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Multiscale modelling of transport and signalling
processes in biological tissues -
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Cell signalling

Cell signalling: the ability of cells to perceive and correctly
respond to their microenvironment is the basis of development,
tissue repair, and immunity as well as normal tissue homeostasis.

Errors in cellular information processing are responsible for diseases
such as cancer, autoimmunity, abnormal growth in plants. By
understanding cell signalling, diseases may be treated effectively.

Signaling molecules interact with a target cell as a ligand to cell
surface receptors, and/or by entering into the cell through its
membrane or endocytosis for intracellular signaling.

Wikipedia



Intercellular transport of signalling molecules
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Intercellular transport of signalling molecules
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Signalling molecules interact with cells C+ Re = Ry
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Intercellular transport of signalling molecules

Signalling molecules interact with cells

» as a ligand for membrane
receptors

> and/or by entering into the
cell through its membrane or
endocytosis
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Diffusion of signalling molecules ¢ and
s in the extra- and intracellular spaces

Diffusion of free and bound receptors rr
and r, and of active and inactive
co-receptors (proteins) p, and py; on
cell membrane

Ligands ¢ bind to rr to produce rp,
and s interact with p,

Bound receptors r;, bind to py to
activate and produce p,

Bound receptors r;, dissociate into free
receptors rr and ligands ¢

Active co-receptors p, dissociate into
inactive co-receptors py and bound
receptors rp



Mathematical model for intercellular signalling

» Diffusion, production and decay of ligands in extracellular space

0:c =V - (De(x)Ve) + Fe(c) in Qe, t>0
De(x)Vc-v=0 on 0¥, t >0
C(O) = in

gt

C—I—Rf = Ry

» Binding on the cell surfaces

De(x)Ve-v= —ac(x) c rr+ be(x) rp on [

c,reyrp  density of ligands/receptors, dr, dp rate of decay of ligands/receptors
Fe, F, product. of ligands/receptors, D., Dr, D,  diffusion coefficients



Mathematical model for intercellular signalling
» Diffusion, production and decay of ligands in extracellular space

0:c =V - (De(x)Vc) + Fe(c) in Qe, t>0
De(x)Vec-v=0 on 02, t >0
c(0) = o in Qe

» Equations for the receptors on the cell surface I'

Orrr = Dy Arrs+ Fo(reyrp) — ae(x) rec+ be(x)rp —derg - on I, >0
Oiry =Dy Arrp + ae(x) rF C — be(X) r, — dp rp on [, t>0

» Binding on the cell surfaces

De(x) Ve -v= —as(x) crr+ be(x) rp on [
e Activation of an intracellular signalling pathway by ry

c, re,ry  density of ligands/receptors, dr, dp rate of decay of ligands/receptors
Fe, F, product. of ligands/receptors, D., Df, D, diffusion coefficients



Microscopic model for signalling processes
» Diffusion, production and decay of signalling molecules

0ic =V - (D:(x)Ve) + Fe(c) in QS, t >0
Ors =e° V- (D (x)Vs) + Fi(s)  inQf, t>0
» Equations for the receptors /proteins on the cell surface I'*, t >0
Oirr = 2 DiArre — Ge(c, reyrp) + Fo(re,rn) — drrr
Oiry = € DpArry + Geol(c, rey b)) — Ga(rp, Pdy Pa) — dp 1
Otpd = €° DgArpg — Ga(rb, Pd, Pa) + Fa(pa)  — da pd
Otpa = £° DaArps + Gy(rb, pd, pa) — Gi(pay s) — da p
» Binding on the cell surfaces I'* «
Di(x)Vc-v=—cGec,reyry) onle) t>0

2 Df(xX)Vs v = cGi(pa,s) onl¢, t>0
Ie Qe X

dididididildi \ i &
Ge(c, rrytp) = a@cCtr — be 1y didivi€i€i €€l i€l
Gd(rb7pd7pa):airbpd_bipa “““““

» Binding reactions

dddd<ddd g« «
Gi(pa;S) = 7Vipa — ki S d4dddddddd«a
dddd<ddd g« «




Multiscale Analysis

» The aim of homogenization is to derive the macroscopic properties
by taking the microscopic processes into account.

» Macroscopic model are helpful for numerical simulation

. +

Start with a family of operators A., depending on microscopic structure
defined via parameter ¢

Homogenization
=

A-u. = f in
The method of homogenization leads to a macroscopic law
Aoug = f in

The macroscopic law determines a macroscopic approximation ug for u.
ase — 0



Methods to derive macroscopic equations

» Formal asymptotic expansion
X X X
u®(x) = up(x, g) + eup(x, g) + &% up(x, g) -
uj(x,y) is defined for x € Q, y € Y, uj(x,-) is Y — periodic

» Energy method: 'oscillating test function’ (Tartar, ...)

» [-convergence: abstract notion of functional convergence
(calculus of variations) (Braides, Miiller, ...)

» G-convergence: for symmetric elliptic operators
(De Giorgi, Spagnolo,...)
H - convergence: generalization of G-convergence for
non-symmetric problems (Murat, Tartar, ...)

. Construct a matrix A% such that A5 " A je.
vt — u®in HY(Q) and A°Vwu® — AV O in [3(Q).

» Two-scale convergence and unfolding method
for periodic and localy-periodic homogenization
(Nguetseng, Allaire, Neuss-Radu, Cioranescu, Damlamian, Griso, MP .. .)
stochastic two-scale convergence
(Bourgeat, Heida, Mikeli¢, Piatnitski,Wrigit, .. .)



Multiscale modelling and analysis

Distribution of cells or microstructure
» Periodic

» Locally periodic

» Random
Homogenization techniques

» Periodic two-scale convergence, unfolding method, two-scale
convergence on the surface of periodic microstructures

» Locally-periodic two-scale convergence, unfolding method, two-scale
convergence on the surface of locally-periodic microstructures

» Stochastic two-scale convergence, Palm measure



Two-scale convergence

e A special type of convergence in [P, 1<p<ocandl/p+1/g=1

Definition.  {u®} C LP(2) two-scale converge to u, u € LP(Q2 X Y)

iff for any ¢ € L9(€2, Cper(Y))

lim /Q ue (x) (xg) dx = /Q ][Y u(x, y)é(x, y)dxdy.

Notice:

u® 4][ u(-,y)dy weaklyin LP(Q)
Y

F\ o o 9%,
Definition.  {u®} C L?(T¢) two-scale converge to u, u €  |e o
[2(Q x ) iff for ¢ € C(Q, Coer(Y)): :TQ.‘
® o ® 9
Y

im = [ w (v /o) = [ eyt y)and,

e—0




Compactness theorems for two-scale conv.

Theorem. Let {u°} be a bounded sequence in LP(2), p € (1, ).
Then, there exists u € LP(2 x Y') s.t. (up to a subsequence)

u® two-scale converges to u  for € — Q.

Theorem. Let {u®} be bounded in WP(Q) s.t.
vt —u in WHP(Q).
Then there exists u; € LP(€2; Wpléf (Y)/R) s.t. (up to a subseq.)

u° two-scale converges to u
Vu®  two-scale converges to V,u+ V,u; fore — 0.

2=1(0,1), Y =(0,27) > uf strongly converges to x
€ _ : X dut

> ui(x) =x+esin (5) » = weakly converges to 1
due dx

u X

> (x) = 1+ cos (E) duc

dx > two-scale converges to 1 + cos(y)

ax



Compactness theorems for two-scale converg.

Theorem. Let {u®} be a bounded sequence in L*(2).
Then, there exists u € L*(Q x Y) s.t. (up to a subsequence)

u® two-scale convergesto u  for ¢ — 0.

Theorem. Let {u°} be bounded in H'(Q) s.t
ut —u in HY(Q).
Then there exists uy € L*(Q; H).,(Y)/R) s.t. (up to a subseq.)

u® two-scale converges to u

Vu®  two-scale converges to V,u -+ V,u; for e — 0.

Lemma (Strong two-scale convergence)
Let {v} C L?(Q) two-scale converge to vy € L?(Q2 x Y) and

lim / V(P dx = [ f ey dyebe

Then, for {w®} that two-scale converg. to wy € L?(Q2 x Y):
vew® —>][ vo( Y)wo(-,y) dy in D ().
y



Unfolding operator

maps functions defined on the varying perforated domains into functions
defined on a fixed domain
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Properties of the unfolding operator
> For u € L?(9QF) :
1Ty (Dllz@xyy < Y5l llullz@,  j=ei
> If ue L%(Q):
Ty.(u) = u  strongly in [*(2xY;) as € —0
> For u e L?(IF) :
176 (W)l 2@y < VE Y12 [lullizqre)

> Ty (uf) = u*in L2(QxY])),  u° — utwo-scale, then

Ut =u ae.in QxY,
> Ty : WP(Qf) — LP(Q, WHP(Y;)) and

eTy (Vxu) =V, Ty (u)
> Let {u°} converges weakly in W,"P(Q) to u, then

Ty (u°) — u stongly in LP(Q; WHP(Y,))
Ty (Vu®) = Vu+V,yu weakly in LP(2 x Ye)



Macroscopic equations

» Macroscopic concentrations

1
/Ge(c, re,rp)dy, in Q7
Yel Jr

8ts — Vy y (D,-(y)Vys) = F,'(S) In QT X Y,

Orc — V - (D™ V) = Fo(c) —

» Receptors distribution on the cell surface on Q+ x
Ocre = DeAr yre — Ge(c, re, rp) + Fr(reyre) — dr 1y
Otry = DpAr yry + Ge(c, re, rb) — Ga(rb, pd, Pa) — db 1p

+ equations for p,, pg d
» Macroscopic coefficients

3
1

D) = g7 2 [ (Desloey) + Desslx, )0 ) dy
€l k=17 Te

where
—V, - (De(x, ) (V,w +¢)) =0in Y,
—Do(x,y)(V,w! +¢)-v=00nT, w Y — periodic

Qr = (O, T) x )
MP, C. Venkataraman, arXiv 2018



Multiscale numerical simulations
div, (D*(V,uw! +e¢;)) =0 in Y, / w’ (y)dy = 0,

D*(V,uw’ +¢e;) v =0 onI', w’ Y — periodic

hom __
Dh,e —

8.167- 1073 0 phom _ 6.556 - 1073 0
0 1.841-1073 he ™ 0 6.149 - 103

Di=10"% Df=10, D}=D;j=D;=D;=10" MP, C. Venkataraman, arXiv 2018



Effect of anisotropic

microstructure
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Effect of anisotropic microstructure
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