Multiphysics simulations of collisionless plasmas

Numerical Methods in MHD Dundee 07. Sept. 2018

Rainer Grauer, Simon Lautenbach, Thomas Trost TPI RUB

What are we doing in Bochum ?

Numerical Methods

Vlasov Simulations

Dynamos

Instantons in turbulence

Electron-scale
system scale: $10^{5} \mathrm{~km}$
minutes
$\begin{array}{lll}\text { ion scales } \rho_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}: & 10^{3} \mathrm{~km} & \text { seconds } \\ & \mathrm{d}_{\mathrm{e}}: 10 \mathrm{~km} & 10^{-3} \mathrm{~s} \\ \text { electron } & \rho_{\mathrm{e}}: & 1 \mathrm{~km} \\ \text { scales } & & \end{array}$
from G. Lapenta ISSS10

$$
\begin{array}{ll}
\lambda_{e}: 100 \mathrm{~m} & 10^{-5} \mathrm{~s}
\end{array}
$$

Coupling of different plasma models

Motivation

- fluid description

MHD, Hall-MHD, 5- or 10 moment 2 Fluid

- kinetic description PIC,Vlasov
- Coupling fluid and kinetic simulations

Dream:

Vlasov + Maxwell

2 Fluid IO Moment + Maxwell
2 Fluid 5 Moment + Maxwell
2 Fluid + gen. Ohms Law
MHD

kinetic ions, kinetic electronskinetic ions, 10-moment fluid electrons
10-moment fluid ions, 5-moment fluid electrons

5-moment fluid ions, 5-moment fluid electrons

10-moment fluid ions, 10-moment fluid electrons
MHD

Very active field (we are not alone)

COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 4, No. 3, pp. 537-544

Development of Multi-hierarchy Simulation Model for Studies of Magnetic Reconnection

S. Usami ${ }^{1, *}$, H. Ohtani ${ }^{1,2}$, R. Horiuchi ${ }^{1,2}$ and M. Den ${ }^{1}$
${ }^{1}$ Department of Simulation Science, National Institute for Fusion Science, Toki, 509-5292, Japan.
${ }^{2}$ The Graduate University for Advanced Studies (Soken-dai), Toki, 509-5292, Japan.
Received 31 October 2007; Accepted (in revised version) 23 November 2007
Available online 14 April 2008

Abstract. The multi-hierarchy simulation model for magnetic reconnection is developed, where both micro and macro hierarchies are expressed consistently and simultaneously. Two hierarchies are connected smoothly by shake-hand scheme. As a numerical test, propagation of one-dimensional Alfvén wave is examined using the multihierarchy simulation model. It is found that waves smoothly pass through from macro to micro hierarchies and vice versa.
AMS subject classifications: 82D10, 93B40, 76W05
Key words: Multi-hierarchy, magnetic reconnection, MHD, particle-in-cell.

Available online at www.sciencedirect.com
 \because ScienceDirect

Journal of Computational Physics 227 (2007) 1340-1352

JOURNAL OF COMPUTATIONAL PHYSICS

$$
\begin{aligned}
& \text { Multi-scale plasma simulation by the interlocking } \\
& \text { of magnetohydrodynamic model and particle-in-cell } \\
& \text { kinetic model } \\
& \text { Tooru Sugiyama *, Kanya Kusano } \\
& \text { The Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, } \\
& \text { Kanazawa-ku Yokohama Kanagawa 236-0001, Japan } \\
& \text { Received } 28 \text { December 2006; received in revised form } 27 \text { July 2007; accepted } 4 \text { September } 2007 \\
& \text { Available online } 25 \text { September 2007 }
\end{aligned}
$$

Abstract

Many kinds of simulation models have been developed to understand the complex plasma systems. However, these sim ulation models have been separately performed because the fundamental assumption of each model is different and restricts the physical processes in each spatial and temporal scales. On the other hand, it is well known that the interaction among the multiple scales may play crucial roles in the plasma phenomena (e.g. magnetic reconnection, collisionles shock), where the kinetic processes in the micro-scale may interact with the global structure in the fluid dynamics. To take self-consistently into account such multi-scale phenomena, we have developed a new simulation model by directly interlocking the fluid simulation of the magnetohyrdodynamics (MHD) model and the kinetic simulation of the particle-in-cel (PIC) model. The PIC domain is embedded in a small part of MHD domain. The both simulations are performed simul taneously in each domain and the bounded data are frequently exchanged each other to keep the consistency between the models. We have applied our new interlocked simulation to Alfvén wave propagation problem as a benchmark test and confirmed that the waves can propagate smoothly through the boundaries of each domain © 2007 Elsevier Inc. All rights reserved.

Degond P, Dimarce G, Mieussens L.
A multiscale kinetic-fluid solver with dynamic localization of kinetic effects.
J. Comput. Phys. 229 (2010) 4907-4933.

Sugiyama T, Kusano K, Hirose S, Kageyama A.
MHD-PIC connection model in a magnetosphere-ionosphere coupling system.
Journal of Plasma Physics 72 (2006) 945-948
Sugiyama T, Kusano K.
Multi-scale plasma simulation by the interlocking of magnetohydrodynamic model and particle-in-cell kinetic model.
J. Comput. Phys. 227 (2007) 1340-1352

Markidis S, Henri P, Lapenta G, Ro"nnmark K, Hamrin M, Meliani Z, et al.
The Fluid-Kinetic Particle- in-Cell method for plasma simulations.
J. Comput. Phys. (2014) 415-429.

Daldorff LKS, Tóth G, Gombosi TI, Lapenta G, Amaya J, Markidis S, et al.
Two-way coupling of a global Hall magnetohydrodynamics model with a local implicit particle-in-cell model.
J. Comput. Phys. 268 (2014) 236-254.

Kolobov V, Arslanbekov R.
Towards adaptive kinetic-fluid simulations of weakly ionized plasmas.
Journal of Computational Physics 231 (2012) 839-869.
Rieke M, Trost T, Grauer R.
Coupled Vlasov and two-fluid codes on GPUs.
Journal of Computational Physics 283 (2015) 436-452
Toth Gabor, Jia Xianzhe, Markidis Stefano, Peng Ivy Bo, Chen Yuxi, Daldorff Lars K S, et al.
Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere.
Journal of Geophysical Research: Space Physics 121 (2016) 1273-1293.
Toth G, Chen Y, Gombosi TI, Cassak P, Markidis S, Peng IB.
Scaling the Ion Inertial Length and Its Implications for Modeling Reconnection in Global Simulations.
Journal of Geophysical Research: Space Physics 122 (2017) 10,336-10,355.
Makwana K, Keppens R, Lapenta G.
Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations.
Computer Physics Communications 221 (2017) 81-94.
Lautenbach S., Grauer R.
Multiphysics simulations of collisionless plasmas
arXiv: 1805.05698 (2018)

What are we doing different?

Daldorff, Toth, Gombosi, Lapenta, Amaya, Markidis,Brackbill 2014:
implicit PIC + MHD, buffer zone, Maxwellian

Our approach:
several models, no buffer zone, no assumption on Maxwellian form

+ adaptive and criteria
status: proof of principle, not really mature

Suitable situations for adaptive modelling

In which situations can adaptive modelling be applied?

turbulence: X

magnetic reconnection:

Phenomena must...
... be localized.
... occur in a specific plasma regime.

Ingredients

Hyperbolic fluid equations:
-CWENO
-5- and 10 -moment equations

Kurganov, Levy 2000
Hakim, Loverich, Shumlak 2006, Johnson, Rossmanith 2010
Wang, Hakim, Germaschewski, Bhattacharjee 2015

Filbet, Sonnendrücker, Bertrand 2001
Schmitz, Grauer 2006

Explicit Maxwell solver:
-Yee
-FDTD

Sub-cycling

- Maxwell
(factor 4)
> reduced speed of light
(c $=20 \mathrm{v}_{\text {alfven }}$)

Coupling:
kinetic -> fluid
fluid -> kinetic
> refinement criteria

Models

$$
\begin{aligned}
& \rho_{s}=m_{s} \int \mathrm{~d}^{3} v f_{s} \quad(\text { mass density }) \\
& \mathbf{u}_{s}=\frac{m_{s}}{\rho_{s}} \int \mathrm{~d}^{3} v \mathbf{v} f_{s} \quad \text { (velocity) } \\
& \mathrm{E}_{s}=\frac{1}{2} m_{s} \int \mathrm{~d}^{3} v \mathbf{v v} f_{s} \quad \text { (energy tensor) } \\
& \mathrm{Q}_{s}=\frac{1}{2} m_{s} \int \mathrm{~d}^{3} v\left(\mathbf{v}-\mathbf{u}_{s}\right)\left(\mathbf{v}-\mathbf{u}_{s}\right)\left(\mathbf{v}-\mathbf{u}_{s}\right) f_{s} \quad \text { (heat flux tensor) } \\
& \mathrm{P}_{s}=2 \mathrm{E}_{s}-\rho_{s} \mathbf{u}_{s} \mathbf{u}_{s} \\
& p_{s}=\frac{1}{3} \operatorname{tr} \mathrm{P}_{s} \\
& \mathcal{E}_{s}=\operatorname{tr} \mathrm{E}_{s}
\end{aligned}
$$

5-moment model:

$$
\begin{gathered}
\partial_{t} \rho_{s}=-\nabla \cdot\left(\rho_{s} \mathbf{u}_{s}\right) \\
\partial_{t}\left(\rho_{s} \mathbf{u}_{s}\right)=-\nabla \cdot\left(\rho_{s} \mathbf{u}_{s} \mathbf{u}_{s}\right)-\frac{1}{3} \nabla\left(2 \mathcal{E}_{s}-\rho_{s} \mathbf{u}_{s}^{2}\right)+\frac{q_{s}}{m_{s}} \rho_{s}\left(\mathbf{E}+\mathbf{u}_{s} \times \mathbf{B}\right) \\
\partial_{t} \mathcal{E}_{s}=-\frac{1}{3} \nabla \cdot\left(\left(5 \mathcal{E}_{s}-\rho_{s} \mathbf{u}_{s}^{2}\right) \mathbf{u}_{s}\right)+\frac{q_{s}}{m_{s}} \rho_{s} \mathbf{u}_{s} \cdot \mathbf{E}-\nabla \cdot \mathbf{Q}_{s} \\
\mathbf{Q}=\left(\begin{array}{l}
\mathrm{Q}_{x x x}+\mathrm{Q}_{x y y}+\mathrm{Q}_{x z z} \\
\mathrm{Q}_{x x y}+\mathrm{Q}_{y y y}+\mathrm{Q}_{y z z} \\
\mathrm{Q}_{x x z}+\mathrm{Q}_{y y z}+\mathrm{Q}_{z z z}
\end{array}\right)
\end{gathered}
$$

10-moment model:

$$
\begin{aligned}
& \partial_{t} \rho_{s}=-\nabla \cdot\left(\rho_{s} \mathbf{u}_{s}\right) \\
& \partial_{t}\left(\rho_{s} \mathbf{u}_{s}\right)=-\nabla \cdot \mathrm{E}_{s}+\frac{q_{s}}{m_{s}} \rho_{s}\left(\mathbf{E}+\mathbf{u}_{s} \times \mathbf{B}\right) \\
& \partial_{t} \mathrm{E}_{s}=-\nabla \cdot\left[3 \operatorname{Sym}\left(\mathbf{u}_{s} \mathrm{E}_{s}\right)-2 \rho_{s} \mathbf{u}_{s} \mathbf{u}_{s} \mathbf{u}_{s}\right]+\frac{2 q_{s}}{m_{s}} \operatorname{Sym}\left(\rho_{s} \mathbf{u}_{s} \mathbf{E}+\mathrm{E}_{s} \times \mathbf{B}\right)+\mathrm{R}_{\mathrm{iso}, s}-\nabla \cdot \mathrm{Q}_{s} \\
& \quad \mathrm{R}_{\mathrm{iso}, s}=\frac{1}{\tau_{s}}\left(\frac{1}{3}\left(\operatorname{tr}_{s}\right) \mathbb{1}-\mathrm{P}_{s}\right) \quad \text { with } \quad \tau_{s}=\tau_{0} \sqrt{\frac{\operatorname{det} \mathrm{P}_{s}}{\rho_{s}^{5}}}
\end{aligned}
$$

Vlasov equation

$$
\left.\partial_{t} f_{s}+\mathbf{v} \cdot \nabla_{\mathbf{r}} f_{s}+\frac{q_{s}}{m_{s}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}}\right) f_{s}=0
$$

Maxwell's equations

$$
\begin{aligned}
& \partial_{t} \mathbf{B}=-\nabla \times \mathbf{E} \\
& \partial_{t} \mathbf{E}=c^{2}\left(\nabla \times \mathbf{B}-\mu_{0} \sum_{s} \frac{q_{s} \rho_{s}}{m_{s}} \mathbf{u}_{s}\right)
\end{aligned}
$$

compressible MHD

in conservation form:

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \\
& \frac{\partial \rho \mathbf{v}}{\partial t}+\nabla \cdot\left(\mathbf{v} \rho \mathbf{v}+\mathbf{I}\left(p+\frac{\mathbf{B}^{2}}{2}\right)-\mathbf{B B}\right)=0 \\
& \frac{\partial e}{\partial t}+\nabla \cdot\left(\mathbf{v}\left(e+p+\frac{\mathbf{B}^{2}}{2}\right)-\mathbf{B}(\mathbf{v} \cdot \mathbf{B})\right) \\
& \frac{\partial B}{\partial t}+\nabla \cdot(\mathbf{v} \mathbf{B}-\mathbf{B} \mathbf{v})=0 \\
& p=(\gamma-1)\left(e-\frac{1}{2} \rho \mathbf{v}^{2}-\frac{1}{2} \mathbf{B}^{2}\right)
\end{aligned}
$$

compressible MHD

Riemann solvers

examples: Godunov, PPM, HLL(*), wave-propagation
-very good resolution of shocks
*very bad in smooth regions

ENO-schemes

-shock resolution not as good as from Riemann solvers,
-much better resolution of waves in smooth regions
*very easy!!!

We use CWENO-type schemes.
Main reason: easy !!!

Semi-discrete central schemes, CWENO

Nessyahu and Tadmor (1990)
Kurganov and Levy (2000)

Why central schemes?

- no (aproximate) Riemann solver necessary
- dimension by dimension approach makes sence
- high order
- monotone, WENO, TVD depends on the reconstruction
- easy for complex problems
low Mach number limit ok

Maxwell Solver: FDTD and Yee mesh (1966)

 inspired by lectures by A. Spitkovsky$$
\begin{array}{cl}
\partial \boldsymbol{E} / \partial t=c(\boldsymbol{\nabla} \times \boldsymbol{B})-4 \pi \boldsymbol{J}, & \boldsymbol{\nabla} \cdot \boldsymbol{E}=4 \pi \varrho, \quad \boldsymbol{\nabla} \cdot \boldsymbol{B}=0 \\
\partial \boldsymbol{B} / \partial t=-c(\boldsymbol{\nabla} \times \boldsymbol{E}), & \frac{d}{d t} \gamma m \mathbf{v}=q\left(\mathbf{E}+\frac{\mathbf{v}}{c} \times \mathbf{B}\right)
\end{array}
$$

FDTD: second order in space and

$$
\begin{aligned}
& E^{n+1 / 2}=\boldsymbol{E}^{n-1 / 2}+\Delta t\left[c\left(\boldsymbol{\nabla} \times \boldsymbol{B}^{n}\right)-4 \pi \boldsymbol{J}^{n}\right] \\
& B^{n+1}=B^{n}-c \Delta t \boldsymbol{\nabla} \times \boldsymbol{E}^{n+1 / 2}
\end{aligned}
$$

Yee mesh: div B

Yee mesh motivated by integral form:

$$
\begin{aligned}
& \partial_{t} \int_{\Sigma} \mathbf{B} \cdot \mathrm{d} \mathbf{S}=-\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d} \mathbf{l} \\
& \partial_{t} \int_{\Sigma} \mathbf{E} \cdot \mathrm{d} \mathbf{S}=-c^{2} \int_{\Sigma} \mathbf{j} \cdot \mathrm{d} \mathbf{S}+c^{2} \oint_{\partial \Sigma} \mathbf{B} \cdot \mathrm{d} \mathbf{l}
\end{aligned}
$$

2D by projection

Coupling FDTD- and CWENO Method

Fluid: strongly stable TVD Runge Kutta (Shu-Osher 1988)

$$
\begin{aligned}
v^{\prime} & =v^{n}+\frac{\Delta t}{6} f\left(v^{n}, t^{n}\right) \\
v^{\prime \prime} & =v^{\prime}+\frac{\Delta t}{6} f\left(6 v^{\prime}-5 v^{n}, t^{n}+\Delta t\right) \\
v^{n+1} & =v^{\prime \prime}+\frac{2 \Delta t}{3} f\left(\frac{3}{2} v^{\prime \prime}-\frac{1}{2} v^{n}, t^{n}+\frac{1}{2} \Delta t\right)
\end{aligned}
$$

subcycling and interpolation

Ok, now we have a fluid code!

Let's do Vlasov

Vlasov simulations

collisionless Plasma: Vlasov equation

$$
\frac{\partial f_{k}}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}} f_{k}+\frac{q_{k}}{m_{k}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_{k}=0
$$

+ Maxwell, $k=e, i$
important: positive conservative scheme, semi-Lagrangian, Boris, backsubstitution method
(Filbet, Sonnendrücker, Bertrand 2001)

Darwin-Approximation

CFL-condition too restrictive
\Longrightarrow Darwin approximation
electric field split into longitudinal and transversal part

$$
\mathbf{E}=\mathbf{E}_{L}+\mathbf{E}_{T} \quad \text { mit } \nabla \cdot \mathbf{E}_{T}=0 \text { und } \nabla \times \mathbf{E}_{L}=0
$$

Maxwell equations

$$
\begin{aligned}
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}} \\
\nabla \times \mathbf{B}=\mu_{0}\left(\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}+\mathbf{j}\right) & \nabla \cdot \mathbf{B}=0
\end{aligned}
$$

Darwin-Approximation

CFL-condition too restrictive
\Longrightarrow Darwin approximation
electric field split into longitudinal and transversal part

$$
\mathbf{E}=\mathbf{E}_{L}+\mathbf{E}_{T} \quad \text { mit } \nabla \cdot \mathbf{E}_{T}=\text { Ound } \nabla \times \mathbf{E}_{L}=0
$$

Maxwell equations

$$
\begin{array}{ll}
\nabla \times \mathbf{E}_{\mathbf{T}}=-\frac{\partial \mathbf{B}}{\partial t} & \nabla \cdot \mathbf{E}_{\mathbf{L}}=\frac{\rho}{\varepsilon_{0}} \\
\nabla \times \mathbf{B}=\mu_{0}\left(\varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}+\mathbf{j}\right) & \nabla \cdot \mathbf{B}=0
\end{array}
$$

Darwin-Approximation

CFL-condition too restrictive
\Longrightarrow Darwin approximation
electric field split into longitudinal and transversal part

$$
\mathbf{E}=\mathbf{E}_{L}+\mathbf{E}_{T} \quad \text { mit } \nabla \cdot \mathbf{E}_{T}=\text { Ound } \nabla \times \mathbf{E}_{L}=0
$$

Maxwell equations with Darwin approximation

$$
\begin{array}{ll}
\nabla \times \mathbf{E}_{\mathbf{T}}=-\frac{\partial \mathbf{B}}{\partial t} & \nabla \cdot \mathbf{E}_{\mathbf{L}}=\frac{\rho}{\varepsilon_{0}} \\
\nabla \times \mathbf{B}=\mu_{0}\left(\varepsilon_{0} \frac{\partial \mathbf{E}_{\mathrm{L}}}{\partial t}+\mathbf{j}\right) & \nabla \cdot \mathbf{B}=0
\end{array}
$$

no timestep restriction by the speed of light, but 8 elliptic equations

Semi-Lagrangean scheme

Consider

$$
\partial_{t} f+\partial_{x}(v(t, x) f)=0
$$

The characteristics of this PDE are given by:

$$
\begin{aligned}
\frac{d X}{d s}(s) & =v(s, X(s)) \\
X(t) & =x
\end{aligned}
$$

Denote the solution as $\quad X(s, t, x)$

Since $\frac{d f}{d s}=0$ (r.h.s. of the PDE), we have

$$
\int_{x_{1}}^{x_{2}} f(t, x) d x=\int_{X\left(s, t, x_{1}\right)}^{X\left(s, t, x_{2}\right)} f(s, x) d x
$$

With this we can update the cell-average of f in the i th cell:

$$
\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f\left(t^{n+1}, x\right) d x=\int_{X\left(t^{n}, t^{n+1}, x_{i-\frac{1}{2}}\right)}^{X\left(t^{n}, t^{n+1}, x_{i+\frac{1}{2}}\right)} f\left(t^{n}, x\right) d x
$$

Let \bar{f}_{i}^{n} denote the cell-average in the i th cell at time t^{n}.

$$
\begin{aligned}
\bar{f}_{i}^{n+1} & =\bar{f}_{i}^{n}+\Phi_{i-\frac{1}{2}}-\Phi_{i+\frac{1}{2}} \\
& =\bar{f}_{i}^{n}+\int_{X\left(t^{n}, t^{n+1}, x_{i-\frac{1}{2}}\right)}^{x}{ }_{i-\frac{1}{2}} f\left(t^{n}, x\right) \mathrm{d} x-\int_{x_{i+\frac{1}{2}}}^{X\left(t^{n}, t^{n+1}, x_{i+\frac{1}{2}}\right)} f\left(t^{n}, x\right) \mathrm{d} x
\end{aligned}
$$

Strategy:

- Follow the Characteristics ending at the cell borders backwards in time and find their footpoint
- Reconstruct the integral of f from the footpoint to the cell border
- Update with $\bar{f}_{i}^{n+1}=\bar{f}_{i}^{n}+\Phi_{i-\frac{1}{2}}-\Phi_{i+\frac{1}{2}}$

This will lead to a conservative scheme.

Developed by Filbet, Sonnendrücker, Bertrand (JCP 2001)
PFC $=$ Positive Flux-Conservative
Let's consider the simple second-order scheme for positive velocities: Approximate the primit function of f in the interval $\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right]$ (again, \bar{f}_{i} denotes the cell average):

$$
F(x)=\int_{-\infty}^{x} f(x) \mathrm{d} x
$$

by

$$
\tilde{F}(x)=w_{i-1}+\left(x-x_{i-\frac{1}{2}}\right) \bar{f}_{i}+\frac{1}{2}\left(x-x_{i-\frac{1}{2}}\right)\left(x-x_{i+\frac{1}{2}}\right) \frac{\bar{f}_{i+1}-\bar{f}_{i}}{\Delta x}
$$

Now we can reconstruct f itself:

$$
\tilde{f}(x)=\frac{\mathrm{d} F}{\mathrm{~d} x}(x)=\bar{f}_{i}+\left(x-x_{i}\right) \frac{\bar{f}_{i+1}-\bar{f}_{i}}{\Delta x}
$$

However this scheme can cause negative reconstructed \tilde{f}. To avoid this, one can introduce a slope-limiter ϵ to ensure that the reconstruction lies between 0 and f_{∞} :

$$
\epsilon_{i}= \begin{cases}\min \left(1 ; 2 \bar{f}_{i} /\left(\bar{f}_{i+1}-\bar{f}_{i}\right)\right) & \text { if } \bar{f}_{i+1}>\bar{f}_{i} \\ \min \left(1 ;-2\left(f_{\infty}-\bar{f}_{i}\right) /\left(\left(\bar{f}_{i+1}-\bar{f}_{i}\right)\right)\right. & \text { if } \bar{f}_{i+1}<\bar{f}_{i},\end{cases}
$$

to obtain

$$
f_{h}(x)=\bar{f}_{i}+\epsilon_{i}\left(x-x_{i}\right) \frac{\bar{f}_{i+1}-\bar{f}_{i}}{\Delta x}
$$

Let's denote the distance from the footpoint of the characteristic to the cell-boundary by α. Integrating f_{h} then gives the flux through the boundary at $x_{i+\frac{1}{2}}$:

$$
\begin{aligned}
\Phi_{i+\frac{1}{2}} & =\int_{x_{i+\frac{1}{2}-\alpha}}^{x_{i+\frac{1}{2}}} f_{h}(x) \mathrm{d} x \\
& =\alpha\left(\bar{f}_{i}+\frac{\epsilon_{i}}{2}\left(1-\frac{\alpha}{\Delta x}\right)\left(\bar{f}_{i+1}-\bar{f}_{i}\right)\right)
\end{aligned}
$$

Some remarks:

- This scheme can be extended to higher orders. We use the third order one.
- A similar derivation produces the scheme for negative velocities.
- The length of the characteristics can be arbitrarily large with only a minor change in the derivation.
- The accuracy in time depends only on how good the characteristics can be calculated.

The Vlasov equation

$$
\partial_{t} f_{s}+\mathbf{v} \cdot \nabla_{\mathbf{x}} f_{s}+\frac{q_{s}}{m_{s}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_{s}=0
$$

We want to solve this PDE using a one-dimensional semi-Lagrangian scheme.
Why? Becase one-dimensional schemes can have fancy limiters, conservation-properties and efficient implementations that are difficult to generalise to higher dimensions.
Remember: The Vlasov equation is a conservative, hyperbolic PDE in 6 dimension (plus time)
One way to do this is splitting.

Splitting

Consider $\partial_{t} f=\mathcal{A} f+\mathcal{B} f$, where \mathcal{A} and \mathcal{B} are linear operators (with no time dependance).
The formal solution to this is

$$
f(t)=\exp ((\mathcal{A}+\mathcal{B}) t) f_{0}
$$

If \mathcal{A} and \mathcal{B} commute, we can also write:

$$
f(t)=\exp (\mathcal{B} t) \exp (\mathcal{A} t) f_{0}
$$

This means we can just solve $\partial_{t} f=\mathcal{A} f$, use the result as an initial value for $\partial_{t} f=\mathcal{B} f$ and still get the correct solution!

Godunov splitting

What happens when \mathcal{A} and \mathcal{B} do not commute?
Let's look at the Zassenhaus formula (A variation on Baker-Campbell-Hausdorff):

$$
\exp ((\mathcal{A}+\mathcal{B}) t)=\exp (\mathcal{B} t) \exp (\mathcal{A} t) \exp \left([\mathcal{A}, \mathcal{B}] \frac{t^{2}}{2}\right) \exp \left(\mathcal{O}\left(t^{3}\right)\right)
$$

So now we have:

$$
f(t)=\exp (\mathcal{B} t) \exp (\mathcal{A} t) f_{0}+\mathcal{O}\left(t^{2}\right)
$$

We still get an approximate solution accurate to first order in time.
This is called Godunov splitting or Lie-Trotter splitting

Strang splitting

Can we do better?
A scheme accurate to second order in time is the Strang-Splitting:

$$
f(t)=\exp (\mathcal{B} t / 2) \exp (\mathcal{A} t) \exp (\mathcal{B} t / 2) f_{0}+\mathcal{O}\left(t^{3}\right)
$$

By manipulating the Baker-Campbell-Hausdorff formula, splitting schemes of arbitrary order can be constructed.

However, the Sheng-Suzuki theorem states that all splitting schemes better than second order will have at least one negative exponent (i.e. negative time-steps).

Strang splitting and the Vlasov equation

We will now use Strang splitting on the Vlasov equation:

$$
\begin{gathered}
\partial_{t} f_{s}+\underbrace{\mathbf{v} \cdot \nabla_{\mathbf{x}}}_{\mathcal{A}} f_{s}+\underbrace{\frac{q_{s}}{m_{s}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}}}_{\mathcal{B}} f_{s}=0 \\
f_{s}\left(t^{n+1}\right)=\exp (\mathcal{B} t / 2) \exp (\mathcal{A} t) \exp (\mathcal{B} t / 2) f_{s}\left(t^{n}\right)+\mathcal{O}\left(t^{3}\right)
\end{gathered}
$$

This means we update the velocity-part of f_{s} over one half time-step, then update the position-part over one full time-step, then update the velocity-part again over one half time-step.

This is equivalent to the Leapfrog or Strömer-Verlet schemes in PIC simulations!

The position update

We want to solve

$$
\partial_{t} f_{s}+\mathbf{v} \cdot \nabla_{\mathbf{x}} f_{s}=0
$$

Let's rewrite this equation to

$$
\partial_{t} f_{s}+\partial_{x} v_{x} f_{s}+\partial_{y} v_{y} f_{s}+\partial_{z} v_{z} f_{s}=0
$$

Since \mathbf{v} is just a variable and does not depend on \mathbf{x}, we can write this in a conservative form. Now we have three linear operators that all commute!

We can just solve each step seperately and the solution is still exact. By using a conservative numerical scheme, the conservation property of the Vlasov equation is kept.

The velocity update

The velocity part is not that easy.

$$
\begin{aligned}
\partial_{t} f_{s} & +\frac{q_{s}}{m_{s}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_{s}= \\
\partial_{t} f_{s} & +\frac{q_{s}}{m_{s}} \partial_{v_{x}}\left(E_{x}+v_{y} B_{z}-v_{z} B_{y}\right) f_{s} \\
& +\frac{q_{s}}{m_{s}} \partial_{v_{y}}\left(E_{y}+v_{z} B_{x}-v_{x} B_{z}\right) f_{s} \\
& +\frac{q_{s}}{m_{s}} \partial_{v_{z}}\left(E_{z}+v_{x} B_{y}-v_{y} B_{x}\right) f_{s}=0
\end{aligned}
$$

We can still rewrite this in a conservative way, but the three operators do not commute because of the velocity in the $\mathbf{v} \times \mathrm{B}$ term.

The velocity update

Can we use Strang splitting?

If we denote the individual operators by $\mathcal{V}_{x}, \mathcal{V}_{y}$, and \mathcal{V}_{z} we will have

$$
\begin{aligned}
f\left(t^{n+1}\right) & =\exp \left(\mathcal{V}_{x} t / 4\right) \exp \left(\mathcal{V}_{y} t / 2\right) \exp \left(\mathcal{V}_{x} t / 4\right) \\
& \times \exp \left(\mathcal{V}_{z} t\right) \\
& \times \exp \left(\mathcal{V}_{x} t / 4\right) \exp \left(\mathcal{V}_{y} t / 2\right) \exp \left(\mathcal{V}_{x} t / 4\right) f\left(t^{n}\right)+\mathcal{O}\left(t^{3}\right)
\end{aligned}
$$

This means 7 steps for the velocity update and we have a numerically preferred direction.

Backsubstitution

What we really want is:

- Just one step per operator
- No splitting error in time

Equations of motion:

$$
\begin{aligned}
\frac{d}{d t} m \mathbf{v} & =q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \\
\frac{d}{d t} \mathbf{x} & =\mathbf{v}
\end{aligned}
$$

looks implicit
leap-frog

$$
\frac{\mathbf{v}^{n+1 / 2}-\mathbf{v}^{n-1 / 2}}{\Delta t}=\frac{q}{m}\left(\mathbf{E}^{n}+\frac{1}{2}\left(\mathbf{v}^{n+1 / 2}+\mathbf{v}^{n-1 / 2}\right) \times \mathbf{B}^{n}\right)
$$

Solution: Boris (1970)

$$
\begin{aligned}
\mathbf{v}^{n-1 / 2} & =\mathbf{v}^{-}-\frac{q \mathbf{E}^{n}}{m} \frac{\Delta t}{2} \\
\mathbf{v}^{n+1 / 2} & =\mathbf{v}^{+}+\frac{q \mathbf{E}^{n}}{m} \frac{\Delta t}{2} \\
\frac{\mathbf{v}^{+}-\mathbf{v}^{-}}{\Delta t} & =\frac{q}{2 m}\left(\mathbf{v}^{+}+\mathbf{v}^{-}\right) \times \mathbf{B}
\end{aligned}
$$

explicit

$$
\begin{aligned}
\mathbf{v}^{-} & =\mathbf{v}^{n-1 / 2}+\frac{q \Delta t \mathbf{E}^{n}}{2 m} \\
\mathbf{v}^{\prime} & =\mathbf{v}^{-}+\mathbf{v}^{-} \times \mathbf{t}^{n} \\
\mathbf{v}^{+} & =\mathbf{v}^{-}+\mathbf{v}^{\prime} \times \frac{2 \mathbf{t}^{n}}{1+\mathbf{t}^{n} \cdot \mathbf{t}^{n}} \\
\mathbf{v}^{n+1 / 2} & =\mathbf{v}^{+}+\frac{q \Delta t \mathbf{E}^{n}}{2 m} \\
\text { with } \mathbf{t}^{n} & =\frac{q \Delta t \mathbf{B}^{n}}{2 m}
\end{aligned}
$$

So let's revisit what the semi-Lagrangian scheme does (for simplicity in 2D).
A full two-dimensional scheme would transport the value of f along the black characteristic.
would like to have: $\quad f^{\text {new }}\left(D_{x}, D_{y}\right)=f^{\text {old }}\left(S_{x}, S_{y}\right)$

Splitting: $\quad f^{\text {inter }}\left(G_{x}, G_{y}\right)=f^{\text {old }}\left(S_{x}^{(1)}, G_{y}\right)$

$$
f^{\mathrm{new}}\left(G_{x}, G_{y}\right)=f^{\text {inter }}\left(G_{x}, S_{y}^{(2)}\right)
$$

$f^{\text {old }}$ is lossed, only have $f^{\text {inter }}$
assuming correct interpolation $f^{\text {inter }}\left(G_{x}, S_{y}^{(2)}\right)=f^{\text {old }}\left(S_{x}^{(2)}, S_{y}^{(2)}\right)$

$$
\Longrightarrow \quad f^{\mathrm{new}}\left(G_{x}, G_{y}\right)=f^{\mathrm{old}}\left(S_{x}^{(2)}, S_{y}^{(2)}\right)
$$

Backsubstitution for the velocity update

The characteristics for the velocity update can be calculated by the Boris scheme. Define

$$
\mathbf{k}=\frac{\Delta t}{2} \frac{q_{s}}{m_{s}} \mathbf{B} \quad \mathbf{s}=\frac{2 \mathbf{k}}{1+k^{2}}
$$

Now the backward in time Boris scheme is given by:

$$
\begin{aligned}
\mathbf{v}^{+} & =\mathbf{v}^{n+1}-\frac{\Delta t}{2} \frac{q_{s}}{m_{s}} \mathbf{E} \\
\tilde{\mathbf{v}} & =\mathbf{v}^{+}-\mathbf{v}^{+} \times \mathbf{k} \\
\mathbf{v}^{-} & =\mathbf{v}^{+}-\tilde{\mathbf{v}} \times \mathbf{s} \\
\mathbf{v}^{n} & =\mathbf{v}^{-}-\frac{\Delta t}{2} \frac{q_{s}}{m_{s}} \mathbf{E}
\end{aligned}
$$

This formula has to be brought into this form:

$$
\begin{aligned}
v_{x}^{n} & =v_{x}^{n}\left(v_{x}^{n+1}, v_{y}^{n}, v_{z}^{n}\right) \\
v_{y}^{n} & =v_{y}^{n}\left(v_{x}^{n+1}, v_{y}^{n+1}, v_{z}^{n}\right) \\
v_{z}^{n} & =v_{z}^{n}\left(v_{x}^{n+1}, v_{y}^{n+1}, v_{z}^{n+1}\right)
\end{aligned}
$$

Backsubstitution for the velocity update

$$
\begin{align*}
v_{x}^{n} & =v_{x}^{n}\left(v_{x}^{n+1}, v_{y}^{n}, v_{z}^{n}\right) \tag{1}\\
v_{y}^{n} & =v_{y}^{n}\left(v_{x}^{n+1}, v_{y}^{n+1}, v_{z}^{n}\right) \tag{2}\\
v_{z}^{n} & =v_{z}^{n}\left(v_{x}^{n+1}, v_{y}^{n+1}, v_{z}^{n+1}\right) \tag{3}
\end{align*}
$$

The last equation (3) is given simply by the z-component of Boris' scheme.
To find (2) we solve (3) for v_{z}^{n+1} and substitute this into the y-component of Boris' scheme. Equation (1) can be found by using the x-component of the forward in time Boris scheme and solving for v_{x}^{n}.

Example: magnetic reconnection with DSDV I

Electron out of plane current

Electron distribution function

New Code: DSDV II (Martin Rieke)

- full Maxwell Solver
parallel CUDA

Hardware and CUDA performance

The DaVinci-cluster at the Ruhr-Universität Bochum consists of 17 nodes with a total of

- 16320 cores and 272 GB RAM on GPUs (68~NVidia Tesla SIO70 cards with 240 cores and 4 GB RAM each)
- 136 respectively 272 (with HT) cores and 408 GB on CPUs (34 Xeon E5530 Quad Core CPUs $(2.4 \mathrm{GHz})$ with 8 cores respectively 16 cores (with HT) and I2~GB RAM each)

system	resolution	duration of run
CPUs (Schmitz, Grauer)	$256 \times 128 \times 30^{3}$	$\sim 150 \mathrm{~h}$
GPUs (this work)	$256 \times 128 \times 32^{3}$	$\sim 8 \mathrm{~h}$

Comparison of the time necessary to simulate one quarter of the GEM setup until $t=40 \Omega_{i}^{-1}$.

Basic idea

- Domain is subdivided into mostly autonomous blocks
- In each block, one physical model is applied
- Communication via exchange of boundary conditions

Parallelization: space-filling Hilbert-curve

Fitting moments

kinetic region \rightarrow fluid region:

- Calculating moments via simple integration
fluid region \rightarrow kinetic region:
- Lack of sufficient information
- Extrapolation of shape of pdf into outer region

- Fitting of moments by advection step with suitable velocity field

Ion Sound Waves

First Results

GEM challenge (reconnection)

ion hole

Where is fluid and where is the kinetic region ?

Issues and ToDo's

numerical errors act differently in fluid and kinetic codes:
numerical dissipation in Vlasov leads to heating
numerical dissipation in fluid leads to cooling

Strategy:

errors are "smaller" in fluid than in Vlasov, thus

- in the kinetic region solve fluid equations with heat flux Q from Vlasov if there were no numerical errors: fluid = Vlasov
- trust fluid
adjust distribution function with the fluid moments

Example: Whistler wave (Daldorff, Toth, Gombosi, Lapenta, Amaya, Markidis,Brackbill JCP 2014)
uy - whistler wave without fitting

uy - whistler wave with fitting

Adaptive Multiphysics Simulations

Criterion

Consider 1D:

$$
\begin{aligned}
\partial_{t} \bar{\mu}_{k} & =-\partial_{x} \bar{\mu}_{k+1}+\frac{k \bar{\mu}_{k-1}}{\mu_{0}} \partial_{x} \bar{\mu}_{2} \\
& =\left(\frac{k_{\mathrm{B}}}{m}\right)^{\frac{k+1}{2}}\left(-(k!!) \partial_{x}\left(n T^{\frac{k+1}{2}}\right)+k(k-2)!!T^{\frac{k-1}{2}} \partial_{x}(n T)\right) \\
& =-\left(\frac{k_{\mathrm{B}}}{m}\right)^{\frac{k+1}{2}}\left(\frac{n(k-1)(k!!)}{2} T^{\frac{k-1}{2}} \partial_{x} T\right) \\
& =-\frac{p}{m}\left(\frac{k_{\mathrm{B}}}{m}\right)\left(\frac{(k-1)(k!!)}{(\sqrt{2})^{k-1}} v_{\mathrm{th}}^{k-3} \partial_{x} T\right)
\end{aligned}
$$

Now consider heat flux

$$
\partial_{t} q=-\frac{3}{2} \frac{k_{\mathrm{B}}}{m} p \partial_{x} T
$$

3d:

$$
\begin{aligned}
\operatorname{tr}\left(\partial_{t} \mathrm{Q}\right) & =-\frac{3}{2} n\left(\frac{k_{\mathrm{B}}^{2}}{m}\right)\left\{T_{x x} \partial_{x} T_{x x}+T_{y y} \partial_{y} T_{y y}+T_{z z} \partial_{z} T_{z z}\right. \\
& \left.+T_{x y}\left(\partial_{y} T_{x x}+\partial_{x} T_{y y}\right)+T_{y z}\left(\partial_{z} T_{y y}+\partial_{y} T_{z z}\right)+T_{x z}\left(\partial_{z} T_{x x}+\partial_{x} T_{z z}\right)\right\}
\end{aligned}
$$

Assume isotropic temperature:

$$
\operatorname{tr}\left(\partial_{t} \mathrm{Q}\right)=-\frac{3}{2} \frac{k_{\mathrm{B}}}{m} p\left(\partial_{x} T+\partial_{y} T+\partial_{z} T\right)
$$

Adaptive Multiphysics Simulations

jz-GEM with temperature gradient criterion

Adaptive Multiphysics Simulations

jz-GEM with temperature gradient criterion

Issues and ToDo's

- other models (Landau fluid?)
-better subcycling
-3D
-Newton challenge
-shocks
-MHD

2D Simulations: GEM Setup

Parameters:

$\frac{m_{i}}{m_{e}}=25$
$\frac{T_{i}}{T_{e}}=\sqrt{\frac{m_{i}}{m_{e}}}=5$
$\lambda=0.5$
$n_{0}=1$
$n_{\infty}=0.2$
$B_{0}=1$
$\psi_{0}=0.1$
$L_{x}=8 \pi$
$L_{y}=4 \pi$

Name	Expression	Electrons	Ions
thermal velocity	$v_{\mathrm{th}, s}=\sqrt{2 T_{0, s}} \sqrt{\frac{m_{i}}{m_{s}}}$	2.0	0.91
plasma frequency	$\omega_{\mathrm{p}, s}=c \sqrt{\frac{m_{i}}{m_{s}}} \sqrt{n_{0, s}}$	100	20
gyro frequency	$\Omega_{s}=\frac{m_{i}}{m_{s}} B_{0}$	25	1
Larmor radius	$r_{s}=\sqrt{2 T_{0, s}} \sqrt{\frac{m_{s}}{m_{i}}} \frac{1}{B_{0}}$	0.082	0.91
Debye length	$\lambda_{\mathrm{D}, s}=\frac{1}{c} \sqrt{\frac{T_{0, s}}{n_{0, s}}}$	0.014	0.032
skin depth/inertial length	$\delta_{s}=\sqrt{\frac{m_{s}}{m_{i}}} \frac{1}{\sqrt{n_{0, s}}}$	0.2	1

$$
\begin{aligned}
& 2^{25} \text { Cells/GPU }- \text { - - } \\
& 2^{26} \text { Cells/GPU }- \text { - }- \text {. } \\
& 2^{27} \text { Cells/GPU -:- - } \\
& 2^{28} \text { Cells/GPU } \\
& 2^{29} \text { Cells/GPU -.... } \\
& 2^{30} \text { Cells/GPU -.... }
\end{aligned}
$$

Vision and advertisement: Tensor Networks

Katharina Kormann

A Semi-Lagrangian Vlasov Solver in Tensor Train Format SIAM J. Sci. Comput., 37(4), B613-B632

Lukas Einkemmer, Christian Lubich
A low-rank projector-splitting integrator for the Vlasov--Poisson equation arXiv:1801.01103
matrix product states, tensor networks

St. White 1992

U. Schollwöck 2005
J. I. Cirac, F. Verstraete, 2009

DMRG
tensor trains, hierarchical Tucker
I. V. Oseledets 2008
W. Hackbusch 2009
L. Grasedyck 2013

ALS, MALS

Roman Orus A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States 2014
L. Grasedyck, D. Kressner, C. Tobler A literature survey of low-rank tensor approximation technoques 2013

2D: singular value decomposition SVD

diagonal

2D: singular value decomposition SVD
diagonal

only few singular values $r_{1} \ll m, r_{2} \ll n$
tensors: example 4D

$$
\begin{aligned}
& M^{d_{1} \times d_{2} \times d_{3} \times d_{4}} \longrightarrow M^{d_{1} \cdot d_{2} \times d_{3} \cdot d_{4}}=U_{34}^{d_{3} d_{4} \times r_{34}} U_{12}^{d_{1} d_{2} \times r_{12}} B_{1234}^{r_{34} \times r_{12}} \\
& M=\left(U_{34} \otimes U_{12}\right) B_{1234} \\
& U_{12}=\left(U_{2} \otimes U_{1}\right) B_{12} \quad U_{34}=\left(U_{4} \otimes U_{3}\right) B_{34}
\end{aligned}
$$

$$
M=\left(U_{4} \otimes U_{3} \times U_{2} \otimes U_{1}\right)\left(B_{34} \times B_{12}\right) B_{1234}
$$

hierarchical Tucker HT
tensor train TT

Now: not parallel, electrostatic with constant guide field
Master Student Florian Allmann-Rahn: parallelization with domain decomposition in his Phd: generalisation to Maxwell

Lot's of things to do

Thank you

Rieke M, Trost T, Grauer R.
Coupled Vlasov and two-fluid codes on GPUs.
Journal of Computational Physics 283 (2015) 436-452
Lautenbach S., Grauer R.
Multiphysics simulations of collisionless plasmas
arXiv:1805.05698 (2018)

