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Motivation: scattering

• Electromagnetic scattering from thin
wire.

• Compute scalar potential and 2 PDEs
on wire surface only –
time + 1D space.

• Fields reconstructed anywhere in
space using integral formulation.
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Outline

• Define the time domain boundary integral equation (TDBIE) acoustic scattering problem

• Summarise methods and costs

• Galerkin variational formulations of TDBIE

• Drop space, and concentrate on time stepping illustrated by Volterra integral equation

• Connections to backwards-in-time collocation

• Results



Motivation: acoustic scattering

Problem: ai (x, t) is incident on Γ for t > 0 – find the scattered field as(x, t)

Γ

Ω
scattered field

incident field

a i

sa

0Ω

• PDE: as
tt = ∆as in Ω (wave speed is c = 1);

• BC: as + ai = 0 on Γ
• TDBIE: as can be obtained from surface potential u:

1

4π

∫
Γ

u(x ′, t−|x ′−x |)
|x ′−x |

dσx ′ = −ai (x, t) x ∈ Γ, t > 0



Motivation: acoustic scattering

Problem: ai (x, t) is incident on Γ for t > 0 – find the scattered field as(x, t)

• Solve TDBIE for surface potential u:

1

4π

∫
Γ

u(x ′, t−|x ′−x |)
|x ′−x |

dσx ′ = −ai (x, t) x ∈ Γ, t > 0

• Use surface potential u to compute (in the exterior):

as(x, t) =
1

4π

∫
Γ

u(x ′, t−|x ′−x |)
|x ′−x |

dσx ′ x ∈ Ω, t > 0

• Both steps easier said than done!

• Gives all frequencies simultaneously by Fourier transform in time of as(x, t) - multiscale!



Approximate solution methods for TDBIE

Find u given ai from

(Su)(x , t) :=
1

4π

∫
Γ

u(x ′, t−|x ′−x |)
|x ′−x |

dσx ′ = −ai (x, t) x ∈ Γ, t > 0

• Convolution Quadrature in time (based on Laplace transform techniques) and coupled
with Galerkin in space. Needs a talk by itself! Lübich and then many subsequent papers,
including by Banjai on a version based on RK methods, as well as a proper fast method.

• Full space-time Galerkin. Bamberger and Ha Duong. Full version has theoretical
backing. A simplified version is usually used and usually works, but lacks theory to back it
up. Space mesh adaptation recently by Gimperlein and Stark.

• Collocation in space and time - usually fails.

• Collocation in time with Galerkin in space - can work (EM example).

• Backwards-in-time collocation with Galerkin in space - usually works, no theory.



Approximate solution methods for TDBIE

Find u given f = −ai (switch notation from now on) from

(Su)(x , t) :=
1

4π

∫
Γ

u(x ′, t−|x ′−x |)
|x ′−x |

dσx ′ = f (x , t) x ∈ Γ, t > 0

• Convolution Quadrature in time (based on Laplace transform techniques) and coupled
with Galerkin in space. Needs a talk by itself! Lübich and then many subsequent papers,
including by Banjai on a version based on RK methods, as well as a proper fast method.

• Full space-time Galerkin. Bamberger and Ha Duong. Full version has theoretical
backing. A simplified version is usually used and usually works, but lacks theory to back it
up. Space mesh adaptation recently by Gimperlein and Stark.

• Collocation in space and time - usually fails.

• Collocation in time with Galerkin in space - can work (EM example).

• Backwards-in-time collocation with Galerkin in space - usually works, no theory.



Computational costs for TDBIE approximation – surface in 3D space

• Time step and space mesh size about the same – O(1/N)

• Surface area of scatterer – O(NS) elements

• Number of time steps – O(NT )

• Explicit time stepping (marching on in time) schemes with local time basis functions –
cost O(NTN

2
S) = O(N5)

• Space-time Galerkin schemes with local time basis functions –
cost O(N5)× number of iterations to solve linear systems

• Explicit time stepping (marching on in time) schemes with global time basis functions –

cost O(N
3/2
T N2

S) = O(N11/2)

• Fast methods (Banjai for acoustics, Michiellsen for EM) can reduce the O(N5) costs.

• Compare with PDE in 3D scattering domain – C N4 where C is a big constant
depending on the size of the domain.



Energy in scattered field

(Su)(x , t) :=
1

4π

∫
Γ

u(x ′, t−|x ′−x |)
|x ′−x |

dσx ′ = f (x , t) x ∈ Γ, t > 0

• Scattered field energy can be calculated from the surface potential u

E (u; t) =

∫ t

0

∫
Γ
u(x , τ)(Su̇)(x , τ)dσx dτ ≥ 0

• Ha Duong’s results concern its time integral and give a coercivity and stability result:

α‖u‖2
H− ≤

∫ T

0
E (u; t)dt ≤ β‖u‖H−‖(T − t)ḟ ‖H+ ⇒ ‖u‖H− ≤

β

α
‖(T − t)ḟ ‖H+

• Note: basic calculus gives:∫ T

0
E (u; t) dt =

∫ T

0
(T − t)

∫
Γ
u(x , t) (Su̇)(x , t) dσx dt

• Ha Duong uses H+ = H
1/2,1/2
00 (Lions & Magenes) in PhD thesis, and H− is its dual.



Galerkin variational formulation

• Approx solution in terms of unknowns Un
k :

u(x , t) ≈ uh(x , t) :=

NT∑
n=1

NS∑
k=1

Un
k ψk(x)φn(t) ∈ Vh, u(x , 0) = uh(x , 0) = 0

• The energy expressions suggest using the time differentiated TDBIE

Su̇ = ḟ not Su = f ,

and one or other of

Find uh ∈ Vh s.t.

∫ T

0

∫
Γ
qh Su̇h dσx dt =

∫ T

0

∫
Γ
qh ḟ dσx dt ∀qh ∈ Vh

Find uh ∈ Vh s.t.

∫ T

0
(T − t)

∫
Γ
qh Su̇h dσx dt =

∫ T

0
(T − t)

∫
Γ
qh ḟ dσx dt ∀qh ∈ Vh



Galerkin variational formulation - (lack of) theory

• No theory for the standard Galerkin formulation – no coercivity to work with.
Find uh such that ∫ T

0

∫
Γ
qh Su̇h dσx dt =

∫ T

0

∫
Γ
qh ḟ dσx dt

for each qh = ψj(x)φm(t) ∈ Vh.

• But, on finite time intervals Ha Duong proves stability results about the following.
Find uh such that∫ T

0
(T − t)

∫
Γ
qh Su̇h dσx dt =

∫ T

0
(T − t)

∫
Γ
qh ḟ dσx dt

for each qh = ψj(x)φm(t) ∈ Vh.

We will return to this later.



Galerkin is not usually a time-marching scheme

It is when φm are piecewise constants in time, but not in general.

Example: φm(t) = B1(t/h −m) – 1st order B-splines (hat functions)

0 T/3 2T/3 T

time t

0

0.5

1
1 2 m N

T
-1 N

T

• NT time basis functions.

• φ0(t) is not needed since solution u(x , 0) = 0.

• φNT
(t) is not a “complete” basis function. Time integral is

∫ T
0 · · · dt.



Galerkin is not usually a time-marching scheme

• Example: φm(t) = B1(t/h −m) – 1st order B-splines (hat functions)

• Resulting linear system for the Un ∈ RNS (NS space degrees of freedom):

U0 = 0 , Q? Un+1 +
n∑

m=0

Qm Un−m = f n , n = 1 : NT − 1

NT∑
m=0

Pm UNT−m = f NT , (n = NT ) from “incomplete”φNT

When NT = 4 (P,Q are sparse block NS × NS matrices):
Q0 Q∗ 0 0
Q1 Q0 Q∗ 0
Q2 Q1 Q0 Q∗

P3 P2 P1 P0




U1

U2

U3

U4

 =


f 1

f 2

f 3

f 4





Galerkin matrix assembly hard

• Fix x and t and evaluate∫
Γ

ψj(x ′)φ̇n(t−|x ′−x |)
|x ′−x |

dσx ′

for each j where it is non-zero.

• Inner/outer circles show supφn(t − |x ′ − x |).

• Intersections of (square) space mesh elements
supφn are complicated.

• Now multiply by φm(t)ψk(x) and evaluate∫ T
0

∫
Γ · · · dσxdt.

• 5D integrals with weird shapes.

• Maischak (Brunel) developed quadrature code.

x

1/6
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Galerkin matrix assembly hard
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Summary of Galerkin for TDBIE

• No theory unless Ha Duong’s more complicated variational form used.

• Matrix assembly hard because of complicated 5D integral regions.

• Does not produce a marching on in time (MOT) scheme - more like a 2 point BVP in
time.



Summary of Galerkin for TDBIE

• No theory unless Ha Duong’s more complicated variational form used.
So let’s use it.

• Matrix assembly hard because of complicated 5D integral regions.
Use time basis functions that are globally smooth enough extended by 0 to do simple
quadrature based on the space elements.

• Does not produce a marching on in time (MOT) scheme - more like a 2 point BVP in
time.
Modify variational formulation to keep theoretical properties and to produce a MOT
scheme.

Illustrate the time-stepping parts using 1st kind Volterra integral equations.



TDBIE connection with 1st kind Volterra integral equations

If Γ is an infinite flat plane, separation of variables in

1

4π

∫
Γ

u(x ′, t−|x ′−x |)
|x ′−x |

dσx ′ = f (x , t) x ∈ Γ, t > 0

gives ∫ t

0
J0(|ω|τ)û(ω, t − τ)dτ = f̂ (ω, t)

where û, f̂ are Fourier transforms of u, f in space over the 2D plane with frequency vector ω.

J0 = 1st kind Bessel function of order 0.



TDBIE connection with 1st kind Volterra integral equations

If Γ is a sphere surface, separation of variables into spherical harmonics in

1

4π

∫
Γ

u(x ′, t−|x ′−x |)
|x ′−x |

dσx ′ = f (x , t) x ∈ Γ, t > 0

gives step-kernel VIE problem for each u`,m:∫ t

0
K`(τ) u`,m(t−τ) = 2f`,m(1, t) , K`(t) =

{
P`(1− t2/2), t ≤ 2
0, t > 2

for the unit sphere. Note that it takes 2 time units to travel the diameter of sphere.

P` is Legendre polynomial and the indices `,m refer to the order of the spherical harmonics.



VIE kernels

Flat plate Bessel J0(|ω|t) kernel:

0 2 4 6 8 10

time t

-0.5

0

0.5

1

J
0
(t)

J
0
(3t)

J
0
(5t)

Sphere surface Legendre P`(1− t2/2) kernel:

0 0.5 1 1.5 2 2.5 3

time t

-1

-0.5

0

0.5

1

1.5

P
3
(1-t 2 /2)

P
6
(1-t 2 /2)

P
9
(1-t 2 /2)



A model problem for time discretistaion

• Use convolution Volterra integral equation VIE (K , f given, find u)∫ t

0
K (τ) u(t − τ)dτ = f (t), t > 0

as a model to illustrate time discretisation.

• Causal – solution u(t) depends on K , f , u from past, not future.

• Note that when u, f ≡ 0 for all t ≤ 0,∫ t

0
K (τ) u(t − τ)dτ =

∫ ∞
0
K (τ) u(t−τ) dτ, t > 0.



A model problem for time discretistaion

• Use convolution Volterra integral equation VIE (K , f given, find u)

(K ∗ u)(t) :=

∫ t

0
K (τ) u(t − τ)dτ = f (t), t ∈ (0,T ]

as a model to illustrate time discretisation.

• Lots of good methods for the approximate solution of this problem, e.g. convolution
quadrature, DG, backward in time collocation. These have a marching on in time (MOT)
format. DG perhaps best, but no good for TDBIEs.

• Standard Galerkin is not regarded as a good way to approximate this problem! But we’ll
use it anyway because of its role in TDBIEs.



Galerkin for VIE K ∗ u = f

• Use convolution Volterra integral equation VIE (K , f given, find u)∫ t

0
K (τ) u(t − τ)dτ = f (t), t ∈ (0,T ].

• Ha Duong Galerkin formulation: find uh ∈ Vh s.t. ∀qh ∈ Vh∫ T

0
(T − t)qh(t)

∫ t

0
K (τ)u̇h(t − τ)dτ dt =

∫ T

0
(T − t)qh(t)ḟ (t)dt.

Note that uh, qh ∈ Vh ⇒ uh(0) = qh(0) = 0.

• Rearranged Ha Duong:∫ T

0
K (τ)

∫ T

τ
(T − t)qh(t)u̇h(t − τ)dt dτ =

∫ T

0
(T − t)qh(t)ḟ (t)dt.



Galerkin for VIE K ∗ u = f

• Rearranged Ha Duong:∫ T

0
K (τ)

∫ T

τ
(T − t)qh(t)u̇h(t − τ)dt dτ =

∫ T

0
(T − t)qh(t)ḟ (t)dt.

• Use uh(t) =
∑NT

n=1 unφn(t), qh(t) = φm(t) for each m = 1, . . . ,NT

NT∑
n=1

un

∫ T

0
K (τ)

∫ T

τ
(T − t)φm(t)φ̇n(t − τ)dt dτ︸ ︷︷ ︸

Cm,n

=

∫ T

0
(T − t)φm(t)ḟ (t)dt.

• Cm,n looks complicated, and we might expect to have to compute O(N2
T ) different

quantities to set up linear system, . . .

• . . . but it actually has a lot of structure when the basis functions are splines, and we only
need O(NT ) different quantities.



Galerkin for VIE K ∗ u = f

The resulting linear system is

(DA + hÂ )U = Df + hf̂ , D = diag(T − h,T − 2h, . . . , 2h, h, 0).

Comes from (T − t) = (T − mh) + (mh − t) for each m = 1, . . . ,NT

NT∑
n=1

un

∫ T

0
K (τ)

∫ T

τ
(T − t)φm(t)φ̇n(t − τ)dt︸ ︷︷ ︸ dτ =

∫ T

0
(T − t)φm(t)ḟ (t)dt.

= (T − mh)

∫ T

τ
φm(t)φ̇n(t − τ)dt +

∫ T

τ
(mh − t)φm(t)φ̇n(t − τ)dt

Assemble equations for m = 1 : NT :

(D)m,m = (T − mh), (A)m,n =

∫ T

0
K (τ)

∫ T

τ
φm(t)φ̇n(t − τ)dt dτ



Galerkin for VIE K ∗ u = f

The resulting linear system is

(DA + hÂ )U = Df + hf̂ , D = diag(T − h,T − 2h, . . . , 2h, h, 0).
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τ
(mh − t)φm(t)φ̇n(t − τ)dt

Assemble equations for m = 1 : NT :

(hÂ)m,n =

∫ T

0
K (τ)

∫ T

τ
(mh − t)φm(t)φ̇n(t − τ)dt dτ



Galerkin for VIE K ∗ u = f

The resulting linear system is

(DA + hÂ )U = Df + hf̂ , D = diag(T − h,T − 2h, . . . , 2h, h, 0).

Comes from (T − t) = (T − mh) + (mh − t) for each m = 1, . . . ,NT

NT∑
n=1

un

∫ T

0
K (τ)

∫ T

τ
(T − t)φm(t)φ̇n(t − τ)dt︸ ︷︷ ︸ dτ =

∫ T

0
(T − t)φm(t)ḟ (t)dt.

= (T − mh)

∫ T

τ
φm(t)φ̇n(t − τ)dt +

∫ T

τ
(mh − t)φm(t)φ̇n(t − τ)dt

Assemble equations for m = 1 : NT :

(f )m =

∫ T

0
φm(t)ḟ (t)dt, (hf̂ )m =

∫ T

0
(mh − t)φm(t)ḟ (t)dt



Galerkin for VIE K ∗ u = f

• Ha Duong Galerkin formulation: find uh ∈ Vh s.t. ∀qh ∈ Vh∫ T

0
(T − t)qh(t)

∫ t

0
K (τ)u̇h(t − τ)dτ dt =

∫ T

0
(T − t)qh(t)ḟ (t)dt

gives linear system
(DA + hÂ )U = Df + hf̂ .

• Basic Galerkin formulation: find uh ∈ Vh s.t. ∀qh ∈ Vh∫ T

0
qh(t)

∫ t

0
K (τ)u̇h(t − τ)dτ dt =

∫ T

0
qh(t)ḟ (t)dt.

gives linear system
AU = f .



Galerkin for VIE K ∗ u = f with B1 basis

The resulting linear system when B1 basis functions used is

(DA + hÂ )U = Df + hf̂ , D = diag(T − h,T − 2h, . . . , 2h, h, 0).

When NT = 4: U = (u1, . . . , u4)T, f , f̂ ∈ R4

A =


q0 q−1 0 0
q1 q0 q−1 0
q2 q1 q0 q−1

p3 p2 p1 p0

 , Â =


q̂0 q̂−1 0 0
q̂1 q̂0 q̂−1 0
q̂2 q̂1 q̂0 q̂−1

p̂3 p̂2 p̂1 p̂0

 ,

Structured, not lower triangular, nearly Toeplitz.



ASIDE: A nice property of B-splines

• Key term: Ym,n(τ) =
∫ T
τ (T − t)φm(t)φ̇n(t − τ)dt .

• Split (T − t) = (T − mh) + (mh − t) for each m = 1, . . . ,NT .

• If φn(t) = B`(t/h − n) (splines degree ` ≥ 0) then∫ T

τ
φm(t)φ̇n(t − τ)dt =

∫ T

τ
B`(t/h −m) Ḃ`(t/h − n − τ/h) dt

= h
(
B2`

(
τ
h −

1
2 + n −m

)
− B2`

(
τ
h + 1

2 + n −m
))

= −hḂ2`+1

(
τ
h + n −m

)
• Away from 0 and T , B1 spline Galerkin gives calculations involving (smoother) B2 splines

– good for TDBIE quadrature.

• Term
∫ T
τ (mh − t)φm(t)φ̇n(t − τ)dt also reasonably nice.



Backwards-in-time approximation 1

• Volterra integral equation (VIE) with u, f ≡ 0 for all t ≤ 0:∫ t

0
K (τ) u(t−τ) dτ = f (t) =

∫ ∞
0
K (τ) u(t−τ) dτ t ∈ (0,T ].

• Approximate VIE at t = tn = nh for n = 1, 2, . . .. i.e. collocate.

• Approximate solution with basis functions φm:

u(tn − τ ) ≈
n∑

m=0

un−m φm(τ ) NOT u(τ ) ≈
∑
k

uk φk(τ )

• Plug into VIE at t = tn:

n∑
m=0

qmun−m = f (tn), qm =

∫ ∞
0

K (τ)φm(τ)dτ.



Backwards-in-time approximation 2

• Marching on in time for n = 1, 2, . . .:

n∑
m=0

qmun−m = f (tn), ⇔ un =
1

q0

(
f (tn)−

n∑
m=1

qmun−m

)

where

u(tn − τ) ≈
n∑

m=0

un−m φm(τ), qm =

∫ ∞
0

K (τ)φm(τ)dτ.

• Remarkably, convolution quadrature based on linear multistep methods has this format -
but with globally supported time basis functions.

• We use mainly B-spline basis functions of degree ` since their local support with some
global smoothness is an advantage in the full TDBIE. Need modification for
m = 0, . . . , `− 1, but have also used Gaussian basis functions.



Results for TDBIE – backward-in-time vs CQ
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flat corrected
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BDF2 is a 2nd order accurate CQ method.
The backward-in-time scheme is (formally) 2nd order witrh local Gaussian basis functions.



Backwards-in-time approximation 3

• Choose B3 (cubic spline) basis functions with modifications to φ0, φ1:

φ0(t) = B3(t/h) + 2B3(t/h + 1), φ1(t) = B3(t/h − 1)− B3(t/h + 1),

φm(t) = B3(t/h −m), m ≥ 2

and approximate K ∗ u̇ = ḟ – time differentiated version of VIE.

n = 1, . . . ,NT :
n∑

m=0

gmun−m = ḟ (tn), gm =

∫ ∞
0

K (τ) φ̇m(τ)dτ.

• Closely related to simple Galerkin B1 spline approximation from earlier:

n = 1, . . . ,NT − 1 : q−1un+1 +
n∑

m=0

qmun−m = fn,

where, after scaling, g0 = q0 + 2q−1, g1 = q1 − q−1 , gm = qm,m ≥ 2.



Backwards-in-time approximation 4

• Choose B3 (cubic spline) basis functions with modifications to φ0, φ1 and approximate
K ∗ u̇ = ḟ – time differentiated version of VIE.

n = 1, . . . ,NT :
n∑

m=0

gmun−m = ḟ (tn), gm =

∫ ∞
0

K (τ) φ̇m(τ)dτ.

• Closely related to simple Galerkin B1 spline approximation from earlier:

n = 1, . . . ,NT − 1 : q−1un+1 +
n∑

m=0

qmun−m = fn,

where, after scaling, g0 = q0 + 2q−1, g1 = q1 − q−1 , gm = qm,m ≥ 2.

• Same as 2nd order extrapolation – replace un+1 by 2un − un−1.



Galerkin for VIE K ∗ u = f with B1 basis revisited

The B1 basis function full Galerkin approx is not lower triangular (and so is expensive to solve)

(DA + hÂ )U = Df + hf̂ , D = diag(T − h,T − 2h, . . . , 2h, h, 0).

Can write it as

(T − nh)

(
q−1un+1 +

n∑
m=0

qmun−m

)
+

(
q̂−1un+1 +

n∑
m=0

q̂mun−m

)
= (T − nh)fn + hf̂n

Extrapolate un+1 = 2un − un−1 gives a lower triangluar approximation:

(T − nh)

(
n∑

m=0

gmun−m

)
+

(
n∑

m=0

ĝmun−m

)
= (T − nh)fn + hf̂n

g0 = q0 + 2q−1, g1 = q1 − q−1, gk = qk , k ≥ 2. ĝ analagous



Results for VIE
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• VIE kernel J0(7t) – 1st kind Bessel
function of order 0.

• VIE approximation by various
methods: (a) standard Galerkin, (b)
(T − t)-weighted Galerkin, (c,d)
extrapolated versions of (a,b)

• all appear O(h2)



Results for VIE
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T-t Gal - Extrap • VIE kernel P29(1− t2/2)H(2− t) –
sphere scattering, harmonics of order
29.

• VIE approximation by various
methods: (a) standard Galerkin, (b)
(T − t)-weighted Galerkin, (c,d)
extrapolated versions of (a,b)

• all appear O(h2) – and the kernel is
discontinuous at t = 2!



Results for TDBIE – full Ha Duong Galerkin

Not a sausage so far.

But plenty of results for other methods.
e.g. Simple Galerkin with extrapolation as preconditioner in Startk & Gimperlein – does a
good job.
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Results for TDBIE – backward-in-time vs CQ
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BDF2 is a 2nd order accurate CQ method.
The backward-in-time scheme is (formally) 2nd order witrh local Gaussian basis functions.



Results for TDBIE – backward in time, sphere surface

10
1

10
2

10
3

10
−2

10
0

Number of Elements

Relative error to T=2

10
1

10
2

10
3

10
−2

10
0

Number of Elements

Relative error to T=10

 

 

flat raw

flat corrected

spherical

L∞ Errors – appear 2nd order.



Results for TDBIE – backward in time, flat screen

Edge and corner singularities.

Gimperlien, Stark et al. get good results using mesh refinement at corners and edges.



Summary

• Ha Duong full variational formulation has a lot of structure that makes it much less
expensive to set up and use than expected – theory guarantees stability.

• B-spline time basis functions: have nice properties as time basis functions
– simple formula for core time calculation in Galerkin approx
– good smoothess for quadrature (globally C 2`−1 integrands with B` basis)

• Simple Galerkin appears to work as well as full Ha Duong - no theory.

• Extrapolated Galerkin methods with B` basis
– B1 appears to work almost as well as full versions despite (so far) lack of theory
– equivalent to backward-in-time collocation with B2` basis

• Outlook:
– get some full Ha Duong results
– try to patch up theory, particularly of connections between schemes
– move to B2 spline Galerkin and B4 backward-in-time collocation counterpart
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