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Requirements
Compressible: Waves and shocks⇒ need algorithm that can cope with this.

Solenoidal Constraint: Need to do something about the condition∇ ·B = 0.

Stiffness: Equations might include source terms due to heating/cooling etc. These can
sometimes make the equations stiff (small timescales).

Adaptive mesh refinement: Sometimes have a large range of length and timescales⇒
need adaptive mesh refinement (AMR).

Non-ideal MHD: These involve diffusive terms⇒ small timesteps with explicit schemes.

Most effective methods are conservative and upwind: conservative to capture shocks;
upwind to ensure clean solutions (no oscillations at shocks etc).



Basic Equations
The equations are the usual Euler equations + magnetic terms and induction equation

∂ρ

∂t
+∇ · ρv = 0,

∂ρv

∂t
+∇ · (ρvv + pgI) = J ∧B = −∇ · (1

2
IB2 −BB) (I identity matrix),

∂e

∂t
+∇ · [v(e+ pg +

1

2
ρv2)] = v · (J ∧B) = −∇ · [v · (1

2
IB2 −BB)],

J = ∇∧B no displacement current, ∇ ·B = 0,

∂B

∂t
= −∇ ∧ E = ∇∧ (v ∧B) = ∇ · (vB−Bv) ideal, but see later.

e = ρU +
1

2
ρv2 +

1

2
B2 total energy (U is internal energy/unit mass).



Integral Conservation Law
Write these as

∂Qi

∂t
+∇ · (Fi, Gi, Hi) = Si i = 1 . . . 8 ∗

where the Qi are the conserved variables (ρ etc) and Fi, Gi, Hi are their fluxes in the x,
y, and z directions.

Now integrate the equations over a fixed volume, V , with surface S.

d

dt

∫
V

Qi dV +

∫
S

(Fi, Gi, Hi) · dS =

∫
V

Si dV .

This is the fundamental law. If solution is smooth, can write it as∫
V

[
∂Qi

∂t
+∇ · (Fi, Gi, Hi)− Si

]
dV = 0

Since V is arbitrary, the integrand must vanish⇒ ∗.



Conservative Equations
Write in the form

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= S where Q = [ρ, ρv,B, e]t are conserved quantities.

F =



ρvx
pt + ρv2

x −B2
x

ρvxvy −BxBy

ρvxvz −BxBz

0
Byvx −Bxvy
Bzvx −Bxvz

vx(e+ pt)−Bx(B · v)


G =



ρvy
ρvxvy −BxBy

pt + ρv2
y −B2

y

ρvyvz −ByBz

Bxvy −Byvx
0

Bzvy −Byvz
vx(e+ pt)−By(B · v)



H =



ρvz
ρvxvz −BxBz

ρvyvz −ByBz

pt + ρv2
z −B2

z

Bxvz −Bzvx
Byvz −Bzvy

0
vz(e+ pt)−Bz(B · v)


pt = pg +B2/2 total pressure

S – heating/cooling, non-ideal MHD, gravity etc.



Conservative Finite Volume Scheme
A conservative finite volume scheme takes the form

1
∆t(Q

n+1
ijk −Qn

ijk) = 1
∆X (F

n+1/2
i−1/2jk − F

n+1/2
i+1/2jk) + 1

∆Y (G
n+1/2
i−1/2jk −G

n+1/2
i+1/2jk)

+ 1
∆Z (H

n+1/2
i−1/2jk −H

n+1/2
i+1/2jk) + S

n+1/2
ijk

Qn
ijk − cell averaged numerical solution in the ijk cell at timestep n

F
n+1/2
i+1/2jk etc − approximations to time average of interface fluxes

S
n+1/2
ijk − approximation to time average of source term

Qn
ijk F

n+1/2
i+1/2jkF

n+1/2
i−1/2jk

- -

G
n+1/2
ij+1/2k

6

G
n+1/2
ij−1/2k

6



Upwind Schemes (Godunov)
Determine fluxes at interfaces from solution to a Riemann problem:
one-dimensional problem with initial data

Q(x, 0) = Q0(x) =

{
Ql = const. for x < 0
Qr = const. for x > 0

Approximate time average at interface F
n+1/2
i+1/2jk etc by F(Q∗).

Q∗ is state at x = xi+1/2jk in Riemann problem with Ql = Qn
i−1jk, Qr = Qn

ijk.

Exact Riemann Solver
Gas dynamics with ideal equation of state – Easy
Gas dynamics with non-ideal equation of state – Not much fun
Relativistic gas dynamics with ideal equation of state – Even less fun
MHD with ideal equation of state – Ghastly
Relativistic MHD with ideal equation of state – Beyond belief

Most Riemann problems are linear. Rarely, if ever, need an exact Riemann solver.

Can use approximate solutions (with some care).

(See Riemann Solvers and Numerical Methods for Fluid Dynamics by E. F. Toro, 2009)



Linear Riemann Problem
Write one dimensional equations in the form

Qt + Fx = Qt + JQx = 0

where J =
∂F

∂Q
= J(Ql,Qr) = const is the Jacobian of F w.r.t. Q (linear problem).

Let ri, li be left/right eigenvectors of J with eigenvalue λi (Jri = λiri, liJ = λili).
These are bi-orthogonal: li · rj = δij (provided Jordan form of J is diagonal).

Write solution as Q =
n∑
i=1

vi(x, t)ri (vi = li ·Q).

Substituting into the equation gives
n∑
i=1

(
∂vi
∂t

+ λi
∂vi
∂x

)
ri = 0

Multiplying by lj and using the bi-othorgonality property gives
∂vj
∂t

+ λj
∂vj
∂x

= 0 (j = 1 · · ·n) linear advection equations

Solution is vj(x, t) = lj ·Q0(x− λjt) if initial data is Q(x, 0) = Q0(x).

Hence complete solution is Q =
n∑
i=1

li ·Q0(x− λit)ri.

i.e. n waves moving with speeds λi ⇒ these are the wavespeeds.



At x = 0, solution is Q = Q∗ =
n∑
i=1

li ·Q0(−λit)ri =
∑
λi>0

li ·Qlri +
∑
λi<0

li ·Qrri

=
n∑
i=1

li ·Qlri −
∑
λi<0

li ·Qlri +
∑
λi<0

li ·Qrri = Ql +
∑
λi<0

li · (Qr −Ql)ri

F(Q∗) = JQ∗ = J

[
Ql +

∑
λi<0

li · (Qr −Ql)ri

]
= Fl +

∑
λi<0

λili · (Qr −Ql)ri

= J

[
Qr +

∑
λi>0

li · (Ql −Qr)ri

]
= Fr +

∑
λi>0

λili · (Ql −Qr)ri,

which gives

F(Q∗) =
1

2

[
Fl + Fr −

n∑
i=1

|λi|li · (Qr −Ql)ri

]
i.e. average plus extra term.

We have

∂F

∂x
' 1

∆x
(Fj+1/2 − Fj−1/2) =

J

∆x
[Q∗(Qj+1,Qj)−Q∗(Qj,Qj−1)]



=
J

2∆x

[
Qk
j+1 + Qk

j −
n∑
i=1

sign(λi)li · (Qk
j+1 −Qk

j )ri

−Qk
j −Qk

j−1 +
n∑
i=1

sign(λi)li · (Qk
j −Qk

j−1)ri

]

=
J

2∆x

n∑
i=1

li ·
[
Qk
j+1 − sign(λi)(Q

k
j+1 −Qk

j )−Qk
j−1 + sign(λi)(Q

k
j −Qk

j−1)
]
ri

=
J

∆x

[∑
λi<0

li · (Qk
j+1 −Qk

j ) +
∑
λi>0

li · (Qk
j −Qk

j−1)

]
ri

This means that we have a right difference for waves with λi < 0 and a left difference
for λi > 0 i.e. and upwind scheme. This is equivalent to diagonalising the equations and
using an upwind scheme on each equation.

In some sense this is the “best” 1st order scheme for linear advection (stable scheme with
highest accuracy).



MHD Waves (x direction)

Fast Waves: λ1,7 = vx ∓ cf . Magnetic field does not rotate. Magnetic field increases
when gas pressure increases. Genuinely non-linear (speed not constant across wave).
Alfvén Waves: λ2,6 = vx ∓ ca Magnetic field rotates with constant magnitude. pt, ρ, vx
constant. Linearly degenerate: speed constant across wave.
Slow Waves: λ3,5 = vx ∓ cs. Magnetic field does not rotate. Magnetic field decreases
when gas pressure increases. Genuinely non-linear.
Entropy Wave: λ4 = vx. pt, ρ, v, B constant. Only ρ changes. Linearly degenerate.

Alfvén speed: ca =
Bx

ρ1/2

Slow/Fast speeds: cs,f =
1

2

a2 +
B2

ρ
∓

{(
a2 +

B2

ρ

)2

− 4a2B2
x

ρ

}1/2


a =
√
(
γpg
ρ

)
is the sound speed.

Note cs < ca < cf .

Only 7 waves since must have Bx = const. in 1D because of∇ ·B = 0.



Magnetohydrodynamic Shock Types
In shock frame s = 0⇒ [F] = 0, which gives (Bt, vt - transverse field and velocity)

a) [ρvx] = 0, b) [pt + ρv2
x] = 0,

c)
ρvx
Bx

[vt] = [Bt], d) [Btvx] = Bx[vt], e) [(e+ pt)vx −Bx(B · v)] = 0.

Contact Discontinuity vx = 0

a), b), c), d)⇒ [pt] = [vt] = [Bt] = 0, [ρ] arbitrary.

Alfvén Shock (c2
a − v2

x)l = (c2
a − v2

x)r = 0

a), b)⇒ [vx] = [ρ] = [pt] = [|Bt|] = 0,

c), d)⇒ f) [Bt(c
2
a − v2

x)] = 0 ⇒ Bt can rotate by an arbitrary amount.



a) [ρvx] = 0, b) [pt + ρv2
x] = 0,

c)
ρvx
Bx

[vt] = [Bt], d) [Btvx] = Bx[vt], e) [(e+ pt)vx −Bx(B · v)] = 0.

f)[Bt(c
2
a − v2

x)] = 0

Slow/Fast Shocks sign{(c2
a − v2

x)l} = sign{(c2
a − v2

x)r}
f) ⇒ (Bt)l is parallel to (Bt)r and has the same sign i.e. no rotation of transverse field.

Intermediate Shocks sign{(c2
a − v2

x)l} 6= sign{(c2
a − v2

x)r}
f)⇒ Bt changes sign i.e. transverse field rotates by π.

Not evolutionary: an Alfvén wave incident from downstream gets trapped in shock
⇒ transverse field rotates across shock⇒ violates shock conditions.



Exact MHD Riemann Problem (Ryu & Jones 1995; Falle, Komissarov
& Joarder 1998)
J is not constant. No length scale ⇒ solution of the form Q = Q(x/t).
⇒ Still have n waves moving at constant speeds: can be discontinuities (shocks, Alfvén
waves, entropy waves) or simple waves (rarefaction waves).

Linear Approximations
Solve linear problem with appropriate (?) J = J(Ql,Qr).

Roe Matrix

J(Ql,Qr) has the properties

A) Real eigenvalues and a complete set of eigenvectors.
B) J(Q,Q) = J(Q) i.e. consistent.
C) F(Qr)− F(Ql) = J(Qr −Ql) ⇒ exact solution for single discontinuity.

Neat way to do this for gas dynamics, more complicated for MHD. Preserves stationary
contacts.

Flaws

Generates rarefaction shocks in transonic rarefactions. Needs entropy fix to avoid this
(extra dissipation).

Carbuncles and Quirk instability (see later).



Arithmetic Mean Matrix (Falle, Komissarov & Joarder 1998)

Better to work with primitive variables, P = [ρ,v, pg,B]t i.e. solve
∂P

∂t
+ A

∂P

∂x
= 0.

Define mean matrix by A = A[Pm] with Pm =
1

2
(Pl + Pr)

This ensures that A is computed from a physical state (e.g. pg > 0).

Solve linear Riemann problem with A. Obtain flux from

F∗ =
1

2

[
Fl + Fr − C

7∑
1=1

|λi|li · (Pr −Pl)ri

]
where Cij =

∂Qi

∂Pj
(in state Pm).

λi, li, ri eigenvalues and eigenvectors of A.
Add artificial viscous, conductive and resistive fluxes of the form
αvsmρm(vl − vr) Viscous flux
αesmρm(Tl − Tr) Thermal flux
αmsm(Bl −Br) Resistive flux

sm = max[cf(Ql), cf(Qr)] (magnetosonic fast speed)
ρm mean density
αv = αe = αm = 0.2 is fine

Must normalise eigenvectors carefully because of degeneracies (Roe & Balsara 1996).

Fast, robust, no rarefaction shocks or other nasties. Preserves stationary contacts.



Reduced Wave Riemann Solvers
Only consider some of the waves (HLL, HLLC, etc). For HLL the flux is
If sl < 0 and sr < 0, then F = F(Ql).
If sl > 0 and sr > 0, then F = F(Qr).
Otherwise

F =
srFl − slFr + slsr(Qr −Ql)

sr − sl
.

Here sl is the smallest wave speed in left state, sr the largest wave speed in the right
state.

Fast and robust. Note that it is upwind in some sense. Does not preserve stationary
contacts (HLLC does).

Kurganov-Tadmor Central Scheme
Flux is given by

F =
1

2
[F(Qn

i−1jk + F(Qn
ijk]− s[Qn

ijk −Qn
i−1jk]

s is the maximum absolute value of the wave speed in the cells (i− 1, j, k) and (i, j, k).

Simple to implement and works quite well. Note that it is not upwind and does not
preserve stationary contacts.



Why Conservative?
u

xx x1 2

Numerical shock

Structure

Apply conservation to [x1, x2]. If numerical shock structure is steady, then satisfies shock
relations exactly.

In practice numerical shock structure is quasi-periodic. But OK if shock speed changes
slowly on shock structure crossing time.



Second Order (Falle 1991)

Scheme first order if useQn
ijk,Q

n
i−1jk etc. A simple way to get second order is as follows:

Use the first order scheme to compute a solution Qn+1/2
ijk at the half time.

Use linear extrapolation to get Ql, Qr

Q
n+1/2
l = Q

n+1/2
i−1jk +

1

2

(
∂Q

∂x

)n+1/2

i−1jk

, Qn+1/2
r = Q

n+1/2
ijk − 1

2

(
∂Q

∂x

)n+1/2

ijk

,

where the gradients are(
∂Q

∂x

)n+1/2

ijk

= av

(
Q
n+1/2
i+1jk −Q

n+1/2
ijk

∆x

)
,

(
Q
n+1/2
ijk −Q

n+1/2
i−1jk

∆x

)
.

Here av(a, b) is an averaging function which reduces to (a+b)/2 if a, b are nearly equal,
but otherwise is biased towards the smaller absolute value e.g.

av(a, b) =
b2a+ a2b

a2 + b2
(van Leer 1977).

Compute fluxes with Ql, Qr and use these to advance solution through a full timestep
with term computed from Q

n+1/2
ijk .

Lots of other ways to do this (see e.g. Toro 2009).



Moving Strong Gas Dynamic Shock

Linear Riemann solver works fine.



Stationary Strong Gas Dynamic Shock

Shock stationary at a cell edge. For exact solver F∗ = F(Ql) = F(Qr)
⇒ preserves solution. Linear solver does not.



Carbuncle (Quirk 1994)

Grid HLLE Roe

Temperature contours in steady Mach 10 flow past a cylinder (Robinet et al. 2000)



Quirk Instability (Quirk 1994)

Density Contours in a slightly perturbed plane shock (Robinet et al. 1999).

This is very insidious since it grows slowly (Jordan mode ⇒ grows like t).
Carbuncle and Quirk instability are related in the sense that if a scheme suffers from one
of them, then it suffers from the other.
Get these even with an exact Riemann solver.
Due to lack of numerical dissipation in certain cases.



Artificial Dissipation (Falle et al. 1998)
This is all to do with numerical dissipation: entropy fix in Roe method just adds dissipa-
tion; HLL method is more dissipative etc.

Why not just add it explicitly in Riemann solver?

Let am = max[a(Ql), a(Qr)] (max sound speed).

Add viscous momentum flux Fv = αpmax[ρ(Ql), ρ(Qr)])am(vl − vr).
Add conduction energy Fe = αemax[ρ(Ql), ρ(Qr)])am(Tl − Tr) (T is temperature).
Add magnetic diffusion FB = αmmax[ρ(Ql), ρ(Qr)])am(vl − vr).

αp, αe, αm are parameters (αp = αe = αm = 0.2 is fine).

Cures carbuncles and Quirk instabilities.

Doesn’t change order of scheme since dissipative terms are O(∆x) in smooth regions.



Linear Solver for Stationary Strong Shock

αp = αe = 0 αp = αe = 0.2



MHD Riemann Problem (Falle 2002)
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Markers - Upwind scheme

State ρ pg vx vy Bx By

Left state 0.5 10.0 0 2 2 2.5
Right state 0.1 0.1 -10.0 0 2 2

Waves are: Fast shock; slow rarefaction; entropy; slow shock; fast shock.

No Alfvén waves (velocity and field co-planar).

Zeus is neither conservative nor upwind.



Brio & Wu Problem (Brio & Wu 1988)

State ρ pg vx vy Bx By

Left state 1.0 1.0 0.0 0.0 0.75 1.0
Right state 0.125 0.1 0.0 0.0 0.75 -1.0

B  y
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Standard upwind conservative scheme

→ intermediate shock

with compound wave.

Random choice (Glimm 1965) with

exact Riemann solver.

→ Alfvén shock



Solenoidal Constraint
Take the divergence of the induction equation

∇ ·
(
∂B

∂t
−∇ ∧ (v ∧B)

)
=
∂∇ ·B
∂t

= 0 since ∇ · [∇∧ (v ∧B)] ≡ 0.

For exact equations ∇ ·B = 0 if it is so initially. But not necessarily true for numerical
approximation.

Constrained Transport (Evans & Hawley 1988)

Use integral form of induction equation
on faces∫
S

∂B

∂t
· dS =

∮
C

(v ∧B) · dr

= −
∮
C

E · dr

Field defined at cell faces.

Neatest version in Toth 2000.

But complicated and has big stencil

⇒ messy for AMR, but no worse than ambi-polar diffusion.



Eight Wave (Powell 1996)

Allow∇ ·B 6= 0 (monopoles), but add extra terms to ensure Galilean invariance

∂ρv

∂t
+∇ · (ρvv + pgI) = J ∧B = −∇ · (1

2
IB2 −BB)−B∇ ·B

∂e

∂t
+∇· [v(e+ pg +

1

2
ρv2)] = v · (J∧B) = −∇· [v · (1

2
IB2−BB)]− (v ·B)∇·B

∂B

∂t
= −∇ · (vB−Bv)− v∇ ·B

Taking the divergence of the induction equation gives

∂

∂t
(∇ ·B) +∇ · (v∇ ·B) = 0

i.e. Monopoles advected with fluid velocity (hence “eight wave”).

Not conservative ⇒ not brilliant at shocks, which is where monopoles are densest.



Projection (see Toth 2000)

Advance B in time with as usual to get B∗.
Define auxillary scalar function ψ by∇2ψ = ∇ ·B∗.
Final field is B = B∗ −∇ψ, which is divergence free.
Solution to Poisson equation cheap: ∇ ·B∗ dominated by short wavelengths.

Divergence Cleaning (Dedner et al. 2002)

Induction equation is
∂B

∂t
+∇ · (vB−Bv) +∇ψ = 0 with

∂ψ

∂t
+ c2

h∇ ·B = −c
2
h

c2
p

ψ.

Then
∂∇ ·B
∂t

+∇2ψ = 0,

∂2ψ

∂t2
+
c2
h

c2
p

∂ψ

∂t
= c2

h∇2ψ,

ψ is advected with speed ch and
damped with coefficient c2

h/c
2
p.

Advection of a circle of∇ ·B
with SPH (Tricco et al 2016).



Adaptive Mesh Refinement (AMR)
Basic idea of AMR is to refine mesh where solution varies rapidly e.g. shocks, dense
clumps etc.

Hierarchical AMR

Hierarchy of grids – solution computed on all grids

Quadrilateral grid in 2D, hexahedral in 3D i.e. not triangles and tetrahedra

Ingredients

Criterion for mesh refinement – ideally based on error estimates

Procedure for coarse-fine grid boundaries

Different timesteps for different grids



Structured versus Unstructured

Structured Unstructured

Structured codes: Chombo, Pluto, Flash, Enzo, Astrobear, AMRVAC.

Unstructured: Ramses, MG.

Efficiency
For D dimensional calculation

Uniform grid Unstructured AMR

Memory cost ∝ (1/∆x)D ∝ (1/∆x)D−1

CPU time ∝ 1/∆x)D+1 ∝ (1/∆x)D

if regions requiring high resolution are sheets.



Refinement control
Grids G0 · · ·GN with mesh spacing on Gn ∆x0/2

n.

G0, G1 cover whole domain, finer grids need not do so.

For each cell on Gn compare solutions on Gn and Gn−1.

If error exceeds a given tolerance, refine Gn cell to Gn+1

Integration Algorithm
integrate(n) Integrate grid n

step(n) Advance grid n by one step
t[n] += dt[n] Increment grid n time
if (n < N ) Finer grids exist

while (t[n+1] < t[n])
integrate(n+1) Integrate to grid n+1 to grid n time

regrid(n) Compare solutions on grids n and n-1
→ decide grid n+1 refinement

merge(n) Project n+1 solution onto grid n
return

Then
integrate(0) integrates all grids through one coarse grid timestep



Integration of 4 level Grid

∆ t2

∆ t1

∆ t0

∆ t3

merge 1−0 merge merge

merge

merge

merge

2−1 3−2

3−2

3−2

3−2

merge 2−1

1 2 30Grid

Time

Regrid 3

Regrid 3, 2

Note that each grid has its own timestep. Important for Courant number matching at
coarse-fine boundaries.



Coarse-fine Grid Boundaries
Boundary of Gn grid

n

n−1

Need boundary condition for grid Gn

at coarse-fine boundary

Already have solution on Gn−1

at advanced time

Use this to construct space-time
interpolant for solution at boundary

Flux at coarse-fine boundary used to update Gn−1 different from flux used for Gn.
⇒Must correct solution on Gn−1 to ensure conservation at coarse-fine boundary.



5 Level Calculation of Circular Sod Problem
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Multifluid MHD
N fluids with equations (i = 1 · · ·N )

∂ρi
∂t

+
∂ρivix
∂x

=
∑
j 6=i

Sij Sij rate of conversion of i to j,

∂ρivi
∂t

+∇ · (ρivivi + piI) = αiρi(E + vi ∧B) +
∑
j 6=1

fij

fij = Kijρiρj(vj − vi) – force exerted on i by j, αi – charge to mass ratio

∂ei
∂t

+∇ · [vi(
1

2
ρiv

2
i + pi)] = Hi +

∑
j 6=i

Gij

Hi – energy loss rate for i, Gij – energy transfer rate from j to i

∂B

∂t
= −∇ ∧ E, ∇∧B = J =

∑
i

αiρivi

Species 1 - neutral (α1 = 0), Species 2 · · ·N charged.

Define Hall parameter βi =
αiB

ρ1Ki1

βi � 1⇒ Species i tied to field lines αiρi(E + vi ∧B) dominates,
βi � 1⇒ Species i tied to neutrals

∑
j 6=1 fij dominates.



Two Fluid
βi � 1 for all i > 1⇒ have neutral and single perfectly conducting fluid.

Neutral Fluid Conducting Fluid

∂Un

∂t
+
∂Fn

∂x
= Sn

∂Uc

∂t
+
∂Fc

∂x
= Sc

Un =

 ρn
ρnvnx
ρnvny

 Uc =


ρc
ρcvcx
ρcvcy
By



Fn =

 ρnvnx
a2
nρn + ρnv

2
nx

ρnvnxvny

 Fc =


ρcvcx

a2
cρc +B2

y/2 + ρcv
2
cx

ρcvcxvcy −BxBy

vcxBy − vcyBx



Sn =

[
0
f

]
Sc =

 0
−f
0


Note this is isothermal for simplicity.



Can use upwind scheme for each fluid.

But

Must have all Hall parameters βi � 1.

In ISM true for ions and electrons, but not for grains.

In accretion discs may not be true for ions.

If density of conducting fluid� total density

⇒ conducting fluid wavespeeds� equilibrium wavespeeds

⇒ small timestep with explicit scheme



Multi-Fluid (Falle 2003)

Some species with βi ' 1, total density of charged species� total density
⇒ neglect inertia of charged species (otherwise equations are stiff)

Get single fluid with induction equation

∂B

∂t
= −∇ ∧ E = ∇∧ (v ∧B) hyperbolic

− ∇ ∧ [ν0
(J ·B)

B2
B] conduction parallel to field

− ∇ ∧ [ν1
(J ∧B)

B
] Hall effect

− ∇ ∧ [ν2
(J ∧B)

B2
∧B] ambipolar diffusion

Conductivities: σ0 =
1

B

∑
i

αiρiβi, σ1 =
1

B

∑
i

αiρiβi
(1 + β2

i )
, σ2 = − 1

B

∑
i

αiρi
(1 + β2

i )

Resistivities: ν0 =
1

σ0
ν1 = − σ2

(σ2
1 + σ2

2)
ν2 = − σ1

(σ2
1 + σ2

2)

Note |ν1| � 1 if all βi � 1 i.e. no Hall effect



Momentum equations for charged species reduce to

βi
B

(E + vi ∧B) + (v1 − vi) = 0 i = 2 · · ·N

(Neglecting inertia and collisions between charged species)
Also have

J = ∇∧B =
∑
i

αiρivi

These N equations determine E and the vi for i = 2 · · ·N .
Given the vi, determine the ρi from the continuity equations ⇒ Resistivities.

Subtleties

If not isothermal, must include Lorentz force, J ∧ B as source term in momentum and
energy equations to get correct relations across a gas dynamic shock.

Hall term dispersive with ω2 = ν2
1 cos2 θk4 (θ is angle between field and x axis)

i.e. phase and group velocity→∞ as wavelength→ 0 (whistler waves).
Might suppose that group velocity, 2ν1 cos θk, is effective wavespeed and ∆x is smallest
wavelength
⇒ stable timestep for explicit scheme ∆t = ∆x2/4πν1.

True if careful (see O’Sullivan & Downes 2006)



Efficiency
Even if we use an explicit scheme for field, the multi-fluid scheme is faster for low
ionisation fraction, Xi:

Multi-fluid scheme
Shock width L ∝ resistivity ν2 ∝

1

Xi
, mesh spacing ∆x ∝ L

Time step ∆t ∝ ∆x2

ν2
∝ L2Xi

Flow time ∝ L

⇒ No of steps in a flow time ∝ L

∆t
∝ 1

LXi
– independent of Xi

Two-Fluid Scheme
Conducting fluid wavespeed ci ∝

1

X
1/2
i

Time step ∆t ∝ ∆x

ci
∝ LX

1/2
i

⇒ No of steps in a flow time ∝ L

∆t
∝ 1

X
1/2
i

– increases as Xi decreases



Shock Structure with Large Hall Parameters
Two charged species: β2 = −5.8 106 (electrons), β3 = 5.8 103 (ions)
Preshock state: Bx = 1.0, By = 0.6, Fast Mach No = 1.5
ν0 = 1.7 10−12, ν1 = 10−5, ν2 = −0.058 (Hall effect negligible)
Isothermal – neutral pressure negligible.

High Resolution (∆x = 5 10−3)

Line – Integration of steady equations, markers – Numerical scheme
No rotation – Z component of field ' 10−4



Low Resolution (∆x = 2.5 10−2)

Line – Integration of steady equations, markers – Numerical scheme



Shock Structure with Strong Hall Effect
Two charged species: β2 = −5.8 106 (electrons), β3 = 0.233 (grains).
Preshock: Bx = 1.0, By = 0.6, Fast Mach No = 1.5
ν0 = 1.7 10−9, ν1 = 0.01, ν2 = 0.0023 (Significant Hall effect)
Isothermal – neutral pressure negligible.
High Resolution (∆x = 2 10−3)

Line – Integration of steady equations, markers – Numerical scheme



Low Resolution (∆x = 5 10−3)

Line – Integration of steady equations, markers – Numerical scheme



Shock Structure with Neutral Subshock
Two charged species: β2 = −5.8 106 (electrons), β3 = 5.8 103 (ions)
Preshock state: Bx = 1.0, By = 0.6, Fast Mach No = 5
ν0 = 1.7 10−12, ν1 = 10−5, ν2 = −0.058 (Hall effect negligible)
Isothermal – neutral sound speed a = 1.

High Resolution (∆x = 10−3)

Line – Integration of steady equations, markers – Numerical scheme



Low Resolution (∆x = 5 10−3)

Line – Integration of steady equations, markers – Numerical scheme



Efficiency Revisited
Non-ideal terms are diffusive ⇒ time step ∝ ∆x2.
Can get unconditionally stable scheme with implicit 1st order step followed by explicit
2nd order step
Resistive terms contain cross-derivatives⇒ implicit scheme messy
But: Treat cross-derivatives explicitly and only use implicit approximation for diagonal
terms:

∂2By

∂x2
,
∂2Bx

∂y2
etc

Does not change stability properties. Cheap: just have tridiagonal matrices to invert.

Super time stepping (O’Sullivan & Downes 2006; O’Sullivan 2015)

Use a set of steps, some with time steps larger than stability limit, some smaller
⇒ can get larger effective time step (Alexiades et al. 1996).

Works for parabolic problems, such as this. Easy to implement.



Can use such schemes for:

1. Multifluid shocks

2. Ambipolar diffusion in star forming regions.

3. Ambipolar diffusion and Hall effect in discs

4. etc
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