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Cell signalling

Cell signalling: the ability of cells to perceive and correctly
respond to their microenvironment is the basis of development,
tissue repair, and immunity as well as normal tissue homeostasis.

Errors in cellular information processing are responsible for diseases
such as cancer, autoimmunity, abnormal growth in plants. By
understanding cell signalling, diseases may be treated e↵ectively.

Signaling molecules interact with a target cell as a ligand to cell
surface receptors, and/or by entering into the cell through its
membrane or endocytosis for intracellular signaling.

Wikipedia



Intercellular transport of signalling molecules

Signalling molecules interact with cells

I as a ligand for membrane
receptors

I and/or by entering into the
cell through its membrane or
endocytosis

J. Downward, Nature 2001

I Consider signalling molecules c
in the intercellular space and
receptors on the cell membrane

I Free and bound receptors: rf , rb

I Cells produce new receptors rf
and signalling molecules c

I Ligands c di↵use in the
intercellular space and bind to
the receptors on the membrane

I Bound receptors rb dissociate
back to free receptors and
ligands

I All the considered molecules
undergo natural decay

Intercellular transport of signalling molecules

J. Downward, Nature 2001

I Di↵usion of signalling molecules c and
s in the extra- and intracellular spaces

I Di↵usion of free and bound receptors rf
and rb and of active and inactive
co-receptors (proteins) pa and pd on
cell membrane

I Ligands c bind to rf to produce rb
and s interact with pa

I Bound receptors rb bind to pd to
activate and produce pa

I Bound receptors rb dissociate into free
receptors rf and ligands c

I Active co-receptors pa dissociate into
inactive co-receptors pd and bound
receptors rb
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Mathematical model for intercellular signalling
I Di↵usion, production and decay of ligands in extracellular space

@tc = r · (De(x)rc) + Fe(c) in ⌦e , t > 0

De(x)rc · ⌫ = 0 on @⌦, t > 0

c(0) = c
0

in ⌦e

I Equations for the receptors on the cell surface �

@trf = Df ��

rf + Fr (rf , rb)� ae(x) rf c + be(x) rb � df rf on �, t > 0

@trb =Db ��

rb + ae(x) rf c � be(x) rb � db rb on �, t > 0

Ω

Ω

Γ

I Binding on the cell surfaces

De(x)rc · ⌫ = � ae(x) c rf + be(x) rb on �

• Activation of an intracellular signalling pathway by rb

c, rf , rb density of ligands/receptors, df , db rate of decay of ligands/receptors
Fe ,Fr product. of ligands/receptors, De ,Df ,Db di↵usion coe�cients

e
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Microscopic model for signalling processes
I Di↵usion, production and decay of signalling molecules

@tc = r · (D"
e (x)rc) + Fe(c) in ⌦"

e , t > 0

@ts = "2 r · (D"
i (x)rs) + Fi (s) in ⌦"

i , t > 0

I Equations for the receptors /proteins on the cell surface �", t > 0

@trf = "2 Df��

rf � Ge(c , rf , rb) + Fr (rf , rb) � df rf

@trb = "2 Db��

rb + Ge(c , rf , rb)� Gd(rb, pd , pa)� db rb

@tpd = "2 Dd��

pd � Gd(rb, pd , pa) + Fd(pd) � dd pd

@tpa = "2 Da��

pa + Gd(rb, pd , pa)� Gi (pa, s)� da pa

I Binding on the cell surfaces �"

D"
e (x)rc · ⌫ = �"Ge(c , rf , rb) on �", t > 0

"2 D"
i (x)rs · ⌫ = "Gi (pa, s) on �", t > 0

I Binding reactions

Ge(c, rf , rb) = ae c rf � be rb

Gd(rb, pd , pa) = ai rb pd � bi pa

Gi (pa, s) = �i pa � i s

MULTISCALE ANALYSIS AND SIMULATION OF A SIGNALLING PROCESS WITH DIFFUSION 3

Figure 1. Left shows the ‘unit cell’ that describes the microstructure consisting of a
single cell with the intra- and extracellular spaces denoted by Y

i

and Y
e

respectively
and the cell membrane by �. Right is a sketch of the tissue consisting of a periodic
distribution of identically shaped cells surrounded by the extracellular space.
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describe binding of ligands to free receptors located on cell membranes, i.e., the creation of receptor-
ligand complexes, with binding rate a"

e

and spontaneous dissociation of the complexes back into free
receptors and ligands, with dissociation rate b"

e

. Function F
e

models production and/or decay of
ligands in the extracellular space.

The signal from the extracellular domain is transduced into the cell through the activation by bound
receptors r"

b

(receptor-ligand complexes) of either membrane proteins, as is the case in signalling pro-
cesses mediated by G-protein-coupled receptors, the intracellular domains of enzyme-linked membrane
receptors or co-receptors, as observed in plant hormone signalling processes. Thus we shall distinguish
between active p

a

and inactive p
d

proteins (co-receptors) or active and inactive intracellular domains
of receptors. We also consider spontaneous deactivation of proteins (or intracellular domain of re-
ceptors) with the deactivation rate b"
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, as well as natural decay of all molecules with the decay rates
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, for j = f, e, d, a. Hence for receptors and proteins on the cell membrane we obtain following
reaction-di↵usion equations
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describes the transduction of the signal into the cell inside by activated proteins on the cell membrane
(GTPase molecules) or activated intracellular domains of enzyme-linked receptors. The functions F

r

and F
p

model production of new free receptors and inactive proteins, respectively.
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e�cient numerical method for the approximation of the macroscopic two-scale problem and apply it
in a biologically relevant parameter regime.

The main di�culty in the multiscale analysis of the microscopic problem considered here is the
strong nonlinearity of reaction terms coupled with surface di↵usion and dependence on small param-
eter, corresponding to the size of the microstructure. This requires a rather delicate analysis and
new approach in the derivation of a priori estimates. The bulk-surface coupling in the macroscopic
model induce some challenges in the design of two-scale numerical scheme. We consider the trace
and Gagliardo-Nirenberg inequalities together with an iteration processes to show the a priori esti-
mates and boundedness of solutions of model equations. Similar ideas were used in [6] to show the
well-posedness of a system describing nonlinear ligand-receptor interactions for a single cell, whose
shape is evolving in time. However due to the multiscale nature and the corresponding scaling in the
microscopic equations, the techniques from [6] cannot be applied directly to obtain uniform a priori
estimates for the solutions of our microscopic model. To overcome this di�culty we use the structure
of the nonlinear reaction terms and the periodic unfolding operator [9, 10, 19].

For the numerical approximation of the macroscopic two-scale system we employ a two-scale bulk-
surface finite element method. Bulk-surface finite element methods have been used in a number of
recent studies for the approximation of coupled bulk-surface systems of elliptic and parabolic equations,
including those modelling receptor-ligand interactions [12, 29, 32, 41], however to the best of the
authors knowledge all such works have focussed on interactions at the scale of a single cell. Coupling
the bulk-surface finite element approach with a two-scale finite element method [38], we are able to
treat the approximation of the full macroscopic two-scale system and hence provide, as far as we
are aware, the first work in which tissue level models for receptor-ligand interaction are simulated
where receptor binding, unbinding and transport as well as cell signalling are taken into account at
the cell scale. In order to validate the method we perform some benchmark tests to investigate the
convergence of the method. We then propose and simulate a macroscopic two-scale cell signalling
model in a biologically relevant regime. Our results illustrate the influence of the cell shape on the
transport of macroscopic species as well as spatial heterogeneities at the cell-scale and their influence
on tissue level behaviour. We focus on incorporating the single cell model within a generic cell
signalling process outlined in [17] into our multiscale modelling framework. However we note that
the majority of signalling pathways that are described in the literature lie within the general model
framework considered in this work. For example, GTPase (e.g. Rho) and GPCR (G-protein coupled
receptors) related signalling pathways [27], uPAR-mediated signalling processes in human tissue [26]
and Brassinosteroid hormone mediated signalling in plant cells [11].

The remainder of this paper is organised as follows. In Section 2 we derive our microscopic model
for cell-signalling processes consisting of coupled bulk-surface systems of PDEs. In Section 3 we prove
existence and uniqueness results and derive some a priori estimates for solutions of the microscopic
model. Convergence results in the limit as the number of cells tends to infinity and the resultant
macroscopic two-scale model equations satisfied by the limiting solutions are presented in Section 4.
In Section 5 we formulate a numerical scheme for the approximation of the macroscopic two-scale
model. We benchmark the convergence of the scheme in Section 6 and in Section 7 we apply the
numerical method to the approximation of a biological example of a GTPase signalling network taking
parameter values from previous studies.

2. Microscopic model

In this section we present derivation of a microscopic mathematical model for a signalling process
in a biological tissue. We consider a Lipschitz domain ⌦ ⇢ Rd, with d = 2, 3, representing a part of
a biological tissue and assume periodic distribution of cells in the tissue. To describe the microscopic
structure of a biological tissue, given by extra- and intracellular spaces separated by cell membranes,
we consider a ‘unit cell’ Y = [0, 1]d, and the subdomains Y

i

⇢ Y and Y
e

= Y \ Y
i

, together with
the boundary � = @Y

i

. Then the domain occupied by the intracellular space is given by ⌦"

i

=S
⇠2⌅" "(Y

i

+ ⇠), where ⌅" = {⇠ 2 Zn, "(Y
i

+ ⇠) ⇢ ⌦}, and the extracellular space is denoted by

⌦"

e

= ⌦ \ ⌦
"

i

. The surfaces that describe cell membranes are denoted by �" =
S

⇠2⌅" "(� + ⇠), see
Figure 1 for a sketch of the geometry.

In modelling intercellular signalling processes we assume that signalling molecules (ligands) di↵use
in the extracellular space and interact with cell membrane receptors. We distinguish between free
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Multiscale Analysis

I The aim of homogenization is to derive the macroscopic properties
by taking the microscopic processes into account.

I Macroscopic model are helpful for numerical simulation

Homogenization
=)

Start with a family of operators A", depending on microscopic structure
defined via parameter "

A"u" = f in ⌦

The method of homogenization leads to a macroscopic law

A
0

u
0

= f in ⌦

The macroscopic law determines a macroscopic approximation u
0

for u"
as " ! 0



Methods to derive macroscopic equations
I Formal asymptotic expansion

u"(x) = u0(x ,
x

"
) + "u1(x ,

x

"
) + "2u2(x ,

x

"
) + ...

uj(x , y) is defined for x 2 ⌦, y 2 Y , uj(x , ·) is Y � periodic

I Energy method: ’oscillating test function’ (Tartar, . . . )

I �-convergence: abstract notion of functional convergence
(calculus of variations) (Braides, Müller, . . . )

I G-convergence: for symmetric elliptic operators
(De Giorgi, Spagnolo,. . . )

H - convergence: generalization of G-convergence for
non-symmetric problems (Murat, Tartar, . . . )

) Construct a matrix A0 such that A" H
* A0, i.e.

u" * u0 in H1(⌦) and A"ru" * A0ru0 in L2(⌦).

I Two-scale convergence and unfolding method
for periodic and localy-periodic homogenization
(Nguetseng, Allaire, Neuss-Radu, Cioranescu, Damlamian, Griso, MP . . . )

stochastic two-scale convergence
(Bourgeat, Heida, Mikelić, Piatnitski,Wrigit, . . . )
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Distribution of cells or microstructure

I Periodic

I Locally periodic

I Random

Homogenization techniques

I Periodic two-scale convergence, unfolding method, two-scale
convergence on the surface of periodic microstructures

I Locally-periodic two-scale convergence, unfolding method, two-scale
convergence on the surface of locally-periodic microstructures

I Stochastic two-scale convergence, Palm measure

e

i



Two-scale convergence
• A special type of convergence in Lp, 1 < p < 1 and 1/p + 1/q = 1

Definition. {u"} ⇢ Lp(⌦) two-scale converge to u, u 2 Lp(⌦⇥ Y )
i↵ for any � 2 Lq(⌦,Cper (Y ))

lim
"!0

Z

⌦

u"(x)�
⇣
x ,

x

"

⌘
dx =

Z

⌦

�
Z

Y

u(x , y)�(x , y)dxdy .

Notice:

u" * �
Z

Y

u(·, y)dy weakly in Lp(⌦)

Definition. {u"} ⇢ L2(�✏) two-scale converge to u, u 2
L2(⌦⇥ �) i↵ for  2 C (⌦,Cper (Y )):

lim
"!0

"

Z

�

"

u✏(x) (x , x/")d�x =
1

|Y |
Z

⌦

Z

�

u(x , y) (x , y)dxd�y .

Y

Γ

e

Y



Compactness theorems for two-scale conv.
Theorem. Let {u"} be a bounded sequence in Lp(⌦), p 2 (1,1).
Then, there exists u 2 Lp(⌦⇥ Y ) s.t. (up to a subsequence)

u" two-scale converges to u for " ! 0.

Theorem. Let {u"} be bounded in W 1,p(⌦) s.t.

u" * u in W 1,p(⌦).

Then there exists u
1

2 Lp(⌦;W 1,p
per (Y )/R) s.t. (up to a subseq.)

u" two-scale converges to u

ru" two-scale converges to rxu +ryu1 for " ! 0.

⌦ = (0, 1), Y = (0, 2⇡)

I u"(x) = x + " sin
�
x
"

�

I du"

dx
(x) = 1 + cos

�
x
"

�

I u" strongly converges to x

I du"

dx
weakly converges to 1

I du"

dx
two-scale converges to 1 + cos(y)



Compactness theorems for two-scale converg.
Theorem. Let {u"} be a bounded sequence in L2(⌦).
Then, there exists u 2 L2(⌦⇥ Y ) s.t. (up to a subsequence)

u" two-scale converges to u for " ! 0.

Theorem. Let {u"} be bounded in H1(⌦) s.t.

u" * u in H1(⌦).

Then there exists u1 2 L2(⌦;H1
per(Y )/R) s.t. (up to a subseq.)

u" two-scale converges to u

ru" two-scale converges to rxu +ryu1 for " ! 0.

Lemma (Strong two-scale convergence)
Let {v"} ⇢ L2(⌦) two-scale converge to v0 2 L2(⌦⇥ Y ) and

lim
"!0

Z

⌦

[v"(x)]2 dx =

Z

⌦

�
Z

Y

[v0(x , y)]
2 dydx .

Then, for {w"} that two-scale converg. to w0 2 L2(⌦⇥ Y ):

v"w" ! �
Z

Y

v0(·, y)w0(·, y) dy in D
0
(⌦).



Unfolding operator
maps functions defined on the varying perforated domains into functions
defined on a fixed domain
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Properties of the unfolding operator
I For u 2 L2(⌦") :

||T "
Yj
(u)||L2(⌦⇥Yj )  |Yj | 12 ||u||L2(⌦"), j = e, i

I If u 2 L2(⌦):

T "
Yj
(u) ! u strongly in L2(⌦⇥ Yj) as " ! 0

I For u 2 L2(�") :

||T "
� (u)||L2(⌦⇥�) 

p
" |Yj | 12 ||u||L2(�").

I T "
Yj
(u") * u⇤ in L2(⌦⇥ Yj), u" ! u two-scale, then

u⇤ = u a.e. in ⌦⇥ Yj

I T "
Yj

: W 1,p(⌦") ! Lp(⌦,W 1,p(Yj)) and

" T "
Yj
(rxu) = ryT "

Yj
(u)

I Let {u"} converges weakly in W 1,p
0 (⌦) to u, then

T "
Ye
(u") ! u stongly in Lp(⌦;W 1,p(Ye))

T "
Ye
(ru") * ru +ryu1 weakly in Lp(⌦⇥ Ye)



Macroscopic equations
I Macroscopic concentrations

@tc �r · (Dhom

e rc) = Fe(c)� 1

|Ye |
Z

�

Ge(c , rf , rb) d�y in ⌦T

@ts �ry · (Di (y)ry s) = Fi (s) in ⌦T ⇥ Yi

I Receptors distribution on the cell surface on ⌦T ⇥ �

@trf = Df��,y rf � Ge(c , rf , rb) + Fr (rf , rb) � df rf

@trb = Db��,y rb + Ge(c , rf , rb)� Gd(rb, pd , pa)� db rb

+ equations for pa, pd

I Macroscopic coe�cients

Dhom

e,ij (x) =
1

|Ye |
3X

k=1

Z

Ye

(De,ij(x , y) + De,ik(x , y)@ykwj) dy

where

�ry · (De(x , y)(ryw
j + ej)) = 0 in Ye ,

�De(x , y)(ryw
j + ej) · ⌫ = 0 on �, w j Y � periodic

⌦T = (0,T )⇥ ⌦
MP, C. Venkataraman, arXiv 2018  
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where ✓
e

= |Y
e

|/|Y |, and Dhom
e,ij

=
1

|Y |

R
Ye

⇥
D⇤

e,ij

+ (D⇤
e

r

y

wj(y))
i

⇤
dy and wj are solutions of the unit

cell problems

(55)
div

y

(D⇤
e

(r
y

wj + e
j

)) = 0 in Y
e

,

Z

Ye

wj(y)dy = 0,

D⇤
e

(r
y

wj + e
j

) · ⌫ = 0 on �, wj Y � periodic,

together with the dynamics of receptors in the cell membrane ⌦ ⇥ �
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The dimensionless parameter values are

(57)
D⇤

e

= 10�2, D⇤
i

= 10, D⇤
f

= D⇤
b

= D⇤
d

= D⇤
a

= 10�2,

a⇤
e

= 100, b⇤
e

= 5, a⇤
i

= 6 · 103, b⇤
i

= 10, �⇤
i

= 2, ⇤
i

= 1.

For the initial conditions scaling appropriately yields the non-dimensional initial values for x 2 ⌦,
y 2 Y

i

and z 2 �

(58)
c⇤
i0(x, y) = 1 + c

i,1(x)c
i,2(y),

r⇤
f0(x, z) = 0.17(1 + r

f,1(x)r
f,2(z)), p⇤

d0(x, z) = 0.065(1 + p
d,1(x)p

d,2(z)),

with all the remaining initial conditions taken to be zero. The functions c
i,1, c

i,2, r
f,1, r

f,2, p
d,1, p

d,2

are taken to be mean zero perturbations with minimum larger than �1 one to ensure there is some
spatial heterogeneity at the cellular level and the initial data is nonnegative.

7.1. Simulations of macroscopic model in biologically relevant regimes. We illustrate the
influence that the geometry of the periodic cell in which we solve for the e↵ective homogenised di↵usion
tensor Dhom as well as the associated geometry of the (biological) cells Y

i

and membranes � have on
the macroscopic dynamics of signalling molecules (ligands). To this end we consider two di↵erent
geometries for the microstructure, specifically we let Y = [�2, 2]2 and consider either elliptical cells
with

Y
i

=
�
x 2 Y | 0.26x2

1 + 5x2
2 < 1

 
,

i.e., an ellipse centred at (0, 0) with major and minor axes of approximate length 1.96 and 0.45
respectively or cells whose shape is defined by

(59) Y
i

=
�
x 2 Y | (x1 + 0.2 � x2

2)
2 + x2

2 < 1
 

.

To obtain the homogenised di↵usion tensor we solve the cell problems corresponding to (55) on Y
e

=
[�2, 2]2/Y

i

for the two di↵erent cell geometries. For the elliptical cell geometry we used a mesh with
1039514 DOFs and for the other cell geometry we used a mesh with 1008834 DOFs. Figure 3 shows
the numerical simulation results for the solution w2 of the ’unit cell’ problems (55) on the two di↵erent
geometries. The resulting homogenised di↵usion tensor is given by

Dhom
h,e

=


8.167 · 10�3 0

0 1.841 · 10�3

�

for the case of the ellipse and

Dhom
h,e

=


6.556 · 10�3 0

0 6.149 · 10�3

�

for the geometry specified in (59). As expected due to the large aspect ratio of the ellipse the resulting
homogenised di↵usion tensor exhibits stronger anisotropy than for the other cell shape. For the tissue
we set ⌦ = [0, 0.1]2 and take

@⌦
D

= {x 2 @⌦ | max(x1, x2) < 5 · 10�2
},

Multiscale numerical simulations
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where ✓
e

= |Y
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=
1

|Y |

R
Ye

⇥
D⇤

e,ij
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dy and wj are solutions of the unit

cell problems
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div
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wj + e
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)) = 0 in Y
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,
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wj(y)dy = 0,
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) · ⌫ = 0 on �, wj Y � periodic,

together with the dynamics of receptors in the cell membrane ⌦ ⇥ �
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The dimensionless parameter values are

(57)
D⇤

e

= 10�2, D⇤
i

= 10, D⇤
f

= D⇤
b

= D⇤
d

= D⇤
a

= 10�2,

a⇤
e

= 100, b⇤
e

= 5, a⇤
i

= 6 · 103, b⇤
i

= 10, �⇤
i

= 2, ⇤
i

= 1.

For the initial conditions scaling appropriately yields the non-dimensional initial values for x 2 ⌦,
y 2 Y

i

and z 2 �

(58)
c⇤
i0(x, y) = 1 + c

i,1(x)c
i,2(y),

r⇤
f0(x, z) = 0.17(1 + r

f,1(x)r
f,2(z)), p⇤

d0(x, z) = 0.065(1 + p
d,1(x)p

d,2(z)),

with all the remaining initial conditions taken to be zero. The functions c
i,1, c

i,2, r
f,1, r

f,2, p
d,1, p

d,2

are taken to be mean zero perturbations with minimum larger than �1 one to ensure there is some
spatial heterogeneity at the cellular level and the initial data is nonnegative.

7.1. Simulations of macroscopic model in biologically relevant regimes. We illustrate the
influence that the geometry of the periodic cell in which we solve for the e↵ective homogenised di↵usion
tensor Dhom as well as the associated geometry of the (biological) cells Y

i

and membranes � have on
the macroscopic dynamics of signalling molecules (ligands). To this end we consider two di↵erent
geometries for the microstructure, specifically we let Y = [�2, 2]2 and consider either elliptical cells
with

Y
i

=
�
x 2 Y | 0.26x2

1 + 5x2
2 < 1

 
,

i.e., an ellipse centred at (0, 0) with major and minor axes of approximate length 1.96 and 0.45
respectively or cells whose shape is defined by

(59) Y
i

=
�
x 2 Y | (x1 + 0.2 � x2

2)
2 + x2

2 < 1
 

.

To obtain the homogenised di↵usion tensor we solve the cell problems corresponding to (55) on Y
e

=
[�2, 2]2/Y

i

for the two di↵erent cell geometries. For the elliptical cell geometry we used a mesh with
1039514 DOFs and for the other cell geometry we used a mesh with 1008834 DOFs. Figure 3 shows
the numerical simulation results for the solution w2 of the ’unit cell’ problems (55) on the two di↵erent
geometries. The resulting homogenised di↵usion tensor is given by

Dhom
h,e

=


8.167 · 10�3 0

0 1.841 · 10�3

�

for the case of the ellipse and

Dhom
h,e

=


6.556 · 10�3 0

0 6.149 · 10�3

�

for the geometry specified in (59). As expected due to the large aspect ratio of the ellipse the resulting
homogenised di↵usion tensor exhibits stronger anisotropy than for the other cell shape. For the tissue
we set ⌦ = [0, 0.1]2 and take

@⌦
D

= {x 2 @⌦ | max(x1, x2) < 5 · 10�2
},
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where ✓
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The dimensionless parameter values are

(57)
D⇤

e

= 10�2, D⇤
i

= 10, D⇤
f

= D⇤
b

= D⇤
d

= D⇤
a

= 10�2,

a⇤
e

= 100, b⇤
e

= 5, a⇤
i

= 6 · 103, b⇤
i

= 10, �⇤
i

= 2, ⇤
i

= 1.

For the initial conditions scaling appropriately yields the non-dimensional initial values for x 2 ⌦,
y 2 Y

i

and z 2 �

(58)
c⇤
i0(x, y) = 1 + c

i,1(x)c
i,2(y),

r⇤
f0(x, z) = 0.17(1 + r

f,1(x)r
f,2(z)), p⇤

d0(x, z) = 0.065(1 + p
d,1(x)p

d,2(z)),

with all the remaining initial conditions taken to be zero. The functions c
i,1, c

i,2, r
f,1, r

f,2, p
d,1, p

d,2

are taken to be mean zero perturbations with minimum larger than �1 one to ensure there is some
spatial heterogeneity at the cellular level and the initial data is nonnegative.

7.1. Simulations of macroscopic model in biologically relevant regimes. We illustrate the
influence that the geometry of the periodic cell in which we solve for the e↵ective homogenised di↵usion
tensor Dhom as well as the associated geometry of the (biological) cells Y

i

and membranes � have on
the macroscopic dynamics of signalling molecules (ligands). To this end we consider two di↵erent
geometries for the microstructure, specifically we let Y = [�2, 2]2 and consider either elliptical cells
with

Y
i

=
�
x 2 Y | 0.26x2

1 + 5x2
2 < 1

 
,

i.e., an ellipse centred at (0, 0) with major and minor axes of approximate length 1.96 and 0.45
respectively or cells whose shape is defined by

(59) Y
i

=
�
x 2 Y | (x1 + 0.2 � x2

2)
2 + x2

2 < 1
 

.

To obtain the homogenised di↵usion tensor we solve the cell problems corresponding to (55) on Y
e

=
[�2, 2]2/Y

i

for the two di↵erent cell geometries. For the elliptical cell geometry we used a mesh with
1039514 DOFs and for the other cell geometry we used a mesh with 1008834 DOFs. Figure 3 shows
the numerical simulation results for the solution w2 of the ’unit cell’ problems (55) on the two di↵erent
geometries. The resulting homogenised di↵usion tensor is given by

Dhom
h,e

=


8.167 · 10�3 0

0 1.841 · 10�3

�

for the case of the ellipse and

Dhom
h,e

=


6.556 · 10�3 0

0 6.149 · 10�3

�

for the geometry specified in (59). As expected due to the large aspect ratio of the ellipse the resulting
homogenised di↵usion tensor exhibits stronger anisotropy than for the other cell shape. For the tissue
we set ⌦ = [0, 0.1]2 and take

@⌦
D

= {x 2 @⌦ | max(x1, x2) < 5 · 10�2
},

MP, C. Venkataraman, arXiv 2018  
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The dimensionless parameter values are

(57)
D⇤

e

= 10�2, D⇤
i

= 10, D⇤
f

= D⇤
b

= D⇤
d

= D⇤
a

= 10�2,

a⇤
e

= 100, b⇤
e

= 5, a⇤
i

= 6 · 103, b⇤
i

= 10, �⇤
i

= 2, ⇤
i

= 1.

For the initial conditions scaling appropriately yields the non-dimensional initial values for x 2 ⌦,
y 2 Y

i

and z 2 �

(58)
c⇤
i0(x, y) = 1 + c

i,1(x)c
i,2(y),

r⇤
f0(x, z) = 0.17(1 + r

f,1(x)r
f,2(z)), p⇤

d0(x, z) = 0.065(1 + p
d,1(x)p

d,2(z)),

with all the remaining initial conditions taken to be zero. The functions c
i,1, c

i,2, r
f,1, r

f,2, p
d,1, p

d,2

are taken to be mean zero perturbations with minimum larger than �1 one to ensure there is some
spatial heterogeneity at the cellular level and the initial data is nonnegative.

7.1. Simulations of macroscopic model in biologically relevant regimes. We illustrate the
influence that the geometry of the periodic cell in which we solve for the e↵ective homogenised di↵usion
tensor Dhom as well as the associated geometry of the (biological) cells Y

i

and membranes � have on
the macroscopic dynamics of signalling molecules (ligands). To this end we consider two di↵erent
geometries for the microstructure, specifically we let Y = [�2, 2]2 and consider either elliptical cells
with

Y
i

=
�
x 2 Y | 0.26x2

1 + 5x2
2 < 1

 
,

i.e., an ellipse centred at (0, 0) with major and minor axes of approximate length 1.96 and 0.45
respectively or cells whose shape is defined by

(59) Y
i

=
�
x 2 Y | (x1 + 0.2 � x2

2)
2 + x2

2 < 1
 

.

To obtain the homogenised di↵usion tensor we solve the cell problems corresponding to (55) on Y
e

=
[�2, 2]2/Y

i

for the two di↵erent cell geometries. For the elliptical cell geometry we used a mesh with
1039514 DOFs and for the other cell geometry we used a mesh with 1008834 DOFs. Figure 3 shows
the numerical simulation results for the solution w2 of the ’unit cell’ problems (55) on the two di↵erent
geometries. The resulting homogenised di↵usion tensor is given by

Dhom
h,e

=


8.167 · 10�3 0

0 1.841 · 10�3

�

for the case of the ellipse and

Dhom
h,e

=


6.556 · 10�3 0

0 6.149 · 10�3

�

for the geometry specified in (59). As expected due to the large aspect ratio of the ellipse the resulting
homogenised di↵usion tensor exhibits stronger anisotropy than for the other cell shape. For the tissue
we set ⌦ = [0, 0.1]2 and take

@⌦
D

= {x 2 @⌦ | max(x1, x2) < 5 · 10�2
},
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Figure 5. Results of the simulation of §7 with the elliptical cell geometry. he inset in
each subfigure show the microscopic solutions at the corresponding macroscopic DOF
(grey line). The macroscopic domain is shaded by C

e

whilst in each inset the cell
interior is shaded by C

i

and reading from top to to bottom, the membrane is shaded
by R

f

, R
b

, P
d

and P
a

respectively. For further details see text.
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domain. Focusing on the di↵erences between the two sets of results, we see that the strongly anisotropic
homogenised di↵usion tensor associated with the elliptical cell geometry leads to faster transport in
the horizontal direction and slower vertical transport. As a result for t = 200, see Figure 5a, there
are very few bound receptors present on the cell at the macroscopic point (0.1, 0.1) and it is only by
t = 250 that bound receptors are clearly visible on this cell. On the other hand the almost isotropic
homogenised di↵usion tensor associated with the cell geometry specified in (57) leads to equally fast
vertical and horizontal transport and by t = 200 there are clearly a large number of bound receptors
present on the cell membrane at the macroscopic point (0.1, 0.1). More generally, in both cases we
see significant heterogeneity at the microscopic level in the concentrations of the di↵erent membrane
resident species at di↵erent times during the simulation motivating the multiscale modelling approach
we employ.

8. Conclusion

In this work we consider microscopic modelling and multiscale analysis of ligand-receptor based
intercellular signalling processes in a biological tissues, assuming periodic distribution of cell in a
tissue. Generalisation of our results to a locally-periodic or random distribution of cells in a tissue
will be considered in future studies.
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