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What’s all this then?— Here are revised notes for my ill-fated talk in the Norwegian Topology Symposium
in Bergen in June, 2007. As a result of poor planning, a tedious narrative structure, and a basic lack of
familiarity with computer-based presentations, I did not manage to explore nearly as much material as I
had intended. This was, for me, a genuine loss, as I was excited to see what interesting applications “real”
topologists might find for my little pet project.

As penance for my failings as a speaker, I’ve spent the last three months or so revising and expanding the
slides from the talk; here is the result. I have included more details and examples throughout, and I have
interspersed a fair number of friendly, informal comments and attempts at humor in order to cut down the
inevitable turgidity of the prose. The detailed proofs of the results announced here will be compiled elsewhere
— mostly as threads developed in [3] and [4] —, and for the most part, I feel satisfied with sketching the
proofs of the more surprising results here. As the completion and revision of the book have taken far longer
than expected, this short note can be seen as a kind of progress report on my work so far in these areas.

I never did finish writing up these notes, and they haven’t been edited in a year. I’m making them available
publicly mostly to express the ideas.

Some introductory remarks. — The aim of the theory of operator categories is to provide a new set
of “sharper tools” (to borrow an expression from Hilbert) for discussing the interaction between algebraic
structures and homotopy theory. This approach is further enhanced by the introduction of higher-categorical
instruments that are carefully tuned to detect the harmonics of the interface between algebra and homotopy
theory. Of course this interface has received more than enough attention over the years; indeed, homotopy
coherent algebra has experienced a kind of prolonged renaissance over the course of the past half century,
with more great minds involved in its unfolding than I dare name here. With this sort of pedigree, it may
seem wholly improbable that modern homotopy coherent algebra should retain any mystery whatsoever,
particularly none of the sort that might yield to the introduction of a new (rather thin) layer of formalism.

It should be borne in mind, however, that accompanying this marvelous history of successful work has
been a bewildering history of errors — many of which are quite difficult to detect — coupled with a technical
heft that can make it difficult to determine the status of some problems or their amenability to certain
technologies. In particular, I am especially interested in the following question, which I had once thought
would prove easy to answer.

Question. — Is the algebraic K-theory of an En ring spectrum an En−1 ring spectrum in a canonical
fashion?

There have been a number of unsuccessful attempts to approach related questions, but I am so far unable
to determine whether this question has found a satisfactory answer before now. The analogous question for
topological Hochschild homology has a purported solution by a number of authors, but I have so far not
been able to follow their arguments.
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Hence our aim here is to establish a useful higher categorical and combinatorial framework in which we
can recast some classical theorems, give cleaner, more conceptual proofs of some more modern results, and
offer answers to questions akin to the one above (whose answer, incidentally, is yes).

Unfortunately, the joy of operator categories, higher categories, multicategories, and all their concomitant
alembics may prove difficult to share; the sense in which this subject may be said to be “fun” has always been
rather subtle — at times even elusive. So, as a friendly word of advice, may I suggest that any reader who
expects to find all this category theory idiotic or painful seriously consider reading these notes backwards.
Start with the very last section to see what sort of applications I have in mind, and decide whether you care.
If (as I hope) you find that you do, then you can look in the penultimate section to see what the technical
underpinnings of these applications look like. And so on, until you are either fed up or so convinced that
operator categories are a good idea that you are prepared to use them yourself.
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1. Operator Categories

What is an operator category?— Operator categories are to be thought of as categories of indexing
sets for multiplication laws; hence operator categories provide an organizational rubric to which a collection
of objects must conform in order for them to be multiplied.

Definition 1.1. — An operator category is an essentially small category Φ satisfying the following condi-
tions.

(1.1.1) Φ is locally finite; i.e., for any objects I and J of Φ, MorΦ(I, J) is a finite set.
(1.1.2) There exists a terminal object ? ∈ Φ.
(1.1.3) For any morphism f : J //I of Φ and any point i : ? //I , the fiber of f over i, i.e., the pullback

Ji

��

// J

��
? // I,

exists.

1.2. — I wrote this definition down a few years ago purely out of sheer laziness. I’d noticed that I was
writing the same arguments repeatedly, and I began to suspect that one might be able to extract a short
list of axioms for indexing sets for various kinds of monoidal structures, so I could stop using irritating
expressions like, “the proof is similar to that of Lemma 1.2.4.”

1.3. — Suppose Φ an operator category. An object I ∈ Φ is to be thought of as the finite set of points
|I| := MorΦ(?, I), equipped with some extra structure.

Such an operator category Φ specifies the rubric of multiplication laws in the following manner: in order
to multiply a finite set of elements according to some multiplication law � under the rubric of Φ, one follows
an easy recipe:

(1.3.1) Arrange the elements according to the structure on an object of Φ:

(XI) := (Xi)i∈|I|

(an I-tuple).
(1.3.2) The multiplication law now permits you to proceed:

�XI :=
⊙
i∈|I|

Xi.

1.4. — A multiplication law under the rubric of Φ will be called a Φ-monoidal structure. A Φ-monoid (A,�)
in the category of sets is (at least as a first approximation) to be thought of as a functor:

Φ //Set

I
� //A×|I|

[J → I] � // [(XJ) 7→ (�X(J/I))],

where:

(�X(J/I)) := (�XJi)i∈|I|.

This picture will be made much more precise in due course.
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Easy examples, in decreasing degree of triviality. — We’ll get the ball rolling with some very basic
examples, all of which are relatively familiar. Later on we’ll have a look at an interesting way to generate
new infinite families of examples.

Example 1.5. — The following are all operator categories:

(1.5.1) The linear category p := [0 //1 // . . . //p ] (here p ≥ 0; observe that the empty category −1 is
not an operator category),

(1.5.2) the full subcategory O≤n ⊂ Cat comprised of the categories p for −1 ≤ p ≤ n — or, equivalently,
totally ordered finite sets of cardinality ≤ n+ 1,

(1.5.3) the full subcategory O ⊂ Cat comprised of the categories p for p ≥ −1 — or, equivalently, totally
ordered finite sets,

(1.5.4) the full subcategory F≤n ⊂ Set comprised of the sets |p| := Obj p for −1 ≤ p ≤ n — or, equivalently,
finite sets of cardinality ≤ n+ 1, and

(1.5.5) the full subcategory F ⊂ Set comprised of the sets |p| for p ≥ −1 — or, equivalently, finite sets.

Here’s a table of these operator categories and their associated rubrics in the category of sets.

Φ Φ-monoids in Set

0 sets
p (p > 0) pointed sets

O≤1 unital magmas
O≤n (n > 1) monoids

O monoids
F≤1 commutative, unital magmas

F≤n (n > 1) commutative monoids
F commutative monoids

1.6. — Observe that for any n > 1, the categories of Φ-monoids in Set for Φ = O≤n and Φ = O are all
equivalent. One says that the operator categories O≤n (n > 1) and O all span the same rubric in Set.

1.7. — Note that with the exception of the first, these examples are all unital structures. This is no accident:
any time Φ contains an object with a plurality of points, the requirement that all fibers of a map exist —
even over points not in the image — forces the existence of objects without points; these naturally give rise
to units.

There is also a theory of “nonunital” operator categories; morphisms that induce epimorphisms on the sets
of points play a particularly significant role in that theory. For now, let us concentrate on the unital theory.

Example 1.8. — Here’s a sort of impractical example, just for fun, to demonstrate that the possibility for
more exotic structures exists. For any set S, one can also define an operator category PS whose set of objects
is the set S+ := S t ?, with exactly one morphism from any s ∈ S to ?, and no other nontrivial morphisms.
Then PS-monoids (in Set) are simply objects of the over category (S/Set).

Flat and perfect operator categories. — In algebraic geometry, a property P of schemes usually comes
in two flavors: there’s a relative version of P and an absolute version of P . The relative version of a property
is really a property of a morphism of schemes, whereas the absolute version is simply a property of a single
scheme. Frequently, as one might expect, it is simpler to verify that a given scheme is “absolutely P” than it
is to verify that a given morphism is “relatively P .”

This is where flatness enters; in many cases of interest, a flat morphism whose fibers are absolutely P
is a relatively P morphism. In other words, flatness is precisely the condition needed to guarantee that
information can be “spread out” from the fibers of a morphism to the morphism itself. This idea can be
fruitfully translated into the world of operator categories as well.

1.9. — The existence of fibers in an operator category Φ allows one to define functors

σI : (Φ/I) //Φ×|I|

[J → I]
� //(JI)

for any I ∈ Φ.
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Definition 1.10. — An operator category Φ is flat if for any I ∈ Φ the functor σI is fully faithful; Φ is
faithfully flat if for any I ∈ Φ the functor σI is an equivalence.

1.11. — As promised, flatness in an operator category is precisely what is needed to“spread out”information
from fibers: if [J //I ] ∈ Φ and [K //I ] ∈ Φ, then any collection of morphisms (Ji //Ki )i∈|I| is the

I-tuple of fibers of a morphism J //K over I.

Example 1.12. — The only easy examples of operator categories we have seen that are not flat are the
categories p for p > 1.

On the other hand, only the operator categories 0, 1, O, and F (as well as our impractical example, PS)
are faithfully flat; the others are merely flat.

1.13. — Although flat operator categories include the more familiar examples, the technical criterion that
will be most relevant for our work here is that of perfection, to which we now turn.

Definition 1.14. — (1.14.1) A point classifier for an operator category Φ is a pointed object (T, t) ∈ (?/Φ)
with the following universal property: for any pointed object (V, v) ∈ (?/Φ), there exists a unique
morphism [χv : V //T ] ∈ Φ such that

?
v // V

χv
��

?
t
// T

is a pullback square.
(1.14.2) If (T, t) is a point classifier for Φ, then the point t ∈ |T | will be called the special point of T , and any

other point of T will be called a generic point ; the set of generic points will be denoted |T |γ := |T |\t.
(1.14.3) An operator category Φ is perfect if:

(1.14.3.1) Φ contains a point classifier (T, t), and
(1.14.3.2) the functor

(−)t : (Φ/T ) //Φ

has a right adjoint, which we also denote T .
(1.14.4) The complexity of a perfect operator category Φ is defined to be the number of generic points of

the point classifier:

C(Φ) := #|T |γ

1.15. — The concept of a point classifier may remind you a little of the notion of a subobject classifier from
topos theory. When Φ is faithfully flat, that’s almost exactly what it is.

In a perfect operator category Φ, the right adjoint T : Φ //(Φ/T ) effectively adds points in as many
directions as possible. The number of those directions is the complexity of Φ. Another way of looking at the
complexity is that it is an estimate of the minimum number of “components” left over after you remove a
general point of an object of Φ. This idea can actually be made precise, but I will not do so here.

Example 1.16. — Let us investigate the perfection of our easy examples.

(1.16.1) The initial operator category 0 is perfect, and the point classifier is the only object; C(0) = 0.
(1.16.2) The operator category 1 is perfect, and the terminal object is the point classifier; C(1) = 0. More

generally, precisely the same is true for p and for PS .
(1.16.3) The “partial” operator categories O≤n and F≤n are not perfect.
(1.16.4) The category O is perfect; the point classifier is 2 with special point 1 ∈ |2|; C(O) = 2.
(1.16.5) The category F is perfect as well; the point classifier here is |1| with special point 1 ∈ |1|; C(F) = 1.

1.17. — One may be led by the examples I have given to wonder whether the intersection of these two
classes of operator categories — perfect operator categories that are also flat — is significant. It appears,
however, that the relationship between the conditions of flatness and perfection are relatively subtle, and
their domains of usefulness are in some ways orthogonal. It seems that operations that tend to preserve
flatness tend to destroy perfection, and vice versa. Related to these ideas are the following easy propositions.
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Proposition 1.18. — If Φ is flat, then any object I with no points receives no nontrivial morphisms; in
other words, (Φ/I) is a contractible groupoid.

Proposition 1.19. — A faithfully flat operator category containing a point classifier is perfect.

Operator morphisms. — What makes the theory of operator categories vaguely promising is the observa-
tion that there is a natural notion of morphisms of operator categories. This makes it possible to investigate
the functoriality of various standard constructions.

Definition 1.20. — Suppose Φ and Ψ operator categories. An operator morphism f : Ψ //Φ is a functor
satisfying the following properties.

(1.20.1) The functor f respects terminal objects — that is, f(?) //? is an isomorphism.

(1.20.2) The functor f respects fibers — that is, f(Ji) //(fJ)f(i) is an isomorphism for any [J //I ] ∈ Ψ

and any i ∈ |I|.
(1.20.3) For any object I of Ψ, the induced morphism |I| // |fI| is a surjection.

This gives a (2, 1)-category Op of operator categories, and full sub-(2, 1)-categories Flop, Fflop, and Plop
of flat, faithfully flat, and perfect(1) operator categories.

Lemma 1.21. — The operator category 0 is homotopy initial in Op:

\ : 0 //Φ
? � // ? .

Lemma 1.22. — The operator category F is homotopy terminal in Op:

U : Φ //F
I � // |I|.

1.23. — The (2, 1)-category Op can thus be seen as a kind of axis of structure varying between the operator
category 0 — representing no structure at all — to the operator category F — representing maximal structure:

0 Φ // F

Example 1.24. — (1.24.1) Suppose Φ an operator category, Ψ ⊂ Φ a full subcategory containing ? and
closed under subobjects. Then Ψ is also an operator category, and the inclusion Ψ //Φ is an
operator morphism.

(1.24.2) Any functor φ : p //q with the property that φ(i) = q iff i = p is an operator morphism.
(1.24.3) For any n ≥ m ≥ 0, the obvious diagram of functors

O≤m

��

// O≤n

��

// O

��
F≤m // F≤n // F

is a diagram of operator morphisms.

1.25. — I found it surprising that the (2, 1)-category Op has quite a few homotopy limits and homotopy
colimits. It is surely neither homotopy complete nor homotopy cocomplete; however, there are enough ho-
motopy limits and colimits that some useful constructions can be made. I won’t discuss them all, but here’s
a handy little result.

Lemma 1.26. — The (2, 1)-category Op has finite homotopy limits and arbitrary homotopy coproducts.

(1)You’re going to complain that there is no “l” in the word “perfect,” and that makes Plop a bit of an odd choice. I appreciate
that objection, but I find rhyme and prosody much more influential factors than orthographical faithfulness in the naming of

(2, 1)-categories.
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Sketch of proof. — If Φ //X and Ψ //X are operator morphisms, then the homotopy fiber product Φ×hX
Ψ in Cat is also an operator category, and is the homotopy fiber product in Op as well. If Φi are operator

categories, then the“homotopically pointed sum”
∐h,?

Φi in Cat is an operator category, and is the homotopy
coproduct in Op.

2. Multicategories

Φ-multicategories. — Here I give the definitions and basic properties of Φ-multicategories. The definitions
are, of course, näıve analogues of the definitions from the classical theory of multicategories.

The most important aspect of the theory as I describe it here is its functoriality in every conceivable
direction. This functoriality is both conceptually satisfying and technically powerful.

Definition 2.1. — Suppose Φ an operator category. A Φ-multicategory C consists of:

(2.1.A) a set of objects Obj C,
(2.1.B) an I-polymorphism set I MorC((MI), N) for any I ∈ Φ, any I-tuple (MI) ∈ (Obj C)×|I|, and any

N ∈ Obj C,
(2.1.C) an identity element idM ∈ MorC(M,M) for every M ∈ Obj C, and
(2.1.D) a polycomposition map

I MorC((MI), N)× (J/I) MorC((LJ), (MI)) // J MorC((LJ), N)

for any morphism [J //I ] ∈ Φ, any J-tuple (LJ) ∈ (Obj C)×|J|, any I-tuple (MI) ∈ (Obj C)×|I|,
and any object N , where we use the shorthand

(J/I) MorC((LJ), (MI)) :=
∏
i∈|I|

Ji MorC((LJi),Mi)

These data are subject to the following axioms.

(2.1.1) Associativity : For any [K //J //I ] ∈ Φ, these diagrams commute:

(I MorC((NI),P )×(J/I) MorC((MJ ),(NI)))×(K/J) MorC((LK),(MJ ))

∼sshhhhhhhhhhhhhhhhh

  BBBBBBBBBBBBBBBBBBBBB

I MorC((NI),P )×
∏
i∈|I|

(Ji MorC((MJi
),Ni)×(Ki/Ji) MorC((LKi ),(MJi

)))

��
I MorC((NI),P )×

∏
i∈|I|

Ki MorC((LKi ),Ni) J MorC((MJ ),P )×(K/J) MorC((LK),(MJ ))

||yyyyyyyyyyyyyyyyyyyy

I MorC((NI),P )×(K/I) MorC((LK),(NI))

++WWWWWWWWWWWWWWWWWWW

KMorC((LK),P ).

(2.1.2) Identity : For any I ∈ Φ, the identity maps of I-polymorphism sets I MorC((MI), N) correspond both
to
(2.1.2.a) (idMI

) ∈ (I/I) MorC(MI ,MI) under the polycomposition map induced by [I I ] ∈ Φ, and

(2.1.2.b) idN ∈ MorC(N,N) under the polycomposition map induced by [I //? ] ∈ Φ.

A Φ-multicategory with exactly one object is called a Φ-operad.

2.2. — It’s perhaps amusing to think of Φ-multicategories as the ghosts of Φ-monoidal structures (to be
defined a little later). A Φ-monoidal structure allows one to multiply objects. This you cannot necessarily
do in a Φ-multicategory, but you can say what maps out of that tensor product would look like, if only it
existed.
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This thought might lead one to suspect that any full subcategory of a Φ-monoidal category inherits a
Φ-multicategory structure, and as we shall see, this is in fact the case.

Example 2.3. — Despite the abstract definition, the concept is familiar for our “easy” examples of perfect
operator categories.

(2.3.1) A 0-multicategory is simply a category. A 0-operad is a monoid.
(2.3.2) A 1-multicategory is a category C equipped with a functor C //Set . A 1-operad is a pair (M,X)

consisting of a monoid M and an M -set X.
(2.3.3) An O-multicategory is a (nonsymmetric) multicategory. An O-operad is a(n) (nonsymmetric) operad.
(2.3.4) A F-multicategory is a symmetric multicategory. A F-operad is a symmetric operad.

Φ-multifunctors. — It is relatively important to stress that the theory of Φ-multicategories is not the
same as that of colored Φ-operads. Though the objects in question are obviously equivalent, the categorical
structure is entirely different: whereas morphisms of colored Φ-operads preserve the colors, Φ-multifunctors
may mix the colors. When Φ = 0, this is the difference between categories and categories with a fixed object
set. In this subsection we investigate color-mixing morphisms, called multifunctors.

Definition 2.4. — Suppose Φ an operator category, and suppose C and D Φ-multicategories. A Φ-
multifunctor G : C //D is a map ObjG : Obj C // ObjD and, for any I ∈ Φ, a morphism

γI : I MorC(MI , N) //I MorD(GMI , GN)

that are compatible with composition in the sense that the following diagrams commute for any morphism
J //I of Φ:

I MorC((MI), N)× (J/I) MorC((LJ), (MI))

��

// J MorC((LJ), N)

��
I MorD((GIMI), GN)× (J/I) MorD((GJLJ), (GIMI)) // J MorD((GJLJ), GN).

2.5. — Multifunctors (G, γ) and (H, η) compose to yield the functor H ◦G, equipped with the composition
(ηG) ◦ γ. I leave it to the interested reader (if there are any) to formulate the notion of a morphism of
Φ-multifunctors.

Denote by µΦCat the resulting 2-category of Φ-multicategories,(2) and denote by OperadΦ the subcate-
gory of Φ-operads.

Lemma 2.6. — We now have (2, 1)-functors

µCat : Opop //2Cat
Φ � //µΦCat
f

� //(−)f

and Operad : Opop //2Cat

Φ � //OperadΦ

f � //(−)f .

Corollary 2.7. — Suppose Φ an operator category.

(2.7.1) A Φ-multicategory C is in particular a category C\.
(2.7.2) A symmetric multicategory C is in particular a Φ-multicategory CU .

2.8. — Suppose now D a category. Denote by µΦCat(D) the homotopy fibre of the forgetful 2-functor

(−)\ : µΦCat //Cat

over D — i.e., the 2-category of pairs (C, u) consisting of a Φ-multicategory C and an equivalence of categories
u : C\ //D .

(2)I am, of course, being sloppy about set-theory concerns here. There is an obvious way to choose universes (in the sense of

Grothendieck) so this all makes sense.
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Lemma 2.9. — For any category D, the (2, 1)-functor µCat restricts to a (2, 1)-functor

µCat(D) : Opop //2Cat
Φ

� //µΦCat(D)
f � //(−)f .

Colored Φ-operads. — The theory of colored Φ-operads plays a role in the sequel.

Definition 2.10. — Suppose S a set, Φ an operator category. Then the category Col(S)OperadΦ of S-
colored Φ-operads is the homotopy fiber of the functor Obj : µΦCat //Set over the set S. Hence an object

of Col(S)OperadΦ is a pair (C, e), where e : S // Obj E is a bijection.

2.11. — Whereas µΦCat is most naturally a 2-category, Col(S)OperadΦ is most naturally a 1-category.
Of course when S = ?, the category of S-colored Φ-operads and that of Φ-operads coincide. Moreover, under
certain circumstances, Φ-operads give rise to S-colored Φ-operads.

Definition 2.12. — Suppose S a set, Φ an operator category.

(2.12.1) Consider the functor
εS : Φop //Set

I //S|I| × S
φ //(φ?, idS).

A color sieve for S under Φ is a full subcategory R of the category Tot εS of elements of εS satisfying
the following conditions.
(2.12.1.1) For any element x ∈ S, the element (?, x, x) ∈ R.
(2.12.1.2) For any morphism J //I of Φ, any I-tuple (yI) ∈ S|I|, any J-tuple (xJ) ∈ S|J|, and

any element z ∈ S, if (I, (yI), z) ∈ R, and if for any i ∈ |I|, (Ji, (xJi), yi) ∈ R, then
(J, (xJ), z) ∈ R as well.

(2.12.2) If R is a color sieve for S under Φ, and P is any Φ-operad, then the (P, R)-decorated S-colored
Φ-operad DΦ

R(P) is the S-colored operad in which

I MorDΦ
R(P)((xI), y) :=

{
P(I) if (I, (xI), y) ∈ R,
∅ else,

where the polycomposition law is inherited from P.

2.13. — This defines a functor

DΦ
R : OperadΦ //Col(S)OperadΦ .

Example 2.14. — Here is a very special color sieve that will come up later in our study of modules. Suppose
Φ perfect. Then the pure perfection sieve is the following color sieve R for |T | (the set of points of the point
classifier of Φ) under Φ. A triple (I, (xI), y) is an element of R if and only if one of the following holds.

(2.14.1) The point y is the special point, and there exists a point i ∈ |I| such that the I-tuple (xI) = (|χi|I)
is given by the classifying morphism χi : I //T .

(2.14.2) The point y is a generic point, and for every i ∈ |I|, xi = y.

If P is a Φ-operad, then DΦ
R(P) for this color sieve will simply be denoted HP .

Corepresentable Φ-multicategories. — Corepresentable Φ-multicategories are the ones that are essen-
tially uniquely specified by a kind of lax multiplication law on the category under the rubric of Φ.

Suppose here that Φ is an operator category.

Definition 2.15. — Suppose C a Φ-multicategory. One says that C is corepresentable if the functors

I MorC((LI),−) : C\ //Set

are all corepresentable for any I ∈ Φ.

2.16. — Denote by µΦ,cCat the full sub-2-category of µΦCat consisting of corepresentable Φ-multicategories.
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2.17. — If Φ-multicategories are the ghosts of Φ-monoidal categories, then in this macabre parable we
are led to think of corepresentable Φ-multicategories as the undead — deranged zombies who wander the
mathematical landscape in search of third-rate actors in campy horror flicks to terrorize.(3)

Lemma 2.18. — The (2, 1)-functor µCat restricts to a (2, 1)-functor

µcCat : Opop //2Cat
Φ � //µΦ,cCat
f � //(−)f .

2.19. — Suppose C a corepresentable Φ-multicategory. Let us denote a corepresenting object for
I MorC((LI),−) by ⊗LI . Such an object is, of course, essentially unique. If [J //I ] ∈ Φ, and

(MJ) ∈ (Obj C)×|J|, then let us also write (⊗M(J/I)) for the I-tuple (⊗MJi)i∈|I|.

Lemma 2.20. — Suppose C a corepresentable Φ-multicategory. To any morphism [φ : J //I ] ∈ Φ is
associated a natural comparison morphism

αφ : ⊗MJ
// ⊗ (⊗M(J/I)) ,

natural in (MJ) ∈ (Obj C)×|J|.

Proposition 2.21. — A corepresentable Φ-multicategory structure on a category C is essentially uniquely
specified by the following data:

(2.21.A) a tensor product functor for any I ∈ Φ:

⊗I : C×|I| // C,

(LI)
� // ⊗LI ,

and
(2.21.B) a natural comparison morphism αφ : ⊗MJ

// ⊗ (⊗M(J/I)) for any [φ : J //I ] ∈ Φ,

subject to the following axioms.

(2.21.1) The functor C //C corresponding to ? ∈ Φ is the identity.

(2.21.2) For any [K //J //I ] ∈ Φ, these diagrams commute:

⊗LK //

��

⊗(⊗L(K/J))

��
⊗(⊗(L(K/I)) // ⊗(⊗(⊗L((K/J)/I))).

Furthermore, if C and D are corepresentable Φ-multicategories, then a Φ-multifunctor C //D is es-

sentially uniquely specified by the data of a functor F : C\ //D\ and a morphism ⊗(FLI) //F (⊗LI)
satisfying the by now obvious compatibilities.

Φ-monoidal categories. — Loosely speaking, Φ-monoidal categories are corepresentable Φ-multicategories
whose opposites are also corepresentable Φ-multicategories.

Again, suppose Φ an operator category.

Definition 2.22. — A corepresentable Φ-multicategory C is a Φ-monoidal category if for any morphism
[φ : J //I ] ∈ Φ, the comparison morphisms

αφ : ⊗(MJ) // ⊗ (⊗M(J/I))

are isomorphisms.

2.23. — In our scary little story, Φ-monoidal categories are, of course, to be thought of as the living. They
come equipped with a kind of multiplication law under the rubric of Φ.

(3)In all seriousness, this analogy does have some content; see the subsection “Raising the dead” in the following section for

evidence.



HOMOTOPY COHERENT ALGEBRA 11

Lemma 2.24. — A category C admits a Φ-monoidal structure if and only if Cop does also, in the obvious
fashion.

Definition 2.25. — Suppose C and D Φ-monoidal categories.

(2.25.1) A lax Φ-monoidal functor C //D is a morphism C //D of µΦCat.

(2.25.2) A colax Φ-monoidal functor C //D is a morphism Cop //Dop of µΦCat.

(2.25.3) A lax Φ-monoidal functor F : C //D is pseudo-Φ-monoidal if the comparison morphisms

⊗(FLI) //F (⊗LI) are all isomorphisms.

2.26. — (2.26.1) Denote by µΦ,⊗Catlax the 2-category of Φ-monoidal categories with lax Φ-monoidal func-
tors.

(2.26.2) Denote by µΦ,⊗Catcolax the 2-category of Φ-monoidal categories with colax Φ-monoidal functors.
(2.26.3) Denote by µΦ,⊗Cat the 2-category of Φ-monoidal categories with pseudo-Φ-monoidal functors.

Lemma 2.27. — The (2, 1)-functor µcCat restricts to (2, 1)-functors

µ⊗Catα : Opop //2Cat
Φ � //µΦ,⊗Catα

f � //(−)f .

for α ∈ {lax, colax,∅}.

Proposition 2.28. — The forgetful functor UΦ,µ : µΦ,⊗Cat //µΦCat has a left adjoint

FreeΦ,⊗ : µΦCat //µΦ,⊗Cat

Enriched Φ-multicategories. — Now is perhaps a good time to observe that in any F-multicategory
E , the notions of Φ-multi-E-category, Φ-operad in E , corepresentable Φ-multi-E-category, Φ-monoidal E-
category, and their morphisms, are all perfectly sensible. I leave it to the obsessive-compulsive reader to
formulate these notions precisely.

This yields 2-categories µΦ(E)Cat, OperadΦ(E), µΦ,c(E)Cat, and µΦ,⊗(E)Cat, and (2, 1)-functors
µ(E)Cat, Operad(E), µc(E)Cat, and µ⊗(E)Cat, to which I shall unabashedly appeal in the sequel.

3. Avatars of structure

Raising the dead. — It is clear that any full subcategory of a Φ-multicategoryD inherits a Φ-multicategory
structure from D. In particular, if D is a corepresentable Φ-multicategory, then any full subcategory C ⊂ D
inherits a Φ-multicategory structure in which

I MorC((LI),M) := MorD(⊗LI ,M).

The purpose of this subsection is to observe that all Φ-multicategories arise in this manner. That is, Φ-
multicategory structures on a category are always corepresentable Φ-multicategory structures on a larger
category. This is some kind of justification for our “macabre parable” of the previous section.

Suppose Φ an operator category, and suppose C a category.

3.1. — The first point to be made here is the observation that a corepresentable Φ-multicategory structure
on the copresheaf category SetC induces a Φ-monoidal structure on C itself. The Yoneda embedding y :
Cop //SetC induces functors

yI,? : (SetC)(SetC)×|I| //(SetC)(Cop)×|I|

for any I ∈ Φ.

Proposition 3.2. — Suppose ⊗ a corepresentable Φ-multicategory structure on the functor category SetC .
By adjunction, the functors

yI,?⊗I : (Cop)×|I| //SetC

correspond to functors
I MorC : (Cop)×|I| × C //Set ,
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and these define a Φ-multicategory structure C on C.

Proposition 3.3. — This construction defines a 2-functor

y? : µ⊗Cat(SetC) //µCat(C) .

3.4. — On the other hand, notice that a Φ-multicategory structure C on C indicates how to form the
tensor product of any I-tuple of corepresentable functors C //Set . The idea now is to use the fact that

the corepresentables generate the category SetC to extend this tensor product. Observe that the left Kan
extensions

yI! : (SetC)(Cop)×|I| //(SetC)(SetC)×|I|

exist and are fully faithful for I ∈ Φ.

Proposition 3.5. — Suppose C a Φ-multicategory structure on C. Then the functors yI! I MorC define a

corepresented Φ-multicategory structure on SetC .

Lemma 3.6. — This yields a fully faithful 2-functor

y! : µΦCat(C) //µΦ,cCat(SetC) ,

left adjoint (in the Cat-enriched sense) to y?.

Definition 3.7. — Suppose ⊗ a corepresentable Φ-multicategory structure ⊗ on SetC . Consider, for any
I ∈ Φ and any I-tuple FI of copresheaves C //Set , the colimit P (FI) of the diagram∏

i∈|I|(C
op/Fi) // SetC

(XI)
� // ⊗y(X)I ;

then one says that ⊗ is generated by C if for any I ∈ Φ and any I-tuple FI of copresheaves C //Set , the
canonical morphism

⊗FI //P (FI)

is an isomorphism.

Proposition 3.8 (Raising the dead). — The adjunction

y! : µΦCat(C)
//
µΦ,cCat(SetC)oo : y?

induces an equivalence of 2-categories between µΦCat(C) and the full sub-2-category

µΦ,cCat(SetC)〈C〉 ⊂ µΦ,cCat(SetC)

comprised of corepresented Φ-multicategory structures generated by C.

Φ as a Φ-multicategory. — Using the same ideas as the “raising the dead” results of the previous
subsection, we can observe a Φ-multicategory structure on Φ itself.

Theorem 3.9. — Suppose Φ a flat operator category. Then Φ is a Φ-multicategory, with

I MorΦ(JI ,−) := (σI,!F
?
I y)(JI),

where FI is the forgetful functor (Φ/I)op //Φop , so that the following diagram commutes:

(Φ/I)op

FI

��

σI // (Φ×|I|)op

I MorΦ

��
Φop

y
// SetΦ.

3.10. — For Φ a flat operator category, we obtain the formula

I MorΦ(JI ,K) := colimJ′∈(Φ/I)op,(Ji→J′i)i∈|I| MorΦ(J ′,K).
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Theorem 3.11. — The following are equivalent for a flat operator category Φ.

1. The Φ-multicategory structure on Φ is corepresentable.
2. The functor I MorΦ lifts:

(Φ/I)op

FI

��

σI // (Φ×|I|)op

⊗I

zzuuuuuuuuuuuuuuu

I MorΦ

��
Φop

y
// SetΦ.

3. Φ is faithfully flat.
4. The Φ-multicategory structure on Φ is Φ-monoidal.

Example 3.12. — At first blush, this may look a little surprising. But in fact it’s just a generalization of a
few well-known examples. The category 0 is a category; the category 1 is pointed (at 0); the category O is
symmetric monoidal with the “concatenation” product; and the category F is symmetric monoidal with the
coproduct.

3.13. — In effect, these results establish Φ as a kind of universal Φ-multicategory; when Φ is faithfully flat,
Φ is by the same token the universal Φ-monoidal category.

Φ-monoids and the Leinster category LΦ. — Now we come to the first nontrivial results. The notion
of Φ-monoid is a fairly predictable one, but the real insight is that Φ-monoids in categories E with finite
limits can be described entirely as functors to E.

3.14. — As far as I understand, this observation was first made by T. Leinster for Φ = O and Φ = F;
hence the construction below bears his name.

Definition 3.15. — Supppose Φ a flat operator category; E an F-monoidal category. Then there is a Φ-
multi-E-category 1 with a unique object ? and

I Mor1((?I), ?) := 1E

A Φ-monoid in a Φ-multi-E-category C is a Φ-multifunctor 1 //C . Write

MonΦ
E (C) := MorµΦ(E)Cat(1, C)

Lemma 3.16. — Suppose Φ perfect, and suppose C a Φ-monoidal E-category; then there is a natural equiv-
alence

MonΦ
E (C) ' MorµΦ,⊗(E)Cat(FreeΦ,⊗

E (1), C).

Lemma 3.17. — If Φ is faithfully flat and E = Set, then FreeΦ,⊗(?) ' Φ, so that

MonΦ
Set(C) ' MorµΦ,⊗Cat(Φ, C).

Example 3.18. — It is now an easy exercise to verify that the Φ-monoids in Set for our “easy examples”
of operator categories Φ are exactly as we described them:

Φ MonΦ(Set)

0 Set
p (p > 0) (?/Set)

O≤1 Mag1

O≤n (n > 1) Mon
O Mon

F≤1 Commag1

F≤n (n > 1) Common
F Common

Theorem 3.19. — Suppose Φ a perfect operator category. Then there exist:

(3.19.A) a category LΦ — called the Leinster category of Φ —,
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(3.19.B) an adjunction

T : Φ //LΦoo : R

(3.19.C) a functorial assignment to any I ∈ Φ the following data:
(3.19.C.1) a finite category PI ,
(3.19.C.2) a functor DI : PI //LΦ ,

(3.19.C.3) a morphism of functors [constTI //DI ] ∈ (LΦ)PI ,

that satisfy the following conditions.

(3.19.1) For any category E with finite products, there is a natural equivalence

MorµΦCatcolax(FreeΦ,⊗(?), E) ' ELΦ .

(3.19.2) For any category E with all finite limits, this equivalence induces an equivalence between MonΦ
Set(E)

and the full subcategory SegΦ(E) ⊂ ELΦ comprised of F : LΦ
//E such that every element of

SΦ := {F (TI) // lim(F ◦DI)}

is an isomorphism of E.

Sketch of proof. — Here the perfection of Φ is of critical import: since Φ is perfect, there is a right adjoint
T : Φ //(Φ/T ) to the “special fiber” functor. Composing this with the forgetful functor (Φ/T ) //Φ gives
an endofunctor of Φ that is in fact a monad on Φ. We define LΦ to be the Kleisli category of this monad.

For the diagram DI : PI //LΦ , one can simply take PI to be the full subcategory of (I/Φ) comprised of

those morphisms I //J that (1) induce an epimorphism |I| // |J | , and that (2) factor through one of the

morphisms χi : I //T (i ∈ |I|) guaranteed by the universal property of T . Then DI is just the restriction

of the functor Φ //LΦ to PI , and the morphism constTI //DI is obvious.

Example 3.20. — For our “easy examples” of perfect operator categories Φ, we can write explicitly what
LΦ and SΦ are:

Φ LΦ SΦ

0 0 ∅
1 1 {A0 → ?}
O ∆op {Ap → A1 ×A0 · · · ×A0 A1 | p ≥ 0}
F Γop {Ap → A1 ×A0 · · · ×A0 A1 | p ≥ 0}

That’s a perfectly clear explanation of what the categories ∆op and Γop and the corresponding Segal maps
have to do with monoids and commutative monoids in the conventional sense.(4)

Φ-operads and the category MΦ. — In the last subsection, we saw that the Leinster category allowed
us to treat Φ-monoids in categories E with finite limits as certain kinds of diagrams in E. A good question to
ask now is: can we do the same thing with operads? That is, can we view operads in E as certain diagrams
in E? The answer is yes.

Theorem 3.21. — Suppose Φ an operator category. Then there exist:

(3.21.A) a category MΦ,
(3.21.B) a functor MΦ

//LΦ , if Φ is perfect,
(3.21.C) a functorial assignment to any X ∈MΦ the following data:

(3.21.C.a) a finite category QX ,
(3.21.C.b) a functor DX : QX //MΦ ,

(3.21.C.c) a morphism of functors [constX //DX ] ∈ (MΦ)QX ,

that satisfies the following condition.

(4)While it’s very clear that pointed finite sets are the Kleisli category of the monad T for F, it’s a little less obvious that ∆op is

the Kleisli category of the monad T for O. To see this, one need only observe that ∆op is equivalent to the category of ordered
finite sets with a distinct top and bottom. This is one of the peculiarities of O: it contains a copy of its own opposite. As I

understand it, this observation is due to Joyal.
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(3.21.0) For any category E with all finite limits, there is a natural fully faithful functor

OperadΦ(E) //EMΦ ,

where the essential image is comprised of functors G : MΦ
//E such that every element of

TΦ := {G(X) // lim(G ◦DX)}

is an isomorphism of E.

Sketch of proof. — Consider first the pseudofunctor A : ∆op //Cat whose value on p is the category of

Φ-valued presheaves on p — i.e., the functor category Φ(pop). Now MΦ is the lluf subcategory of the total
category TotA whose morphisms (φ, f) : (q, J) //(p, I) are cartesian in the sense that for any 0 ≤ r < q,
the induced squares

J(r)

��

// J(0)

��
I(φ(r)) // I(φ(0))

have the property that for any i ∈ |I(φ(r))|, the morphism J(r)i //J(0)i is an isomorphism.
The analogues of the Segal maps are pretty complicated, but the idea is quite clear from the following.

From a Φ-operad P in a category E with all finite limits, one can define an associated functor

NΦP : MΦ
// E

(p, J) � //
∏

0≤i<p
∏
a∈|J(i)| P (J(i+ 1)a),

where J(i + 1)a denotes the fiber of the map J(i+ 1) //J(i) over the point a ∈ |J(i)|. This defines the
functor

NΦ : OperadΦ(E) //EMΦ ,

which is fully faithful, with a left adjoint.
The functor MΦ

//LΦ is easy: it’s simply the assignment (p, I) � //TI(0).

Example 3.22. — If Φ = ?, then MΦ ' ∆op, and the analogue of the Segal maps are simply the usual
Segal maps Ap → A1 ×A0

· · · ×A0
A1 for p > 0. It is now an elementary exercise to verify that these are the

same things as ordinary monoids in E.

3.23. — Some people seem to be quite fond of trees. I find this affinity a little odd, but de gustibus non est
disputandum. In any case, dendrophiles may be gratified to learn thatMΦ can be described as a category of Φ-
trees. The objects of this category are trees (with a root and tails, as in Kontsevich-Soibelman), equipped with
an isomorphism between the set of points of a given object I(r) of Φ and the vertices of height r, so that the
edge maps are induced by specified morphisms of Φ. In other words, an object I(p) //I(p− 1) // . . . //I(0)
ofMΦ can be conceived as a “Φ-numbered” tree in which the tails are the points of I(p), the internal vertices
are the elements of

⋃
0≤r<p |I(r)|, and in which an edge connects a point j of I(r + 1) to a point i of I(r) if

and only if j is a point of the fiber I(r + 1)i.
The valency val v of a given vertex v of height r in the tree corresponding to I(p) //I(p− 1) // . . . //I(0)

is then to be thought of as the fiber of the map I(r + 1) //I(r) over the point i ∈ |I(r)| corresponding to

v. So for an operad P, one sees that the value of NΦP on a Φ-tree T is simply the product of P(val v) over
all internal vertices v of T .

In particular, when Φ = F, the objects of MΦ simply are trees. The morphisms are a little special,
however: a morphism σ : T //S ofMF is in particular required to have the property that for any internal
vertex v of S, we have

val v =
∑

w∈σ−1(v)

valw.
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Φ-operads and the F-multicategory AΦ. — The upshot of the previous subsection was the existence
of a categoryMΦ with the property that operads in a category E with all finite limits are precisely functors
MΦ //E preserving certain finite limits. Similarly, the upshot of this subsection is the existence of an

F-multicategory AΦ with the property that operads in an F-multicategory E are precisely F-multifunctors
AΦ //E .

Theorem 3.24. — Suppose Φ a perfect operator category. Then the 2-functor

OperadΦ : µFCat // Cat

E � // OperadΦ(E)

is pseudocorepresentable by an F-multicategory AΦ.

Sketch of proof. — This follows from the usual representability theorems, once one observes that OperadΦ

preserves all homotopy limits.

Corollary 3.25. — There is a universal Φ-operad UΦ in AΦ with the property that any Φ-operad P in any
symmetric multicategory E is isomorphic to the image of UΦ under the functor OperadΦ(AΦ) //OperadΦ(E)

induced by the multifunctor AΦ //E corresponding to P.

Example 3.26. — When Φ = 0, one verifies easily that A0 is the associative operad, i.e., the image of
the terminal object ? under the left adjoint to the forgetful functor OperadF(E) //OperadO(E). The

universal 0-operad U0 is now clear.

3.27. — In general, AΦ is a symmetric multicategory with object set ObjAΦ = Obj Φ; to make the distinc-
tion clear, I will denote the object of AΦ corresponding to I ∈ Φ by AI. The morphisms of AΦ are generated
by elements

Af ∈ (T |I|) MorAΦ((AI, (AJI)), AJ)

associated to every morphism [f : J //I ] ∈ Φ, subject to the relations in T (|J |t|K|) MorAΦ((AI, (AJI), (AKJ)), AK)

for every composable pair of morphisms [K //J //I ] ∈ Φ arising from the associativity axiom for operads.

The universal Φ-operad UΦ is again clear.

3.28. — It is an interesting problem to find a clean, explicit description of AΦ. One can construct AΦ as
above or, alternatively, by forming a suitable quotient of the free symmetric multicategory generated byMΦ.
However, I have found it difficult to describe the combinatorics of AΦ and the universal Φ-operad UΦ in a
concrete, intrinsic manner. I suspect that there are satisfactory characterizations using a suitable category of
Φ-trees (no doubt pleasing the tree-huggers), but a precise description along these lines has eluded me thus
far.(5)

Algebras, chiralities, and modules. — In this subsection I define algebras, chiralities, and modules over
algebras with given chiralities. Although the notion of a chirality appears to be completely nonstandard, it
is a crucial ingredient in our work here.

3.29. — Suppose here Φ an operator category and E a cocomplete symmetric monoidal category, in which
the tensor product ⊗ commutes with colimits in each variable.

Definition 3.30. — Suppose P and Q two Φ-multi-E-multicategories. Then the category of P-algebras in
Q is the category

AlgΦ
E,P(Q) := MorµΦ(E)Cat(P,Q).

This specifies a 2-functor

AlgΦ
E : µΦ(E)Catop × µΦ(E)Cat //Cat .

(5)Kontsevich and Soibelman purport to give a description of a related object when Φ = F, but unfortunately I do not understand

it.
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3.31. — If S = ObjP, then there is an obvious forgetful functor AlgΦ
E,P(Q) //Q×S , and if Q has enough

colimits, then this functor has a left adjoint. In particular, if P is a Φ-operad then there is the forgetful functor

AlgΦ
E,P(Q) //Q , and if Q has enough E-colimits, there is a free P-algebra functor Q //AlgΦ

P(Q) .

Example 3.32. — Examples of algebras over F-operads are ubiquitous and very well documented else-
where. Let us here turn our attention to Φ-operads and Φ-multicategories for other operator categories
Φ.

(3.32.1) A 0-operad is a monoid M in E , and an M -algebra in an E-category (=0-multi-E-category) C is an
object X of C an homomorphism of monoids M // EndX .

(3.32.2) A 1-operad in E is in fact a pair (M,X) consisting of a 0-operad M and an M -algebra X; hence a

(3.32.3) By definition, MonΦ
E (Q) = AlgΦ

E,1(Q).

(3.32.4) There is a natural equivalence of categories OperadΦ(E) ' AlgF
Set,AΦ(E).

3.33. — In a moment I will have to give two rather long definitions, which I believe are new. Before I do,
however, let me try to give a word of explanation for the auxiliary notion of chirality. When dealing with
algebras over a Φ-operad, it is not necessarily clear what it means to have an algebra act on an object. We
are quite used to thinking of associative algebras acting either on the left or on the right; this is one sort of
chirality, but for more general sort of algebras, it is not immediately clear what this means, and it may be
that a more “exotic” kind of action is more appropriate in a given setting.

Moreover, it is not always entirely clear how to formalize notions of modules in which more than one
algebra is permitted to act (e.g., (R,S)-bimodules). The number of algebras that can act on a single object
is in fact precisely equal to the complexity of Φ. It is necessary also to allow the possibility that these actions
do not commute, but act on one another as well, i.e., to allow “twists” of various kinds. A chirality, then, is
meant to provide a formalization of the idea of possibly several algebras, possibly over different Φ-operads,
acting in various, possibly noncommuting, ways.

3.34. — Suppose Φ a perfect operator category with point classifier (T, t), suppose (P|T |γ ) = (Pη)η∈|T |γ a

|T |γ-tuple of Φ-operads in E .(6)

Definition 3.35. — (3.35.1) A Φ-chirality in E is a Φ-multi-E-category H with ObjH = |T | satisfying the
following conditions.
(3.35.1.1) For any I-tuple (kI) of objects of H, the polymorphism object I MorH((kI), t) = ∅ unless

there exists i ∈ |I| such that the map k : |I| // ObjH = |T | is induced by the classifying

morphism χi : I //T in Φ.
(3.35.1.2) For any I-tuple (kI) of elements of T , and any generic point η ∈ |T |γ , the polymor-

phism object I MorH((kI), η) = ∅ unless k : |I| // ObjH = |T | factors through a map

|I| // |T |γ .
(3.35.2) A Φ-chirality H in E is said to be pure if for any I-tuple (kI) of elements of T , and any generic

point η ∈ |T |γ , the polymorphism object I MorH((kI), η) = ∅ unless ki = η for every i ∈ |I|.
(3.35.3) A morphism of Φ-chiralities H //K is a morphism of |T |-colored Φ-operads in E — i.e., Φ-multi-

E-functor that induces the identity on |T |. Denote by ChrΦ(E) the category of Φ-chiralities in E
and their morphisms.

(3.35.4) Suppose H a Φ-chirality in E . Then for any generic point η ∈ |T |γ , the Φ-operad H〈η〉 generated by

η in H — i.e., the full sub-Φ-multi-E-category consisting of the object η alone(7) — is the structural
Φ-operad of H at η; this defines functors

Strη : ChrΦ(E) //OperadΦ(E) and Str : ChrΦ(E) //OperadΦ(E)×|T |γ .

(6)One can of course define colored chiralities, in which the Pη are permitted to be colored Φ-operads, but this is more generality
than I know how to use here.
(7)also known as the endomorphism Φ-operad of η
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(3.35.5) A (P|T |γ )-chirality in E is a Φ-chirality H equipped with an isomorphism Pη //H〈η〉 for each

generic point η ∈ |T |γ . The category ChrΦ
(P|T |γ )(E) of (P|T |γ )-chiralities in E is thus the homotopy

fibre of Str over the |T |γ-tuple (P|T |γ ).
(3.35.6) If the Φ operads Pη are all equal to a Φ-operad P, then a (P|T |γ )-chirality in E is called a P-chirality

in E , and the category of such is denoted ChrΦ
P(E).

3.36. — As usual, one can think of ChrΦ(E) as a category fibred over the category OperadΦ(E)×|T |γ or
as a pseudofunctor

ChrΦ(E) : OperadΦ(E)×|T |γ // (E)Cat

(P|T |γ ) � // ChrΦ
(P|T |γ )(E)

.

3.37. — Just as we are required to say whether a module over an associative algebra is a left or right module,
so are we required to give a chirality for a module over an algebra, or, more generally, over a |T |γ-tuple of
algebras, each possibly over a different Φ-operad.

A module with a given chirality is in fact nothing more than an algebra over that chirality. Such an algebra
is to be considered a module over the induced algebras over the structural operads.

Definition 3.38. — (3.38.1) SupposeH a (P|T |γ )-chirality in E , and supposeQ a Φ-multi-E-category. Then
for any generic point η ∈ |T |γ , the structural Pη-algebra X〈η〉 of an H-algebra X is the induced
Φ-multi-E-functor

StrηX : Pη ∼= H〈η〉 //Q .
This defines functors

Strη : AlgΦ
E,H(Q) //AlgΦ

E,Pη (Q) and Str : AlgΦ
E,H(Q) //∏

η∈|T |γ AlgΦ
E,Pη (Q) .

(3.38.2) Suppose H a (P|T |γ )-chirality in E , suppose Q a Φ-multi-E-category, and suppose, for any generic
point η ∈ T , Aη a Pη-algebra in Q. Then an (A|T |γ )-module with chirality H is an H-algebra X

in Q, equipped with an isomorphism Aη //X〈η〉 of Pη-algebras for every generic point η ∈ |T |γ .

The category ModΦ
E ((A|T |γ );H) of (A|T |γ )-modules with chirality H is the homotopy fibre of Str

over (A|T |γ ).
(3.38.3) If the Φ-operads Pη are all equal to a single Φ-operad P, and if the P-algebras Aη are all equal to

a single P-algebra A, then an (A|T |γ )-module with chirality H is called an A-module with chirality

H, and the category of such is denoted ModΦ
E (A;H).

3.39. — Again, one can think of AlgΦ
E,H(Q) as a category fibred over the category

∏
η∈|T |γ AlgΦ

E,Pη (E) or

as a pseudofunctor

ModΦ
E (−;H) :

∏
η∈|T |γ AlgΦ

E,Pη (E) // Cat

(A|T |γ ) � //ModΦ
E ((A|T |γ );H)

.

Example 3.40. — Observe that for any Φ-operad P, there is a unique pure P-chirality HP satisfying the
following conditions.

(3.40.1) For any object I ∈ Φ and any point i ∈ |I|, one has

I MorHP ((|χi|I), t) = P(I),

where (|χi|I) is the I-tuple of elements of |T | given by the classifying morphism χi : I //T .
(3.40.2) For any generic point η ∈ |T |γ , one has

HP〈η〉 = P.

(3.40.3) The polycompositions of HP are all inherited from the polycomposition laws for the operad P.
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The chirality HP is the (P, R)-decorated |T |-colored Φ-operad for the pure perfection color sieve R (2.14).
If (A|T |γ ) is a |T |γ-tuple of P-algebras, then an (A|T |γ )-module with chirality HP will be called a (A|T |γ )-

omnimodule. Here the same operad that controls all the algebras Aη also controls the actions of these algebras
on a module with this chirality; furthermore, all these action commute, because the chirality is pure.

Hence when Φ = F, there is only a single P-algebra A, and an A-omnimodule is precisely what is called
by Getzler-Kapranov and Kriz-May an A-module.

When Φ = O, there are two P-algebras A and B. If P = 1, then A and B are of course monoids, and an
(A,B)-omnimodule is precisely the same as an (A,B)-bimodule in the conventional sense.

4. Wreath products of operator categories

The definition. — In this section I define a weak monoidal structure on Op, which I have called a wreath
product. Loosely speaking, a (Φ oΨ)-monoid is a Ψ-monoid in Φ-monoids. One way to look at this monoidal
structure (a perspective that grew out of a conversation with J. Rognes) is as a recontextualization of the
Boardman-Vogt tensor product, whose homotopical properties as a tensor product of symmetric operads is
— shall we say — subtle.

In any case, the wreath product will provide us with numerous new and interesting examples of operator
categories.

Definition 4.1. — Suppose Φ and Ψ two operator categories. Then we have a pseudofunctor:

ΣΨ
Φ : Ψop // Cat

I
� // Φ×|I|.

Now define the wreath product operator category as

Φ oΨ := Tot ΣΨ
Φ .

Hence the objects of Φ o Ψ are pairs ((KI), I) consisting of an object I ∈ Ψ and an I-tuple of objects
(KI) ∈ Φ×|I|.(8) A morphism ((LJ), J) //((KI), I) is a morphism ψ : J //I of Ψ, and a J-tuple of

morphisms (Lj //Kψ(j) )j∈|J| of Φ.

4.2. — Suppose J ∈ O, and suppose (ΦJ) an J-tuple of operator categories. Then one can define the iterated
wreath product WrJ ΦJ as the category whose objects are J-tuples (KJ) = (Kj)j∈|J|, wherein each Kj is

itself a t|Kj+1|-tuple of objects of Φj .

Lemma 4.3. — The iterated wreath product makes Op into a weak O-monoidal (2, 1)-category, wherein 0
is the unit.

Sketch of proof. — This is just a direct verification, but it must be borne in mind that this is a weak O-
monoidal category, so that the associativity isomorphisms are suitably coherent equivalences of operator
categories.(9)

Corollary 4.4. — The wreath product comes equipped with operator morphisms

w : Φ ∼= Φ o 0 // Φ oΨ
K

� // ((K), ?)

and v : Ψ ∼= 0 oΨ // Φ oΨ
I

� // ((?I), I).

4.5. — Observe that the wreath product is highly noncommutative; in particular the wreath product does
not give Op a weakly braided monoidal structure.

(8)Though it seems, I freely admit, a tad perverse, it’s actually handy to write the pairs in this “backwards” order.
(9)A precise definition of this notion will appear in the subsection of weakly monoidal weakly enriched categories below.
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Lemma 4.6. — In Φ oΨ,

|((KI), I)| ∼=
∐
i∈|I|

|Ki|.

More, generally, suppose J ∈ O, suppose 0 ∈ |J | the initial object of J , and suppose J+ is the full subcategory
of J comprised of every object apart from 0. Then in WrJ ΦJ ,

|(KJ)| ∼=
∐

i∈|(KJ+ )|

|K0
i |,

where (KJ+

) is the obvious J+-tuple consisting of all but the first tuple (K0).

Proposition 4.7. — If Φ and Ψ are perfect, then so is Φ oΨ.

Sketch of proof. — The point classifier of Φ o Ψ is the pair ((TΨ
Φ,TΨ

), TΨ), where (TΨ, t) is point classifier of

Ψ, and (TΨ
Φ,TΨ

) is the TΨ-tuple of objects of Φ wherein TΨ
Φ,t = TΦ is the point classifier for T , and, for any

generic point η ∈ |T |γ , TΨ
Φ,η = ?.

Corollary 4.8. — If J ∈ O, and (ΦJ) is an J-tuple of perfect operator categories, then the wreath product
WrJ ΦJ is perfect of complexity

C(WrJ ΦJ) =
∑
j∈|J|

C(Φj).

Example 4.9. — This provides us with our very first example of a perfect operator category that is not
fully faithful: O oO, which has complexity 4.

4.10. — The following little confusion seems to be easy to make. Suppose Φ is faithfully flat, and suppose
f : Ψ //Φ an operator morphism. Since Φ is faithfully flat, it carries a Φ-monoidal, and hence a Ψ-monoidal,

structure, and it is tempting (or at least it was briefly for me) to try to define a left adjoint pf : Φ oΨ //Φ
to w by the formula

pf ((KI), I) := ⊗IKI .

It is critical to note, however, that this formula does not in general define an operator morphism (or even a
functor). Indeed, consider the following morphism ((LJ), J) //(KI), I) of OoO: the object ((KI), I) consists
of I = 0 and the 0-tuple K0 = 2; the object ((LJ), J) consists of J = 1 and the 1-tuple (L0, L1) = (2,2);
and the map ((LJ), J) //((KI), I) is given by the unique map J //I and the isomorphisms L0

//K0

and L1
//K0 . Note that there is a unique morphism L0 ⊗L1 ' 5 //1 whose fibers are all isomorphic to

1, but it is not induced by the isomorphisms L0
//K0 and L1

//K0 .

On the other hand, if Φ = F, then the above definition of pf works just fine for f = U : Ψ //F . This
leads one to the following proposition.

Proposition 4.11. — For any operator category Ψ, the wreath product F o Ψ is canonically equivalent to
the category of Ψ-partitions of finite sets — i.e., triples consisting of a finite set K, an object I ∈ Φ, and a
map K // |I| . The operator category F is a localization of F oΨ.

4.12. — This does not quite say that F is a zero object for the wreath product; F is not necessarily equivalent
to F oΨ. However, it does follow that F and F oΨ are rubric-equivalent.

Corollary 4.13. — Suppose E a symmetric monoidal category. Then the functor

µF(E)Cat //µ(FoΨ)(E)Cat

is an equivalence of E-categories.

4.14. — The aim of the wreath product of operator categories was to formalize the notion of a Ψ-monoid
in Φ-monoids. Let us now turn to a series of results intended to make this intuition precise.

Suppose now E a symmetric monoidal category. Observe that a (Φ oΨ)-monoid A in E consists of an object
A, equipped with a product

A⊗|((KI),I)| //A,

for any object ((KI), I) of Φ oΨ, satisfying various conditions.
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Proposition 4.15. — Any (Φ oΨ)-monoid A in E is in particular both a Φ-monoid and a Ψ-monoid, and,
for any object ((KI), I) of Φ oΨ, the following diagram commutes:⊗

i∈|I|
A⊗|Ki|

��

∼ // A⊗|((KI),I)|

��
A⊗|I| // A.

4.16. — Suppose Φ and Ψ perfect operator categories; consider the pseudofunctor

LΣΨ
Φ : Lop

Ψ
//Cat

I � //L×|I|Φ

[ψ : J → I]
� // [`ψ : L×|I|Φ → L×|J|Φ ],

where the functor `ψ : L×|I|Φ
//L×|J|Φ

is defined in the following manner. Recall that the morphism ψ :

J //I of LΨ is a morphism ψ : J //TI of Ψ; now for any I-tuple (KI) of objects of LΦ, write

`ψ(KI) :=

{
Kψ(j) if j ∈ |J | ×|TI| |I|
? else.

Proposition 4.17. — If Φ and Ψ are perfect operator categories, the Leinster category L(ΦoΨ) is the total

category of LΣΨ
Φ .

Corollary 4.18. — It thus follows that L(ΦoΨ) is endowed with a fibration L(ΦoΨ)
//LΨ , and the fiber

over I ∈ LΨ is equivalent to L×|I|Φ .

Pairings of operads and the tensor product of Boardman-Vogt. — The wreath product of operator
categories is closely related to the notion of a pairing of operads, as studied by J. P. May. I turn now to
a generalization of May’s notion, and its relationship to a generalization of the tensor product of J. M.
Boardman and R. M. Vogt. To this end, suppose E a complete and cocomplete symmetric monoidal
category, in which the tensor product ⊗ commutes with colimits in each variable.

4.19. — If Φ and Ψ are operator categories, then for any K ∈ Φ and I ∈ Ψ, write K o I for the pair
((KI), I) ∈ Φ oΨ in which Ki = K for every i ∈ |I|.

Definition 4.20. — Suppose Φ and Ψ operator categories,A a Φ-multi-E-category, B a Ψ-multi-E-category,
and C a (Φ oΨ)-multi-E-category. Then a (Φ,Ψ)-pairing

π : (A,B) //C

consists of

(4.20.A) a map

π : ObjA×ObjB // Obj C

and
(4.20.B) a morphism

K MorA((WK), Y )⊗ I MorB((XI), Z) //(K o I) MorC(π(WK , XI), π(Y, Z))

for every K ∈ Φ, every I ∈ Ψ, every K-tuple (WK) ∈ (ObjA)×|K|, every I-tuple (XI) ∈
(ObjB)×|I|, every Y ∈ ObjA, and Z ∈ ObjB.

These data are subject to the following constraints.
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(4.20.1) Associativity : For every [L //K ] ∈ Φ and every [J //I ] ∈ Ψ, the diagrams

KMorA((WK),Y )⊗(L/K) MorA((UL),(WK))⊗I MorB((XI),Z)⊗(J/I) MorB((VJ ),(XI))

∼

++VVVVVVVVVVVVVVVVVV

��������������������������

KMorA((WK),Y )⊗I MorB((XI),Z)⊗
⊗

k∈|K|
i∈|I|

(Lk MorA((ULk ),Wk)⊗Ji MorB((VJi ),Xi))

��

LMorA((UL),Y )⊗J MorB((VJ ),Z)

""EEEEEEEEEEEEEEEEEEEEE

(KoI) MorC(π(WK ,XI),π(Y,Z))⊗
⊗

k∈|K|
i∈|I|

(LkoJi) MorC(π(ULk ,VJi ),π(Wk,Xi))

∼
��

(KoI) MorC(π(WK ,XI),π(Y,Z))⊗(LoJ/KoI) MorC(π(UL,VJ ),π(WK ,XI))

rrfffffffffffffffffffff

(LoJ) MorC(π(UL,VJ ),π(Y,Z)).

commute.
(4.20.2) Identity : For any objects W ∈ ObjA and Z ∈ ObjB, the diagram

1E ⊗ 1E

idW ⊗ idZ
��

∼ // 1E

idπ(W,Z)

��
MorA(W,W )⊗MorB(Z,Z) // (K o I) MorC(π(W,Z), π(W,Z))

commutes.

4.21. — That associativity diagram looks pretty intimidating, but I find it much easier to follow than that
description using“elements”one often finds in the literature (especially before 1990). Writing out the diagram
when A, B, and C are operads of their respective rubrics should do a nice job of putting your mind at ease.

Observe that the role of the operator categories here is very significant. In particular, since the wreath
product is noncommutative, a (Φ,Ψ)-pairing is very different from a (Ψ,Φ)-pairing, unless Φ = Ψ, in which
case the notions coincide. If we eliminated the role of the operator categories, we would have a many-object
version of May’s original notion.

The notion of pairing is obviously related to the Boardman-Vogt interchange condition for two morphisms
of operads, but the interchange condition seems to make sense only when there are diagonals in E .

Example 4.22. — When Φ = Ψ = 0, the notion of a pairing reduces to that of an E-bifunctor.

4.23. — Given operator categories Φ, Ψ, we have a functor

Pair(Φ,Ψ) : µΦ(E)Catop ⊗ µΨ(E)Catop ⊗ µ(ΦoΨ)(E)Cat // Set

(A,B, C) // Pair(Φ,Ψ)((A,B), C)

where Pair(Φ,Ψ)((A,B), C) denotes the set of (Φ,Ψ)-pairings (A,B) //C .
This can in fact be lifted to a functor

Pair(Φ,Ψ) : µΦ(E)Catop ⊗ µΨ(E)Catop ⊗ µ(ΦoΨ)(E)Cat //(E)Cat ,

but it is not necessary to do so directly, in light of the following result.

Proposition 4.24. — Suppose Φ and Ψ operator categories, A a Φ-multi-E-category, B a Ψ-multi-E-

category, and C a (ΦoΨ)-multi-E-category. Then the covariant functor Pair(Φ,Ψ)((A,B),−) is corepresentable,

and the contravariant functors Pair(Φ,Ψ)((−,B), C) and Pair(Φ,Ψ)((A,−), C) are representable.

Definition 4.25. — Suppose Φ, Ψ, A, B, and C as above.
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(4.25.1) The generalized Boardman-Vogt tensor product AΦ⊗ΨB is the corepresenting object of the functor

Pair(Φ,Ψ)((A,B),−).

(4.25.2) The generalized Boardman-Vogt enrichment Mor(Φ,Ψ)(B, C) is the representing object of the functor

Pair(Φ,Ψ)((−,B), C).
(4.25.3) The generalized Boardman-Vogt cotensor mor(Φ,Ψ)(A, C) is the representing object of the functor

Pair(Φ,Ψ)((A,−), C).

Proposition 4.26. — The object-sets of these multicategories are given by

Obj(AΦ⊗ΨB) ∼= (ObjA)× (ObjB),

Obj Mor(Φ,Ψ)(B, C) ∼= Obj Morµ(ΦoΨ)(E)Cat(B, C),

Obj mor(Φ,Ψ)(A, C) ∼= Obj Morµ(ΦoΨ)(E)Cat(A, C).

Proposition 4.27. — Suppose now f : Φ //Φ′ and g : Ψ //Ψ′ two operator morphisms, and suppose
A a Φ-multicategory in E, B a Ψ-multicategory in E, and C a (Φ′ o Ψ′)-multicategory in E. Then there is a
canonical bijection

Pair(Φ,Ψ)((A,B), (f o g)?C) ∼= Pair(Φ′,Ψ′)((f!A, g!B), C).

Corollary 4.28. — In the situation of the proposition above, we have the following three formulæ:

(f o g)!(AΦ⊗ΨB) ∼= (f!A)Φ′⊗Ψ′(g!B),(4.28.1)

Mor(Φ,Ψ)(B, (f o g)?C) ∼= f? Mor(Φ′,Ψ′)(g!B, C),(4.28.2)

mor(Φ,Ψ)(A, (f o g)?C) ∼= g? mor(Φ′,Ψ′)(f!A, C).(4.28.3)

4.29. — This variant of the tensor product comes equipped with more information than the classical
Boardman-Vogt tensor product. For example, if P and Q are each Φ-operads, the structure on PΦ⊗ΦQ is
that of a (Φ oΦ)-operad. If ⊗BV denotes the classical Boardman-Vogt tensor product on F-operads, then one
can verify that U!(PΦ⊗ΦQ) is naturally isomorphic to U!P ⊗BV U!Q. So PΦ⊗ΦQ is a more finely-structured
tensor product.

4.30. — Suppose Φ and Ψ operator categories. Then one defines a functor

ω : MΦ ×MΨ
//M(ΦoΨ)

((r,K), (p, I)) � //(min(r,p),K o I),

wherein (K oI)(j) := K(j) oI(j) for any 0 ≤ j ≤ min(r, p). Now the Day convolution product gives a product

EMΦ × EMΦ //EM(ΦoΨ) , which, as the following result demonstrates, models the generalized Boardman-
Vogt tensor product.

Proposition 4.31. — Suppose E a cocomplete category with all finite limits in which the cartesian product
commutes with colimits in each variable. Then the following diagram commutes for any flat operator categories
Φ and Ψ.

EMΦ × EMΦ

��

� // E(MΦ×MΨ)
ω! // EM(ΦoΨ)

��
OperadΦ(E)×OperadΨ(E)

Φ⊗Φ

// OperadΦoΨ(E),

where � denotes the external product:

(A�B)((r,K), (p, I)) := A(r,K)×B(p, I).

5. Homotopical structure

Remark 5.1. — Now at last we’re ready to introduce homotopy theory and higher categorical instruments
into the picture. So Φ, Ψ, ... will here denote flat operator categories in this entire section. Sometimes I will
need them to be perfect as well.
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Homotopy theory of strict algebraic structures. — The following theorems follow from arguments
very closely modeled on M. Spitzweck’s original arguments; however, a key difference is that, thanks to
J. Smith’s combinatorial model categories, it is no longer necessary to construct sets both of generating
cofibrations and of generating trivial cofibrations. Now it is enough to concoct a sufficiently nice generating
set of cofibrations. This key technical insight gives a pretty foolproof version of Kan’s lemma for lifting
model structures, and, as E. Getzler reminded me, it means that it’s no longer necessary to talk about
left semimodel categories.(10)

Definition 5.2. — A model category is said to be tractable if it is combinatorial and a set I of generating
cofibrations can be chosen so that the domains of I are all cofibrant. Denote by ModCat the (2, 1)-category
of tractable model categories and left Quillen functors.

Definition 5.3. — (5.3.1) A tractable, Φ-monoidal model category is a tractable model category M,
equipped with a Φ-monoidal structure such that the following axioms are satisfied.
(5.3.1.1) For any I ∈ Φ, the functor

⊗I : M×|I| //M

preserves all colimits.
(5.3.1.2) For any I ∈ Φ, consider the subposet TI of 2|I| (ordered by inclusion) comprised of all

proper subsets of |I|. For any I-tuple fI : L0
I

//L1
I of cofibrations of M, write ⊗Lf for

the colimit of the diagram TI //M that assigns to any subset F ⊂ |I| the object ⊗(LFI ),
where for any i ∈ |I|,

LFi :=

{
L0
I if i ∈ F ;

L1
I if i /∈ F.

The condition then is: the morphism ⊗Lf // ⊗ L1
I is a cofibration that is trivial if any of

the fi are.
(5.3.2) Suppose M a tractable, Φ-monoidal model category. Denote by R the class of morphisms

⊗IfI : XI
//YI ,

in which there exists an i ∈ |I| such that fi is a trivial cofibration, and for any j ∈ |I|\i, the morphism
fj is an isomorphism. Then M is said to satisfy the monoid axiom if any tranfinite composition of
pushouts of elements of R is a weak equivalence.

(5.3.3) If V is a tractable Φ-monoidal model category, and f : Ψ //Φ is an operator morphism, then
a tractable, Ψ-monoidal model V-category is a tractable, Ψ-monoidal model category M and a Φ-
monoidal left Quillen functor Vf //M . The operator morphism f will always be clear from the
context.

5.4. — Notice that the generalized pushout-product axiom above forces unit objects to be cofibrant. In
some situations it is obviously not desirable to require this; I leave it to the reader to adjust the definition
and the results that follow in order to accommodate such situations.

Proposition 5.5. — This defines (2, 1)-functors

MonModCat : Opop // (2, 1)Cat

Φ
� //MonΦModCat,

and, for any operator category Φ,

MonMod(−)Cat : (Op/Φ)op ×MonΦModCatop // (2, 1)Cat

(Ψ,V) � //MonΨMod(V)Cat,

where MonΦModCat is the (2, 1)-category of tractable Φ-monoidal model categories satisfying the monoid

axiom and pseudo-Φ-monoidal left Quillen functors, and MonΨMod(V)Cat is the (2, 1)-category of

(10)In addition, I make no use of path-object arguments or the Hopf intervals of Berger-Moerdijk here.
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tractable Ψ-monoidal model V-categories satisfying the monoid axiom and pseudo-Ψ-monoidal left Quillen
V-functors.

Theorem 5.6. — Suppose V a tractable, F-monoidal model category satisfying the monoid axiom. Then
the category OperadΦ(V) is a tractable model category with a projective model structure.

Proposition 5.7. — This defines a (2, 1)-functor

Operad : Op×MonFModCat //ModCat

(Φ,V)
� // OperadΦ(V)

with the property that for any pseudo-F-monoidal left Quillen equivalence V //W of tractable F-monoidal
model categories, the induced left Quillen functor

OperadΦ(V) //OperadΦ(W)

is a Quillen equivalence.

5.8. — This result can be generalized to produce a functorial projective model category of colored operads
in the following manner.

Theorem 5.9. — For any set S, the category Col(S)OperadΦ(V) of Φ-multicategories enriched in V with
object set S with morphisms preserving the colors — i.e., inducing the identity on S — is a tractable model
category with a projective model structure.

Proposition 5.10. — This defines a (2, 1)-functor

Col(S)Operad : Op×MonFModCat //ModCat

(Φ,V)
� // Col(S)OperadΦ(V)

with the property that for any pseudo-F-monoidal left Quillen equivalence V //W of tractable F-monoidal
model categories, the induced left Quillen functor

Col(S)OperadΦ(V) //Col(S)OperadΦ(W)

is a Quillen equivalence.

5.11. — Note, however, that these results do not provide a model category of Φ-multi-V-categories. The
weak equivalences of such a model category structure on µΦ(V)Cat are essentially surjective multifunctors
that induce weak equivalences on all polymorphism objects, and there is Quillen pair relating (S/µΦ(V)Cat)

and Col(S)OperadΦ(V).
Thanks to terribly useful conversations with J. Lurie and J. Bergner, I have at last worked out how

to produce such a model structure; I’ll write about this elsewhere.

Definition 5.12. — One can assemble the total categories of the (2, 1)-functors above into a single (2, 1)-
category of contexts:

Context := Totc Operad×hFlop×MonFModCat Totop MonModCat

whose objects are octuples (Φ,V,P,Φ′,V′,M, f, F ), where in Φ and Φ′ are operator categories, f : Φ //Φ′

is an equivalence thereof, V and V′ are tractable symmetric monoidal model categories satisfying the monoid
axiom, F : V //V′ is an equivalence thereof,(11) P is a cofibrant Φ-operad in V, and M is a tractable,
Φ′-monoidal model V′-category satisfying the monoid axiom.

The context (Φ,V,P,Φ′,V′,M, f, F ) is said to be perfect, flat, or faithfully flat if Φ (equivalently, Φ′) is
so.

(11)not a Quillen equivalence, an equivalence of categories respecting every bit of the model structure
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Definition 5.13. — Likewise, Col(S)Context denotes the (2, 1)-category of S-colored contexts, which is
just like the usual (2, 1)-category of contexts, save only that P is a Φ-multi-V-category with object set S,

cofibrant in Col(S)OperadΦ(V):

Col(S)Context := Totc Col(S)Operad×hFlop×MonFModCat Totop MonModCat.

5.14. — By an altogether inoffensive abuse, I’ll treat (S-colored) contexts as though they were quadruples
(Φ,V,P,M), but in order to get all the functorialities right, it’s better to have the redundant information.

Theorem 5.15. — Suppose (Φ,V,P,M) an S-colored context. Then the category

AlgΦ
V,P(M) := MorµΦ(V)Cat(P,M)

is a tractable model category with the projective model structure.

Proposition 5.16. — This defines a (2, 1)-functor

Alg : Col(S)Context //ModCat

(Φ,V,P,M) � // AlgΦ
V,P(M)

with the following properties.

(5.16.1) For any S-colored context (Φ,V,P,M) and any pseudo-Φ-monoidal left Quillen V-equivalence
M //N of tractable Φ-monoidal model V-categories satisfying the monoid axiom, the induced
left Quillen functor

AlgΦ
V,P(M) //AlgΦ

V,P(N)

is a Quillen equivalence.
(5.16.2) For S-colored context (Φ,V,P,M) and any weak equivalence P //Q of cofibrant S-colored oper-

ads, the induced left Quillen functor

AlgΦ
V,P(M) //AlgΦ

V,Q(M)

is a Quillen equivalence.

Definition 5.17. — A chirality context (Φ,V,H,M) is a colored context in which H is a Φ-chirality in V.

Theorem 5.18. — Suppose (Φ,V,H,M) a chirality context, and suppose, for any generic point η ∈ |T |γ ,

Aη a H〈η〉-algebra. Then the category ModΦ
V((A|T |γ );H) is a tractable model category with a projective

model structure.

5.19. — The assignment (Φ,V,H,M, (A|T |γ )) � //ModΦ
V((A|T |γ );H) is (2, 1)-functorial as well, of course,

but I leave this to the reader to formulate. You get the idea.

Weakly enriched categories. — In this section I will sketch a theory of weakly enriched categories, which
is a generalization of work of C. Rezk. This particular theory has very special properties, which seemingly
do not appear in other (often equivalent) theories with similar aims.

One major challenge for this subsection is to develop a model category of categories weakly enriched
over an arbitrary (nice) symmetric monoidal model category (V,⊗). I expect to resolve this issue soon.
Fortunately, LΦ and MΦ make life easy when V is internal, and this is the case we will be most interested
in.

Definition 5.20. — An enrichment model category V is an internal, simplicial, left proper, tractable model
category in which the terminal object ? is cofibrant.

Denote by Enr the (2, 1)-category of enrichment model categories and product-preserving, left Quillen
functors.
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5.21. — Among the Segal-style conditions for the theory of monoids produced by the Leinster category,
there was a unitality condition. This condition forced any functor F : LΦ

//E corresponding to a monoid
in E to take the value ? ∈ E on any object of LΦ corresponding to an object of Φ with no points.

In order to get a multi-object version of the theory for Φ = O, one needs to modify this condition.
One option would be to force F (0) to be discrete; this leads to the theory of Segal categories developed
by Dwyer, Kan, Smith, Dunn, Tamsamani, Simpson, and Hirschowitz. Unfortunately, this leads to some
technical complications in understanding the homotopy theory of these gadgets. An alternative, whose idea
is due I think to C. Rezk, is to place a condition on F (0) that will effectively force it to be a kind of “interior”
for F . This is the completeness condition, and it requires a little paradigm shift about what enrichment in a
model category really means.

Theorem 5.22. — There is an endo-(2, 1)-functor, which I like to call Rezk categorification

Wk(−)Cat : Enr //Enr

equipped with a morphism of endo-(2, 1)-functors

id //Wk(−)Cat

satisfying the following conditions for any enrichment model category V.

(5.22.1) The underlying category of Wk(V)Cat is the category sV of simplicial objects of V.
(5.22.2) The left Quillen functor V //Wk(V)Cat is the diagonal functor.
(5.22.3) The cofibrations of Wk(V)Cat are the Reedy cofibrations.
(5.22.4) An object A ∈Wk(V)Cat is fibrant — as I call it, a weak V-category — if and only if it satisfies

the following conditions.
(5.22.4.1) A ∈ sV is Reedy fibrant.
(5.22.4.2) The Segal morphism

Ap //A1 ×hA0
· · · ×hA0

A1

is an isomorphism of Ho V.
(5.22.4.3) The Rezk morphism

A0
// holimp∈(∆/1)op Ap

is an isomorphism of Ho V, where 1 is the unique contractible groupoid with two objects,
and (∆/1) is the category of functors p //1 , or equivalently the category of simplices

of the nerve ν•(1).
(5.22.5) Weak equivalences between fibrant objects are objectwise.

Sketch of proof. — This is a model structure on sV constructed on the model provided by C. Rezk. In effect,
one forms an enriched left Bousfield localization of the Reedy model structure with respect to morphisms
representing the Segal morphisms and the Rezk morphism.

Example 5.23. — Define

Wk(∞, 0)Cat := sSet

Wk(n, 0)Cat := L{Sk→? | k>n}Wk(∞, 0)Cat

Wk(n,m)Cat := Wk(Wk(n,m− 1)Cat)Cat.

These are fantastic models for weak (n,m)-categories — i.e., weak n-categories such that the i-morphisms
for i > m are weakly invertible.

More generally, write

Wk(V, 0)Cat := V

Wk(V,m)Cat := Wk(Wk(V,m− 1)Cat)Cat.
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We have a diagram of right Quillen functors:

. . . //Wk(V, n)Cat

��

// . . . //Wk(V, 1)Cat

��

//Wk(V, 0)Cat

��
. . . //Wk(∞, n)Cat // . . . //Wk(∞, 1)Cat //Wk(∞, 0)Cat

...

OO

...

OO

...

OO

. . .
∼
//Wk(n, n)Cat

OO

// . . . //Wk(n, 1)Cat

OO

//Wk(n, 0)Cat

OO

...

OO

...

OO

...

OO

. . . //Wk(1, n)Cat

OO

// . . .
∼
//Wk(1, 1)Cat

OO

//Wk(1, 0)Cat

OO

. . . //Wk(0, n)Cat

OO

// . . . //Wk(0, 1)Cat

OO

∼
//Wk(0, 0)Cat

OO

The right Quillen functors should be viewed as giving an “interior,” i.e., the maximum subobject with the
prescribed structure. In the case of the upward pointing maps, this reduces to a mere forgetful functor.

I should emphasize that this appears to be unique in all of higher category theory, special to the Rezk
categorification I have described here. As far as I know, no other theory of higher categories comes with a
diagram of enrichment model categories like the one above.(12)

Example 5.24. — If C is a category with weak equivalences, we have the Rezk nerve:

NC : ∆op //Wk(∞, 0)Cat

p // ν•w(Cp)

which is “close” to being fibrant in Wk(∞, 1)Cat. If C is a model category, for example, then an objectwise
fibrant replacement of NC is fibrant.

If C is a model V-category, then there is a weak V-category NVC such that NC is the image under the
right adjoint

Ho(Wk(V)Cat) // Ho(Wk(∞, 1)Cat) .

Moreover this association C � //NVC is functorial.

Weakly Φ-monoidal objects. — Given an enrichment category V, one can use the Leinster category
to give a definition of a model category of weak Φ-monoids in V when Φ is perfect. When Φ = O, this is
Quillen equivalent to the category of weakly V-enriched categories with a single object.

Again, it would be very gratifying to see similar results for other symmetric monoidal model categories.
Suppose Φ a perfect operator category.

Theorem 5.25. — Suppose V ∈ Enr; then there exists a left-proper, simplicial, tractable model V-category
WkMonΦ(V) with the following properties.

(5.25.1) The underlying category of WkMonΦ(V) is the functor category VLΦ .

(5.25.2) The cofibrations of WkMonΦ(V) are precisely the projective cofibrations.

(5.25.3) An object A ∈WkMonΦ(V) is fibrant if and only if the following conditions are satisfied.
(5.25.3.1) A is objectwise fibrant.

(12)In fact, using the strictification theorem below, it is even possible to “fill in” the far left line in this diagram, with theories

of weak (∞,∞)-categories, AKA ω-categories.
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(5.25.3.2) Every element of

{A(TI) // holim(A ◦DI) | I ∈ Φ}

is an isomorphism of Ho V.
(5.25.4) The weak equivalences between fibrant objects are objectwise.

This defines a (2, 1)-functor

WkMon : Plop×Enr //ModCat

(Φ,V) //WkMonΦ(V).

Example 5.26. — The categories WkMonΦ(Wk(n,m)Cat) are well-behaved model categories of Φ-
monoidal weak (n,m)-categories.

When Φ = F, n =∞, m = 0, you know this as a model category of connective spectra. That is, symmetric
monoidal ∞-groupoids are connective spectra.

Example 5.27. — If C is a Φ-monoidal model V category, then NVC is naturally a Φ-monoidal weak
V-category.

5.28. — If you’ve read about the so-called “periodic table” of n-categories, it may amuse you to see a little
piece of it here. The rest of it will be extracted below, in the section of the Eckmann-Hilton tower.

Proposition 5.29. — (5.29.1) There is a Quillen adjunction

B : WkMonO(V)
//(?/Wk(V)Cat)oo : Ω

in which

(BA)p := Ap/A0,

(ΩaE)p := ?×
(E
×(p+1)
0 )

Ep,

for any A ∈WkMonO(V) and any E ∈ (?/Wk(V)Cat).

(5.29.2) Furthermore, WkMonO(V) is a colocalization of (?/Wk(V)Cat), in the sense that the natural

morphism id //RΩLB of endofunctors of Ho WkMonO(V) is an isomorphism.
(5.29.3) The essential image of LB is comprised of those pointed weak V-categories (A, a) such that any

object of A is equivalent to a.

5.30. — The left Quillen functor here is the reinterpretation of a weak O-monoid in V as a weak V-category
with a distinguished object, and the right adjoint simply discards the connected components of the weak
V-category that do not contain the special point.

Weak multi-V-categories. — Having used the Leinster category LΦ to provide a good theory of weak
Φ-monoids in an enrichment model category, and having used simplicial objects and the Rezk categorification
to produce a good theory of weakly enriched V-categories, one can ask whether one can weave these two
sorts of structure together to define a Φ-multicategory enriched in an enrichment model category, using our
MΦ. Indeed we can! But there are two points that have to be addressed somewhat carefully first.

Suppose Φ a perfect operator category.

5.31. — First and foremost, since the model category of weakly enriched Φ-multi categories is going to be
given as a left Bousfield localization of an objectwise model structure on a diagram category, it would be
good to say a word or two about what that objectwise model structure is. In order to guarantee maximum
functoriality, it is convenient to use a model structure that sits between the injective and projective structures.
This will be the blended model structure on the diagram category VMΦ .

In particular, recall thatMΦ was constructed as a lluf subcategory of the total category of the simplicial
category p � //Φ(pop) . Broadly speaking, we ask that the structure be a Reedy structure in the simplicial
direction, and a projective structure in the Φ direction. This is an important point, but it’s also a technical
point, so I will not go into much more detail here.
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Proposition 5.32. — For any tractable model category V, there exists a model structure VMΦ

blended with the

property that the functor V∆op

Reedy
//VMΦ

blended
is left Quillen and the functor VLΦ

proj
//VMΦ

blended
is right

Quillen.

5.33. — Recall that in our original theorem asserting the existence of MΦ, we had to include a condition
asserting that a given value of the functor G : MΦ

//E corresponding to a Φ-E-operad was ? ∈ E.
For the multi-object version, we need to replace that using a condition analogous to the completeness
condition we discussed in the theory of weakly enriched categories. So we have to doctor some of the diagrams
DX : QX //MΦ , to get diagrams D′X : QX //MΦ . Armed with these, we have the following theorem.

Theorem 5.34. — Suppose V ∈ Enr; then there exists a left-proper, simplicial, tractable model
(WkVCat)-category µΦWk(V)Cat with the following properties.

(5.34.1) The underlying category of µΦWk(V)Cat is the functor category VMΦ .
(5.34.2) The cofibrations of µΦWk(V)Cat are precisely the blended cofibrations.
(5.34.3) An object B ∈ µΦWk(V)Cat is fibrant if and only if the following conditions are satisfied.

(5.34.3.1) B is blended fibrant.
(5.34.3.2) Every element of

{B(X) // holim(B ◦D′X) | X ∈MΦ}
is an isomorphism of Ho V.

(5.34.4) The weak equivalences between fibrant objects are objectwise.

This defines a (2, 1)-functor

Mon : Plop×Enr //Modcat

(Φ,V) // µΦ(V)Cat.

Example 5.35. — Of course for Φ = ?, we simply recover the old theory of weakly enriched categories
we’ve already investigated:

µ?Wk(V)Cat = Wk(V)Cat.

More generally, µΦWk(V)Cat is a good model category of weak Φ-multi-V-categories, and by the func-
toriality, there is a right Quillen functor

(−)\ : µΦWk(V)Cat //Wk(V)Cat

Proposition 5.36. — The functor MΦ
//∆op × LΦ induces a Wk(V)Cat-enriched Quillen adjunction

FreeΦ,⊗ : µΦ(V)Cat
//
MonΦ(Wk(V)oo : UΦ,µ

which is functorial in Φ and V.

Corollary 5.37. — In particular, the right Quillen forgetful functor

WkMonΦ(Wk(V)Cat) //Wk(V)Cat

factors as a composable pair of right Quillen functors:

WkMonΦ(Wk(V)Cat) // µΦWk(V)Cat //Wk(V)Cat .

Weak Φ-operads. — Using the same style of thinking as for Φ-monoids, one can develop a theory of weak
Φ-operads.

Suppose Φ a perfect operator category.

Theorem 5.38. — Suppose V ∈ Enr; then there exists a left-proper, simplicial, tractable model V-category
WkOperadΦ(V) with the following properties.

(5.38.1) The underlying category of WkOperadΦ(V) is the functor category VMΦ .

(5.38.2) The cofibrations of WkOperadΦ(V) are precisely the projective cofibrations.

(5.38.3) An object P ∈WkOperadΦ(V) is fibrant if and only if the following conditions are satisfied.
(5.38.3.1) P is objectwise fibrant.



HOMOTOPY COHERENT ALGEBRA 31

(5.38.3.2) Every element of

{P (X) // holim(A ◦DX) | X ∈MΦ}
is an isomorphism of Ho V.

(5.38.4) The weak equivalences between fibrant objects are objectwise.

This defines a (2, 1)-functor

WkOperad : Plop×Enr //ModCat

(Φ,V) //WkOperadΦ(V).

5.39. — We can prove an analogue of our proto-periodic table result above that applies to weak Φ-operads
and weak Φ-multicategories. To show that this result is a genuine generalization of our previous result, we
will require a comparison result from the next section.

Proposition 5.40. — (5.40.1) There is a Quillen adjunction

BΦ : WkOperadΦ(V)
//
(?/µΦWk(V)Cat)oo : ΩΦ

(5.40.2) Furthermore, WkOperadΦ(V) is a colocalization of (?/µΦWk(V)Cat), in the sense that the nat-

ural morphism id //RΩΦLBΦ of endofunctors of Ho WkOperadΦ(V) is an isomorphism.

(5.40.3) The essential image of LBΦ is comprised of those pointed weak Φ-multi-V-categories (A, a) such
that any object of A is equivalent to a.

6. Strictifications and comparisons

6.1. — Here is the technical core of this work. In this section are the key results that compare various
different homotopy theories of structure. After reviewing the Categorical Strictification (cs) Theorem, I
proceed to formulate Operadic Strictification, Algebraic Strictification, and Modular Strictification (os, as,
and ms) Theorems. Over enrichment model categories, the auxiliary categories LΦ and MΦ provide direct
proofs of these results, but in fact all of these results follow from the General Algebraic Strictification (gas)
Theorem, which I formulate in the final subsection.

Categorical strictification. — I begin with a quick review of the classical statements of strictification.
These are beautiful, highly nontrivial, results, and they will provide us with mercifully brief proofs of some
special cases of the “algebraic” strictification results and conjectures that we are going to discuss in the next
section.

Theorem 6.2 (Categorical Strictification). — Suppose M a tractable left (respectively, right) Quillen
presheaf on D. Then we have the following.

(6.2.1) There exists a tractable injective (resp., projective) model structure on the on the category SectL(M)

of left sections (resp., on the on the category SectL(M) of left sections) in which the weak equivalence
and cofibrations (resp, the weak equivalences and fibrations) are defined objectwise.

(6.2.2) There is an equivalence of Wk(∞, 1)Cat:

NSectLinj(M) // holimlax
d∈Dop Md (resp., NSectRproj(M) // holimlax

d∈Dop NMd ).

(6.2.3) There exists a tractable right Bousfield localization SectLholim(M) of SectLinj(M) (resp., a left Bous-

field localization SectRholim(M) of SectRproj(M)) in which the cofibrant (resp., fibrant) objects are the
cofibrant (resp., fibrant), homotopy cartesian objects of Sect(M).

(6.2.4) The equivalences of (6.2.2) equivalences of Wk(∞, 1)Cat

NSectRholim(M) // holimd∈Dop NMd (resp., NSectLholim(M) // holimd∈Dop NMd ).

About the Proof. — The first and third assertions have appeared in [1, 1.30, 1.32, 2.44] and [2, 2.23]. Some-
what more specific versions of the second and fourth assertions have been proved by Hirschowitz-Simpson,
Toën-Vezzosi, and Lurie. In volume 1 of my book will appear a complete proof of the general statement.
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Corollary 6.3. — If M is a tractable model category, and D a category, then there is an equivalence of
Wk(∞, 1)Cat:

R Mor(ND,NM) ' N(MD)proj.

6.4. — Using entirely abstract techniques, one can show that the lax homotopy limit and the homotopy
limit of the theorem are Rezk nerves of some tractable model categories. But the advantage of this result is
that it gives one an explicit — and very pleasant — model for the resulting (∞, 1)-category. The price one
has to pay for this seems to be that sometimes one has to think about right Bousfield localizations of model
categories that are not right proper. C’est la vie.

Example 6.5. — Recall that we had, for any enrichment model category V, a kind of tower of enrichment
categories

. . . //Wk(V, n)Cat // . . . //Wk(V, 1)Cat //Wk(V, 0)Cat

Using the Strictification Theorem, one can now compute the homotopy limit of this tower as a model structure
on the category of sequences (An, φn), in which An ∈Wk(V, n)Cat and φn : A(n−1)

//An is a morphism

of Wk(V, n− 1)Cat.
This is a great model of weak (V,∞)-categories. When V = sSet, this is a beautiful model of ω-categories,

fully compatible with every piece of structure around. It would be interesting to know precisely how this
compares to Dominic Verity’s model category of ω-categories, especially since these seem to play a big role
in Mike Hopkins’s recent work.

Operadic Strictification. — Here we compare Φ-operads and weak Φ-operads. This takes the form of a
rigidification theorem for Φ-operads.

Theorem 6.6. — Suppose Φ a perfect operator category, and suppose V and enrichment model category.
Then the functor NΦ : OperadΦ(V) //VMΦ is part of a Quillen equivalence

PΦ : WkOperadΦ(V)
//
OperadΦ(V)oo : NΦ

Sketch of proof. — Once it has been established that NΦ is right Quillen, it is clear that

RNΦ : Ho OperadΦ(V) // Ho WkOperadΦ(V)

is fully faithful; it thus suffices to show that PΦ reflects weak equivalences between cofibrant objects. This
is a relatively straightforward computation.

6.7. — From one point of view, the previous result is not surprising: it is, after all, a result of Dugger’s that
any tractable model category has a presentation, i.e., a Quillen equivalence with a left Bousfield localization
of the category of simplicial presheaves on some category; one might regard the previous result as the mere
selection of a particular presentation.

On the other hand, the previous result also says something quite interesting; namely, any weak Φ-operad
Q in V has a “strictification,” i.e., an isomorphism Q //RNΦLPΦQ in Ho WkOperadΦ(V) wherein the
target is a strict Φ-operad in V.

Theorem 6.8. — For any perfect operator category Φ and for any enrichment model category V, there is
an equivalence of weak V-categories

NV(WkOperadΦ(V)) ' R MorµFWk(V)Cat(NVAΦ,NVV).

Sketch of proof. — It’s enough to show this for V = Wk(∞, 0)Cat. By the classical Strictification Theorem,

the (∞, 1)-category N(WkOperadΦ(Wk(∞, 0)Cat)) is a reflexive full sub-(∞, 1)-category of

R MorWk(∞,1)Cat(NMΦ,NWk(∞, 0)Cat) ' R MorµFWk(∞,1)Cat(U!NMΦ,NWk(∞, 0)Cat).

A straightforward computation now implies that the essential image is precisely R MorµFWk(∞,1)Cat(NAΦ,NWk(∞, 0)Cat).

6.9. — Using AΦ, one can give a quite general definition of the notion of weak Φ-operad in any weak
F-multi-V-category.
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Definition 6.10. — Suppose Φ perfect, B a weak F-multi-V-category. Then define the weak V-category
of weak operads in A by the formula

WkOperadΦ(B) := R MorµFWk(V)Cat(NVAΦ, B).

Theorem 6.11 (Operadic Strictification). — For any perfect operator category Φ and any symmetric
monoidal model V-category M, there is a functorial equivalence of weak V-categories

NVOperadΦ(M) 'WkOperadΦ(UΦ,µNVM).

6.12. — I have thus far not seen any version of this result formulated elsewhere, though presumably some
“dendroidal” formulation is possible. As with the other results of this section, this result follows from the
gas Theorem, which I will discuss shortly.

Algebraic Strictification. — In this subsection we compare the homotopy theory of weak algebras with
the homotopy theory of strict algebras. The former is a higher categorical concept; the latter, which uses
model categories, was introduced at the beginning of the previous section.

Definition 6.13. — Suppose Φ perfect. Then for any weak Φ-multi-V-category A, and any Φ-multi-V-
category P , define the weak V-category of weak P -algebras in A as:

WkAlgΦ
P (A) := R MorµΦWk(V)Cat(B

ΦP,A)

Corollary 6.14. — The Quillen adjunction (FreeΦ,⊗, UΦ,µ) yields the following formula for any weak Φ-
monoidal weak V-category A any Φ-multi-V-category P :

WkAlgΦ
P (UΦ,µA) ' R MorMonΦ(Wk(V)Cat)(LFreeΦ,⊗(P ), A)

Corollary 6.15. — If Φ is faithfully flat, then LFreeΦ,⊗(?) ' NΦ, whence

WkAlgΦ
? (UΦ,µA) ' R MorMonΦ(Wk(V)Cat)(NΦ, A).

Example 6.16. — It follows from this corollary that if A is a symmetric monoidal (∞, 1)-category, then
the weak (∞, 1)-category of weak commutative algebras in A is canonically equivalent to the weak (∞, 1)-
category of weakly symmetric monoidal weak (∞, 1)-functors F //A .

6.17. — When E is an (∞, 1)-category with all finite limits, the Leinster category plays a very much similar
role to the one it played in the theory of “traditional” Φ-monoids.

Theorem 6.18. — For any weak (∞, 1)-category E with all finite limits — viewed as an F-multicategory
and thus a Φ-multicategory via homotopy products —, there is a fully faithful morphism of (∞, 1)-categories

WkAlgΦ
? (E) ' R MorµΦWk(V)Cat(?,E) // R MorWk(V)Cat(LΦ, E)

whose essential image is comprised of F : LΦ
//E such that every element of

SΦ := {F (TI) // holim(F ◦DI)}
is a weak equivalence of E.

Corollary 6.19. — For any enrichment category V, we have

WkAlgΦ
? (UΦ,µNV) ' R MorMonΦ(Wk(∞,1)Cat)(LFreeΦ,⊗(?), NV)

��

∼ // NWkMonΦ(V)

��
R MorWk(V)Cat(NLΦ, NV) ∼

// N(VLΦ)proj

a commutative diagram in Ho Wk(∞, 1)Cat in which the horizontal morphisms are isomorphisms and the
vertical morphisms are fully faithful.

Theorem 6.20. — Suppose Φ a perfect operator category, V an enrichment model category V, and Q a
cofibrant replacement for the terminal Φ-operad in V. Then there is an equivalence of weak V-categories

NVWkMonΦ(V) ' NVAlgΦ
Q(V).
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Corollary 6.21. — Putting everything together, we have, for any V ∈ Enr and a homotopically terminal
Φ-operad ? in V,

WkAlgΦ
? (UΦ,µNV) ' NVWkMonΦ(V) ' NVAlgΦ

Q(V).

Theorem 6.22 (Algebraic Strictification). — For any tractable Φ-monoidal model category M, and for
any cofibrant Φ-operad O in M, there is an equivalence of (∞, 1)-categories

WkAlgΦ
O(UΦ,µNM) ' NAlgΦ

O(M)

6.23. — This result is a common generalization of some conjectures of Toën from about seven years ago.
More recently, Lurie has addressed related questions. The result here follows from the gas Theorem.

Modular Strictification. — Having strictified algebras, it seems natural to attempt to strictify modules
over these algebras. The gas Theorem also implies strictification corollaries that permit one to strictify any
kind of module, but the precise formulation would take us too far afield. I will instead be satisfied with
stating the following corollary, which I suspect is widely believed but till now not satisfactorily proved.

Corollary 6.24. — SupposeM as above. Suppose A an A∞-algebra inM. Write Modr(A) for the category
of right A-modules, and write Mod(A) for the category of A-bimodules. Then the (∞, 1)-category NMod(A)
inherits the structure of a weak O-monoidal (∞, 1)-category. There are equivalences among the spaces of

weak Wr(k+1)(O)-monoidal structures on NModr(A) recovering the weak O-monoidal structure on A, of

weak Wr(k)(O)-monoidal structures on NMod(A) recovering the weak O-monoidal structure on A, and of
Ek-algebra structures on A recovering the A∞-algebra structures on A:

(WkMonStrWr(k+1)(O)(NModr(A))/A) ' (WkMonStrWr(k)(O)(NMod(A))/A) ' (WkAlgStrEk(A)/A).

The following subcorollary answers a question of Miller. In effect, it supplies an Ek+1 algebra structure on
the “Ek topological Hochschild cohomology” of an Ek ring spectrum A.

Corollary 6.25. — Suppose A an Ek ring spectrum for 1 ≤ k ≤ ∞. Then the endomorphism spectrum
End(A) of A in Mod(A) inherits a natural structure as an Ek+1 ring spectrum.

General Algebraic Strictification. — In this subsection, I discuss some notes on a general conjecture
that implies all the other conjectures of this section. I consider the following theorem my deepest result in
the realm of higher categories and homotopy coherent algebra. It provides an incredibly powerful sort of
strictification procedure whereby one recovers strict models of weak algebras over a colored Φ-operad.

Theorem 6.26 (General Algebraic Strictification). — Suppose (Φ, E , S,P,M) a tuple in which Φ is
an operator category, E an enrichment model category, S is a set, P a cofibrant S-colored Φ-operad in E,
and M a tractable Φ-monoidal model E-category satisfying the monoid axiom. Then there is a canonical
equivalence of weak E-categories:

NEAlgΦ
E,P(M) := NE MorµΦ(E)Cat(P,M) ∼

// R Mor
Wk(E)Cat
WkµΦ(E)Cat

(P,M) =: WkAlgΦ
E,P(NEM) .

A special case of this result was (at least partially) demonstrated some time ago by Spitzweck and me, but
the method of proof required for the result above is different from the technique used in our previous work.

7. Filtering algebraic structures

Associative structures. — Let us begin by examining the section of the (2, 1)-category Op between 0 and
O. It is well-known among topologists that the operads An are meant to provide signposts along the way from
no structure to associative or A∞ structure. This is now easy to reformulate using the operator categories
O≤n. Just for fun, I will give some indications of how one might go about this. (This is an outgrowth of a
conversation with Sarah Whitehouse, who pointed out to me that this would be help legitimize the theory.)

Lemma 7.1. — An A∞ operad is a homotopically terminal O-operad.

Proposition 7.2. — For any n ≥ 0, consider the inclusion jn : O≤n //O of operator categories; then the
image of the homotopically terminal O≤n-operad under the derived left adjoint Ljn,! is an An+1 operad.
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Sketch of proof. — Suppose K a homotopically terminal O-operad. Then Rj?nK is a homotopically terminal
O≤n-operad, and LJn,!Rj

?
nK is the O-operad generated by the first (n+ 1) spaces of K.

7.3. — Thus an An−1-algebra (or space) is precisely the same thing as an algebra for the homotopically
terminal O≤n-operad.

The Eckman-Hilton tower and the Freudenthal-Breen-Baez-Dolan Stabilization Hypothesis.
—

Definition. — The Eckman-Hilton sequence is the sequence of operator categories

? // O // O oO // O oO oO // . . . //Wr(n)(O) // . . . .

Suppose V ∈ Enr; then there is the associated the Eckman-Hilton tower

EHV := [ Wk(V)Cat µOWk(V)Catoo µ(OoO)Wk(V)Catoo µ(OoOoO)Wk(V)Catoo . . .oo µWr(n)(O)Wk(V)Catoo . . .oo ],

a tower of right Quillen functors.

Lemma. — The Leinster category

LWr(n)(O) ' (∆op)×n,

and

MonWr(n)(O)(V) 'MonO(MonO(. . .MonO(V) . . . ))

Remark. — For any n ≥ 0, we have, by functoriality, a Quillen adjunction

U! : µWr(n)(O)Wk(V)Cat
..
µFWk(V)Catoo : U?.

Theorem (Also see Batanin, Fiedorowicz-Vogt). — Suppose V = sSet. Then for any n > 0, LU!(?)
is an En operad.

Corollary. — For any n > 0, the (∞, 1)-category of En-algebras in V is modeled by the tractable model
category

MonWr(n)(O)(V).

Theorem. — holimNEHV ' µFWk(V)Cat.

Remark. — Our results show that an En-algebra A in V can be viewed as an (V, n)-category.

Theorem. — There is an equivalence of (V, n)-categories

NVMod
Wr(n)(O)
?,V (A) ' R Mor

Wk(V)Cat
Wk(V,n)Cat(A,NWk(V,n−1)CatWk(V, n− 1)Cat)

Theorem. — An E1-algebra A in V is an En-algebra if and only if the weak V-category

NVModO
?,V(A) ' R MorWk(V)Cat(A,NVV)

carries a Wr(n−1)(O)-monoidal structure.

The F-filtration. — The filtration

? // F≤1
// F≤n // F≤3

// . . . // F≤n // . . .

is essentially the same as the Robinson filtration on the E∞ operad.
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Applications. — Here are a couple results one can prove easily using the ideas sketched here. There are
lots of results like these.

Theorem 7.4 (Deligne Conjecture). — For any En ring spectrum A, the spectra THH(A) and K(A)
are En−1 ring spectra in a canonical fashion.

Theorem 7.5. — For any En ring spectrum A, one may define the topological Hochschild cohomology
THC(A) as the endomorphism ring in the category of A-omnimodules. This has a canonical En+1 ring
spectrum structure.
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