Numerical PDEs and adaptivity on general meshes

Andrea Cangiani

$1^{\rm st}$ Scottish Numerical Methods Network Glasgow, January $30^{\rm th},~2018.$

Dealing with complicated geometries: linear elastic analysis of trabecular (spongy) bone.

Initial geometry made of 1,179,569 tetrahedral elements.

Sample elements from agglomerated mesh made of 8000 elements.

[C, Dong, Georgoulis, Houston, Springer Briefs, 2017]

Complicated geometries & adaptivity: interstitial Flow Modelling related to interstitial drug transport to cancer cells

Transport field by incompressible Navier-Stokes.

Complicated geometries & adaptivity: interstitial Flow Modelling related to interstitial drug transport to cancer cells

Initial agglomerated mesh consisting of 128 elements

Complicated geometries & adaptivity: interstitial Flow Modelling related to interstitial drug transport to cancer cells

Goal oriented adaptivity by P. Houston (Nottingham). [C, Dong, Georgoulis, Houston, Springer Briefs, 2017]

Mesh refinement & coarsening is trivial and fully local

 \rightarrow Hanging nodes a thing of the past!

Fitted discretisation of curved boundaries: interface diffusion.

Solution adapted mesh by Y. Sabawi (Iraq). [C, Georgoulis, Sabawi, Math. Comp., 2017.]

Aggressively adapted meshes: truly solution-adapted meshes

Cyclic competition reaction-diffusion system. [Sutton, PhD Thesis, Leicester 2017]

C^0 -conforming polygonal elements

Classical C^0 -conforming FEM families (\mathcal{P}_p -triangles, \mathcal{Q}_p -affine quads) are instances of

Generalised harmonic FE of order p: on an element κ

$$\begin{split} V_h^\kappa &:= \{ v \in H^1(\kappa) : \Delta v \in \mathcal{P}_{p-2}(\kappa); \\ v|_{\partial \kappa} \in \mathcal{C}^0(\partial \kappa) \quad \text{and} \quad v|_e \in \mathcal{P}_p(e), \forall e \in \partial \kappa \} \end{split}$$

where $\mathcal{P}_{-1} := \{0\}$, hence p = 1 gives the harmonic FE.

As such, they yield the same element irrespective of the shape:

C^0 -conforming polygonal elements

Classical C⁰-conforming FEM families (\mathcal{P}_p -triangles, \mathcal{Q}_p -affine quads) are instances of

Generalised harmonic FE of order p: on an element κ

$$\begin{split} V_h^\kappa &:= \{ v \in H^1(\kappa) : \Delta v \in \mathcal{P}_{p-2}(\kappa); \\ v|_{\partial \kappa} \in \mathcal{C}^0(\partial \kappa) \quad \text{and} \quad v|_e \in \mathcal{P}_p(e), \forall e \in \partial \kappa \} \end{split}$$

where $\mathcal{P}_{-1} := \{0\}$, hence p = 1 gives the harmonic FE.

As such, they yield the same element irrespective of the shape:

CONIV known implicitly as solutions of local PDEs

Contains $\mathcal{P}_p(\kappa)$, i.e. a space of physical frame polynomials;

Let it is just $\mathcal{P}_p(e)$ on each edge $e \in \partial \kappa$.

Approaches to polygonal FEM

Augmented FE are mentioned as early as Strang & Fix (1973).

Most FEM on polygonal (and polyhedral) meshes play with these ingredients:

- contains $\mathcal{P}_p(\kappa)$, i.e. a space of physical frame polynomials;
- **2** is just $\mathcal{P}_p(e)$ on each edge $e \in \partial \kappa$.

Approaches to polygonal FEM

Augmented FE are mentioned as early as Strang & Fix (1973).

Examples of conforming methods¹

- Composite Finite Elements (CFEs) [Hackbusch & Sauter, Numer. Math., 1997]
- Harmonic FEM & Polygonal FEM [Sukumar & Tabarraei, Int. J. Numer. Methods Eng., 2004]
- BEM-based FEM [Copeland, Langer & Pusch, DDM XVIII, 2009]
- Extended FEM [Fries & Belytschko, Int. J. Numer. Methods Eng., 2010]
- Nodal Mimetic Finite Difference (MFD) [Brezzi, Buffa & Lipnikov, M2AN, 2009]
- Virtual Element Method (VEM) [da Veiga, Brezzi, C, Manzini, Marini & Russo, M3AS, 2013]

¹Seminal papers: [Babuska & Osborn, SINUM, 1983] and [Babuska & Melenk, CMAME, 1996].

Approaches to polygonal FEM

Augmented FE are mentioned as early as Strang & Fix (1973).

Examples of non-conforming methods

- Mimetic Finite Difference (MFD) [Brezzi, Lipnikov, Shashkov, SINUM, 2005]
- Nonconforming VEM [Ayuso de Dios, Lipnikov & Manzini, M2NA, 2016]
- HDG [Cockburn, Gopalakrishnan & Lazarov, SINUM, 2009]
- Weak Galerkin [Wand & Ye, J. Comput. Appl. Math. 2013]
- Hybrid High-Order (HHO) [Di Pietro & Ern, CMAME, 2015]
- Gradient scheme framework [Droniou, Eymard, Gallouet & Herbin, M3AS, 2013]
- Reconstruction FEM [Georgoulis & Pryer, CMAME, 2018]
- Agglomerated DG [Bassi, L. Botti, A. Colombo, S. Rebay, Comput. Fluids, 2012] Composite DG [Antonietti, Giani, Houston, SIAM J. Sci. Comput., 2013]
- hp-IPDG [C, Georgoulis & Houston, M3AS, 2014]

Outline & goals

• *hp*-version IP-dG methods (*hp*-DGFEM)

- Extending *hp*-DGFEM to extremely general meshes \rightarrow including non shape regular elements with degenerating or curved interfaces
- A posteriori analysis of fitted discretisations on curved domains
- C⁰-conforming Virtual Element Method (VEM)
 - A posteriori error analysis & adaptivity

NOTE: The VEM framework is much more than just polytopic FEM.

Eg. globally C^k , div-free, H(div) and H(curl) conforming, Trefftz.

DRIVING PRINCIPLES

- Computational cost should be comparable to that of standard FEMs
- Allow the use of standard FEM locally.
- Allow flexible mesh adaptation

Linear PDEs with non-negative characteristic form

Includes elliptic, parabolic, hyperbolic, as well as hypoelliptic and mixed-type PDEs.

On $\Omega \subset \mathbb{R}^d$, d = 2, 3, bounded open polyhedral domain¹, consider

$$-\nabla \cdot (A\nabla u) + \mathbf{b} \cdot \nabla u + cu = f$$

with

$$\xi^{\top} A(x) \xi \geq 0 \quad \forall \xi \in \mathbb{R}^d, \quad \text{a.e.} \quad x \in \overline{\Omega}.$$

Supplemented on $\Gamma=\partial\Omega$ with

¹Later: Curved boundaries/multi-compartment problems.

Physical frame hp-DGFEM(p) on polytopic meshes

On meshes \mathcal{T}_h made of non-overlapping polygons/polyhedra, set²

$$V_h^{\mathbf{p}} := \{ \mathbf{v} \in L^2(\Omega) : \quad \mathbf{v}|_{\kappa} \in \mathcal{P}_{p_{\kappa}}(\kappa), \quad \forall \kappa \in \mathcal{T}_h \}$$

- Local space independent of element shape;
- dG space with minimal number of degrees of freedom per element.

 ${}^{2}\mathcal{P}_{p}(\kappa)$ space of polynomials of total degree up to p.

Physical frame hp-DGFEM(p) on polytopic meshes

 $B(u,v) := B_{\mathrm{d}}(u,v) + B_{\mathrm{ar}}(u,v)$ and

$$B_{d}(u,v) := \sum_{\kappa \in \mathcal{T}} \int_{\kappa} A \nabla u \cdot \nabla v dx - \int_{\Gamma_{int} \cup \Gamma_{D}} (\{A \nabla u \cdot n\} \cdot [v] + \{A \nabla v \cdot n\} \cdot [u] - \sigma[u][v]) ds$$

$$B_{ar}(u,v) := \sum_{\kappa \in \mathcal{T}} \int_{\kappa} (\boldsymbol{b} \cdot \nabla u + cu) v dx - \sum_{\kappa \in \mathcal{T}} \int_{\partial_{-\kappa} \setminus \Gamma_{N}} (\boldsymbol{b} \cdot \mathbf{n}) \lfloor u \rfloor v^{+} ds$$

where

$$\{u\}|_{\partial\kappa_i\cap\partial\kappa_j}=\frac{u_{\kappa_i}+u_{\kappa_j}}{2} \qquad [u]|_{\partial\kappa_i\cap\partial\kappa_j}=u_{\kappa_i}\mathbf{n}_{\kappa_i}+u_{\kappa_j}\mathbf{n}_{\kappa_j} \qquad \lfloor u\rfloor|_{\partial\kappa}=u^+-u^-$$

with u^- , u^+ upwind and downwind values³ and

 σ a interior discontinuity-penalization (IP-) parameter.

Finally,

$$\ell(\mathbf{v}) := \sum_{\kappa \in \mathcal{T}} \int_{\kappa} f \mathbf{v} \mathrm{d}x + (\mathsf{boundary terms}).$$

³Here, $u^- := 0$ if $\partial_- \kappa \subset \Gamma$.

Heat equation in 2D: square mesh comparison

Forcing chosen so that $u(t, x, y) = \sin(20\pi t)e^{(-5(x-0.5)^2-5(y-0.5)^2)}$.

'DG Q' and 'FEM Q': DG and conforming FEM tensor-product elerents versity of in space, with DG time-stepping.

IP-parameter and stability

$$\begin{aligned} \mathsf{DG-norm:} \ \|\|w\|\|^2 &:= \|\|w\|\|_{\mathrm{ar}}^2 + \|\|w\|\|_{\mathrm{d}}^2 \text{ with} \\ \|\|w\|\|_{\mathrm{d}} &:= \Big(\sum_{\kappa \in \mathcal{T}} \int_{\kappa} |\nabla w|^2 \mathrm{d} \mathbf{x} + \int_{\Gamma \setminus \Gamma_{\mathrm{N}}} \sigma |[w]|^2 \mathrm{d} s \Big)^{1/2}, \end{aligned}$$

Stability analysis and IP-parameter choice of *hp*-DGFEM depends on the inverse estimates from every face $f \in \partial \kappa$ into κ .

$$\text{For } \kappa \text{ simplex/hexahedron: } \|v\|_{f}^{2} \leq C \frac{|f|p^{2}}{|\kappa|} \|v\|_{\kappa}^{2} \qquad \forall v \in \mathcal{P}_{p}(\kappa).$$

What about this kind of meshes??

Challenges

• Classical *hp*-inverse estimates not sharp in presence of arbitrarily small, degenerating (d - k)-dim interfaces, k = 1, ..., d - 1.

 \rightarrow new sharp *hp*-inverse estimates.

• No sharp *hp*-approximation results for *L*₂-projector (key for first order terms Houston, Schwab & Süli ('02)) over polytopic meshes.

 \rightarrow error analysis via *hp*-inf-sup stability on stronger norms.

à la Johnson & Pitkäranta ('86), Buffa, Hughes & Sangalli ('06), Ayuso & Marini ('09),

C., Chapman, Georgoulis, & Jensen ('13).

Inverse estimates for arbitrarily small interfaces

Inverse estimates for d-simplexes/d-hexahedra. For each face $f\subset\partial\kappa$

$$\|v\|_f^2 \leq C rac{|f|p^2}{|\kappa|} \|v\|_\kappa^2 \qquad orall v \in \mathcal{P}_p(\kappa).$$

For each element $\kappa \in \mathcal{T}$, define the family \mathcal{F}_{f}^{κ} of all simplices contained in κ and having f as one of their faces.

Inverse estimate for polytopes. For $v \in \mathcal{P}_p(\kappa)$, we have

$$\|\boldsymbol{v}\|_{f}^{2} \leq C_{\mathrm{inv}} \frac{p^{2}|f|}{|\tau_{f}^{\kappa}|} \|\boldsymbol{v}\|_{\tau_{f}^{\kappa}}^{2} \leq C_{\mathrm{inv}} \frac{p^{2}|f|}{|\tau_{f}^{\kappa}|} \|\boldsymbol{v}\|_{\kappa}^{2}, \quad \forall \tau_{f}^{\kappa} \in \mathcal{F}_{f}^{\kappa}.$$

The first inequality permits arbitrarily small elemental interfaces!

An inverse estimate

We say κ is *p*-coverable if it can be covered by at most m_{κ} shape-regular simplexes K_i , $i = 1, ..., m_{\kappa}$, with $|K_i| \ge c_{as} |\kappa|$ and

 $\operatorname{dist}(\kappa,\partial K_i)\lesssim \operatorname{diam}(K_i)/p^2$

Lemma (C., Georgoulis & Houston, M3AS, 2014) If κ is p-coverable and $f \subset \partial \kappa$ is one of its faces, then for each $v \in \mathcal{P}_p(\kappa)$ $\|v\|_f^2 \lesssim C_{INV}(p,\kappa,f) \frac{p^2|f|}{|\kappa|} \|v\|_{\kappa}^2$, with $C_{INV}(p,\kappa,f) := \min\left\{\frac{|\kappa|}{\sup_{\tau_f^{\kappa} \subset \kappa} |\tau_f^{\kappa}|}, p^{2(d-1)}\right\}$.

This inverse estimate permits arbitrarily small elemental interfaces! It leads to new jump penalisation parameter.

hp-DGFEM(p) a priori analysis

Inverse estimate permits to generalise a priori hp-error analysis [Houston, Schwab & Süli, SINUM,2002] to meshes with

- possibly degenerating interfaces
- no shape regularity assumptions,
- uniformly bounded number of faces

Alternative assumption: allowing for arbitrary number of faces. For all κ , for all $f \in \partial \kappa$ there exists $\tau_f^{\kappa} \in \mathcal{F}_f^{\kappa}$:

$$h_{\kappa} \leq C_s \frac{d|\tau_f^{\kappa}|}{|f|}.$$

RSITY OF

Lemma (C., Dong & Georgoulis, SIAM J. Sci. Comput., 2014)

Under the above assumption, for each $v \in \mathcal{P}_p(\kappa)$,

$$\|v\|_{\partial\kappa}^2 \leq C_s C_{\mathrm{inv}} d \frac{p^2}{h_{\kappa}} \|v\|_{\kappa}^2.$$

Transport problem in 3D with known solution

$$\begin{split} \Omega &= (0,1)^3, \quad A \equiv 0, \quad \mathbf{b} = (-y,z,x), \quad c = xy^2z \end{split}$$
 Forcing chosen so that $u(x,y,z) = 1 + \sin(\pi xy^2z/8).$

64 agglomerated elements

32768 agglomerated elements

Transport problem in 3D

Agglomerated mesh 'DGFEM' vs square mesh 'DGFEM(P)'

Figure: Convergence under *h*-refinement for uniform p = 1, 2, 3, 4.

Multidomain pbm with flux-balancing interface conditions Eg. modelling semipermeable membranes

$$\Omega = \Omega_1 \cup \Omega_2 \cup \mathsf{\Gamma}^{tr},$$

 $\Gamma^{tr} := (\partial \Omega_1 \cap \partial \Omega_2) \setminus \partial \Omega$ Lipschitz

P permeability function

$$\begin{cases} u_t - \Delta u = f, & \text{in } (0, T] \times \Omega_1 \cup \Omega_2 \\ u = u_0 & \text{in}\{0\} \times \Omega_1 \cup \Omega_2 \\ u = 0, & \text{on } (0, T] \times \partial \Omega \\ \mathbf{n}^1 \cdot \nabla u_1 = P(u)(u_2 - u_1)|_{\Omega_1} & \text{on } (0, T] \times \bar{\Omega}_1 \cap \Gamma^{tr} \\ \mathbf{n}^2 \cdot \nabla u_2 = P(u)(u_1 - u_2)|_{\Omega_2} & \text{on } (0, T] \times \bar{\Omega}_2 \cap \Gamma^{tr} \end{cases}$$

Unfitted mesh approaches

- A number of very successful methods available (unfitted FEM, immersed interface, fictitious domain, composite FE, cut-cell, ...).
- Using PDE stability linking error with the residual is cumbersome
 ⇒ Energy norm a posteriori analysis difficult⁴!

Fitted mesh approach

- Physical frame *hp*-DGFEM with curved elements to fit the interface.
- Natural approach to energy norm a posteriori analysis.
- Applies to problems with non-essential boundary conditions on a single domain with curved boundary.
- Numerical difficulty moved to hard quadrature evaluation.

⁴See [Dörfler & Rumpf, Math Comp 1998, Ainsworth & Rankin, Tech Rep 2012]

Fitted *hp*-DGFEM(*p*) discretisation

The mesh T_h is standard, but may contain curved elements to fit the interface.

Elliptic problem Find $u_h \in V_h^p$:

$$B(u_h,v_h)=\langle f,v_h
angle$$
 for all $v_h\in V_h^{f p}$

$$B(u_h, v_h) = \sum_{K \in \mathcal{T}} \int_K \nabla u_h \cdot \nabla v_h dx - \int_{\Gamma \setminus \Gamma^{tr}} (\{\nabla u_h\} \cdot \llbracket v_h \rrbracket + \{\nabla v_h\} \cdot \llbracket u_h \rrbracket) ds + \int_{\Gamma \setminus \Gamma^{tr}} \frac{\sigma}{\mathbf{h}} \llbracket u_h \rrbracket \cdot \llbracket v_h \rrbracket ds + \int_{\Gamma^{tr}} P(u_h) \llbracket u_h \rrbracket \cdot \llbracket v_h \rrbracket ds;$$

Parabolic problem By standard timestepping, eg. backward Euler.

For elements with curved faces, take the process described earlier to the limit!

Assumptions:

ħ

Lemma (C., Georgoulis & Sabawi, Math. Comp., 2017)

Let κ be a simplex/hexahedron with a curved face F. For each $v\in \mathcal{P}_p(\kappa),$

 $\|v\|_f^2 \leq C \frac{p^2}{h_\kappa} \|v\|_\kappa^2.$

Apply inverse estimate from each f_j to κ_j and sum up.

KP recovery operator

Lemma (C., Georgoulis & Sabawi, Math. Comp., 2017)

Given the above mesh assumptions, there exists a recovery operator $\mathcal{E}: S_h^p \to H^1(\Omega_1 \cup \Omega_2)$, such that

$$\sum_{\kappa \in \mathcal{T}} \|\nabla^{\alpha} (\mathbf{v}_{h} - \mathcal{E}(\mathbf{v}_{h}))\|_{\kappa}^{2} \leq C_{\alpha} \sum_{E \subset \Gamma \setminus \Gamma^{tr}} \|\sqrt{\theta \eta} \mathbf{h}^{1/2 - \alpha} [\![\mathbf{v}_{h}]\!]\|_{E}^{2}, \qquad (1)$$

for all $v_h \in S_h^p$, $C_{\alpha} > 0$, $\alpha = 0, 1$, independent of v_h , θ and **h**.

- Here, θ, η measure how far κ is from straight. They must satisfy some mild saturation assumptions of the approximation of the geometry by the mesh.
- If κ is not curved, then $\eta = \theta = 1$ and recovery operator and bound reduces to that of Karakashian & Pascal _[Karakashian & Pascal, SINUM,2003].
- Note: reconstruction not continuous across the interface.
 A posteriori analysis for meshes with internal curved interfaces degenerating interfaces still open!

Elliptic problem with curved interface

$$\Omega = (-1,1)^2$$
, $\Omega_1 = \{x^2 + y^2 < 0.5^2\}, \Omega_2 = \Omega \setminus \overline{\Omega}_1, C_{tr} = 0.75$

Forcing & boundary conditions chosen so that

$$u = \begin{cases} (x^2 + y^2)^{3/2}, & \text{in } \Omega_1 \\ (x^2 + y^2)^{3/2} + 1, & \text{in } \Omega_2 \end{cases}$$

p = 1. Implementation of interface by 4th-order (polynomial) mapping.

A. Cangiani Numerical PDEs and adaptivity on general meshes

Elliptic problem with curved interface

$$\Omega = (-1,1)^2 \text{, } \Omega_1 = \{x^2 + y^2 < 0.5^2\}, \Omega_2 = \Omega \setminus \bar{\Omega}_1, C_{tr} = 0.75$$

Forcing & boundary conditions chosen so that

$$u = \begin{cases} (x^2 + y^2)^{3/2}, & \text{in } \Omega_1 \\ (x^2 + y^2)^{3/2} + 1, & \text{in } \Omega_2 \end{cases}$$

p = 1. Implementation of interface by 4th-order (polynomial) mapping.

Total Dofs	Estimate	Rate	E.norm	Rate	Est./E.norm
768	7.6178	-	0.84377	-	9.03
3072	3.9836	0.9349	0.39946	1.0789	9.97
12288	2.0257	0.9755	0.19146	1.0610	10.58
49152	1.02	0.9897	0.093261	1.0378	10.9
196608	0.51507	0.9857	0.045982	1.0202	11.2

Convection-diffusion problem (straight interface)

[S. Metcalfe, PhD Thesis, Leicester, 2015]

A conforming approach: the C^0 -conforming VEM

Model problem: find $u \in V = H_0^1(\Omega)$:

$$A(u,v) := (\nabla u, \nabla v) = (f, v) \quad \forall v \in V$$

Recall the local generalised harmonic FE of order *p*:

$$\begin{split} V_h^\kappa &:= \{ v \in H^1(\kappa) : \Delta v \in \mathcal{P}_{p-2}(\kappa); \\ v|_{\partial \kappa} \in C^0(\partial \kappa) \quad \text{and} \quad v|_e \in \mathcal{P}_p(e), \forall e \in \partial \kappa \} \end{split}$$

from which we may construct a C^0 -conforming space as

$$V_h = \{ v \in C^0(\Omega) : v |_{\kappa} \in V_h^{\kappa}, \ \forall \kappa \in \mathcal{T}_h \} \subset H^1_0(\Omega)$$

yielding the generalised harmonic formulation: find $u_h \in V_h$:

$$A(u_h, v_h) = (f, v_h) \qquad \forall v_h \in V$$

ISSUE: hard to compute!!!

A conforming approach: the C^0 -conforming VEM

VEM approach : find $u_h \in V_h$:

$$\sum_{\kappa\in\mathcal{T}_h}A_h^{\kappa}(u_h,v_h)=:A_h(u_h,v_h)=\langle f,v_h\rangle:=\sum_{\kappa\in\mathcal{T}_h}\langle f,v_h\rangle_{\kappa}\qquad\forall v_h\in V$$

with A_h^{κ} and $\langle \cdot, \cdot \rangle_{\kappa}$ local discrete forms computable by accessing only directly available information on the ansatz, ie. the DoF, ...

- ... and such that:
 - Stability. There exists $\alpha_*, \alpha^* > 0$ independent of h and κ such that

$$\alpha_*(\nabla v_h, \nabla v_h)_{\kappa} \leq A_h^{\kappa}(v_h, v_h) \leq \alpha^*(\nabla v_h, \nabla v_h)_{\kappa} \qquad \forall v_h \in V_h^{\kappa}$$

• Polynomial consistency. For all $p \in \mathcal{P}_p(\kappa)$ and $v_h \in V_h^{\kappa}$

$$egin{aligned} &A_h^\kappa(p,v_h)=(
abla p,
abla v_h)_\kappa\ &\langle f,p
angle_\kappa=(f,p)_\kappa \end{aligned}$$

2D element:

- vertex value
- (if p > 1) edge polynomial moments of degree $\leq p 2$
- (if p > 1) internal polynomial moments of degree $\leq p 2$

3D element: the above on each face + analogous internal moments.

Computability of a local H^1 -projector

[Beirao da Veiga, Brezzi, C, Manzini, Marini & Russo, M3AS, 2013]

Recall:

$$V_h^{\kappa} := \{ v \in H^1(\kappa) : \Delta v \in \mathcal{P}_{p-2}(\kappa);$$

 $v|_{\partial \kappa} \in C^0(\partial \kappa) \text{ and } v|_e \in \mathcal{P}_p(e), \forall e \in \partial \kappa$

CRUCIAL OBSERVATION: The H^1 -type projector Π_p^1 :

$$\begin{cases} (\nabla \Pi_{p}^{1} v_{h}, \nabla p)_{E} = (\nabla v_{h}, \nabla p)_{E} & \forall p \in \mathcal{P}_{p}(\kappa) \\ \\ \frac{1}{|\kappa|} \int_{\kappa} \Pi_{p}^{1} v_{h} dx = \begin{cases} \frac{1}{\sharp(v)} \sum_{v} v_{h}(v) & \text{if } p = 1 \\ \\ \frac{1}{|\kappa|} \int_{\kappa} v_{h} dx & \text{if } p > 1 \end{cases} \end{cases}$$

is computable just by accessing the DoF of v_h .

}

Computability of a local H^1 -projector

[Beirao da Veiga, Brezzi, C, Manzini, Marini & Russo, M3AS, 2013]

Recall:

$$\begin{split} V_h^\kappa &:= \{ v \in H^1(\kappa) : \Delta v \in \mathcal{P}_{p-2}(\kappa); \\ v|_{\partial \kappa} \in C^0(\partial \kappa) \quad \text{and} \quad v|_e \in \mathcal{P}_p(e), \forall e \in \partial \kappa \end{split}$$

CRUCIAL OBSERVATION: The H^1 -type projector Π_p^1 :

$$\begin{cases} (\nabla \Pi_p^1 v_h, \nabla p)_E = -(v_h, \Delta p)_E + \sum_{e \in \partial \kappa} (v_h, \mathbf{n} \cdot \nabla p)_e \\ \\ \frac{1}{|\kappa|} \int_{\kappa} \Pi_p^1 v_h \, dx = \begin{cases} \frac{1}{\sharp(v)} \sum_v v_h(v) & \text{if } p = 1 \\ \\ \frac{1}{|\kappa|} \int_{\kappa} v_h \, dx & \text{if } p > 1 \end{cases} \end{cases}$$

is computable just by accessing the DoF of v_h .

DRAWBACK: L^2 -projection is not computable.

}

An enhanced Virtual Element space

[Ahmad, Alsaedi, Brezzi, Marini & Russo, C&MA, 2013]

$$V_{h}^{\kappa} := \{ v \in H^{1}(\kappa) : \Delta v \in \mathcal{P}_{p}(\kappa); \\ v|_{\partial \kappa} \in C^{0}(\partial \kappa) \text{ and } v|_{e} \in \mathcal{P}_{p}(e), \forall e \in \partial \kappa; \\ (v - \Pi_{p}^{1}v, p)_{\kappa} = 0 \quad \forall p \in \mathcal{P}_{p,p-1}(\kappa) \}$$

 $L^{2}(E)$ -projection $\Pi^{0}_{p}v_{h}: V_{h}^{\kappa} \to \mathcal{P}_{p}(\kappa)$ is computable:

- moments up to degree p-2 are DoF
- moments of degree p and p-1 coincide with those of $\prod_{p}^{1} v_{h}$

GLOBAL VE SPACE formed by glueing elementwise spaces:

 $V_{h} = \{ \chi \in C^{0}(\Omega) : \chi|_{\kappa} \in V_{h}^{\kappa}, \, \forall \kappa \in \mathcal{T}_{h} \} \subset H^{1}_{0}(\Omega)$

VEM computable, stable, and *p*-consistent forms

We fix the local bilinear form as

 $A_h^{\kappa}(u_h,v_h) := (\nabla \Pi_p^1 u_h, \nabla \Pi_p^1 v_h)_{\kappa} + ((I - \Pi_p^0) u_h, (I - \Pi_p^0) v_h)_{S_A}$

with VEM stabilising term, eg.

$$((I - \Pi_p^1)u_h, (I - \Pi_p^0)v_h))_{S_A} := h_{\kappa}^{d-2} \overrightarrow{\text{DoF}}_{\kappa}((I - \Pi_p^1)u_h) \cdot \overrightarrow{\text{DoF}}_{\kappa}((I - \Pi_p^1)v_h)$$

with $\overrightarrow{\text{DoF}}_{\kappa}(\cdot)$ the vector of appropriately scaled Degrees of Freedom. For the local right-hand side:

$$\langle f, v_h \rangle_{\kappa} := (f, \Pi_p^0 v_h)_{\kappa}$$

In this setting, optimal a priori error bound in the L^2 and H^1 norms can be proven under appropriate shape-regularity assumptions.

[da Veiga, Brezzi, C., Manzini, Marini, Russo, M3AS, 2013], [Ahmad, Alsaedi, Brezzi, Marini & Russo, C&MA, 2013],

UNIVERSITY OF LEICESTER

[C., Manzini, Sutton, IMAJNA, 2016]

1 The VEM does NOT satisfy Galerkin orthogonality. For $v_h \in V_h$,

$$A(u-u_h,v_h) = \langle f,v_h \rangle - (f,v_h)_h + [A_h(u_h,v_h) - A(u_h,v_h)]$$

2 The usual residuals:

$$(f + \Delta u_h)|_{\kappa}$$

and

 $[\nabla u_h]|_f$

can't be computed!

1 The VEM does NOT satisfy Galerkin orthogonality. For $v_h \in V_h$,

$$A(u-u_h,v_h) = \langle f,v_h \rangle - (f,v_h)_h + [A_h(u_h,v_h) - A(u_h,v_h)]$$

2 We can compute the projected residuals

 $(\Pi_{\rho}^{0}f + \Delta\Pi_{\rho}^{1}u_{h})|_{\kappa}$

and

 $\left[\nabla \Pi_{p}^{1} u_{h}\right]\Big|_{f}$

A posteriori error bound

[C, Georgoulis, Pryer, Sutton, Numer. Math., 2017] & [Sutton, PhD, Leicester, 2017]

Theorem (Upper bound)

There exists a constant C, independent of h, u and u_h , such that

$$\|\nabla(u-u_h)\|^2 + \|\nabla(u-\Pi_p^0 u_h)\|^2 \leq C \sum_{\kappa \in \mathcal{T}_h} \eta_{\kappa}^2 + \Theta_{\kappa}^2 + \mathcal{S}_{\kappa}^2$$

where

$$\begin{split} \eta_{\kappa}^{2} &:= h_{\kappa}^{2} \|\Pi_{p}^{0}f + \Delta\Pi_{p}^{1}u_{h}\|_{\kappa}^{2} + \sum_{f \in \partial \kappa} h_{f} \|[\nabla\Pi_{p}^{0}u_{h}]\|_{f}^{2} \quad (\text{residual}) \\ \Theta_{\kappa}^{2} &:= h_{\kappa}^{2} \|f - \Pi_{p}^{0}f\|_{\kappa}^{2} \qquad (\text{data oscillation}) \\ \mathcal{S}_{\kappa}^{2} &:= (u_{h} - \Pi_{p}^{0}u_{h}, u_{h} - \Pi_{p}^{0}u_{h})_{\mathcal{S}_{A}} \qquad (\text{projection indicator}) \end{split}$$

This can be generalised to diffusion-advection-reaction problems with non-constant coefficients: extra virtual inconsistency terms appear.

Theorem (Local lower bound)

There exists a constant C, independent of h, u and u_h , such that

$$\eta_{\kappa}^2 \leq C \sum_{\hat{\kappa} \in \omega_{\kappa}} \left(\|\nabla(u-u_h)\|_{\hat{\kappa}}^2 + \|\nabla(u-\Pi_p^0 u_h)\|_{\hat{\kappa}}^2 + \Theta_{\hat{\kappa}}^2 \right)$$

with ω_{κ} the patch made of κ and its neighbours.

Proof is based on the classical bubble function techniques.

Numerical example

and f such that exact solution is:

$$u(x,y) = \exp(-(1000(x-0.5)^2 + 1000(y-0.5)^2))$$

IVERSITY OF

- Possible to *efficiently* generalise classical FE families
 → Fitted discretisation a posteriori analysis for curved boundary (natural b.c.)
- General meshes can be advantageous in mesh (in facts, *hp*-) adaptivity

Outlook

- A posteriori analysis for degenerating interfaces (and curved boundary with essential b.c)
- More applications & implementations of adaptive algorithms

