated mapping space from X to Y.

1.19. Proposition. Suppose that X, Y, and Z are numerically generated spaces.
Then there is a natural homeomorphism

Map(X× Y,Z) ∼= Map(X,Map(Y,Z)).

2. Existence and connectedness

2.1. Notation. For any set S, denote by Sδ the set S equipped with the discrete
topology. Note that Sδ is numerically generated. For any set map F : S T,
we denote the corresponding map of spaces Sδ Tδ by Fδ.

2.2.Definition. Suppose X a space. Consider the equivalence relation∼ on the
points of X generated by declaring that x ∼ y if there exists a map γ : I X
such that γ(0) = x and γ(1) = y. Write π0X for the set of equivalence classes of
points of X under this equivalence relation. The elements of π0X will be called
path components of X. Write pX for the set map X π0X that carries a point
of X to its equivalence class.

2.3. Example. For any set S, one has π0(Sδ) = S. Any Euclidean space RN has
π0RN = {∗}.

2.4. Theorem. Suppose X a numerically generated space. Then the set map pX is
continuous as a map X (π0X)δ. Furthermore, it has the following universal
property: for any set S and any map g : X Sδ, there exists a unique set map
π0g : π0X S such that the following diagram commutes:

X

(π0X)δ Sδ.

pX

π0g

g

2.4.1. Corollary. For any map g : X Y between numerically generated spaces,
there exists a unique set map

π0g : π0X π0Y
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such that following diagram commutes:

X Y

(π0X)δ (π0Y)δ.

g

pX pY

(π0g)δ

2.4.2. Corollary.The following are equivalent for a numerically generated space
X.
(2.4.2.1) The set π0X consists of exactly one point.
(2.4.2.2) There exists a point x ∈ X such that for any point y ∈ X, there exists a

map γ : I X such that γ(0) = x and γ(1) = y.
(2.4.2.3) There is exactly one nonempty subset of X that is both open and closed.

2.5. Example.The (still poorly named) “topologist’s sine curve” of Ex. 1.10 satisfies
condition (2.4.2.3) but not condition (2.4.2.2).

2.6. Definition. A numerically generated space will be said to be connected if
the equivalent conditions of Cor. 2.4.2 hold.

2.7. Example.The empty space is not connected.

2.8. Proposition. Suppose g : X Y a surjective map between numerically gen-
erated spaces. Then Y is connected if X is.

2.9. Example. For any natural number n ≥ 1, the n-sphere

Sn := {x ∈ Rn+1 | ||x|| = 1}

is connected. However, S0 is not connected.

2.10. Lemma. For any numerically generated space X, the set map

π0 idX : π0X π0X

is the identity map.

2.11. Proposition. Suppose that X, Y, and Z are numerically generated spaces,
and suppose p : X Y and q : Y Z are two maps. Then the two set maps
π0X π0Z given by π0(q ◦ p) and (π0q) ◦ (π0p) are equal.

2.11.1. Corollary. If g : X Y is a homeomorphism between numerically gen-
erated spaces, then π0g : π0X π0Y is a bijection.
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2.12. Example. For any integer n ̸= 1, the Euclidean spaces R and Rn are not
homeomorphic.

2.13. Example.The capital letters T and X are not homeomorphic.

2.14. Example. For any integer n ̸= 1, the Euclidean spaces S1 and Sn are not
homeomorphic.

2.15. Proposition. For any numerically generated space X and any set S, the nu-
merically generated space Map(X, Sδ) is discrete.

2.15.1. Corollary. For any numerically generated spaces X and Y, the two maps
X× Y X and X× Y Y together induce a bijection

π0(X× Y) ∼ π0X× π0Y.

2.16. Proposition. For any family {Xi} of numerically generated spaces, the in-
clusions Xi

⨿
i Xi together induce a bijection

⨿
i

π0(Xi) ∼= π0

(⨿
i

Xi

)
.

2.17. Definition. For any two numerically generated spaces X and Y, we will
say that two maps p, q : X Y are homotopic if the images of p and q in
π0 Map(X,Y) are equal. In this case we write p ≃ q.

2.18. Lemma. Two maps p, q : X Y are homotopic just in case there exists a
map

h : X× I Y

such that for any x ∈ X, one has

h(x, 0) = p(x) and h(x, 1) = q(x).

2.19.Definition.We say that a map ϕ : X Y between numerically generated
spaces is a homotopy equivalence if there exists a map ψ : Y X such that both
ψ ◦ ϕ ≃ idX and ϕ ◦ ψ ≃ idY.

2.20. Proposition. A homotopy equivalence X Y between numerically gener-
ated spaces induces a bijection

π0X ∼ π0Y.
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3. Groupoids and groups

3.1.Notation. Suppose that X, Y, andZ are three sets, and suppose that p : X Z
and q : Y Z are two set maps. Should we need to emphasize the role of the
set maps p and q, we will denote the fiber product of X and Y over Z as

X ×
p,Z,q

Y.

We will write
pr1 : X ×

p,Z,q
Y X

for the projection (x, y) x and
pr2 : X ×

p,Z,q
Y Y

for the projection (x, y) y.

3.2.Definition. A groupoid Γ = (M,O, s, t, i, c) consists of the following data:
(3.2.A) a set M, whose elements are called isomorphisms or paths,
(3.2.B) a set O, whose elements are called objects,
(3.2.C) two set maps s, t : M O, which are called source and target, respec-

tively,
(3.2.D) a set map i : O M, called the identity, and
(3.2.E) a set map

c : M ×
s,O,t

M M,

called composition.
These data are subject to the following axioms.
(3.2.1) One has s ◦ i = t ◦ i = id.
(3.2.2) One has

s ◦ c = s ◦ pr1 and t ◦ c = t ◦ pr2 .
(3.2.3) If ϕ ∈ M, then

c(i(t(ϕ)), ϕ) = ϕ and c(ϕ, i(s(ϕ))) = ϕ.

(3.2.4) For any elements ϕ, χ, ψ ∈ M such that s(ϕ) = t(χ) and s(χ) = t(ψ),
we have

c(ϕ, c(χ, ψ)) = c(c(ϕ, χ), ψ).
(3.2.5) For any element ϕ ∈ M, there exists an element ϕ−1 ∈ M such that

both
s(ϕ) = t(ϕ−1) and t(ϕ) = s(ϕ−1),

and both
c(ϕ, ϕ−1) and c(ϕ−1, ϕ)

are in the image of i.
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3.3.Notation. In a groupoid Γ = (M,O, s, t, i, c), if ϕ, ψ ∈ M are morphisms
such that s(ϕ) = t(ψ), then we typically write

ϕ ◦ ψ := c(ϕ, ψ).

Furthermore, for any two objects x, y ∈ O, we will denote by

IsomΓ(x, y)

for the fiber of the map (s, t) : M O×O over the point (x, y). An element
γ ∈ IsomΓ(x, y) will typically be denoted

γ : x ∼ y.

3.4. Lemma. A groupoid is precisely the same thing as a category in which every
morphism is isomorphism.

3.5. In general, when we specify a groupoid, we simply describe the objects, we
describe the set of isomorphisms between any two objects, and, if necessary, we
describe the composition.

3.6. Example. For any set S, we obtain a groupoid Sδ = (S, S, id, id, id, id),
which we may call the discrete groupoid corresponding to S.

3.7. Example.We may consider the groupoid Σ of finite sets: the objects are finite
sets, and an isomorphism

S ∼ T
is simply a bijection.

3.8. Example. If k is a field, we may consider Vect(k), the groupoid of finite di-
mensional vector spaces: the objects are finite dimensional vector spaces over k, and
an isomorphism

V ∼ W
is simply an isomorphism of k-vector spaces.

3.9. Example. A group G gives rise to a groupoid (which we will also denote G)

(G, ∗, !, !, e, c),
where ∗ denotes a set with one element, ! denotes the unique mapG ∗, the map
e : ∗ G carries the unique element of ∗ to e ∈ G, and the map

c : G×G G

is given by c(g, h) = gh. So IsomG(∗, ∗) ∼= G.
Every groupoid with exactly one object is of this form, so a group is nothing more

than a groupoid with exactly one object.
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3.10. Example. Suppose Γ = (M,O, s, t, i, c) and Γ′ = (M′,O′, s′, t′, i′, c′) two
groupoids; then the product

Γ× Γ′ = (M×M′,O×O′, s× s′, t× t′, i× i′, c× c′),

is a groupoid.

3.11. Definition. If Γ = (M,O, s, t, i, c) is a groupoid and x ∈ O an object,
then the composition law

M ×
s,O,t

M M

restricts to a group law IsomΓ(x, x)× IsomΓ(x, x) IsomΓ(x, x). This group
is called the isotropy group Γx of Γ at x.

3.12. Example. Suppose G a group, and suppose X a G-set, i.e., a set with an
action of G on the left. Write α for the action map G× X X Then the action
groupoid is the tuple

G⋉ X := (G× X,X, pr2, α, i, c),

where i : X G× X is simply the map x (e, x), and the composition map

c : (G× X) ×
pr2,X,α

(G× X) G× X

is given by the assignment (g, hy, h, y) (gh, y). So for any elements x, y ∈ X, we
may identify

IsomG⋉X(x, y) ∼= {g ∈ G | gx = y}.
The isotropy group of G⋉ X at a point x ∈ X is the stabilizer of x.

3.13. Definition. Suppose Γ = (M,O, s, t, i, c) and Γ′ = (M′,O′, s′, t′, i′, c′)
two groupoids; then a morphism F : Γ′ Γ of groupoids is a pair of maps
F : M′ M and F : O′ O such that

F ◦ s′ = s ◦ F, F ◦ t′ = t ◦ F, F ◦ i′ = i ◦ F,

and, for any ϕ, ψ ∈ M with s(ϕ) = t(ψ), we have

F(c′(ϕ, ψ)) = c(F(ϕ), F(ψ)).

Composition of morphisms of groupoids is defined in the obvious manner,
and a morphism F : Γ′ Γ of groupoids is said to be an isomorphism if there
exists a morphismG : Γ Γ′ of groupoids such that G◦F = idΓ′ and F◦G =
idΓ.

3.14.Example. For any groupoidΓ and any object x thereof, the inclusionΓx Γ
is a morphism of groupoids.
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3.15. Notation. Suppose Γ = (M,O, s, t, i, c) and Γ′ = (M′,O′, s′, t′, i′, c′)
two groupoids. Then we may define a new groupoid Mor(Γ′,Γ) as follows.
The objects are morphisms of groupoids Γ′ Γ, and for two morphisms
F,G : Γ′ Γ of groupoids, let

IsomMor(Γ′,Γ)(F,G) ⊂
∏
x∈O′

IsomΓ(Fx,Gx)

be the subset consisting of those tuples (ηx : Fx ∼ Gx)x∈O′ such that for any
isomorphism γ : x ∼ y of Γ′, one has

G(γ) ◦ ηx = ηy ◦ F(γ).

3.16. Proposition. Suppose Γ,Γ′,Γ′′ three groupoids. Then there is a natural iso-
morphism of groupoids

Mor(Γ′′ × Γ′,Γ) ∼= Mor(Γ′′,Mor(Γ′,Γ)).

3.17.Notation.Write I for the groupoid that contains two objects 0 and 1 such
that IsomI(x, y) = {∗} for any x, y ∈ {0, 1}.

3.18. Proposition. Suppose Γ and Γ′ two groupoids, and suppose F,G : Γ′ Γ
two morphisms of groupoids. Then there is a natural bijection between

IsomMor(Γ′,Γ)(F,G)

and the set of morphisms of groupoids

H : Γ′ × I Γ

such that H|(Γ′ × {0}δ) = F and H|(Γ′ × {1}δ) = G.

3.19. Definition. A morphism F : Γ′ Γ of groupoids will be said to be an
equivalence of groupoids if there exists a morphism G : Γ Γ′ of groupoids
such that both IsomMor(Γ′,Γ′)(idΓ′ ,G ◦ F) and IsomMor(Γ,Γ)(idΓ, F ◦ G) are
nonempty. If such an equivalence exists, then Γ and Γ′ are said to be equiv-
alent.

3.20.Definition. SupposeΓ = (M,O, s, t, i, c) a groupoid. Consider the equiv-
alence relation ∼ on the objects of Γ given by declaring that x ∼ y just in case
the set IsomΓ(x, y) is nonempty. Write π0Γ for the set of equivalence classes of
objects under this equivalence relation. The elements of Γ will be called con-
nected components of Γ. Write pΓ for the set map O π0Γ that carries an
object of Γ to its equivalence class.

3.21. Example. For any set S, one has π0(Sδ) = S. Any groupG has π0G = {∗}.
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3.22. Theorem. For any groupoid Γ, the set map pΓ extends uniquely to a mor-
phism of groupoids Γ (π0Γ)δ. Furthermore, it has the following universal prop-
erty: for any set S and any morphism of groupoids F : Γ Sδ, there exists a unique
set map π0F : π0Γ S such that the following diagram of groupoids commutes:

Γ

(π0Γ)δ Sδ.

pΓ

(π0F)δ

F

3.22.1. Corollary. For any morphism of groupoids F : Γ Γ′, there exists a
unique set map

π0F : π0Γ π0Γ′

such that following diagram commutes:

Γ Γ′

(π0Γ)δ (π0Γ′)δ.

F

pΓ pΓ′

(π0F)δ

3.23. Lemma. For any groupoid Γ, the set map

π0 idΓ : π0Γ π0Γ

is the identity map.

3.24. Lemma. Suppose that Γ, Γ′, and Γ′′ are groupoids, and suppose F : Γ′ Γ
and G : Γ′′ Γ′ are two maps. Then the two set maps π0Γ′′ π0Γ given by
π0(F ◦G) and (π0F) ◦ (π0G) are equal.

3.25. Proposition. An equivalence Γ′ Γ between groupoids induces a bijection

π0Γ′ ∼ π0Γ.

3.25.1. Corollary. The following are equivalent for a groupoid Γ.
(3.25.1.1) The set π0Γ consists of exactly one point.
(3.25.1.2) There exists an object x of Γ such that for any object y of Γ, the set

IsomΓ(x, y) is nonempty.
(3.25.1.3) There exists a group G and an equivalence of groupoids G Γ.

3.26.Definition. A groupoid will be said to be connected if the equivalent con-
ditions of Cor. 3.25.1 hold.
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3.27. Proposition. A morphism F : Γ′ Γ of groupoids is an equivalence if and
only if the following two conditions obtain.
(3.27.1) The morphism F induces a bijection π0Γ′ π0Γ.
(3.27.2) For any object x ∈ Γ′, the induced homomorphism Γ′

x ΓF(x) is an
isomorphism.

4. The Poincaré groupoid and the fundamental group

4.1. Definition. Suppose X a numerically generated space. Then a path in X
from a point x to a point y is a map γ : I X such that γ(0) = x and γ(1) = y.
The space of paths from x to y is the fiber Px,y(X) of the map

Map(I,X) X× X

given by γ (γ(0), γ(1)) (As usual, we use the numerically generated fiber
product.)

4.2. Proposition. Suppose X a numerically generated space, and suppose x, y, z ∈
X. Then the map

cx,y,z : Py,z(X)× Px,y(X) Px,z(X)
given by the formula

cx,y,z(β, α)(t) :=

{
α(2t) if t ∈ [0, 1/2]
β(2t− 1) if t ∈ [1/2, 1]

is continuous.

4.3. Proposition. For any map g : X Y of numerically generated spaces, and
for any points x, y ∈ X the map Map(I,X) Map(I,Y) restricts to a map

g⋆ : Px,y(X) Pg(x),g(y)(Y).

4.4. Theorem. Suppose X a numerically generated space. Then there is a groupoid
Π1X whose objects are points of X, in which

IsomΠ1X(x, y) := π0Px,y(X),

and composition is given by taking π0 of the map cx,y,z of the previous proposition:

π0cx,y,z : π0Py,z(X)× π0Px,y(X) ∼= π0(Py,z(X)× Px,y(X)) π0Px,z(X)

4.5.Definition. Suppose X a numerically generated space.The groupoidΠ1(X)
of the previous theorem is called the fundamental groupoid of the numerically
generated space X. For any point x ∈ X, the isotropy group

π1(X, x) := (Π1X)x
is called the fundamental group of X.
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4.6. Proposition. For any map g : X Y of numerically generated spaces, the set
maps

g : X Y and π0g⋆ : π0Px,y(X) π0Pg(x),g(y)(Y)
define a morphism of groupoids

Π1g : Π1X Π1Y.

4.7. Example. Consider the coproduct X := S1 ⊔ S1, and consider the action of
Z/2 onX obtained by switching the two summands.Then there is an induced action
of Z/2 on Π1(X), but for no point x ∈ X is it the case that we obtain an induced
action on π1(X, x).

4.8. Lemma. For any numerically generated space X, the set map

Π1 idX : Π1X Π1X

is the identity map.

4.9. Proposition. Suppose that X, Y, and Z are numerically generated spaces,
and suppose p : X Y and q : Y Z are two maps. Then the two set maps
Π1X Π1Z given by Π1(q ◦ p) and (Π1q) ◦ (Π1p) are equal.

4.10. Proposition. For any numerically generated space X, there is a natural bi-
jection

π0Π1X ∼= π0X.

4.11. Proposition. A homotopy equivalence g : X ∼ Y induces an equivalence

Π1g : Π1X Π1Y

of groupoids.

4.12. Example. If m ≥ 1, the groupoid Π1(Rm) is equivalent but not isomorphic
to the trivial group.

4.13. Example. For any m ̸= 2, the spaces R2 and Rm are not homeomorphic.

4.14. Example. For any m ≥ 2, the map Sm ∗ induces an equivalence of
fundamental groupoids.

4.15. Proposition. For any two numerically generated spaces X and Y, the two
maps Π1(pr1) : Π1(X× Y) Π1X and Π1(pr2) : Π1(X× Y) Π1Y induce
an isomorphism

Π1(X× Y) ∼ Π1X× Π1Y.
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4.16.Definition. A pointed space (X, x) consists of a space X and a point (called
the basepoint) x ∈ X. For any two pointed numerically generated spaces (X, x)
and (Y, y), a pointed map is a map g : X Y such that g(x) = y. We write

Map∗((X, x), (Y, y))

for the (numerically generated) fiber product

Map(X,Y)×Map({x},Y) Map({x}, {y}).

4.17. Notation. Consider the pointed space (S1, 1). For any pointed numeri-
cally generated space (X, x), write

ΩxX := Map∗(S
1,X).

If the chosen point x ∈ X is clear from the context, we may write ΩX for ΩxX.
Furthermore, we may regardΩX as a pointed (numerically generated) space,

where the basepoint is the constant map cx : S1 X at x. Consequently, we
may iterate this construction to obtain, for every n ≥ 0, a pointed space

ΩnX := ΩΩn−1X.

Now for any n ≥ 2, write

πn(X, x) := π0ΩnX.

4.18. Proposition. For any pointed numerically generated space (X, x), there exists
a natural isomorphism

π1(X, x) ∼= π0ΩxX.

4.19. Proposition. For any pointed numerically generated space (X, x), the group
π1(ΩxX, cx) is abelian.

4.19.1.Corollary. For any pointed numerically generated space (X, x) and for any
n ≥ 2, the group πn(X, x) is abelian.

5. Sheaves and the étale fundamental groupoid

5.1. Notation. For any space X, write Op(X) for the following category. The
objects are open sets of X, and a map U V is an inclusion U V; that is,
there is a unique morphism U V if and only if U ⊂ V.

5.2. Definition. Suppose X a space. Then a presheafF on X is a functor

F : Op(X)op Set.

For any open sets U,V ∈ Op(X), if U ⊂ V, we write ρU⊂V for the set map
F (V) F (U).
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For an open set U ∈ Op(X), an element s ∈F (U) is sometimes called a
section ofF over U. An element ofF (X) will be called a global section.

5.3. Example. Suppose X and Y spaces. For any open set U ∈ Op(X), write

O Y
X(U)

for the set of maps U Y. This defines a presheafO Y
X on X.

5.4. Example. Suppose p : Y X a continuous map. Then for any open set U ∈
Op(X), set

Γ(p)(U) = Γ(Y/X)(U) := {s ∈O Y
X(U) | p ◦ s = idU}.

We call Γ(Y/X)(U) is the set of sections of p over U, and we call Γ(X/Y) the
presheaf of local sections of p.

5.5. Proposition. Suppose S a set and suppose X a numerically generated space.
For any open set U ∈ Op(X), there is a natural bijection

Map(π0U, S) ∼=O Sδ
X (U).

5.6. Example. Write C× := C − {0}. Consider the map sq : C× C× given
by ξ ξ2. Then the presheaf Γ(sq) admits no global sections.

5.7. Example. Consider the exponential map exp : C C×. Then the presheaf
Γ(exp) admits no global sections.

5.8. Example. For any set S, one may form the constant presheafP S at S, which
assigns to any open setU the set S, and to any open setsU,V ∈ Op(X)withV ⊂ U
the identity map on S.

5.9. Example. Suppose X a space, and suppose V ∈ Op(X) a particular fixed
open set. We have a presheafH V defined by the rule

H V(U) :=

{
{∗} if U ⊂ V
∅ otherwise.

In this case, the restriction maps are unique: for any open setsU,U′ ∈ Op(X) with
U′ ⊂ U, there is a unique mapH V(U) H V(U′).

The presheafH V is called the presheaf represented by V ∈ Op(X).

5.10. Definition. A morphism of presheaves ϕ :F G is a natural transfor-
mation. That is, ϕ consists of a tuple (ϕU)U∈Op(X) of set maps

ϕU :F (U) G (U),
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subject to the following condition: for any open sets U,V ∈ Op(X) with V ⊂
U, the following diagram commutes:

F (U) G (U)

F (V) G (V).

ϕU

ρV⊂U ρV⊂U

ϕV

Write MorX(F ,G ) for the set of all morphisms of presheavesF G .
Given morphisms of presheaves ϕ :F G and ψ :G H , we can form

the composite ψ ◦ ϕ :F H in the following manner: for any open set
U ∈ Op(X), set

(ψ ◦ ϕ)U := ψU ◦ ϕU.

This defines a morphism of presheavesF H as desired.
A morphism of presheaves ϕ :F G is said to be an isomorphism if there

exists a morphism of sheaves ψ :G F such that both

ψ ◦ ϕ = idF and ϕ ◦ ψ = idG .

5.11. Proposition. For any presheafF on a space X and for any open set U ∈
Op(X), there is a natural bijection

MorX(H U,F ) ∼=F (U).

5.11.1. Corollary. For any space X and any two open sets U,V ∈ Op(X), there
is a morphism ι :H U H V if and only if one has U ⊂ V, in which case ι is
unique.

5.12. Example. For any two spaces X and Y, the presheafO Y
X is isomorphic to the

presheaf of local sections Γ(Y× X/X) of the projection map pr2 : Y× X X.

5.13. Example. Suppose S is a set, and supposeX a space with a distinguished point
x ∈ X. Then the skyscraper presheaf at x with value S is defined by the rule

Sx(U) :=

{
S if x ∈ U;
⋆ otherwise.

5.14.Definition. Suppose X a space, and supposeF a presheaf on X.Then for
any point x ∈ X, consider the set⨿

x∈U∈Op(X)

F (U) = {(U, s) | x ∈ U ∈ Op(X), s ∈F (U)}.
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On this set we may impose an equivalence relation∼ in the following manner.
For any two elements (U, s) and (V, t), we say that (U, s) ∼ (V, t) if and only
if there exists an open neighborhood W ⊂ U ∩ V of x such that ρW⊂U(s) =
ρW⊂V(t). Now define the stalk ofF at x to be the set

F x :=

 ⨿
x∈U∈Op(X)

F (U)

/ ∼ .

The equivalence class of a section s under this equivalence relation is called the
germ of s, and is denoted sx.

5.15. Lemma. Suppose X a space, and suppose x ∈ X a point. For any morphism
ϕ :F G of presheaves on X, the set map⨿

x∈U∈Op(X)

F (U)
⨿

x∈U∈Op(X)

G (U)

descends to a set map on the stalks ϕx :F x G x.

5.16. Proposition. Suppose X a space, and suppose x ∈ X a point. Then for any
presheafF on X and any set S, there is a natural isomorphism

Map(F x, S) ∼= Mor(F , Sx).

5.17. Notation. Suppose U a space, and suppose {Uα}α∈Λ an open cover of
U. For any η, θ ∈ Λ, write

Uηθ := Uη ∩Uθ.

5.18. Definition. A presheafF on a space X is said to be a sheaf if, for any
open set U ∈ Op(X) and any open cover {Uα}α∈Λ of U, the map∏

α∈Λ

ρUα⊂U :F (U)
∏
α∈Λ

F (Uα)

is an injection that identifiesF (U) with the set of tuples

(sα)α∈Λ ∈
∏
α∈Λ

F (Uα)

such that for any η, θ ∈ Λ, one has

ρUηθ⊂Uη(sη) = ρUηθ⊂Uθ
(sθ).

5.19. Lemma. SupposeF a sheaf on a space X. ThenF (∅) = {∗}.
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5.20. Example. Any sheaf on the one-point space {∗} is uniquely determined (up
to isomorphism) by its set of global sections, so we will make no distinction between
sets and sheaves on {∗}.

5.21. Example. For any two spaces X and Y, the presheafO Y
X is a sheaf, called the

sheaf of local continuous functions on X with values in Y.

5.22. Example. For any continuous map p : Y X, the presheaf of local sections
Γ(Y/X) is a sheaf, called the sheaf of local sections of p.

5.23. Example. For any space X, any point x ∈ X, and any set S, the skyscraper
presheaf Sx is a sheaf, called the skyscraper sheaf.

5.24. Example. For any space X and any open set U ∈ Op(X), the presheafH U
is a sheaf, called the sheaf represented by U.

5.25. Example. For any space X and any set S ̸= {∗}, the constant presheaf on X
at S is not a sheaf.

5.26. Theorem. Suppose X a space, and supposeF a sheaf on X. For any open set
U ∈ Op(X), the map

F (U)
∏
x∈U

F x

that carries a section s to the equivalence class of the pair (U, s) is injective.

5.26.1. Corollary. SupposeF andG sheaves on a space X. Then if

ϕ, ψ :F G

are two morphisms such that for every point x ∈ X, the induced maps

ϕx, ψx :F x G x

on stalks coincide (so that ϕx = ψx), then ϕ = ψ.

5.27.Theorem. SupposeF andG sheaves on a space X. Then a morphism

ϕ :F G

is a bijection or an injection if and only if, for every point x ∈ X, the set map on
stalks ϕx :F x G x is so.

5.28. Warning. IfF andG are sheaves on a space X such that there are bijec-
tionsF x

∼= G x for every point x ∈ X, it does not follow thatF andG are
isomorphic.



THE FUNDAMENTAL GROUPOID AND THE POSTNIKOV TOWER 19

5.29. Notation. Suppose X a space andF a presheaf on X. Consider the set

Ét(F ) :=
⨿
x∈X

F x;

there is an obvious map pF : Ét(F ) X whose fibers are precisely the stalks
ofF . For any open set U and any section s ∈F (U), there is a corresponding
map

σs : U Ét(F ),

given by the assignment x sx, such that p ◦ s = id.

5.30.Definition. Suppose X a space andF a presheaf on X.The espace étalé of
F is the set Ét(F ) equipped with the finest topology such that for any section
s ∈F (U), the corresponding map

σs : U Ét(F )

is continuous. That is, we declare a subset V ⊂ Ét(F ) to be open if and only
if, for any open set U ∈ Op(X) and any section s ∈F (U), the inverse image
σ−1
s (V) is open in U.

5.31.Definition. A continuous map p : Y X is said to be a local homeomor-
phism if every point y ∈ Y is contained in a neighborhood V such that p is open
and injective.

5.32. Proposition. For any space X and any presheafF on X, the natural mor-
phism pF : Ét(F ) X is a local homeomorphism.

5.33. Proposition. Suppose S a set, and supposeP S is the constant presheaf at S
on a space X. Then the éspace étalé ofP S is the projection pr1 : X× Sδ X.

5.34. Lemma. Suppose p : Y X a local homeomorphism. Then the éspace étalé
Z := Ét(Γ(Y/X)) of the sheaf of local sections Γ(Y/X) is canonically homeomor-
phic over X to Y. That is, there is a unique homeomorphism Y Z such that the
diagram

Y Z

X

commutes.



20 18.904

5.35. Definition. Suppose X a space andF a presheaf on X. The sheafification
ofF is the sheaf

aF := Γ(Ét(F )/X)
of local sections of the projection map p : Ét(F ) X. The morphism of
presheaves

ηF :F aF
that assigns to any section s ∈F (U) the section x sx over U is called the
unit morphism.

5.36. Proposition. For any presheafF on a space X, the natural morphism

ηF :F aF

induces a bijection ηF ,x :F x (aF )x on stalks for every x ∈ X.

5.36.1.Corollary. For any sheafF on a spaceX, the unit morphism ηF :F aF
is an isomorphism.

5.37. Example.The constant sheafF S at a set S on a space X is the sheafification
of the constant presheafP S at S. It is isomorphic to the sheaf of local sections Γ(X×
Sδ/X). Consequently, the constant sheaf is not really constant: it takes many different
values on an open set U ⊂ X.

5.38. Proposition. Suppose X a numerically generated space. Then there exists a
global section u ∈ F π0X(X) such that for any set S and any global section σ ∈
F S(X), there exists a unique set map π0 S such that the induced morphism of
sheaves σ̃ :F π0X F S has the property that σ̃(u) = σ.

5.39. Theorem. Suppose X a space, supposeF a presheaf on X, and supposeG a
sheaf on X. Then for any morphism ϕ :F G , there exists a unique morphism
aϕ : aF G such that the diagram

F

aF G

ϕηF

aϕ

commutes.

5.39.1.Corollary. SupposeX a space. For anymorphismϕ :F G of presheaves,
there exists a unique morphism

aϕ : aF aG
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such that following diagram commutes:

F G

aF aG .

ϕ

ηF ηG

aϕ

5.40. Definition. Suppose g : X Y a map.
(5.40.1) For any sheafF on X, define the direct image g⋆F ofF as the sheaf

that assigns to any open set V ∈ Op(Y) the set

g⋆F (V) :=F (g−1V).

(5.40.2) For any sheafG on Y, we define the inverse image g⋆G as the sheaf of
local sections of the pullback

X×Y Ét(G ) X

of the map pG : Ét(G ) Y

5.41. Example. Suppose A ⊂ X a subspace of a space X. Then for any sheafF on
X, if i denotes the inclusion map, the sheaf i⋆F on A is denotedF |A and is called
the restriction ofF to A. If, in particular, A is an open set, then the restrictionF |A
assigns to any open set U ⊂ A the setF (U).

5.42. Example. Suppose X a space. We have a unique map ! : X {∗}. For any
set S, there is a natural isomorphism

!⋆S ∼=F S

between the inverse image along ! and the constant sheaf. For any sheafF on X,
there is a natural isomorphism

!⋆F ∼=F (X)

between the direct image along ! and the set of global sections.
On the other hand, suppose x ∈ X a point, and write x : {∗} X for the

corresponding inclusion. For any set S, there is a natural isomorphism

x⋆S ∼= Sx

between the direct image along x and the skyscraper sheaf. For any sheafF on X,
there is a natural isomorphism

x⋆F ∼=F x

between the inverse image along x and the stalk ofF at x.
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5.43. Theorem. Suppose g : X Y a map,F a sheaf on X andG a sheaf on Y.
Then there exists a natural bijection

MorX(g⋆G ,F ) ∼= MorY(G , g⋆F ).

5.44. Definition. Suppose X a space. A sheafF on X will be said to be locally
constant if every point x ∈ X is contained in an open neighborhood U such
that the sheafF |U is constant.

5.45. Notation. For any space X, denote by LC(X) the category whose ob-
jects are locally constant sheaves on X and whose morphisms are morphisms of
sheaves.

5.46. Example. For any natural number n, consider the map pn : C× C× given
by ξ ξn. Then the sheaf of local sections Γ(pn) is locally constant, but it is not
constant.

5.47. Proposition. Suppose X a connected numerically generated space. Then a
locally constant sheafF on X is a constant sheaf if and only if for any point x ∈ X,
the set mapF (X) F x that carries a global section s to its equivalence class in
F x is a bijection.

5.48. Proposition.The only locally constant sheaves on I are constant.

5.49. Definition. Suppose X a space. Write Set for the category whose objects
are sets and whose morphisms are set maps. For any point x ∈ X, the fiber
functor for x is the functor ωx := x⋆ : LC(X) Set.

5.50. Notation. Suppose X a numerically generated space, suppose x, y ∈ X,
and suppose γ : I X a path such that γ(0) = x and γ(1) = y. IfF is a
locally constant sheaf on X, then we obtain a bijection ωγ(F ):

ωx(F ) ∼= (γ⋆F )0
∼= (γ⋆F )(I) ∼= (γ⋆F )1 ∼= ωy(F ).

5.51. Proposition. Suppose X a numerically generated space, suppose x, y ∈ X,
and suppose γ : I X a path such that γ(0) = x and γ(1) = y. If ϕ :F G
is a morphism of locally constant sheaves on X, one has

ϕy ◦ ωγ(F ) = ωγ(G ) ◦ ϕx.

5.51.1. Corollary. Suppose X a numerically generated space, suppose x, y ∈ X,
and suppose γ : I X a path such that γ(0) = x and γ(1) = y. Then ωγ is a
natural isomorphism ωx ∼ ωy.
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5.52. Proposition. Suppose X a numerically generated space, and suppose x, y ∈
X. If η, θ ∈ Px,y(X) lie in the same connected component, then one has

ωη = ωθ.

5.53.Definition. Suppose X a space. Write Fib(X) for the following groupoid.
The objects are points x ∈ X, and for any two points x, y ∈ X, the set

IsomFib(X)(x, y)

is the set of natural isomorphisms ωx ∼ ωy.

5.54. Definition. Suppose X a numerically generated space. Then we say that
X is locally contractible if, for any point x ∈ X and any open neighborhood U
of x, there exists a neighborhood x ∈ V ⊂ U such that the inclusion {x} V
is a homotopy equivalence.

5.55.Theorem. SupposeX a locally contractible numerically generated space.Then
the assignment γ ωγ defines an equivalence of groupoids

Π1(X) ∼ Fib(X).

5.55.1. Corollary. For any locally contractible numerically generated space X and
any point x ∈ X, the assignment γ ωγ defines an isomorphism

π1(X, x) ∼ Aut(ωx).

6. Simplicial sets and higher groupoids

6.1.Definition. Consider the following category∆. The objects are nonempty
totally ordered finite sets, and a morphism K J in∆ is a nondecreasing map
K J.

For any natural number n, denote by [n] the totally ordered finite set

{0, . . . , n}

(whose order is the usual one). We regard [n] as an object of ∆.

6.2. Lemma. For every object J of∆, there exists a unique integer nJ and a unique
isomorphism J ∼ [nJ]. For any two objects J and K of ∆, the set Isom∆(K, J) of
isomorphisms K ∼ J is given by

Isom∆(K, J) ∼=

{
{∗} if nK = nJ
∅ if nK ̸= nJ.



24 18.904

6.3. Lemma. Every morphism g : K J of∆ can be factored in a unique fashion
as g = g+ ◦ g−, where g+ is an injective nondecreasing map, and g− is a surjective
nondecreasing map.

6.4. Lemma. Suppose n a natural number. For any integer 0 ≤ i ≤ n, there is a
unique nondecreasing injection

δi : [n− 1] [n]

such that i is not contained in the image of δi. Similarly, there is a unique nonde-
creasing surjection

σi : [n+ 1] [n]
such that σi(i) = σi(i+ 1).

6.5.Definition. A simplicial set is a functor X : ∆op Set. The set X([n]) will
usually be denoted Xn. Its elements will be called n-simplices. We sometimes
call 0-simplices vertices and 1-simplices edges.

A morphism g : X Y of simplicial sets is a natural transformation. That is,
it is a tuple (gJ)J∈∆ of set maps gJ : X(J) Y(J) such that for any morphism
ϕ : K J of ∆, the diagram

X(J) Y(J)

X(K) Y(K)

gJ

X(ϕ) Y(ϕ)

gK

commutes. We write Mor(X,Y) for the set of morphisms X Y.

6.6. Lemma. A simplicial set X is uniquely identified by the following data:
(6.6.A) for any natural number n, a set Xn;
(6.6.B) for any natural number n and any integer 0 ≤ i ≤ n, a map di :=

X(δi) : Xn Xn−1;
(6.6.C) for any natural number n and any integer 0 ≤ i ≤ n, a map si :=

X(σi) : Xn Xn+1;
subject to the following axioms.
(6.6.1) If i < j, then didj = dj−1di.
(6.6.2) If i > j, then sisj = sjsi−1.
(6.6.3) Lastly,

disj =


sj−1di if i < j;
id if i = j or i = j+ 1;
sjdi−1if i > j+ 1.
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6.7. Example. For any set S, the discrete simplicial set Sδ at S is constant functor

J S.

6.8. Example. For any object J of∆, the simplicial set∆J is given by the assignment

K Mor∆(K, J).

For any simplicial set X, there is a natural bijection

Mor(∆J,X) ∼= X(J).

For any natural number n, we write ∆n for ∆[n], and we call it the standard
n-simplex.

6.9. Example. For any category C, the nerve NC is defined in the following man-
ner. Any object J of ∆ can be regarded as a category whose objects are the elements
of I and whose morphisms are given by

MorJ(i, j) ∼=

{
{∗} if i ≤ j
∅ if i > j.

Now NC is given by the assignment

J Fun(J,C),

where Fun(J,C) denotes the set of functors J C.

6.10. Lemma. For any object J of ∆, there is a natural isomorphism NJ ∼= ∆J.

6.11. Proposition. For any categories C and D, the natural map

Fun(C,D) Mor(NC,ND)

is a bijection.

6.12. Example. For any two simplicial sets X and Y, the product X × Y is the
functor given by the assignment

J X(J)× Y(J).

More generally, for any morphisms X Z and Y Z of simplicial sets, the
fiber product X×Z Y is the functor given by the assignment

J X(J)×Z(J) Y(J).

6.13. Example. If X and Y are two simplicial sets, then the coproduct X ⊔ Y is
the functor given by the assignment

J X(J) ⊔ Y(J).
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6.14. Definition. Suppose X a simplicial set. Suppose n a natural number and
τ ∈ Xn. For an integer 0 ≤ i ≤ n, the i-th face of τ is the (n − 1)-simplex
di(τ), and the i-th degeneracy of τ is the (n+ 1)-simplex si(τ).

An (n+1)-simplex is degenerate if it lies in the essential image of X(σi); we’ll
say that it is nondegenerate if it is not degenerate.

6.15. Lemma. Suppose X a simplicial set, and suppose that for every natural num-
ber n, one has a subset Yn ⊂ Xn. If τ ∈ Yn implies that for any integer 0 ≤ i ≤ n,
one has di(τ) ∈ Yn−1 and si(τ) ∈ Yn+1, then the assignment I YnI defines a
simplicial set, and the inclusions Yn Xn define a morphism of simplicial sets.

6.16. Definition. A simplicial set Y constructed as above will be called a sim-
plicial subset of X, and we will write Y ⊂ X.

6.17. Example. For any morphisms X Z and Y Z of simplicial sets, the
fiber product X×Z Y is naturally a simplicial subset of X× Y.

6.18. Example. For any natural number n and any integer 0 ≤ i ≤ n, the
inclusion

{0, . . . , i− 1, i+ 1, . . . , n} [n]

defines a simplicial subset

∆{0,...,i−1,i+1,...,n} ⊂ ∆n,

which we call the i-th face of ∆n.

6.19. Example. For any natural number n, denote by ∂∆n ⊂ ∆n the smallest
simplicial subset that contains all the faces of ∆n. That is, the set of m-simplices of
∂∆n is given by

(∂∆n)m :=
∪

0≤i≤n

∆{0,...,i−1,i+1,...,n}
m .

6.20. Example. For any natural number n and any integer 0 ≤ k ≤ n, denote by
Λn

k ⊂ ∂∆n the smallest simplicial subset that contains all the faces of∆n except for
the k-th. That is, the set of m-simplices of Λn

k is given by

(Λn
k)m :=

∪
0≤i≤n, i ̸=k

∆{0,...,i−1,i+1,...,n}
m .

6.21. Example. For any simplicial set X and any integer n ≥ 0, let skn X ⊂ X be
the smallest simplicial subset of X that contains all the n-simplices of X. That is, the
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set of m-simplices of skn X is given by

(skn X)m :=

{
Xm if m ≤ n;∪

i1,...,im−n
sim−n · · · si1(Xm) if m > n.

6.22. Definition. Suppose n a natural number, and write ∆≤n ⊂ ∆ for the
full subcategory spanned by those objects J of ∆ such that nJ ≤ n. For any
simplicial set X, write X≤n for the restriction of X to ∆op

≤n.

6.23. Lemma. For any natural number n, one has

skn−1∆
n ∼= ∂∆n,

and for any integer 0 ≤ k ≤ n+ 1,

skn−1 Λ
n+1
k

∼= skn−1 ∆
n+1.

6.24. Definition. For any natural number n and any simplicial set X, define a
simplicial set coskn X as the functor given by the assignment

J Mor(skn∆J,X).

The inclusions skn ∆J ∆J induce a morphism X coskn X. We say that X
is n-coskeletal if this morphism is an isomorphism.

6.25. Proposition. For any natural number n and any two simplicial sets X and
Y, there are natural bijections

Mor(skn X,Y) ∼= Nat(X≤n,Y≤n) ∼= Mor(X, coskn Y),

where Nat(X≤n,Y≤n) is the set of natural transformations X≤n Y≤n.

6.26. Proposition.The nerve of any category is 2-coskeletal.

6.27. Definition. A simplicial set X is a Kan complex or an ∞-groupoid if for
any natural number n ≥ 1 and any integer 0 ≤ k ≤ n, the inclusion morphism
Λn

k ∆n induces a surjection

Mor(∆n,X) Mor(Λn
k,X).

For a natural number m, we say that an∞-groupoid X is a m-groupoid if, in
addition, for any natural number n ≥ m + 1 and any integer 0 ≤ k ≤ n, the
inclusion morphism Λn

k ∆n induces a bijection

Xn
∼= Mor(∆n,X) Mor(Λn

k,X).

6.28. Example.The standard simplex ∆n is a Kan complex if and only if n = 0.
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6.29. Example. A 0-groupoid is precisely a discrete simplicial set.

6.30. Proposition. The nerve of a category C is a Kan complex if and only C is a
groupoid, in which case NC is a 1-groupoid.

6.31. Proposition. An m-groupoid is (m+1)-coskeletal, and an m-coskeletal Kan
complex is a (m+ 1)-groupoid.

6.32. Proposition. Any 1-groupoid is the nerve of a groupoid.

6.33. Proposition. If X and Y are m-groupoids (0 ≤ m ≤ ∞), then the product
X× Z is an m-groupoid as well.

6.34. Proposition. IfX and Y are m-groupoids (0 ≤ m ≤ ∞), then the coproduct
X ⊔ Y is an m-groupoid as well.

6.35. Proposition. Suppose X : ∆op Grp a simplicial group, i.e., a sim-
plicial set in which each Xn is equipped with a group structure and the maps
di : Xn Xn−1 and si : Xn Xn+1 are all group homomorphisms. Then X is
a Kan complex.

6.36. Definition. Suppose X and Y two simplicial sets. Define a simplicial set
Map(X,Y) as the functor given by the assignment

J Mor(X×∆J,Y).

6.37. Lemma. For any simplicial sets X, Y, and Z, there is a natural bijection

Mor(X× Y,Z) ∼= Mor(X,Map(Y,Z)).

6.38. Proposition. Suppose C and D two categories. Then there is a natural iso-
morphism

NFun(C,D) ∼= Map(NC,ND),

where Fun(C,D) denotes the category whose objects are functors C D and
whose morphisms are natural transformations.

6.39. Theorem. Suppose X a simplicial set, and suppose Y an m-groupoid (0 ≤
m ≤ ∞). Then Map(X,Y) is an m-groupoid as well.

6.39.1. Corollary. For any simplicial set X and for any groupoid Γ, the simplicial
set Map(X,NΓ) is the nerve of a groupoid.
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6.39.2. Corollary. For any simplicial set X and for any set S, the simplicial set
Map(X, Sδ) is discrete.

7. The Postnikov tower

7.1. Definition. Suppose X a simplicial set. Consider the equivalence relation
∼ on X0 generated by declaring two vertices x, y ∈ X0 to be equivalent if there
exists a 1-simplex τ ∈ X1 such that d0(τ) = x and d1(τ) = y. Denote by
π0X := X/ ∼ the set of equivalence classes under this equivalence relation, and
write pX,0 : X0 π0X the projection of the vertices of X onto their equivalence
classes.

7.2. Example. For any set S, one has π0(Sδ) = S.

7.3. Lemma. If X is a Kan complex, then two vertices are equivalent in the sense
above if and only if there exists a 1-simplex τ ∈ X1 such that d0(τ) = x and
d1(τ) = y.

7.4. Lemma. Suppose X a simplicial set. For any natural number n ≥ 1, any
n-simplex τ ∈ Xn, and any two morphisms ϕ, ψ : [0] [n] of ∆, we have

X(ϕ)(τ) ∼ X(ψ)(τ).

Consequently, there exists a unique morphism pX : X (π0X)δ that on vertices is
the map pX,0 above.

7.5.Theorem. Suppose X a simplicial set. Then the morphism pX has the following
universal property: for any set S and any morphism g : X Sδ, there exists a unique
set map π0g : π0X S such that the following diagram commutes:

X

(π0X)δ Sδ.

pX

π0g

g

7.5.1.Corollary. For any morphism g : X Y between simplicial sets, there exists
a unique set map

π0g : π0X π0Y
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such that following diagram commutes:

X Y

(π0X)δ (π0Y)δ.

g

pX pY

(π0g)δ

7.5.2. Corollary.The assignment X π0X defines a functor sSet Set that is
left adjoint to the functor given by the assignment S Sδ.

7.6. Proposition. For any simplicial sets X and Y, the two maps X× Y X and
X× Y Y together induce a bijection

π0(X× Y) ∼ π0X× π0Y.

7.7. Proposition. For any family {Xi} of numerically generated spaces, the inclu-
sions Xi

⨿
i Xi together induce a bijection

⨿
i

π0(Xi) ∼= π0

(⨿
i

Xi

)
.

7.8. Definition. Suppose X a simplicial set and Y a Kan complex. We will say
that two morphisms p, q : X Y are homotopic if the images of p and q in
π0 Map(X,Y) are equal. In this case we write p ≃ q.

7.9. Lemma. Suppose X a simplicial set and Y a Kan complex. Two morphisms
p, q : X Y of simplicial sets are homotopic just in case there exists a map

h : X×∆1 Y

such that one has

h|(X×∆{0}) = p and h|(X×∆{1}) = q.

7.10. Definition.We say that a morphism ϕ : X Y of simplicial sets is a
homotopy equivalence if there exists a mapψ : Y X such that bothψ◦ϕ ≃ idX
and ϕ ◦ ψ ≃ idY.

7.11. Proposition. A homotopy equivalence X Y between simplicial sets in-
duces a bijection

π0X ∼ π0Y.
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7.12. Definition. Suppose Y a Kan complex, and suppose X′ ⊂ X a simplicial
subset.We say that p and q are homotopic relative toX′ if there exists a morphism

h : X×∆1 Y

such that

h|(X×∆{0}) = p and h|(X×∆{1}) = q,

and h|(X′ ×∆1) factors through the projection X′ ×∆1 X′.

7.13. Definition. Suppose X a Kan complex. Consider the equivalence rela-
tion ∼1 on the set X1 generated by declaring two 1-simplices τ, υ ∈ X1 to be
equivalent if the corresponding maps τ, υ : ∆1 X are homotopic relative to
∂∆1.

Define a groupoid Π1X as follows. The objects of Π1X are vertices of X, and
for any vertices x, y ∈ X0, the set IsomΠ1X(x, y) is the set of equivalence classes
of 1-simplices.

7.14. Example. For any groupoid Γ, there is an isomorphism of groupoids

Γ ∼= Π1(NΓ).

7.15. Proposition. Suppose X a Kan complex. Then the following are equivalent
for two 1-simplices τ, υ ∈ X1.

(7.15.1) τ ∼1 υ.
(7.15.2) There exists a 2-simplex η such that d0(η) = τ and d1(η) = υ, and

d2(η) is degenerate.
(7.15.3) There exists a 2-simplex η such that d1(η) = τ and d0(η) = υ, and

d2(η) is degenerate.
(7.15.4) There exists a 2-simplex η such that d1(η) = τ and d2(η) = υ, and

d0(η) is degenerate.
(7.15.5) There exists a 2-simplex η such that d2(η) = τ and d1(η) = υ, and

d0(η) is degenerate.

7.16. Proposition. Suppose X a Kan complex. Then there exists a unique mor-
phism pX : X NΠ1X of simplicial sets such that pX,0 is the identity map from
the setX0 to the set of objects ofΠ1X, and pX,1 is the projection fromX1 X1/ ∼1.

7.17.Theorem. SupposeX a simplicial set.Then the morphism pX has the following
universal property: for any groupoid Γ and any morphism g : X NΓ, there exists
a unique morphism of groupoids Π1g : Π1X Γ such that the following diagram
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commutes:
X

NΠ1X Γ.

pX

Π1g

g

7.17.1. Corollary. For any morphism g : X Y between simplicial sets, there
exists a unique morphism of groupoids

Π1g : Π1X Π1Y

such that following diagram commutes:

X Y

NΠ1X Π1Y.

g

pX pY

NΠ1g

7.17.2. Corollary. The assignment X Π1X defines a functor Kan Gpd
that is left adjoint to the functor given by the assignment Γ NΓ.

7.18. Proposition. For any simplicial sets X and Y, the two maps X× Y X
and X× Y Y together induce an isomorphism

Π1(X× Y) ∼ Π1X× Π1Y.

7.19. Proposition. For any family {Xi} of numerically generated spaces, the in-
clusions Xi

⨿
i Xi together induce an isomorphism⨿

i

Π1(Xi) ∼= Π1

(⨿
i

Xi

)
.

7.20.Definition. Suppose X a Kan complex, and supposem a natural number.
Consider the morphism coskm+1 X coskm X, and consider the simplicial
subset X(m) ⊂ coskm X whose set of k-simplices is the image of the set map
(coskm+1 X)k (coskm X)k.

Now let∼m be the equivalence relation on the simplices of X(m) generated by
declaring two k-simplices τ, υ ∈ (X(m))k to be equivalent if the corresponding
morphisms τ, υ : skm∆k X are homotopic relative to skm−1 ∆

k.
Now letΠmX denote the simplicial set whose k simplices are given by the set

of equivalence classes
(ΠmX)k := (X(m))/ ∼k .
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There is a natural morphismX X(m), and thus amorphism pX : X ΠmX.

7.21. Proposition. For any Kan complex X, the simplicial set ΠmX is an m-
groupoid.

7.22. Example. For any m-groupoid X, there is an isomorphism

X ∼= ΠmX.

7.23. Example. For any Kan complex X, one has

Π0X ∼= (π0X)δ.

7.24. Example. For any Kan complex X, one has

Π1X ∼= NΠ1X.

(Note the abuse of notation.)

7.25.Theorem. SupposeX a simplicial set and m a natural number.Then the mor-
phism pX has the following universal property: for any m-groupoid Y and any mor-
phism g : X Y, there exists a unique morphism of groupoids Πmg : ΠmX Y
such that the following diagram commutes:

X

ΠmX Y.

pX

Πmg

g

7.25.1. Corollary. For any natural number m and any morphism g : X Y
between simplicial sets, there exists a unique morphism of m-groupoids

Πmg : ΠmX ΠmY

such that following diagram commutes:

X Y

ΠmX ΠmY.

g

pX pY

Πmg

7.25.2. Corollary. For any natural number m, the assignment X ΠmX defines
a functorKan mGpd that is left adjoint to the inclusion functor mGpd Kan.
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7.26. Proposition. For any natural number m and any simplicial sets X and Y,
the two maps X× Y X and X× Y Y together induce an isomorphism

Πm(X× Y) ∼ ΠmX× ΠmY.

7.27.Proposition. For any natural number m and any family {Xi} of numerically
generated spaces, the inclusions Xi

⨿
i Xi together induce an isomorphism⨿

i

Πm(Xi) ∼= Πm

(⨿
i

Xi

)
.

8. The singular simplicial set

8.1. Lemma. For any object J ∈ ∆, order the set ∆1
J = Mor(J, [1]) so that for

any σ, τ : J [1], one has σ < τ just in case there exists j ∈ J such that
σ(j) < τ(j).

Then ∆1
J is totally ordered and contains a minimum and maximum element, and

for any morphism K J in ∆, the induced map

∆1
J ∆1

K

preserves the order and minimum and maximum elements.

8.2. Definition. Define a functor
∆•

top : ∆ Num

as follows: for any object J ∈ ∆, let

∆J
top ⊂ Map((∆1

J )
δ, I)

be the subspace consisting of those maps that preserve the order and minimum
and maximum elements.

Now for any numerically generated space X, the singular simplicial set or
Poincaré∞-groupoid Π∞(X) is the simplicial set defined by the formula

Π∞(X)J := Map(∆J
top,X).

This defines a functor
Π∞ : Num sSet.

8.3. Theorem. For any numerically generated space X, the simplicial set Π∞(X)
is, in fact, an ∞-groupoid.

8.4. Theorem. Two maps ϕ, ψ : X Y of numerically generated spaces are ho-
motopic if and only if the corresponding morphisms

Π∞(ϕ),Π∞(ψ) : Π∞X Π∞Y
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are homotopic.

8.5.Theorem. For any numerically generated space X, there is a natural bijection
π0X ∼= π0Π∞(X).

8.6. Theorem. For any numerically generated space X, there is a natural equiva-
lence of groupoids

Π1X ≃ Π1Π∞(X) ≃ NΠ1Π∞(X).

8.7. Definition. For any integer m ≥ 2 and any numerically generated space
X, write Πm(X) for the m-groupoid ΠmΠ∞(X).

8.8. Definition. For any simplicial set X, let ∼ be the equivalence relation on
the coproduct ⨿

n≥0

(Xδ
n ×∆n

top)

generated by declaring that for any morphism ϕ : [m] [n] of ∆ and for any
(σ, x) ∈ Xδ

n ×∆m
top, one has

(X(ϕ)(σ), x) ∼ (σ,∆•
top(ϕ)(x)).

The geometric realization of X is the (numerically generated) quotient space

Xtop :=

(⨿
n≥0

(Xδ
n ×∆n

top)

)
/ ∼ .

This defines a functor (·)top : sSet Num.

8.9. Proposition.The geometric realization functor (·)top is left adjoint to the
Poincaré∞-groupoid functorΠ∞; that is, for any simplicial set X and any numer-
ically generated space Y, there is a natural bijection

Map(Xtop,Y) ∼= Mor(X,Π∞(Y)).


