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Introduction

PDE-Constrained Optimization

Many PDE-constrained optimization problems may be written as

min
y ,u

1

2
}y ´ py}2L2pΩq ` β

2
}u}2L2pΩq

s.t. Dy “ u +BCs.

Applications in far-reaching areas such as flow control, semiconductor design, electromagnetic
inverse problems, weather forecasting, medical imaging, and finance.
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s.t. Dy “ u +BCs.

Applications in far-reaching areas such as flow control, semiconductor design, electromagnetic
inverse problems, weather forecasting, medical imaging, and finance.

For instance, suppose a company wishes to store a foodstuff or chemical as close as possible to
some “ideal” atmospheric conditions, and sets up a controlled atmosphere to do this.

This is likely to be expensive, so one may also wish to minimize the cost of doing this.
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PDE-Constrained Optimization

Many PDE-constrained optimization problems may be written as

min
y ,u

1

2
}y ´ py}2L2pΩq ` β

2
}u}2L2pΩq

s.t. Dy “ u +BCs.

Applications in far-reaching areas such as flow control, semiconductor design, electromagnetic
inverse problems, weather forecasting, medical imaging, and finance.

For instance, suppose a company wishes to store a foodstuff or chemical as close as possible to
some “ideal” atmospheric conditions, and sets up a controlled atmosphere to do this.

This is likely to be expensive, so one may also wish to minimize the cost of doing this.

Then one could solve this using a PDE-constrained optimization problem, with D some system of
PDEs to describe the physics behind the atmospheric conditions, and

y “ atmospheric conditions,

u “ energy expended, or financial cost,

py “ “ideal” atmospheric conditions for chemical,

β “ parameter determining at what ratio atmospheric conditions and cost is prioritized.
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Introduction

Can model problems in fluid flow control, ...

... imaging, including medical imaging, ...

... and chemical processes:
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Introduction

PDE-Constrained Optimization

We must accurately model the processes, and design efficient numerical solvers.

Using a finite element method Ñ matrix system of very high dimension.

Most effective approach for solving these systems is to construct iterative methods
which are accelerated by powerful preconditioners.

When solving matrix system Ax “ b, a good preconditioner P will be such that P´1

is cheap to apply & P´1A has desirable properties.

Many advantages: can exploit sparsity and structure of matrices, don’t have to store
the entire system, can solve large problems rapidly & in parallel.

Matrix A & Preconditioner P
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Introduction

Ax “ b ô P´1Ax “ P´1b

Preconditioning

For certain iterative methods, convergence is controlled by

κpAq “ λmaxpAq
λminpAq or κpP´1Aq “ λmaxpP´1Aq

λminpP´1Aq .

So if κpP´1Aq ! κpAq, convergence is achieved in many fewer iterations.

But P´1 must be cheap to apply, otherwise ‘cost per iteration’ is prohibitive.

Matrix A & Preconditioner P
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Introduction

Saddle Point Systems

In the problems we consider, the matrices are of saddle point structure:

A “
„
A BT

B 0


.

Two preconditioners for A are [Kuznetsov, 1995], [Murphy, Golub & Wathen, 2000]

PD “
„
A 0
0 S


, PT “

„
A 0
B ´S


.

Here, S “ BA´1BT is the (negative) Schur complement.

Excellent spectral properties: if P´1
D A and P´1

T A are nonsingular [Ipsen, 2001]:

λpP´1
D Aq P

"
1,

1

2
p1 ˘

?
5q

*
,

λpP´1
T Aq P t1u .

In general A, S are not practical preconditioners, so we devise approximations pA, pS .
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Introduction

min
y,u

1

2
}y ´ py}2L2pΩq ` β

2
}u}2L2pΩq

s.t. ´ ∇
2y “ u in Ω

y “ f on BΩ
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Introduction

min
y,u

1

2
}y ´ py}2L2pΩq ` β

2
}u}2L2pΩq

s.t. ´ ∇
2y “ u in Ω

y “ f on BΩ

Distributed Poisson Control

Differentiating (with respect to y, u, p) the cost functional:

Lpy, u, pq “ 1

2
py ´ pyqTMpy ´ pyq ` β

2
uTMu ` pT pKy ´ Mu ´ dq,

where M is a finite element mass matrix, and K a stiffness matrix, gives

»
–

M 0 K

0 βM ´M

K ´M 0

fi
fl

»
–

y

u

p

fi
fl “

»
–

Mpy
0

d

fi
fl .
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Lpy, u, pq “ 1

2
py ´ pyqTMpy ´ pyq ` β

2
uTMu ` pT pKy ´ Mu ´ dq,

where M is a finite element mass matrix, and K a stiffness matrix, gives

»
–

M 0 K

0 βM ´M

K ´M 0

fi
fl

»
–

y

u

p

fi
fl “

»
–

Mpy
0

d

fi
fl .

This is a saddle point system with

A “
„

M 0

0 βM


, S “ KM´1K ` 1

β
M.

We may precondition A using Chebyshev semi-iteration to approximate M´1.
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Introduction

Approximating the Schur Complement – Matching Strategy

We aim to capture both terms of the Schur complement by writing

S “ KM´1K ` 1

β
M, pS “

ˆ
K ` 1?

β
M

˙
M´1

ˆ
K ` 1?

β
M

˙
.

This ensures that [Pearson & Wathen, 2012]:

λppS´1Sq P
„
1

2
, 1


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β
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ˆ
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ˆ
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β
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˙
.

This ensures that [Pearson & Wathen, 2012]:

λppS´1Sq P
„
1

2
, 1



Our preconditioner requires four ingredients:

1 Saddle point approximation,
2 Approximation of mass matrix by Chebyshev semi-iteration,
3 Matching strategy for Schur complement,
4 Effective multigrid method for K ` 1?

β
M to apply pS .

Only „ 15 iterations required for 6 digits of accuracy using Minres.

J. W. Pearson and A. J. Wathen, A New Approximation of the Schur Complement in Preconditioners for

PDE-Constrained Optimization, Numerical Linear Algebra with Applications.
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Introduction

Time-Dependent Problems

min
y,u

1

2

ż T

0

ż

Ω

pypx, tq ´ pypx, tqq2 dΩdt ` β

2

ż T

0

ż

Ω

pupx, tqq2 dΩdt s.t.
By
Bt ´ ∇

2y “ u ` ICs ` BCs

John Pearson (University of Edinburgh) PDE Optimization: Modelling and Numerics Edinburgh, 16 May 2018 9 / 25



Introduction

Time-Dependent Problems

min
y,u

1

2

ż T

0

ż

Ω

pypx, tq ´ pypx, tqq2 dΩdt ` β

2

ż T

0

ż

Ω

pupx, tqq2 dΩdt s.t.
By
Bt ´ ∇

2y “ u ` ICs ` BCs

The matrix system is of the form Ax “ b, where A is given by

»
——————————————————————–

τ

2
M 0 M ` τK ´M

τM 0 M ` τK ´M

. . .
. . .

. . .
. . .

τ

2
M 0 M ` τK

0 βτ

2
M ´τM

0 βτM ´τM
. . .

. . .
. . .

0 βτ

2
M ´τM

M ` τK ´τM 0

´M M ` τK ´τM 0

. . .
. . .

. . .
. . .

´M M ` τK ´τM 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

.
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Chemistry: Chemical Reactions

Reaction–Diffusion Control Problems for Chemical Reactions

A problem which we are now keen to consider is the following optimal control
problem involving reaction–diffusion equations. We wish to minimize

J “ αy

2

ż T

0

ż

Ω
py ´ pyq2 dΩdt ` αz

2

ż T

0

ż

Ω
pz ´ pzq2 dΩdt ` αc

2

ż T

0

ż

BΩ
c2 dsdt ,

subject to the following PDE constraints:

yt ´ D1∇
2y ` k1y “ ´ γ1yz in Ω ˆ p0,T q,

zt ´ D2∇
2z ` k2z “ ´ γ2yz in Ω ˆ p0,T q,

D1
By
Bn “ c on BΩ ˆ p0,T q,

D2
Bz
Bn ` ǫz “ 0 on BΩ ˆ p0,T q,

ypx, 0q “ y0pxq in Ω,

zpx, 0q “ z0pxq in Ω.

We may also incorporate the control constraints c´ ď c ď c` a.e. on BΩ ˆ p0,T q.
John Pearson (University of Edinburgh) PDE Optimization: Modelling and Numerics Edinburgh, 16 May 2018 10 / 25



Chemistry: Chemical Reactions

Optimality Conditions

On the continuous level, we consider the Lagrangian

Lpy , z , c, p, qq “ αy

2

ż T

0

ż

Ω

py ´ pyq2 dΩdt ` αz

2

ż T

0

ż

Ω

pz ´ pzq2 dΩdt ` αc

2

ż T

0

ż

BΩ
c2 dsdt

`
ż T

0

ż

Ω
pΩ

`
yt ´ D1∇

2y ` k1y ` γ1yz
˘
dΩdt

`
ż T

0

ż

Ω
qΩ

`
zt ´ D2∇

2z ` k2z ` γ2yz
˘
dΩdt

`
ż T

0

ż

BΩ
pBΩ

ˆ
D1

By
Bn ´ c

˙
dsdt `

ż T

0

ż

BΩ
qBΩ

ˆ
D2

Bz
Bn ` ǫz

˙
dsdt.
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dΩdt
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ż

BΩ
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ˆ
D1

By
Bn ´ c

˙
dsdt `

ż T

0

ż

BΩ
qBΩ

ˆ
D2

Bz
Bn ` ǫz

˙
dsdt.

Differentiating with respect to p, q gives the state equations:

yt ´ D1∇
2y ` k1y “ ´γ1yz , zt ´ D2∇

2z ` k2z “ ´γ2yz .
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Chemistry: Chemical Reactions

Optimality Conditions

On the continuous level, we consider the Lagrangian

Lpy , z , c, p, qq “ αy
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ˆ
D2

Bz
Bn ` ǫz

˙
dsdt.

Differentiating with respect to p, q gives the state equations:

yt ´ D1∇
2y ` k1y “ ´γ1yz , zt ´ D2∇

2z ` k2z “ ´γ2yz .

Differentiating with respect to y , z gives the adjoint equations:

´pt ´ D1∇
2p ` k1p ` γ1pz ` γ2qz ` αyy “ αy py ,

´qt ´ D2∇
2q ` k2q ` γ2qy ` γ1py ` αzz “ αz pz .
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yt ´ D1∇
2y ` k1y “ ´γ1yz , zt ´ D2∇

2z ` k2z “ ´γ2yz .

Differentiating with respect to y , z gives the adjoint equations:

´pt ´ D1∇
2p ` k1p ` γ1pz ` γ2qz ` αyy “ αy py ,

´qt ´ D2∇
2q ` k2q ` γ2qy ` γ1py ` αzz “ αz pz .

Differentiating with respect to c gives the gradient equation αcc ´ p “ 0 on BΩ ˆ p0,T q.
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Chemistry: Chemical Reactions

Newton Iteration – Matrix System

In matrix form, the Newton system is written as

»
————–

αy Id γ1p̄ ` γ2q̄ 0 Dy
1 γ2z̄

γ1p̄ ` γ2q̄ αz Id 0 γ1ȳ Dz
1

0 0 αcD
´1
1 Id ´D´1

1 Id 0
Dy γ1ȳ ´D´1

1 Id 0 0
γ2z̄ Dz 0 0 0

fi
ffiffiffiffifl

»
————–

sy
sz
sc
sp
sq

fi
ffiffiffiffifl

“ b,

where

Dy “ B
Bt ´ D1∇

2 ` k1Id ` γ1z̄ , Dy
1 “ ´ B

Bt ´ D1∇
2 ` k1Id ` γ1z̄ ,

Dz “ B
Bt ´ D2∇

2 ` k2Id ` γ2ȳ , Dz
1 “ ´ B

Bt ´ D2∇
2 ` k2Id ` γ2ȳ .

The vector b represents the terms from the previous Newton iteration.
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Chemistry: Chemical Reactions

Newton Iteration – Matrix System

Applying a finite element method at the Newton step, we obtain the matrix:
»
—————–

ταyM τ pγ1Mp ` γ2Mqq 0 LT
y ,C τγ2Mz

τ pγ1Mp ` γ2Mqq ταzM 0 τγ1My LT
z,C

0 0 ταcD
´1
1 MΓ ´τD´1

1 NT 0
Ly ,C τγ1My ´τD´1

1 N 0 0
τγ2Mz Lz,C 0 0 0

fi
ffiffiffiffiffifl
,

where

Ly ,C “ ME ` τD1K ` τk1M ` τγ1Mz , Lz,C “ ME ` τD2K ` τk2M ` τγ2My .

Here M and K are block diagonal matrices with mass and stiffness matrices for each
time-step, MΓ is associated boundary mass matrix, N the trace operator mapping
onto the boundary, and ME mass matrices from time-stepping.

All other Mψ “ blkdiagpMψ, . . . ,Mψq are obtained from evaluating integrals of the
form rMψsij “

ş
ψφiφj for each matrix entry.

John Pearson (University of Edinburgh) PDE Optimization: Modelling and Numerics Edinburgh, 16 May 2018 13 / 25



Chemistry: Chemical Reactions

»
—————–

ταyM τ pγ1Mp ` γ2Mqq 0 LT
y ,C τγ2Mz

τ pγ1Mp ` γ2Mqq ταzM 0 τγ1My LT
z,C

0 0 ταcD
´1
1 MΓ ´τD´1

1 NT 0

Ly ,C τγ1Mu ´τD´1
1 N 0 0

τγ2Mz Lz,C 0 0 0

fi
ffiffiffiffiffifl

Preconditioning the Matrix System – p1, 1q-block
Let us apply saddle point theory when approximating the p1, 1q-block, and take

pA “ τ

»
–
αyM ´ α´1

z pγ1Mp ` γ2MqqM´1pγ1Mp ` γ2Mqq 0 0
γ1Mp ` γ2Mq αzM 0

0 0 αcD
´1
1 MΓ

fi
fl .

We apply Chebyshev semi-iteration to approximate M´1
Γ .

Preconditioner will be non-symmetric Ñ apply Bicg or Gmres.

JWP and M. Stoll, Fast Iterative Solution of Reaction–Diffusion Control Problems Arising from Chemical Reactions,

SIAM Journal on Scientific Computing.
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Chemistry: Chemical Reactions

»
————–

ταyM τ pγ1Mp ` γ2Mqq 0 LT
y ,C τγ2Mz

τ pγ1Mp ` γ2Mqq ταzM 0 τγ1My LT
z,C

0 0 ταcD
´1
1 MΓ ´τD´1

1 NT 0

Ly ,C τγ1My ´τD´1
1 N 0 0

τγ2Mz Lz,C 0 0 0

fi
ffiffiffiffifl

Preconditioning the Matrix System – Schur Complement

We now approximate

S “ 1

τ

„
Ly ,C τγ1My

τγ2Mz Lz,C


A´1

p1,2q

„
LT
y ,C τγ2Mz

τγ1My LT
z,C


` τ

αcD1

„
NM´1

Γ NT 0
0 0


,

where

Ap1,2q “
„

αyM γ1Mp ` γ2Mq

γ1Mp ` γ2Mq αzM


.

We make use of our matching strategy derived earlier to write:

pS “ 1

τ

«
Ly ,C ` xM τγ1My

τγ2Mz Lz,C

ff
A´1

p1,2q

«
LT
y ,C ` xM τγ2Mz

τγ1My LT
z,C

ff
.
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Chemistry: Chemical Reactions

pS “ 1

τ

«
Ly ,C ` xM τγ1My

τγ2Mz Lz ,C

ff
A´1

p1,2q

«
LT
y ,C ` xM τγ2Mz

τγ1My LT
z ,C

ff

Some Observations

To apply pS´1 in practice, use fixed number of iterations of an Uzawa scheme,
coupled with algebraic multigrid routine to approximate the diagonal blocks.

Good lower bound of λp pS´1Sq.
Greater variation in upper bound due to range of parameters: mesh size h, τ , αy , αz ,
αc , D1, D2, k1, k2, γ1, γ2, ǫ, c´, c`.

Best case scenario: when one term in S strongly dominates.

Worst case scenario: when first term of S is (close to) indefinite.
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Chemistry: Chemical Reactions

py “ t |sinp2x1x2x3q| ` 0.3, pz “ 0, k1 “ k2 “ D1 “ D2 “ 1, γ1 “ γ2 “ 0.15

DoF
αc “ 10´3 αc “ 10´5

Time Newton Iterations Time Newton Iterations
538, 240 1, 995 step 1 17 1, 726 step 1 16

step 2 20 step 2 16
step 3 20 step 3 16

3, 331, 520 14, 757 step 1 28 14, 904 step 1 28
step 2 31 step 2 27
step 3 29 step 3 34
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Biology: Pattern Formation & Chemotaxis

Parameter Identification in Pattern Formation Processes

A useful reaction–diffusion control problem arises in pattern formation processes.
Here we wish to minimize

J py , z , a, bq “ β1

2
}y ´ pypx, tq}2L2pΩq ` β2

2
}z ´ pzpx, tq}2L2pΩq

` ν1

2
}apx, tq}2L2pΩq ` ν2

2
}bpx, tq}2L2pΩq ,

subject to PDE constraints given by the Schnakenberg equations

yt ´ Dy∇
2y ` γpy ´ y2zq ´ γa “ 0 in Ω,

zt ´ Dz∇
2z ` γy2z ´ γb “ 0 in Ω,

ypx, 0q “ y0pxq, zpx, 0q “ z0pxq,
By
Bn “ Bz

Bn “ 0 on BΩ.

The state variables here are y and z , with the control variables a and b.

We may again include control constraints.
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Biology: Pattern Formation & Chemotaxis

Parameter Identification in Pattern Formation

min
y ,z,a,b

β1

2
}y ´ pypx, tq}2L2pΩq ` β2

2
}z ´ pzpx, tq}2L2pΩq ` ν1

2
}apx, tq}2L2pΩq ` ν2

2
}bpx, tq}2L2pΩq

s.t.

yt ´ Dy∇
2y ` γpy ´ y2zq ´ γa “ 0 in Ω,

zt ´ Dz∇
2z ` γy2z ´ γb “ 0 in Ω,

ypx, 0q “ y0pxq, zpx, 0q “ z0pxq,
By
Bn “ Bz

Bn “ 0 on BΩ.
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Biology: Pattern Formation & Chemotaxis

Optimal Control Problems in Chemotaxis

Chemotaxis is the movement of cells/organisms in a directed fashion as a response to external
chemical signals.

Keller and Segel presented a mathematical model for bacterial chemotaxis in 1971.

In essence, for large numbers of bacteria, the bacteria will on average move up gradients of the
chemoattractant concentration.

Inverse problem: Given an observed cell concentration profile, what can be said about
chemoattractant at boundaries of the domain?

Shown numerically by Lebiedz and Brandt-Pollmann that “it is possible to systematically control
spatiotemporal dynamical behavior”.

John Pearson (University of Edinburgh) PDE Optimization: Modelling and Numerics Edinburgh, 16 May 2018 20 / 25



Biology: Pattern Formation & Chemotaxis

Optimal Control of Bacterial Chemotaxis System

We wish to examine a boundary control problem arising from a bacterial chemotaxis system:

min
z,c,u

1

2

ż

Ω

pzpx,T q ´ pzq2 ` γc

2

ż

Ω

pcpx,T q ´ pcq2 ` γu

2

ż T

0

ż

BΩ

u2

s.t.
Bz
Bt ´ Dz∇

2z ´ α∇ ¨
ˆ

∇c

p1 ` cq2 z
˙

“ 0 on Ω ˆ p0,T q,

Bc
Bt ´ ∇2c ` ρc ´ w

z2

1 ` z2
“ 0 on Ω ˆ p0,T q,

Bz
Bn “ 0 on BΩ ˆ p0,T q,

Bc
Bn ` ζc “ ζu on BΩ ˆ p0,T q,

zpx, 0q “ z0pxq on Ω,

cpx, 0q “ c0pxq on Ω

z denotes cell density, c is concentration of chemoattractant.

z0, c0 are given initial conditions, and γc , γu, Dz , α, ρ, w , ζ given (positive) parameters.

Can also consider additional control constraints u´px, tq ď u ď u`px, tq.
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Physics: Fluid Flow Control & Image Metamorphosis

Optimal Control Problems in Fluid Dynamics

min
y,u

1

2

››y ´ py
››2
L2pΩq

` β

2
}u}2L2pΩq , D “

„
B
Bt

´ ν∇2 ` y ¨ ∇ ∇

´∇¨ 0


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Crucial application area is that of flow control problems.

Can tackle a range of such problems, with preconditioners explicitly based on physical features of fluid flow.

JWP, On the Development of Parameter-Robust Preconditioners and Commutator Arguments for Solving Stokes Control Problems, Electronic

Transactions on Numerical Analysis.

JWP, Preconditioned Iterative Methods for Navier-Stokes Control Problems, Journal of Computational Physics.
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Physics: Fluid Flow Control & Image Metamorphosis

Optimal Transport for Image Metamorphosis

Epy ,mq “ 1

2γ

ż

Ω

pypx, 1q ´ py1pxqq2 dΩ ` δ

2

ż 1

0

ż

Ω

pypx, tq ´ pypx, tqq2 dΩdt ` β

2

ż 1

0

ż

Ω

pQmpx, tqq2 dΩdt

We may also investigate the solution of an optimization problem subject to a transport equation arising from the

modelling of image metamorphosis.

Models the apparent ‘motion’ of an image, in a movie for example.

Good numerical results, using both finite difference approach, and radial basis functions.

R. Herzog, JWP, and M. Stoll, Fast Iterative Solvers for an Optimal Transport Problem.
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Conclusions

Concluding Remarks

PDE-constrained optimization provides a valuable tool for examining scientific
processes, provided suitable mathematical models are developed.

If this can be done, the main challenge is then devising fast and effective numerical
methods for solving the models.

We considered preconditioned iterative methods for solving the matrix systems arising
from these problems, using saddle point approximations, coupled with strategies for
approximating the p1, 1q-block and Schur complement.

We were only required to store matrices which were much smaller than the matrix
system as a whole.
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Conclusions

Thank you for your attention!
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