Approximation of Time Domain Boundary Integral Equations

Dugald Duncan

Heriot-Watt University, Edinburgh

May 15, 2018

Joint work with Penny Davies (Strathclyde)

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Motivation: scattering

- Electromagnetic scattering from thin wire.
- Compute scalar potential and 2 PDEs on wire surface only time +1 D space.
- Fields reconstructed anywhere in space using integral formulation.

Outline

- Define the time domain boundary integral equation (TDBIE) acoustic scattering problem
- Summarise methods and costs
- Galerkin variational formulations of TDBIE
- Drop space, and concentrate on time stepping illustrated by Volterra integral equation
- Connections to backwards-in-time collocation
- Results

Motivation: acoustic scattering

Problem: $a^{i}(x, t)$ is incident on Γ for $t>0$ - find the scattered field $a^{s}(x, t)$

$$
\text { scattered field } a^{s}
$$

- PDE: $a_{t t}^{s}=\Delta a^{s}$ in Ω (wave speed is $c=1$);
- BC: $a^{s}+\boldsymbol{a}^{i}=0$ on Γ
- TDBIE: a^{s} can be obtained from surface potential u :

$$
\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(x^{\prime}, t-\left|x^{\prime}-x\right|\right)}{\left|x^{\prime}-x\right|} d \sigma_{x^{\prime}}=-a^{i}(x, t) \quad x \in \Gamma, t>0
$$

Motivation: acoustic scattering

Problem: $\boldsymbol{a}^{i}(x, t)$ is incident on Γ for $t>0$ - find the scattered field $a^{s}(x, t)$

- Solve TDBIE for surface potential u :

$$
\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(x^{\prime}, t-\left|x^{\prime}-x\right|\right)}{\left|x^{\prime}-\boldsymbol{x}\right|} d \sigma_{x^{\prime}}=-a^{i}(x, t) \quad x \in \Gamma, t>0
$$

- Use surface potential u to compute (in the exterior):

$$
a^{s}(x, t)=\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(\boldsymbol{x}^{\prime}, t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}} \quad x \in \Omega, t>0
$$

- Both steps easier said than done!
- Gives all frequencies simultaneously by Fourier transform in time of $a^{s}(x, t)$ - multiscale!

Approximate solution methods for TDBIE

Find u given a^{i} from

$$
(S u)(x, t):=\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(\boldsymbol{x}^{\prime}, t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}=-\boldsymbol{a}^{i}(x, t) \quad x \in \Gamma, t>0
$$

- Convolution Quadrature in time (based on Laplace transform techniques) and coupled with Galerkin in space. Needs a talk by itself! Lübich and then many subsequent papers, including by Banjai on a version based on RK methods, as well as a proper fast method.
- Full space-time Galerkin. Bamberger and Ha Duong. Full version has theoretical backing. A simplified version is usually used and usually works, but lacks theory to back it up. Space mesh adaptation recently by Gimperlein and Stark.
- Collocation in space and time - usually fails.
- Collocation in time with Galerkin in space - can work (EM example).
- Backwards-in-time collocation with Galerkin in space - usually works, no theory.

Approximate solution methods for TDBIE

Find u given $f=-\boldsymbol{a}^{\boldsymbol{i}}$ (switch notation from now on) from

$$
(S u)(\boldsymbol{x}, t):=\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(\boldsymbol{x}^{\prime}, t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}=f(\boldsymbol{x}, t) \quad \boldsymbol{x} \in \Gamma, t>0
$$

- Convolution Quadrature in time (based on Laplace transform techniques) and coupled with Galerkin in space. Needs a talk by itself! Lübich and then many subsequent papers, including by Banjai on a version based on RK methods, as well as a proper fast method.
- Full space-time Galerkin. Bamberger and Ha Duong. Full version has theoretical backing. A simplified version is usually used and usually works, but lacks theory to back it up. Space mesh adaptation recently by Gimperlein and Stark.
- Collocation in space and time - usually fails.
- Collocation in time with Galerkin in space - can work (EM example).
- Backwards-in-time collocation with Galerkin in space - usually works, no theory.

Computational costs for TDBIE approximation - surface in 3D space

- Time step and space mesh size about the same $-\mathcal{O}(1 / N)$
- Surface area of scatterer $-\mathcal{O}\left(N_{S}\right)$ elements
- Number of time steps - $\mathcal{O}\left(N_{T}\right)$
- Explicit time stepping (marching on in time) schemes with local time basis functions $\operatorname{cost} \mathcal{O}\left(N_{T} N_{S}^{2}\right)=\mathcal{O}\left(N^{5}\right)$
- Space-time Galerkin schemes with local time basis functions cost $\mathcal{O}\left(N^{5}\right) \times$ number of iterations to solve linear systems
- Explicit time stepping (marching on in time) schemes with global time basis functions $\operatorname{cost} \mathcal{O}\left(N_{T}^{3 / 2} N_{S}^{2}\right)=\mathcal{O}\left(N^{11 / 2}\right)$
- Fast methods (Banjai for acoustics, Michiellsen for EM) can reduce the $\mathcal{O}\left(N^{5}\right)$ costs.
- Compare with PDE in 3D scattering domain - $C N^{4}$ where C is a big constant depending on the size of the domain.

Energy in scattered field

$$
(S u)(\boldsymbol{x}, t):=\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(\boldsymbol{x}^{\prime}, t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}=f(\boldsymbol{x}, t) \quad \boldsymbol{x} \in \Gamma, t>0
$$

- Scattered field energy can be calculated from the surface potential u

$$
E(u ; t)=\int_{0}^{t} \int_{\Gamma} u(\boldsymbol{x}, \tau)(S \dot{u})(\boldsymbol{x}, \tau) d \sigma_{\boldsymbol{x}} d \tau \geq 0
$$

- Ha Duong's results concern its time integral and give a coercivity and stability result:

$$
\alpha\|u\|_{\mathcal{H}^{-}}^{2} \leq \int_{0}^{T} E(u ; t) d t \leq \beta\|u\|_{\mathcal{H}^{-}}\|(T-t) \dot{f}\|_{\mathcal{H}^{+}} \quad \Rightarrow \quad\|u\|_{\mathcal{H}^{-}} \leq \frac{\beta}{\alpha}\|(T-t) \dot{f}\|_{\mathcal{H}^{+}}
$$

- Note: basic calculus gives:

$$
\int_{0}^{T} E(u ; t) d t=\int_{0}^{T}(T-t) \int_{\Gamma} u(\boldsymbol{x}, t)(S \dot{u})(\boldsymbol{x}, t) d \sigma_{\boldsymbol{x}} d t
$$

- Ha Duong uses $\mathcal{H}^{+}=H_{00}^{1 / 2,1 / 2}$ (Lions \& Magenes) in PhD thesis, and \mathcal{H}^{-}is its dual.

Galerkin variational formulation

- Approx solution in terms of unknowns U_{k}^{n} :

$$
u(\boldsymbol{x}, t) \approx u_{h}(\boldsymbol{x}, t):=\sum_{n=1}^{N_{T}} \sum_{k=1}^{N_{S}} U_{k}^{n} \psi_{k}(\boldsymbol{x}) \phi_{n}(t) \in V_{h}, \quad u(\boldsymbol{x}, 0)=u_{h}(\boldsymbol{x}, 0)=0
$$

- The energy expressions suggest using the time differentiated TDBIE

$$
S \dot{u}=\dot{f} \quad \text { not } \quad S u=f,
$$

and one or other of

$$
\text { Find } u_{h} \in V_{h} \text { s.t. } \quad \int_{0}^{T} \int_{\Gamma} q_{h} S \dot{u}_{h} d \sigma_{\boldsymbol{x}} d t=\int_{0}^{T} \int_{\Gamma} q_{h} \dot{f} d \sigma_{\boldsymbol{x}} d t \quad \forall q_{h} \in V_{h}
$$

Find $u_{h} \in V_{h}$ s.t. $\quad \int_{0}^{T}(T-t) \int_{\Gamma} q_{h} S \dot{u}_{h} d \sigma_{\boldsymbol{X}} d t=\int_{0}^{T}(T-t) \int_{\Gamma} q_{h} \dot{f} d \sigma_{\boldsymbol{X}} d t \quad \forall q_{h} \in V_{h}$

Galerkin variational formulation - (lack of) theory

- No theory for the standard Galerkin formulation - no coercivity to work with.

Find u_{h} such that

$$
\int_{0}^{T} \int_{\Gamma} q_{h} S \dot{u}_{h} d \sigma_{\boldsymbol{x}} d t=\int_{0}^{T} \int_{\Gamma} q_{h} \dot{f} d \sigma_{\boldsymbol{x}} d t
$$

for each $q_{h}=\psi_{j}(\boldsymbol{x}) \phi_{m}(t) \in V_{h}$.

- But, on finite time intervals Ha Duong proves stability results about the following. Find u_{h} such that

$$
\int_{0}^{T}(T-t) \int_{\Gamma} q_{h} S \dot{u}_{h} d \sigma_{\boldsymbol{x}} d t=\int_{0}^{T}(T-t) \int_{\Gamma} q_{h} \dot{f} d \sigma_{\boldsymbol{x}} d t
$$

for each $q_{h}=\psi_{j}(\boldsymbol{x}) \phi_{m}(t) \in V_{h}$.
We will return to this later.

Galerkin is not usually a time-marching scheme

It is when ϕ_{m} are piecewise constants in time, but not in general.
Example: $\phi_{m}(t)=B_{1}(t / h-m)$ - 1st order B-splines (hat functions)

- N_{T} time basis functions.
- $\phi_{0}(t)$ is not needed since solution $u(\boldsymbol{x}, 0)=0$.
- $\phi_{N_{T}}(t)$ is not a "complete" basis function. Time integral is $\int_{0}^{T} \cdots d t$.

Galerkin is not usually a time-marching scheme

- Example: $\phi_{m}(t)=B_{1}(t / h-m)$ - 1st order B-splines (hat functions)
- Resulting linear system for the $\boldsymbol{U}^{n} \in \mathbb{R}^{N_{S}}\left(N_{S}\right.$ space degrees of freedom):

$$
\begin{gathered}
\boldsymbol{U}^{0}=0, \quad Q^{\star} \boldsymbol{U}^{n+1}+\sum_{m=0}^{n} Q^{m} \boldsymbol{U}^{n-m}=\boldsymbol{f}^{n}, \quad n=1: N_{T}-1 \\
\sum_{m=0}^{N_{T}} P^{m} \boldsymbol{U}^{N_{T}-m}=\boldsymbol{f}^{N_{T}},\left(n=N_{T}\right) \text { from "incomplete" } \phi_{N_{T}}
\end{gathered}
$$

When $N_{T}=4\left(P, Q\right.$ are sparse block $N_{S} \times N_{S}$ matrices $)$:

$$
\left(\begin{array}{cccc}
Q^{0} & Q^{*} & 0 & 0 \\
Q^{1} & Q^{0} & Q^{*} & 0 \\
Q^{2} & Q^{1} & Q^{0} & Q^{*} \\
P^{3} & P^{2} & P^{1} & P^{0}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{U}^{1} \\
\boldsymbol{U}^{2} \\
\boldsymbol{U}^{3} \\
\boldsymbol{U}^{4}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{f}^{1} \\
\boldsymbol{f}^{2} \\
\boldsymbol{f}^{3} \\
\boldsymbol{f}^{4}
\end{array}\right)
$$

Galerkin matrix assembly hard

- Fix \boldsymbol{x} and t and evaluate

$$
\int_{\Gamma} \frac{\psi_{j}\left(\boldsymbol{x}^{\prime}\right) \dot{\phi}_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}
$$

for each j where it is non-zero.

- Inner/outer circles show $\sup \phi_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)$.
- Intersections of (square) space mesh elements $\sup \phi_{n}$ are complicated.

- Now multiply by $\phi_{m}(t) \psi_{k}(\boldsymbol{x})$ and evaluate $\int_{0}^{T} \int_{\Gamma} \cdots d \sigma_{\boldsymbol{x}} d t$.
- 5D integrals with weird shapes.
- Maischak (Brunel) developed quadrature code.

Galerkin matrix assembly hard

- Fix \boldsymbol{x} and t and evaluate

$$
\int_{\Gamma} \frac{\psi_{j}\left(\boldsymbol{x}^{\prime}\right) \dot{\phi}_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}
$$

for each j where it is non-zero.

- Inner/outer circles show $\sup \phi_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)$.
- Intersections of (square) space mesh elements $\sup \phi_{n}$ are complicated.

- Now multiply by $\phi_{m}(t) \psi_{k}(\boldsymbol{x})$ and evaluate $\int_{0}^{T} \int_{\Gamma} \cdots d \sigma_{\boldsymbol{x}} d t$.
- 5D integrals with weird shapes.
- Maischak (Brunel) developed quadrature code.

Galerkin matrix assembly hard

- Fix \boldsymbol{x} and t and evaluate

$$
\int_{\Gamma} \frac{\psi_{j}\left(\boldsymbol{x}^{\prime}\right) \dot{\phi}_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}
$$

for each j where it is non-zero.

- Inner/outer circles show $\sup \phi_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)$.
- Intersections of (square) space mesh elements $\sup \phi_{n}$ are complicated.

- Now multiply by $\phi_{m}(t) \psi_{k}(\boldsymbol{x})$ and evaluate $\int_{0}^{T} \int_{\Gamma} \cdots d \sigma_{\boldsymbol{X}} d t$.
- 5D integrals with weird shapes.
- Maischak (Brunel) developed quadrature code.

Galerkin matrix assembly hard

- Fix \boldsymbol{x} and t and evaluate

$$
\int_{\Gamma} \frac{\psi_{j}\left(\boldsymbol{x}^{\prime}\right) \dot{\phi}_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}
$$

for each j where it is non-zero.

- Inner/outer circles show $\sup \phi_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)$.
- Intersections of (square) space mesh elements $\sup \phi_{n}$ are complicated.
- Now multiply by $\phi_{m}(t) \psi_{k}(\boldsymbol{x})$ and evaluate $\int_{0}^{T} \int_{\Gamma} \cdots d \sigma_{\boldsymbol{x}} d t$.
- 5D integrals with weird shapes.
- Maischak (Brunel) developed quadrature code.

Galerkin matrix assembly hard

- Fix \boldsymbol{x} and t and evaluate

$$
\int_{\Gamma} \frac{\psi_{j}\left(\boldsymbol{x}^{\prime}\right) \dot{\phi}_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}
$$

for each j where it is non-zero.

- Inner/outer circles show $\sup \phi_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)$.
- Intersections of (square) space mesh elements $\sup \phi_{n}$ are complicated.
- Now multiply by $\phi_{m}(t) \psi_{k}(\boldsymbol{x})$ and evaluate $\int_{0}^{T} \int_{\Gamma} \cdots d \sigma_{\boldsymbol{x}} d t$.
- 5D integrals with weird shapes.
- Maischak (Brunel) developed quadrature code.

$\vdots \quad \vdots \quad \vdots$
\qquad

Galerkin matrix assembly hard

- Fix \boldsymbol{x} and t and evaluate

$$
\int_{\Gamma} \frac{\psi_{j}\left(\boldsymbol{x}^{\prime}\right) \dot{\phi}_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}
$$

for each j where it is non-zero.

- Inner/outer circles show $\sup \phi_{n}\left(t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)$.
- Intersections of (square) space mesh elements $\sup \phi_{n}$ are complicated.
- Now multiply by $\phi_{m}(t) \psi_{k}(\boldsymbol{x})$ and evaluate
 $\int_{0}^{T} \int_{\Gamma} \cdots d \sigma_{\boldsymbol{x}} d t$.
- 5D integrals with weird shapes.
- Maischak (Brunel) developed quadrature code.

Summary of Galerkin for TDBIE

- No theory unless Ha Duong's more complicated variational form used.
- Matrix assembly hard because of complicated 5D integral regions.
- Does not produce a marching on in time (MOT) scheme - more like a 2 point BVP in time.

Summary of Galerkin for TDBIE

- No theory unless Ha Duong's more complicated variational form used. So let's use it.
- Matrix assembly hard because of complicated 5D integral regions. Use time basis functions that are globally smooth enough extended by 0 to do simple quadrature based on the space elements.
- Does not produce a marching on in time (MOT) scheme - more like a 2 point BVP in time.
Modify variational formulation to keep theoretical properties and to produce a MOT scheme.

Illustrate the time-stepping parts using 1st kind Volterra integral equations.

TDBIE connection with 1st kind Volterra integral equations

If Γ is an infinite flat plane, separation of variables in

$$
\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(\boldsymbol{x}^{\prime}, t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}=f(\boldsymbol{x}, t) \quad \boldsymbol{x} \in \Gamma, t>0
$$

gives

$$
\int_{0}^{t} J_{0}(|\boldsymbol{\omega}| \tau) \hat{u}(\boldsymbol{\omega}, t-\tau) d \tau=\hat{f}(\boldsymbol{\omega}, t)
$$

where \hat{u}, \hat{f} are Fourier transforms of u, f in space over the 2D plane with frequency vector $\boldsymbol{\omega}$. $J_{0}=1$ st kind Bessel function of order 0 .

TDBIE connection with 1st kind Volterra integral equations

If Γ is a sphere surface, separation of variables into spherical harmonics in

$$
\frac{1}{4 \pi} \int_{\Gamma} \frac{u\left(\boldsymbol{x}^{\prime}, t-\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|\right)}{\left|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right|} d \sigma_{\boldsymbol{x}^{\prime}}=f(\boldsymbol{x}, t) \quad \boldsymbol{x} \in \Gamma, t>0
$$

gives step-kernel VIE problem for each $u_{\ell, m}$:

$$
\int_{0}^{t} K_{\ell}(\tau) u_{\ell, m}(t-\tau)=2 f_{\ell, m}(1, t), \quad K_{\ell}(t)= \begin{cases}P_{\ell}\left(1-t^{2} / 2\right), & t \leq 2 \\ 0, & t>2\end{cases}
$$

for the unit sphere. Note that it takes 2 time units to travel the diameter of sphere.
P_{ℓ} is Legendre polynomial and the indices ℓ, m refer to the order of the spherical harmonics.

VIE kernels

Flat plate Bessel $J_{0}(|\boldsymbol{\omega}| t)$ kernel:

Sphere surface Legendre $P_{\ell}\left(1-t^{2} / 2\right)$ kernel:

A model problem for time discretistaion

- Use convolution Volterra integral equation VIE (K, f given, find u)

$$
\int_{0}^{t} K(\tau) u(t-\tau) d \tau=f(t), \quad t>0
$$

as a model to illustrate time discretisation.

- Causal - solution $u(t)$ depends on K, f, u from past, not future.
- Note that when $u, f \equiv 0$ for all $t \leq 0$,

$$
\int_{0}^{t} K(\tau) u(t-\tau) d \tau=\int_{0}^{\infty} K(\tau) u(t-\tau) d \tau, \quad t>0
$$

A model problem for time discretistaion

- Use convolution Volterra integral equation VIE (K, f given, find u)

$$
(K * u)(t):=\int_{0}^{t} K(\tau) u(t-\tau) d \tau=f(t), \quad t \in(0, T]
$$

as a model to illustrate time discretisation.

- Lots of good methods for the approximate solution of this problem, e.g. convolution quadrature, DG, backward in time collocation. These have a marching on in time (MOT) format. DG perhaps best, but no good for TDBIEs.
- Standard Galerkin is not regarded as a good way to approximate this problem! But we'll use it anyway because of its role in TDBIEs.

Galerkin for VIE $K * u=f$

- Use convolution Volterra integral equation VIE (K, f given, find u)

$$
\int_{0}^{t} K(\tau) u(t-\tau) d \tau=f(t), \quad t \in(0, T]
$$

- Ha Duong Galerkin formulation: find $u_{h} \in V_{h}$ s.t. $\forall q_{h} \in V_{h}$

$$
\int_{0}^{T}(T-t) q_{h}(t) \int_{0}^{t} K(\tau) \dot{u}_{h}(t-\tau) d \tau d t=\int_{0}^{T}(T-t) q_{h}(t) \dot{f}(t) d t
$$

Note that $u_{h}, q_{h} \in V_{h} \quad \Rightarrow \quad u_{h}(0)=q_{h}(0)=0$.

- Rearranged Ha Duong:

$$
\int_{0}^{T} K(\tau) \int_{\tau}^{T}(T-t) q_{h}(t) \dot{u}_{h}(t-\tau) d t d \tau=\int_{0}^{T}(T-t) q_{h}(t) \dot{f}(t) d t
$$

Galerkin for VIE $K * u=f$

- Rearranged Ha Duong:

$$
\int_{0}^{T} K(\tau) \int_{\tau}^{T}(T-t) q_{h}(t) \dot{u}_{h}(t-\tau) d t d \tau=\int_{0}^{T}(T-t) q_{h}(t) \dot{f}(t) d t
$$

- Use $u_{h}(t)=\sum_{n=1}^{N_{T}} u_{n} \phi_{n}(t), q_{h}(t)=\phi_{m}(t)$ for each $m=1, \ldots, N_{T}$

$$
\sum_{n=1}^{N_{T}} u_{n} \underbrace{\int_{0}^{T} K(\tau) \int_{\tau}^{T}(T-t) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t d \tau}_{C_{m, n}}=\int_{0}^{T}(T-t) \phi_{m}(t) \dot{f}(t) d t
$$

- $C_{m, n}$ looks complicated, and we might expect to have to compute $\mathcal{O}\left(N_{T}^{2}\right)$ different quantities to set up linear system, ...
- ... but it actually has a lot of structure when the basis functions are splines, and we only need $\mathcal{O}\left(N_{T}\right)$ different quantities.

Galerkin for VIE $K * u=f$

The resulting linear system is

$$
(D A+h \hat{A}) \boldsymbol{U}=D \boldsymbol{f}+h \hat{\boldsymbol{f}}, \quad D=\operatorname{diag}(T-h, T-2 h, \ldots, 2 h, h, 0)
$$

Comes from $(T-t)=(T-m h)+(m h-t)$ for each $m=1, \ldots, N_{T}$

$$
\begin{gathered}
\sum_{n=1}^{N_{T}} u_{n} \int_{0}^{T} K(\tau) \underbrace{\int_{\tau}^{T}(T-t) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t} d \tau=\int_{0}^{T}(T-t) \phi_{m}(t) \dot{f}(t) d t \\
=(T-\boldsymbol{m} \boldsymbol{h}) \int_{\tau}^{T} \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t+\int_{\tau}^{T}(\boldsymbol{m h}-\boldsymbol{t}) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t
\end{gathered}
$$

Assemble equations for $m=1: N_{T}$:

$$
(D)_{m, m}=(T-m h), \quad(A)_{m, n}=\int_{0}^{T} K(\tau) \int_{\tau}^{T} \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t d \tau
$$

Galerkin for VIE $K * u=f$

The resulting linear system is

$$
(D A+h \hat{A}) \boldsymbol{U}=D \boldsymbol{f}+h \hat{\boldsymbol{f}}, \quad D=\operatorname{diag}(T-h, T-2 h, \ldots, 2 h, h, 0)
$$

Comes from $(T-t)=(T-m h)+(m h-t)$ for each $m=1, \ldots, N_{T}$

$$
\begin{gathered}
\sum_{n=1}^{N_{T}} u_{n} \int_{0}^{T} K(\tau) \underbrace{\int_{\tau}^{T}(T-t) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t} d \tau=\int_{0}^{T}(T-t) \phi_{m}(t) \dot{f}(t) d t \\
=(T-\boldsymbol{m} \boldsymbol{h}) \int_{\tau}^{T} \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t+\int_{\tau}^{T}(\boldsymbol{m h}-\boldsymbol{t}) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t
\end{gathered}
$$

Assemble equations for $m=1: N_{T}$:

$$
(h \hat{A})_{m, n}=\int_{0}^{T} K(\tau) \int_{\tau}^{T}(m h-t) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t d \tau
$$

Galerkin for VIE $K * u=f$

The resulting linear system is

$$
(D A+h \hat{A}) \boldsymbol{U}=D \boldsymbol{f}+h \hat{\boldsymbol{f}}, \quad D=\operatorname{diag}(T-h, T-2 h, \ldots, 2 h, h, 0)
$$

Comes from $(T-t)=(T-m h)+(m h-t)$ for each $m=1, \ldots, N_{T}$

$$
\begin{aligned}
& \sum_{n=1}^{N_{T}} u_{n} \int_{0}^{T} K(\tau) \underbrace{\int_{\tau}^{T}(T-t) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t} d \tau=\int_{0}^{T}(T-t) \phi_{m}(t) \dot{f}(t) d t \\
&=(T-\boldsymbol{m h}) \int_{\tau}^{T} \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t+\int_{\tau}^{T}(\boldsymbol{m h}-\boldsymbol{t}) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t
\end{aligned}
$$

Assemble equations for $m=1: N_{T}$:

$$
(\boldsymbol{f})_{m}=\int_{0}^{T} \phi_{m}(t) \dot{f}(t) d t, \quad(h \hat{\boldsymbol{f}})_{m}=\int_{0}^{T}(m \boldsymbol{h}-\boldsymbol{t}) \phi_{m}(t) \dot{f}(t) d t
$$

Galerkin for VIE $K * u=f$

- Ha Duong Galerkin formulation: find $u_{h} \in V_{h}$ s.t. $\forall q_{h} \in V_{h}$

$$
\int_{0}^{T}(T-t) q_{h}(t) \int_{0}^{t} K(\tau) \dot{u}_{h}(t-\tau) d \tau d t=\int_{0}^{T}(T-t) q_{h}(t) \dot{f}(t) d t
$$

gives linear system

$$
(D A+h \hat{A}) \boldsymbol{U}=D \boldsymbol{f}+h \hat{\boldsymbol{f}}
$$

- Basic Galerkin formulation: find $u_{h} \in V_{h}$ s.t. $\forall q_{h} \in V_{h}$

$$
\int_{0}^{T} q_{h}(t) \int_{0}^{t} K(\tau) \dot{u}_{h}(t-\tau) d \tau d t=\int_{0}^{T} q_{h}(t) \dot{f}(t) d t
$$

gives linear system

$$
A \boldsymbol{U}=\boldsymbol{f}
$$

Galerkin for VIE $K * u=f$ with B_{1} basis

The resulting linear system when B_{1} basis functions used is

$$
(D A+h \hat{A}) \boldsymbol{U}=D \boldsymbol{f}+h \hat{\boldsymbol{f}}, \quad D=\operatorname{diag}(T-h, T-2 h, \ldots, 2 h, h, 0)
$$

When $N_{T}=4: \quad \boldsymbol{U}=\left(u_{1}, \ldots, u_{4}\right)^{\top}, \quad \boldsymbol{f}, \hat{\boldsymbol{f}} \in \mathbb{R}^{4}$

$$
A=\left(\begin{array}{cccc}
q_{0} & \boldsymbol{q}_{-1} & 0 & 0 \\
q_{1} & q_{0} & \boldsymbol{q}_{-1} & 0 \\
q_{2} & q_{1} & q_{0} & \boldsymbol{q}_{-1} \\
p_{3} & p_{2} & p_{1} & p_{0}
\end{array}\right), \quad \hat{A}=\left(\begin{array}{cccc}
\hat{q}_{0} & \hat{\boldsymbol{q}}_{-1} & 0 & 0 \\
\hat{q}_{1} & \hat{q}_{0} & \hat{\boldsymbol{q}}_{-1} & 0 \\
\hat{q}_{2} & \hat{q}_{1} & \hat{q}_{0} & \hat{\boldsymbol{q}}_{-1} \\
\hat{p}_{3} & \hat{p}_{2} & \hat{p}_{1} & \hat{p}_{0}
\end{array}\right)
$$

Structured, not lower triangular, nearly Toeplitz.

ASIDE: A nice property of B-splines

- Key term: $Y_{m, n}(\tau)=\int_{\tau}^{T}(T-t) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t$.
- Split $(T-t)=(T-m h)+(m h-t)$ for each $m=1, \ldots, N_{T}$.
- If $\phi_{n}(t)=B_{\ell}(t / h-n)$ (splines degree $\ell \geq 0$) then

$$
\begin{gathered}
\int_{\tau}^{T} \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t=\int_{\tau}^{T} B_{\ell}(t / h-m) \dot{B}_{\ell}(t / h-n-\tau / h) d t \\
=h\left(B_{2 \ell}\left(\frac{\tau}{h}-\frac{1}{2}+n-m\right)-B_{2 \ell}\left(\frac{\tau}{h}+\frac{1}{2}+n-m\right)\right) \\
=-h \dot{B}_{2 \ell+1}\left(\frac{\tau}{h}+n-m\right)
\end{gathered}
$$

- Away from 0 and T, B_{1} spline Galerkin gives calculations involving (smoother) B_{2} splines - good for TDBIE quadrature.
- Term $\int_{\tau}^{T}(m \boldsymbol{h}-\boldsymbol{t}) \phi_{m}(t) \dot{\phi}_{n}(t-\tau) d t$ also reasonably nice.

Backwards-in-time approximation 1

- Volterra integral equation (VIE) with $u, f \equiv 0$ for all $t \leq 0$:

$$
\int_{0}^{t} K(\tau) u(t-\tau) d \tau=f(t)=\int_{0}^{\infty} K(\tau) u(t-\tau) d \tau \quad t \in(0, T]
$$

- Approximate VIE at $t=t_{n}=n h$ for $n=1,2, \ldots$. i.e. collocate.
- Approximate solution with basis functions ϕ_{m} :

$$
u\left(t_{n}-\tau\right) \approx \sum_{m=0}^{n} u_{n-m} \phi_{m}(\tau) \quad \text { NOT } u(\tau) \approx \sum_{k} u_{k} \phi_{k}(\tau)
$$

- Plug into VIE at $t=t_{n}$:

$$
\sum_{m=0}^{n} q_{m} u_{n-m}=f\left(t_{n}\right), \quad q_{m}=\int_{0}^{\infty} K(\tau) \phi_{m}(\tau) d \tau
$$

Backwards-in-time approximation 2

- Marching on in time for $n=1,2, \ldots$:

$$
\sum_{m=0}^{n} q_{m} u_{n-m}=f\left(t_{n}\right), \quad \Leftrightarrow \quad u_{n}=\frac{1}{q_{0}}\left(f\left(t_{n}\right)-\sum_{m=1}^{n} q_{m} u_{n-m}\right)
$$

where

$$
u\left(t_{n}-\tau\right) \approx \sum_{m=0}^{n} u_{n-m} \phi_{m}(\tau), \quad q_{m}=\int_{0}^{\infty} K(\tau) \phi_{m}(\tau) d \tau
$$

- Remarkably, convolution quadrature based on linear multistep methods has this format but with globally supported time basis functions.
- We use mainly B-spline basis functions of degree ℓ since their local support with some global smoothness is an advantage in the full TDBIE. Need modification for $m=0, \ldots, \ell-1$, but have also used Gaussian basis functions.

Results for TDBIE - backward-in-time vs CQ

Solution on surface of sphere, approximated using 508 flat elements

BDF2 is a 2nd order accurate CQ method.
The backward-in-time scheme is (formally) 2nd order witrh local Gaussian basis functions.

Backwards-in-time approximation 3

- Choose B_{3} (cubic spline) basis functions with modifications to ϕ_{0}, ϕ_{1} :

$$
\begin{gathered}
\phi_{0}(t)=B_{3}(t / h)+2 B_{3}(t / h+1), \phi_{1}(t)=B_{3}(t / h-1)-B_{3}(t / h+1), \\
\phi_{m}(t)=B_{3}(t / h-m), m \geq 2
\end{gathered}
$$

and approximate $K * \dot{u}=\dot{f}$ - time differentiated version of VIE.

$$
n=1, \ldots, N_{T}: \quad \sum_{m=0}^{n} g_{m} u_{n-m}=\dot{f}\left(t_{n}\right), \quad g_{m}=\int_{0}^{\infty} K(\tau) \dot{\phi}_{m}(\tau) d \tau
$$

- Closely related to simple Galerkin B_{1} spline approximation from earlier:

$$
n=1, \ldots, N_{T}-1: \quad \boldsymbol{q}_{-1} u_{n+1}+\sum_{m=0}^{n} q_{m} u_{n-m}=f_{n}
$$

where, after scaling, $g_{0}=q_{0}+2 q_{-1}, g_{1}=q_{1}-q_{-1}, g_{m}=q_{m}, m \geq 2$.

Backwards-in-time approximation 4

- Choose B_{3} (cubic spline) basis functions with modifications to ϕ_{0}, ϕ_{1} and approximate $K * \dot{u}=\dot{f}$ - time differentiated version of VIE.

$$
n=1, \ldots, N_{T}: \quad \sum_{m=0}^{n} g_{m} u_{n-m}=\dot{f}\left(t_{n}\right), \quad g_{m}=\int_{0}^{\infty} K(\tau) \dot{\phi}_{m}(\tau) d \tau
$$

- Closely related to simple Galerkin B_{1} spline approximation from earlier:

$$
n=1, \ldots, N_{T}-1: \quad q_{-1} u_{n+1}+\sum_{m=0}^{n} q_{m} u_{n-m}=f_{n}
$$

where, after scaling, $g_{0}=q_{0}+2 q_{-1}, g_{1}=q_{1}-\boldsymbol{q}_{-1}, g_{m}=q_{m}, m \geq 2$.

- Same as 2 nd order extrapolation - replace u_{n+1} by $2 u_{n}-u_{n-1}$.

Galerkin for VIE $K * u=f$ with B_{1} basis revisited

The B_{1} basis function full Galerkin approx is not lower triangular (and so is expensive to solve)

$$
(D A+h \hat{A}) \boldsymbol{U}=D \boldsymbol{f}+h \hat{\boldsymbol{f}}, \quad D=\operatorname{diag}(T-h, T-2 h, \ldots, 2 h, h, 0)
$$

Can write it as

$$
(T-n h)\left(\boldsymbol{q}_{-1} u_{n+1}+\sum_{m=0}^{n} q_{m} u_{n-m}\right)+\left(\hat{\boldsymbol{q}}_{-1} \boldsymbol{u}_{n+1}+\sum_{m=0}^{n} \hat{q}_{m} u_{n-m}\right)=(T-n h) f_{n}+h \hat{f}_{n}
$$

Extrapolate $\boldsymbol{u}_{n+1}=2 u_{n}-u_{n-1}$ gives a lower triangluar approximation:

$$
\begin{aligned}
& (T-n h)\left(\sum_{m=0}^{n} g_{m} u_{n-m}\right)+\left(\sum_{m=0}^{n} \hat{g}_{m} u_{n-m}\right)=(T-n h) f_{n}+h \hat{f}_{n} \\
& g_{0}=q_{0}+2 q_{-1}, g_{1}=q_{1}-q_{-1}, g_{k}=q_{k}, k \geq 2 . \quad \hat{g} \text { analagous }
\end{aligned}
$$

Results for VIE

- VIE kernel $J_{0}(7 t)$ - 1st kind Bessel function of order 0 .
- VIE approximation by various methods: (a) standard Galerkin, (b) ($T-t$)-weighted Galerkin, (c, d) extrapolated versions of (a, b)
- all appear $\mathcal{O}\left(h^{2}\right)$

Results for VIE

- VIE kernel $P_{29}\left(1-t^{2} / 2\right) H(2-t)$ sphere scattering, harmonics of order 29.
- VIE approximation by various methods: (a) standard Galerkin, (b) ($T-t$)-weighted Galerkin, (c, d) extrapolated versions of (a, b)
- all appear $\mathcal{O}\left(h^{2}\right)$ - and the kernel is discontinuous at $t=2$!

Results for TDBIE - full Ha Duong Galerkin

Results for TDBIE - full Ha Duong Galerkin

Not a sausage so far.

Results for TDBIE - full Ha Duong Galerkin

Not a sausage so far.
But plenty of results for other methods.
e.g. Simple Galerkin with extrapolation as preconditioner in Startk \& Gimperlein - does a good job.

Results for TDBIE - backward-in-time vs CQ

Solution on surface of sphere, approximated using 508 flat elements

BDF2 is a 2nd order accurate CQ method.
The backward-in-time scheme is (formally) 2nd order witrh local Gaussian basis functions.

Results for TDBIE - backward in time, sphere surface

L_{∞} Errors - appear 2nd order.

Results for TDBIE - backward in time, flat screen

Edge and corner singularities.

Gimperlien, Stark et al. get good results using mesh refinement at corners and edges.

Summary

- Ha Duong full variational formulation has a lot of structure that makes it much less expensive to set up and use than expected - theory guarantees stability.

Summary

- Ha Duong full variational formulation has a lot of structure that makes it much less expensive to set up and use than expected - theory guarantees stability.
- B-spline time basis functions: have nice properties as time basis functions - simple formula for core time calculation in Galerkin approx
- good smoothess for quadrature (globally $C^{2 \ell-1}$ integrands with B_{ℓ} basis)

Summary

- Ha Duong full variational formulation has a lot of structure that makes it much less expensive to set up and use than expected - theory guarantees stability.
- B-spline time basis functions: have nice properties as time basis functions - simple formula for core time calculation in Galerkin approx
- good smoothess for quadrature (globally $C^{2 \ell-1}$ integrands with B_{ℓ} basis)
- Simple Galerkin appears to work as well as full Ha Duong - no theory.

Summary

- Ha Duong full variational formulation has a lot of structure that makes it much less expensive to set up and use than expected - theory guarantees stability.
- B-spline time basis functions: have nice properties as time basis functions - simple formula for core time calculation in Galerkin approx
- good smoothess for quadrature (globally $C^{2 \ell-1}$ integrands with B_{ℓ} basis)
- Simple Galerkin appears to work as well as full Ha Duong - no theory.
- Extrapolated Galerkin methods with B_{ℓ} basis
- B_{1} appears to work almost as well as full versions despite (so far) lack of theory
- equivalent to backward-in-time collocation with $B_{2 \ell}$ basis

Summary

- Ha Duong full variational formulation has a lot of structure that makes it much less expensive to set up and use than expected - theory guarantees stability.
- B-spline time basis functions: have nice properties as time basis functions - simple formula for core time calculation in Galerkin approx
- good smoothess for quadrature (globally $C^{2 \ell-1}$ integrands with B_{ℓ} basis)
- Simple Galerkin appears to work as well as full Ha Duong - no theory.
- Extrapolated Galerkin methods with B_{ℓ} basis
- B_{1} appears to work almost as well as full versions despite (so far) lack of theory
- equivalent to backward-in-time collocation with $B_{2 \ell}$ basis

- Outlook:

- get some full Ha Duong results
- try to patch up theory, particularly of connections between schemes
- move to B_{2} spline Galerkin and B_{4} backward-in-time collocation counterpart

