PDE-Constrained Optimization in Physics, Chemistry & Biology: Modelling and Numerical Methods

John Pearson

School of Mathematics, University of Edinburgh

Multiscale Computational Modelling, ICMS, Edinburgh 16 May 2018

Based on work with: Sergey Dolgov, Philip Maini, Martin Stoll, Andy Wathen

PDE-Constrained Optimization

• Many PDE-constrained optimization problems may be written as

$$\min_{y,u} \frac{1}{2} \|y - \hat{y}\|_{L_2(\Omega)}^2 + \frac{\beta}{2} \|u\|_{L_2(\Omega)}^2$$

s.t. $\mathcal{D}y = u + \mathbf{BCs}.$

• Applications in far-reaching areas such as flow control, semiconductor design, electromagnetic inverse problems, weather forecasting, medical imaging, and finance.

PDE-Constrained Optimization

• Many PDE-constrained optimization problems may be written as

$$\min_{y,u} \frac{1}{2} \|y - \hat{y}\|_{L_2(\Omega)}^2 + \frac{\beta}{2} \|u\|_{L_2(\Omega)}^2$$

s.t. $\mathcal{D}y = u + \mathbf{BCs}.$

- Applications in far-reaching areas such as flow control, semiconductor design, electromagnetic inverse problems, weather forecasting, medical imaging, and finance.
- For instance, suppose a company wishes to store a foodstuff or chemical as close as possible to some "ideal" atmospheric conditions, and sets up a controlled atmosphere to do this.
- This is likely to be expensive, so one may also wish to minimize the cost of doing this.

PDE-Constrained Optimization

• Many PDE-constrained optimization problems may be written as

$$\min_{y,u} \frac{1}{2} \|y - \hat{y}\|_{L_2(\Omega)}^2 + \frac{\beta}{2} \|u\|_{L_2(\Omega)}^2$$

s.t. $\mathcal{D}y = u + \mathbf{BCs}.$

• Applications in far-reaching areas such as flow control, semiconductor design, electromagnetic inverse problems, weather forecasting, medical imaging, and finance.

- For instance, suppose a company wishes to store a foodstuff or chemical as close as possible to some "ideal" atmospheric conditions, and sets up a controlled atmosphere to do this.
- This is likely to be expensive, so one may also wish to minimize the cost of doing this.
- Then one could solve this using a PDE-constrained optimization problem, with \mathcal{D} some system of PDEs to describe the physics behind the atmospheric conditions, and

y = atmospheric conditions,

- u = energy expended, or financial cost,
- $\hat{y} =$ "ideal" atmospheric conditions for chemical,
- β = parameter determining at what ratio atmospheric conditions and cost is prioritized.

Can model problems in fluid flow control, ...

... imaging, including medical imaging, ...

... and chemical processes:

PDE-Constrained Optimization

- We must accurately model the processes, and design efficient numerical solvers.
- Using a finite element method \rightarrow matrix system of very high dimension.
- Most effective approach for solving these systems is to construct iterative methods which are accelerated by powerful preconditioners.
- When solving matrix system Ax = b, a good preconditioner P will be such that P⁻¹ is cheap to apply & P⁻¹A has desirable properties.
- Many advantages: can exploit sparsity and structure of matrices, don't have to store the entire system, can solve large problems rapidly & in parallel.

$$\mathcal{A}\mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad \mathcal{P}^{-1}\mathcal{A}\mathbf{x} = \mathcal{P}^{-1}\mathbf{b}$$

Preconditioning

• For certain iterative methods, convergence is controlled by

$$\kappa(\mathcal{A}) = \frac{\lambda_{\max}(\mathcal{A})}{\lambda_{\min}(\mathcal{A})} \quad \text{or} \quad \kappa(\mathcal{P}^{-1}\mathcal{A}) = \frac{\lambda_{\max}(\mathcal{P}^{-1}\mathcal{A})}{\lambda_{\min}(\mathcal{P}^{-1}\mathcal{A})}.$$

So if κ(P⁻¹A) ≪ κ(A), convergence is achieved in many fewer iterations.
But P⁻¹ must be cheap to apply, otherwise 'cost per iteration' is prohibitive.

Saddle Point Systems

• In the problems we consider, the matrices are of *saddle point* structure:

$$\mathcal{A} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{0} \end{array} \right]$$

• Two preconditioners for A are [Kuznetsov, 1995], [Murphy, Golub & Wathen, 2000]

$$\mathcal{P}_D = \begin{bmatrix} A & 0 \\ 0 & S \end{bmatrix}, \qquad \mathcal{P}_T = \begin{bmatrix} A & 0 \\ B & -S \end{bmatrix}.$$

- Here, $S = BA^{-1}B^{T}$ is the (negative) Schur complement.
- Excellent spectral properties: if $\mathcal{P}_D^{-1}\mathcal{A}$ and $\mathcal{P}_T^{-1}\mathcal{A}$ are nonsingular [lpsen, 2001]:

$$\lambda(\mathcal{P}_D^{-1}\mathcal{A}) \in \left\{1, \frac{1}{2}(1 \pm \sqrt{5})\right\},$$
$$\lambda(\mathcal{P}_T^{-1}\mathcal{A}) \in \{1\}.$$

• In general A, S are not practical preconditioners, so we devise approximations \hat{A} , \hat{S} .

$$\begin{split} \min_{y,u} & \frac{1}{2} \|y - \hat{y}\|_{L_2(\Omega)}^2 + \frac{\beta}{2} \|u\|_{L_2(\Omega)}^2 \\ \text{s.t.} & -\nabla^2 y = u \quad \text{in } \Omega \\ & y = f \quad \text{on } \partial\Omega \end{split}$$

$$\begin{split} \min_{y,u} & \frac{1}{2} \|y - \hat{y}\|_{L_2(\Omega)}^2 + \frac{\beta}{2} \|u\|_{L_2(\Omega)}^2 \\ \text{s.t.} & -\nabla^2 y = u \quad \text{in } \Omega \\ & y = f \quad \text{on } \partial\Omega \end{split}$$

Distributed Poisson Control

• Differentiating (with respect to y, u, p) the cost functional:

$$\mathcal{L}(\mathbf{y},\mathbf{u},\mathbf{p}) = \frac{1}{2} (\mathbf{y} - \hat{\mathbf{y}})^T M(\mathbf{y} - \hat{\mathbf{y}}) + \frac{\beta}{2} \mathbf{u}^T M \mathbf{u} + \mathbf{p}^T (K \mathbf{y} - M \mathbf{u} - \mathbf{d}),$$

where M is a finite element mass matrix, and K a stiffness matrix, gives

$$\begin{bmatrix} M & 0 & K \\ 0 & \beta M & -M \\ \hline K & -M & 0 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \hat{\mathbf{y}} \\ 0 \\ \mathbf{d} \end{bmatrix}.$$

$$\begin{split} \min_{y,u} & \frac{1}{2} \|y - \hat{y}\|_{L_2(\Omega)}^2 + \frac{\beta}{2} \|u\|_{L_2(\Omega)}^2 \\ \text{s.t.} & -\nabla^2 y = u \quad \text{in } \Omega \\ & y = f \quad \text{on } \partial\Omega \end{split}$$

Distributed Poisson Control

• Differentiating (with respect to y, u, p) the cost functional:

$$\mathcal{L}(\mathbf{y},\mathbf{u},\mathbf{p}) = \frac{1}{2} (\mathbf{y} - \hat{\mathbf{y}})^T M(\mathbf{y} - \hat{\mathbf{y}}) + \frac{\beta}{2} \mathbf{u}^T M \mathbf{u} + \mathbf{p}^T (K \mathbf{y} - M \mathbf{u} - \mathbf{d}),$$

where M is a finite element mass matrix, and K a stiffness matrix, gives

$$\begin{bmatrix} M & 0 & K \\ 0 & \beta M & -M \\ \hline K & -M & 0 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} M \hat{\mathbf{y}} \\ \mathbf{0} \\ \mathbf{d} \end{bmatrix}.$$

This is a saddle point system with

$$A = \begin{bmatrix} M & 0 \\ 0 & \beta M \end{bmatrix}, \qquad S = KM^{-1}K + \frac{1}{\beta}M.$$

• We may precondition A using Chebyshev semi-iteration to approximate M^{-1} .

Approximating the Schur Complement – Matching Strategy

• We aim to capture both terms of the Schur complement by writing

$$S = KM^{-1}K + \frac{1}{\beta}M, \qquad \widehat{S} = \left(K + \frac{1}{\sqrt{\beta}}M\right)M^{-1}\left(K + \frac{1}{\sqrt{\beta}}M\right)$$

• This ensures that [Pearson & Wathen, 2012]:

$$\lambda(\widehat{S}^{-1}S) \in \left[\frac{1}{2}, 1\right]$$

Approximating the Schur Complement – Matching Strategy

• We aim to capture both terms of the Schur complement by writing

$$S = KM^{-1}K + \frac{1}{\beta}M, \qquad \widehat{S} = \left(K + \frac{1}{\sqrt{\beta}}M\right)M^{-1}\left(K + \frac{1}{\sqrt{\beta}}M\right)$$

• This ensures that [Pearson & Wathen, 2012]:

$$\lambda(\widehat{S}^{-1}S) \in \left[\frac{1}{2}, 1\right]$$

- Our preconditioner requires four ingredients:
 - Saddle point approximation,
 - 2 Approximation of mass matrix by Chebyshev semi-iteration,
 - Matching strategy for Schur complement,
 - S Effective multigrid method for $K + \frac{1}{\sqrt{\beta}}M$ to apply \hat{S} .

• Only \sim 15 iterations required for 6 digits of accuracy using MINRES.

J. W. Pearson and A. J. Wathen, A New Approximation of the Schur Complement in Preconditioners for PDE-Constrained Optimization, Numerical Linear Algebra with Applications.

Time-Dependent Problems

$$\min_{y,u} \frac{1}{2} \int_0^T \int_{\Omega} \left(y(\mathbf{x},t) - \hat{y}(\mathbf{x},t) \right)^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\beta}{2} \int_0^T \int_{\Omega} \left(u(\mathbf{x},t) \right)^2 \, \mathrm{d}\Omega \mathrm{d}t \qquad \text{s.t.} \quad \frac{\partial y}{\partial t} - \nabla^2 y = u + \mathbf{ICs} + \mathbf{BCs}$$

Time-Dependent Problems

$$\min_{y,u} \frac{1}{2} \int_0^T \int_\Omega \left(y(\mathbf{x},t) - \hat{y}(\mathbf{x},t) \right)^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\beta}{2} \int_0^T \int_\Omega \left(u(\mathbf{x},t) \right)^2 \, \mathrm{d}\Omega \mathrm{d}t \qquad \text{s.t.} \quad \frac{\partial y}{\partial t} - \nabla^2 y = u + \mathbf{ICs} + \mathbf{BCs}$$

The matrix system is of the form $A\mathbf{x} = \mathbf{b}$, where A is given by

Table of Contents

1 Chemistry: Chemical Reactions

Diology: Pattern Formation & Chemotaxis

Physics: Fluid Flow Control & Image Metamorphosis

Table of Contents

1 Chemistry: Chemical Reactions

2 Biology: Pattern Formation & Chemotaxis

3) Physics: Fluid Flow Control & Image Metamorphosis

Reaction–Diffusion Control Problems for Chemical Reactions

• A problem which we are now keen to consider is the following optimal control problem involving reaction-diffusion equations. We wish to minimize

$$\mathcal{J} = \frac{\alpha_y}{2} \int_0^T \int_\Omega \left(y - \hat{y} \right)^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_z}{2} \int_0^T \int_\Omega \left(z - \hat{z} \right)^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_c}{2} \int_0^T \int_{\partial\Omega} c^2 \, \mathrm{d}s \mathrm{d}t,$$

subject to the following PDE constraints:

$$y_t - D_1 \nabla^2 y + k_1 y = -\gamma_1 yz \quad \text{in } \Omega \times (0, T),$$

$$z_t - D_2 \nabla^2 z + k_2 z = -\gamma_2 yz \quad \text{in } \Omega \times (0, T),$$

$$D_1 \frac{\partial y}{\partial n} = c \qquad \text{on } \partial \Omega \times (0, T),$$

$$D_2 \frac{\partial z}{\partial n} + \epsilon z = 0 \qquad \text{on } \partial \Omega \times (0, T),$$

$$y(\mathbf{x}, 0) = y_0(\mathbf{x}) \qquad \text{in } \Omega,$$

$$z(\mathbf{x}, 0) = z_0(\mathbf{x}) \qquad \text{in } \Omega.$$

• We may also incorporate the control constraints $c_{-} \leq c \leq c_{+}$ a.e. on $\partial \Omega \times (0, T)$.

• On the continuous level, we consider the Lagrangian

$$\begin{split} \mathcal{L}(y,z,c,p,q) &= \frac{\alpha_y}{2} \int_0^T \int_\Omega (y-\hat{y})^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_z}{2} \int_0^T \int_\Omega (z-\hat{z})^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_c}{2} \int_0^T \int_{\partial\Omega} c^2 \, \mathrm{d}s \mathrm{d}t \\ &+ \int_0^T \int_\Omega p_\Omega \big(y_t - D_1 \nabla^2 y + k_1 y + \gamma_1 yz \big) \, \mathrm{d}\Omega \mathrm{d}t \\ &+ \int_0^T \int_\Omega q_\Omega \big(z_t - D_2 \nabla^2 z + k_2 z + \gamma_2 yz \big) \, \mathrm{d}\Omega \mathrm{d}t \\ &+ \int_0^T \int_{\partial\Omega} p_{\partial\Omega} \left(D_1 \frac{\partial y}{\partial n} - c \right) \, \mathrm{d}s \mathrm{d}t + \int_0^T \int_{\partial\Omega} q_{\partial\Omega} \left(D_2 \frac{\partial z}{\partial n} + \epsilon z \right) \, \mathrm{d}s \mathrm{d}t. \end{split}$$

• On the continuous level, we consider the Lagrangian

$$\begin{split} \mathcal{L}(y,z,c,p,q) &= \frac{\alpha_y}{2} \int_0^T \int_\Omega \left(y - \hat{y}\right)^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_z}{2} \int_0^T \int_\Omega \left(z - \hat{z}\right)^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_c}{2} \int_0^T \int_{\partial\Omega} c^2 \, \mathrm{d}s \mathrm{d}t \\ &+ \int_0^T \int_\Omega p_\Omega \big(y_t - D_1 \nabla^2 y + k_1 y + \gamma_1 yz\big) \, \mathrm{d}\Omega \mathrm{d}t \\ &+ \int_0^T \int_\Omega q_\Omega \big(z_t - D_2 \nabla^2 z + k_2 z + \gamma_2 yz\big) \, \mathrm{d}\Omega \mathrm{d}t \\ &+ \int_0^T \int_{\partial\Omega} p_{\partial\Omega} \left(D_1 \frac{\partial y}{\partial n} - c\right) \, \mathrm{d}s \mathrm{d}t + \int_0^T \int_{\partial\Omega} q_{\partial\Omega} \left(D_2 \frac{\partial z}{\partial n} + \epsilon z\right) \, \mathrm{d}s \mathrm{d}t. \end{split}$$

• Differentiating with respect to *p*, *q* gives the *state equations*:

$$y_t - D_1 \nabla^2 y + k_1 y = -\gamma_1 yz, \qquad z_t - D_2 \nabla^2 z + k_2 z = -\gamma_2 yz.$$

• On the continuous level, we consider the Lagrangian

$$\begin{split} \mathcal{L}(y,z,c,p,q) &= \frac{\alpha_y}{2} \int_0^T \int_\Omega (y-\hat{y})^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_z}{2} \int_0^T \int_\Omega (z-\hat{z})^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_c}{2} \int_0^T \int_{\partial\Omega} c^2 \, \mathrm{d}s \mathrm{d}t \\ &+ \int_0^T \int_\Omega p_\Omega \big(y_t - D_1 \nabla^2 y + k_1 y + \gamma_1 yz \big) \, \mathrm{d}\Omega \mathrm{d}t \\ &+ \int_0^T \int_\Omega q_\Omega \big(z_t - D_2 \nabla^2 z + k_2 z + \gamma_2 yz \big) \, \mathrm{d}\Omega \mathrm{d}t \\ &+ \int_0^T \int_{\partial\Omega} p_{\partial\Omega} \left(D_1 \frac{\partial y}{\partial n} - c \right) \, \mathrm{d}s \mathrm{d}t + \int_0^T \int_{\partial\Omega} q_{\partial\Omega} \left(D_2 \frac{\partial z}{\partial n} + \epsilon z \right) \, \mathrm{d}s \mathrm{d}t. \end{split}$$

• Differentiating with respect to *p*, *q* gives the *state equations*:

$$y_t - D_1 \nabla^2 y + k_1 y = -\gamma_1 yz, \qquad z_t - D_2 \nabla^2 z + k_2 z = -\gamma_2 yz.$$

• Differentiating with respect to y, z gives the adjoint equations:

$$\begin{aligned} -p_t - D_1 \nabla^2 p + k_1 p + \gamma_1 p z + \gamma_2 q z + \alpha_y y &= \alpha_y \hat{y}, \\ -q_t - D_2 \nabla^2 q + k_2 q + \gamma_2 q y + \gamma_1 p y + \alpha_z z &= \alpha_z \hat{z}. \end{aligned}$$

• On the continuous level, we consider the Lagrangian

$$\begin{split} \mathcal{L}(y,z,c,p,q) &= \frac{\alpha_y}{2} \int_0^T \int_\Omega \left(y - \hat{y}\right)^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_z}{2} \int_0^T \int_\Omega \left(z - \hat{z}\right)^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\alpha_c}{2} \int_0^T \int_{\partial\Omega} c^2 \, \mathrm{d}s \mathrm{d}t \\ &+ \int_0^T \int_\Omega p_\Omega \big(y_t - D_1 \nabla^2 y + k_1 y + \gamma_1 yz\big) \, \mathrm{d}\Omega \mathrm{d}t \\ &+ \int_0^T \int_\Omega q_\Omega \big(z_t - D_2 \nabla^2 z + k_2 z + \gamma_2 yz\big) \, \mathrm{d}\Omega \mathrm{d}t \\ &+ \int_0^T \int_{\partial\Omega} p_{\partial\Omega} \left(D_1 \frac{\partial y}{\partial n} - c\right) \, \mathrm{d}s \mathrm{d}t + \int_0^T \int_{\partial\Omega} q_{\partial\Omega} \left(D_2 \frac{\partial z}{\partial n} + \epsilon z\right) \, \mathrm{d}s \mathrm{d}t. \end{split}$$

• Differentiating with respect to *p*, *q* gives the *state equations*:

$$y_t - D_1 \nabla^2 y + k_1 y = -\gamma_1 yz, \qquad z_t - D_2 \nabla^2 z + k_2 z = -\gamma_2 yz.$$

• Differentiating with respect to y, z gives the adjoint equations:

$$-p_t - D_1 \nabla^2 p + k_1 p + \gamma_1 p z + \gamma_2 q z + \alpha_y y = \alpha_y \hat{y},$$

$$-q_t - D_2 \nabla^2 q + k_2 q + \gamma_2 q y + \gamma_1 p y + \alpha_z z = \alpha_z \hat{z}.$$

• Differentiating with respect to c gives the gradient equation $\alpha_c c - p = 0$ on $\partial \Omega \times (0, T)$.

Newton Iteration – Matrix System

• In matrix form, the Newton system is written as

$$\begin{bmatrix} \alpha_{y} \mathsf{ld} & \gamma_{1} \bar{p} + \gamma_{2} \bar{q} & 0 & \mathcal{D}_{y}' & \gamma_{2} \bar{z} \\ \gamma_{1} \bar{p} + \gamma_{2} \bar{q} & \alpha_{z} \mathsf{ld} & 0 & \gamma_{1} \bar{y} & \mathcal{D}_{z}' \\ 0 & 0 & \alpha_{c} \mathcal{D}_{1}^{-1} \mathsf{ld} & -\mathcal{D}_{1}^{-1} \mathsf{ld} & 0 \\ \mathcal{D}_{y} & \gamma_{1} \bar{y} & -\mathcal{D}_{1}^{-1} \mathsf{ld} & 0 & 0 \\ \gamma_{2} \bar{z} & \mathcal{D}_{z} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} s_{y} \\ s_{z} \\ s_{c} \\ s_{p} \\ s_{q} \end{bmatrix} = b,$$

where

$$\mathcal{D}_{y} = \frac{\partial}{\partial t} - D_{1}\nabla^{2} + k_{1}\mathsf{Id} + \gamma_{1}\bar{z}, \qquad \mathcal{D}_{y}' = -\frac{\partial}{\partial t} - D_{1}\nabla^{2} + k_{1}\mathsf{Id} + \gamma_{1}\bar{z},$$
$$\mathcal{D}_{z} = \frac{\partial}{\partial t} - D_{2}\nabla^{2} + k_{2}\mathsf{Id} + \gamma_{2}\bar{y}, \qquad \mathcal{D}_{z}' = -\frac{\partial}{\partial t} - D_{2}\nabla^{2} + k_{2}\mathsf{Id} + \gamma_{2}\bar{y}.$$

• The vector *b* represents the terms from the previous Newton iteration.

Newton Iteration – Matrix System

• Applying a finite element method at the Newton step, we obtain the matrix:

where

$$\mathbf{L}_{y,C} = \mathbf{M}_{E} + \tau D_{1}\mathbf{K} + \tau k_{1}\mathbf{M} + \tau \gamma_{1}\mathbf{M}_{z}, \quad \mathbf{L}_{z,C} = \mathbf{M}_{E} + \tau D_{2}\mathbf{K} + \tau k_{2}\mathbf{M} + \tau \gamma_{2}\mathbf{M}_{y}.$$

- Here **M** and **K** are block diagonal matrices with mass and stiffness matrices for each time-step, \mathbf{M}_{Γ} is associated boundary mass matrix, **N** the trace operator mapping onto the boundary, and \mathbf{M}_{E} mass matrices from time-stepping.
- All other M_ψ = blkdiag(M_ψ,..., M_ψ) are obtained from evaluating integrals of the form [M_ψ]_{ij} = ∫ψφ_iφ_j for each matrix entry.

$ au \alpha_y M$	$\tau(\gamma_1 \mathbf{M}_{\boldsymbol{\rho}} + \gamma_2 \mathbf{M}_{\boldsymbol{q}})$	0	$\mathbf{L}_{v,C}^{T}$	$\tau \gamma_2 \mathbf{M}_z$
$\tau(\gamma_1 \mathbf{M}_p + \gamma_2 \mathbf{M}_q)$	$ au lpha_z \mathbf{M}$	0	$ au\gamma_1 \mathbf{M}_y$	$\mathbf{L}_{z,C}^{T}$
0	0	$ au \alpha_c D_1^{-1} \mathbf{M}_{\Gamma}$	$- au D_1^{-1} \mathbf{N}^T$	0
$L_{y,C}$	$ au\gamma_1 \mathbf{M}_u$	$- au D_1^{-1} \mathbf{N}$	0	0
$ au\gamma_2 \mathbf{M}_z$	$L_{z,C}$	0	0	0

Preconditioning the Matrix System – (1, 1)-block

• Let us apply saddle point theory when approximating the (1,1)-block, and take

$$\hat{A} = \tau \begin{bmatrix} \alpha_{y} \mathbf{M} - \alpha_{z}^{-1} (\gamma_{1} \mathbf{M}_{p} + \gamma_{2} \mathbf{M}_{q}) \mathbf{M}^{-1} (\gamma_{1} \mathbf{M}_{p} + \gamma_{2} \mathbf{M}_{q}) & 0 & 0 \\ & & & & \\ \hline \gamma_{1} \mathbf{M}_{p} + \gamma_{2} \mathbf{M}_{q} & & & & \\ \hline 0 & & & & 0 & \\ \hline & & & & & 0 & \\ \hline \end{array} \end{bmatrix}$$

• We apply Chebyshev semi-iteration to approximate \mathbf{M}_{Γ}^{-1} .

• Preconditioner will be non-symmetric \rightarrow apply BICG or GMRES.

SIAM Journal on Scientific Computing.

John Pearson (University of Edinburgh)

JWP and M. Stoll, Fast Iterative Solution of Reaction–Diffusion Control Problems Arising from Chemical Reactions,

$ au \alpha_y \mathbf{M}$	$\tau(\gamma_1 \mathbf{M}_p + \gamma_2 \mathbf{M}_q)$	0	$\mathbf{L}_{v,C}^{T}$	$ au\gamma_2 \mathbf{M}_z$ -
$\tau(\gamma_1 \mathbf{M}_p + \gamma_2 \mathbf{M}_q)$	$\tau \alpha_z \mathbf{M}$	0	$ au \gamma_1 \mathbf{M}_y$	$\mathbf{L}_{z,C}^{T}$
0	0	$ au lpha_{c} D_{1}^{-1} \mathbf{M}_{\Gamma}$	$- au D_1^{-1} \mathbf{N}^{\mathcal{T}}$	0
$L_{y,C}$	$ au \gamma_1 \mathbf{M}_y$	$- au D_1^{-1} \mathbf{N}$	0	0
$ au \gamma_2 \mathbf{M}_z$	$L_{z,C}$	0	0	0 _

Preconditioning the Matrix System – Schur Complement

• We now approximate

$$S = \frac{1}{\tau} \begin{bmatrix} \mathbf{L}_{y,C} & \tau \gamma_1 \mathbf{M}_y \\ \tau \gamma_2 \mathbf{M}_z & \mathbf{L}_{z,C} \end{bmatrix} \mathbf{A}_{(1,2)}^{-1} \begin{bmatrix} \mathbf{L}_{y,C}^T & \tau \gamma_2 \mathbf{M}_z \\ \tau \gamma_1 \mathbf{M}_y & \mathbf{L}_{z,C}^T \end{bmatrix} + \frac{\tau}{\alpha_c D_1} \begin{bmatrix} \mathbf{N} \mathbf{M}_{\Gamma}^{-1} \mathbf{N}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

where

$$\mathbf{A}_{(1,2)} = \begin{bmatrix} \alpha_{y}\mathbf{M} & \gamma_{1}\mathbf{M}_{p} + \gamma_{2}\mathbf{M}_{q} \\ \gamma_{1}\mathbf{M}_{p} + \gamma_{2}\mathbf{M}_{q} & \alpha_{z}\mathbf{M} \end{bmatrix}$$

• We make use of our matching strategy derived earlier to write:

$$\widehat{S} = \frac{1}{\tau} \begin{bmatrix} \mathbf{L}_{y,C} + \widehat{\mathbf{M}} & \tau \gamma_1 \mathbf{M}_y \\ \tau \gamma_2 \mathbf{M}_z & \mathbf{L}_{z,C} \end{bmatrix} \mathbf{A}_{(1,2)}^{-1} \begin{bmatrix} \mathbf{L}_{y,C}^{\mathsf{T}} + \widehat{\mathbf{M}} & \tau \gamma_2 \mathbf{M}_z \\ \tau \gamma_1 \mathbf{M}_y & \mathbf{L}_{z,C}^{\mathsf{T}} \end{bmatrix}.$$

John Pearson (University of Edinburgh)

$$\widehat{S} = \frac{1}{\tau} \begin{bmatrix} \mathbf{L}_{y,C} + \widehat{\mathbf{M}} & \tau \gamma_1 \mathbf{M}_y \\ \tau \gamma_2 \mathbf{M}_z & \mathbf{L}_{z,C} \end{bmatrix} \mathbf{A}_{(1,2)}^{-1} \begin{bmatrix} \mathbf{L}_{y,C}^T + \widehat{\mathbf{M}} & \tau \gamma_2 \mathbf{M}_z \\ \tau \gamma_1 \mathbf{M}_y & \mathbf{L}_{z,C}^T \end{bmatrix}$$

Some Observations

- To apply \hat{S}^{-1} in practice, use fixed number of iterations of an Uzawa scheme, coupled with algebraic multigrid routine to approximate the diagonal blocks.
- Good lower bound of $\lambda(\widehat{S}^{-1}S)$.
- Greater variation in upper bound due to range of parameters: mesh size h, τ, α_y, α_z, α_c, D₁, D₂, k₁, k₂, γ₁, γ₂, ε, c₋, c₊.
- Best case scenario: when one term in *S* strongly dominates.
- Worst case scenario: when first term of S is (close to) indefinite.

$\hat{y} = t |\sin(2x_1x_2x_3)| + 0.3, \quad \hat{z} = 0, \quad k_1 = k_2 = D_1 = D_2 = 1, \quad \gamma_1 = \gamma_2 = 0.15$

DoF	$lpha_{c}=10^{-3}$		$lpha_{c}=10^{-5}$			
	Time	Newton	Iterations	Time	Newton	Iterations
538,240	1,995	step 1	17	1,726	step 1	16
		step 2	20		step 2	16
		step 3	20		step 3	16
3, 331, 520	14,757	step 1	28	14,904	step 1	28
		step 2	31		step 2	27
		step 3	29		step 3	34

Table of Contents

Chemistry: Chemical Reactions

2 Biology: Pattern Formation & Chemotaxis

3 Physics: Fluid Flow Control & Image Metamorphosis

Parameter Identification in Pattern Formation Processes

• A useful reaction-diffusion control problem arises in pattern formation processes. Here we wish to minimize

$$\begin{aligned} \mathcal{J}(\boldsymbol{y}, \boldsymbol{z}, \boldsymbol{a}, \boldsymbol{b}) &= \frac{\beta_1}{2} \| \boldsymbol{y} - \hat{\boldsymbol{y}}(\mathbf{x}, t) \|_{L_2(\Omega)}^2 + \frac{\beta_2}{2} \| \boldsymbol{z} - \hat{\boldsymbol{z}}(\mathbf{x}, t) \|_{L_2(\Omega)}^2 \\ &+ \frac{\nu_1}{2} \| \boldsymbol{a}(\mathbf{x}, t) \|_{L_2(\Omega)}^2 + \frac{\nu_2}{2} \| \boldsymbol{b}(\mathbf{x}, t) \|_{L_2(\Omega)}^2, \end{aligned}$$

subject to PDE constraints given by the Schnakenberg equations

$$y_t - D_y \nabla^2 y + \gamma (y - y^2 z) - \gamma a = 0 \text{ in } \Omega,$$

$$z_t - D_z \nabla^2 z + \gamma y^2 z - \gamma b = 0 \text{ in } \Omega,$$

$$y(\mathbf{x}, 0) = y_0(\mathbf{x}), \qquad z(\mathbf{x}, 0) = z_0(\mathbf{x}),$$

$$\frac{\partial y}{\partial n} = \frac{\partial z}{\partial n} = 0 \text{ on } \partial\Omega.$$

The state variables here are y and z, with the control variables a and b.
We may again include control constraints.

0.75

Parameter Identification in Pattern Formation

$$\min_{y,z,a,b} \quad \frac{\beta_1}{2} \|y - \hat{y}(\mathbf{x},t)\|_{L_2(\Omega)}^2 + \frac{\beta_2}{2} \|z - \hat{z}(\mathbf{x},t)\|_{L_2(\Omega)}^2 + \frac{\nu_1}{2} \|a(\mathbf{x},t)\|_{L_2(\Omega)}^2 + \frac{\nu_2}{2} \|b(\mathbf{x},t)\|_{L_2(\Omega)}^2$$

s.t.

$$\begin{split} \gamma_t &- D_y \nabla^2 y + \gamma (y - y^2 z) - \gamma a = 0 \quad \text{in } \Omega, \\ z_t &- D_z \nabla^2 z + \gamma y^2 z - \gamma b = 0 \quad \text{in } \Omega, \\ y(\mathbf{x}, 0) &= y_0(\mathbf{x}), \qquad z(\mathbf{x}, 0) = z_0(\mathbf{x}), \\ \frac{\partial y}{\partial n} &= \frac{\partial z}{\partial n} = 0 \quad \text{on } \partial \Omega. \end{split}$$

0.2 0.4 0.6 0.8 X-Axis

Optimal Control Problems in Chemotaxis

- Chemotaxis is the movement of cells/organisms in a directed fashion as a response to external chemical signals.
- Keller and Segel presented a mathematical model for bacterial chemotaxis in 1971.
- In essence, for large numbers of bacteria, the bacteria will on average move up gradients of the chemoattractant concentration.
- Inverse problem: Given an observed cell concentration profile, what can be said about chemoattractant at boundaries of the domain?
- Shown numerically by Lebiedz and Brandt-Pollmann that "it is possible to systematically control spatiotemporal dynamical behavior".

Optimal Control of Bacterial Chemotaxis System

• We wish to examine a boundary control problem arising from a bacterial chemotaxis system:

$$\begin{split} \min_{z,c,u} & \frac{1}{2} \int_{\Omega} \left(z(\mathbf{x},T) - \hat{z} \right)^2 + \frac{\gamma_c}{2} \int_{\Omega} \left(c(\mathbf{x},T) - \hat{c} \right)^2 + \frac{\gamma_u}{2} \int_{0}^{T} \int_{\partial \Omega} u^2 \\ \text{s.t.} & \frac{\partial z}{\partial t} - D_z \nabla^2 z - \alpha \nabla \cdot \left(\frac{\nabla c}{(1+c)^2} z \right) = 0 & \text{on } \Omega \times (0,T), \\ & \frac{\partial c}{\partial t} - \nabla^2 c + \rho c - w \frac{z^2}{1+z^2} = 0 & \text{on } \Omega \times (0,T), \\ & \frac{\partial z}{\partial n} = 0 & \text{on } \partial \Omega \times (0,T), \\ & \frac{\partial c}{\partial n} + \zeta c = \zeta u & \text{on } \partial \Omega \times (0,T), \\ & z(\mathbf{x},0) = z_0(\mathbf{x}) & \text{on } \Omega, \\ & c(\mathbf{x},0) = c_0(\mathbf{x}) & \text{on } \Omega \end{split}$$

- z denotes cell density, c is concentration of chemoattractant.
- z_0 , c_0 are given initial conditions, and γ_c , γ_u , D_z , α , ρ , w, ζ given (positive) parameters.
- Can also consider additional control constraints $u_{-}(\mathbf{x}, t) \leq u \leq u_{+}(\mathbf{x}, t)$.

Optimal Control of Bacterial Chemotaxis System

• We wish to examine a boundary control problem arising from a bacterial chemotaxis system:

$$\begin{split} \min_{z,c,u} & \frac{1}{2} \int_{\Omega} \left(z(\mathbf{x},T) - \hat{z} \right)^2 + \frac{\gamma_c}{2} \int_{\Omega} \left(c(\mathbf{x},T) - \hat{c} \right)^2 + \frac{\gamma_u}{2} \int_{0}^{T} \int_{\partial \Omega} u^2 \\ \text{s.t.} & \frac{\partial z}{\partial t} - D_z \nabla^2 z - \alpha \nabla \cdot \left(\frac{\nabla c}{(1+c)^2} z \right) = 0 \quad \text{on } \Omega \times (0,T), \\ & \frac{\partial c}{\partial t} - \nabla^2 c + \rho c - w \frac{z^2}{1+z^2} = 0 \quad \text{on } \Omega \times (0,T), \\ & \frac{\partial z}{\partial n} = 0 \quad \text{on } \partial \Omega \times (0,T), \\ & \frac{\partial c}{\partial n} + \zeta c = \zeta u \quad \text{on } \partial \Omega \times (0,T), \\ & z(\mathbf{x},0) = z_0(\mathbf{x}) \quad \text{on } \Omega, \\ & c(\mathbf{x},0) = c_0(\mathbf{x}) \quad \text{on } \Omega \end{split}$$

- z denotes cell density, c is concentration of chemoattractant.
- z_0 , c_0 are given initial conditions, and γ_c , γ_u , D_z , α , ρ , w, ζ given (positive) parameters.
- Can also consider additional control constraints $u_{-}(\mathbf{x}, t) \leq u \leq u_{+}(\mathbf{x}, t)$.

Table of Contents

Chemistry: Chemical Reactions

2 Biology: Pattern Formation & Chemotaxis

Physics: Fluid Flow Control & Image Metamorphosis

Optimal Control Problems in Fluid Dynamics

• Crucial application area is that of *flow control* problems.

• Can tackle a range of such problems, with preconditioners explicitly based on physical features of fluid flow.

JWP, On the Development of Parameter-Robust Preconditioners and Commutator Arguments for Solving Stokes Control Problems, Electronic Transactions on Numerical Analysis.

JWP, Preconditioned Iterative Methods for Navier-Stokes Control Problems, Journal of Computational Physics.

Optimal Transport for Image Metamorphosis

$$\mathcal{E}(y,\mathbf{m}) = \frac{1}{2\gamma} \int_{\Omega} (y(\mathbf{x},\mathbf{1}) - \hat{y}_{\mathbf{1}}(\mathbf{x}))^2 \, \mathrm{d}\Omega + \frac{\delta}{2} \int_0^1 \int_{\Omega} (y(\mathbf{x},t) - \hat{y}(\mathbf{x},t))^2 \, \mathrm{d}\Omega \mathrm{d}t + \frac{\beta}{2} \int_0^1 \int_{\Omega} (Q\mathbf{m}(\mathbf{x},t))^2 \, \mathrm{d}\Omega \mathrm{d}t$$

- We may also investigate the solution of an optimization problem subject to a transport equation arising from the modelling of image metamorphosis.
- Models the apparent 'motion' of an image, in a movie for example.
- Good numerical results, using both finite difference approach, and radial basis functions.

R. Herzog, JWP, and M. Stoll, Fast Iterative Solvers for an Optimal Transport Problem.

Concluding Remarks

- PDE-constrained optimization provides a valuable tool for examining scientific processes, provided suitable mathematical models are developed.
- If this can be done, the main challenge is then devising fast and effective numerical methods for solving the models.
- We considered preconditioned iterative methods for solving the matrix systems arising from these problems, using saddle point approximations, coupled with strategies for approximating the (1, 1)-block and Schur complement.
- We were only required to store matrices which were much smaller than the matrix system as a whole.

Thank you for your attention!

