Numerical PDEs and adaptivity on general meshes

Andrea Cangiani

UNIVERSITY OF LEICESTER

$1^{\text {st }}$ Scottish Numerical Methods Network
Glasgow, January $30^{\text {th }}, 2018$.

General meshes motivation

Dealing with complicated geometries: linear elastic analysis of trabecular (spongy) bone.

Initial geometry made of 1,179,569 tetrahedral elements.

Sample elements from agglomerated mesh made of 8000 elements.
[C, Dong, Georgoulis, Houston, Springer Briefs, 2017]

General meshes motivation

Complicated geometries \& adaptivity: interstitial Flow Modelling related to interstitial drug transport to cancer cells

Transport field by incompressible Navier-Stokes.

General meshes motivation

Complicated geometries \& adaptivity: interstitial Flow Modelling related to interstitial drug transport to cancer cells

Initial agglomerated mesh consisting of 128 elements

General meshes motivation

Complicated geometries \& adaptivity: interstitial Flow Modelling related to interstitial drug transport to cancer cells

Goal oriented adaptivity by P. Houston (Nottingham). [C, Dong, Georgoulis, Houston, Springer Briefs, 2017]

General meshes motivation

Mesh refinement \& coarsening is trivial and fully local

\rightarrow Hanging nodes a thing of the past!

General meshes motivation

Fitted discretisation of curved boundaries: interface diffusion.

Solution adapted mesh by Y. Sabawi (Iraq).
[C, Georgoulis, Sabawi, Math. Comp., 2017.]

UNIVERSITY OF LEICESTER

General meshes motivation

Aggressively adapted meshes: truly solution-adapted meshes

Cyclic competition reaction-diffusion system. [Sutton, PhD Thesis, Leicester 2017]

C^{0}-conforming polygonal elements

Classical C^{0}-conforming FEM families ($\mathcal{P}_{p^{\prime}}$-triangles, \mathcal{Q}_{p}-affine quads) are instances of

Generalised harmonic FE of order p : on an element κ

$$
\begin{aligned}
V_{h}^{\kappa}:=\left\{v \in H^{1}(\kappa):\right. & \Delta v \in \mathcal{P}_{p-2}(\kappa) ; \\
& \left.\left.v\right|_{\partial \kappa} \in C^{0}(\partial \kappa) \quad \text { and }\left.\quad v\right|_{e} \in \mathcal{P}_{p}(e), \forall e \in \partial \kappa\right\}
\end{aligned}
$$

where $\mathcal{P}_{-1}:=\{0\}$, hence $p=1$ gives the harmonic FE .
As such, they yield the same element irrespective of the shape:

C^{0}-conforming polygonal elements

Classical C^{0}-conforming FEM families (\mathcal{P}_{p}-triangles, \mathcal{Q}_{p}-affine quads) are instances of

Generalised harmonic FE of order p : on an element κ

$$
\begin{aligned}
V_{h}^{\kappa}:=\left\{v \in H^{1}(\kappa):\right. & \Delta v \in \mathcal{P}_{p-2}(\kappa) ; \\
& \left.\left.v\right|_{\partial \kappa} \in C^{0}(\partial \kappa) \quad \text { and }\left.\quad v\right|_{e} \in \mathcal{P}_{p}(e), \forall e \in \partial \kappa\right\}
\end{aligned}
$$

where $\mathcal{P}_{-1}:=\{0\}$, hence $p=1$ gives the harmonic $F E$.
As such, they yield the same element irrespective of the shape:
1 Only known implicitly as solutions of local PDEs
[乍 Contains $\mathcal{P}_{P}(\kappa)$, i.e. a space of physical frame polynomials;
[臽 It is just $\mathcal{P}_{p}(e)$ on each edge $e \in \partial \kappa$.

Approaches to polygonal FEM

Augmented FE are mentioned as early as Strang \& Fix (1973).

Most FEM on polygonal (and polyhedral) meshes play with these ingredients:
(1) contains $\mathcal{P}_{p}(\kappa)$, i.e. a space of physical frame polynomials;
(2) is just $\mathcal{P}_{p}(e)$ on each edge $e \in \partial \kappa$.

Approaches to polygonal FEM

Augmented FE are mentioned as early as Strang \& Fix (1973).

Examples of conforming methods ${ }^{1}$

- Composite Finite Elements (CFEs) [Hackbusch \& Sauter, Numer. Math., 1997]
- Harmonic FEM \& Polygonal FEM [Sukumar \&Tabarraei, Int. J. Numer. Methods Eng., 2004]
- BEM-based FEM [Copeland, Langer \& Pusch, DDM xvill, 2009]
- Extended FEM ${ }_{\text {[Fries \& Belytschko, Int. J. Numer. Methods Eng., 2010] }}$
- Nodal Mimetic Finite Difference (MFD) [Brezzi, Buffa \& Lipnikov, M2AN, 2009]
- Virtual Element Method (VEM) [da Veiga, Brezzi, c. Manzini, Marini \& Russo, M3AS, 2013]

[^0]
Approaches to polygonal FEM

Augmented FE are mentioned as early as Strang \& Fix (1973).
Examples of non-conforming methods

- Mimetic Finite Difference (MFD) [Brezzi, Lipnikov, Shashkov, SINUM, 2005]
- Nonconforming VEM [Ayuso de Dios, Lipnikoo \& Manzini, M2NA, 2016]
- HDG [Cockburn, Gopalakrishnan \& Lazarov, SINUM, 2009]
- Weak Galerkin [Wand \& Ye, J. Comput. Appl. Math. 2013]
- Hybrid High-Order (HHO) [Di Pietro \& Err, cmame, 2015]
- Gradient scheme framework [Droniou, Eymard, Gallouet \& Herbin, M3AS, 2013]
- Reconstruction FEM [Georgoulis \& Pryer, CMAME, 2018]
- Agglomerated DG [Bassi, L. Botti, A. Colombo, s. Rebay, Comput. Fluids, 2012] Composite DG [Antonietti, Giani, Houston, SIAM J. Sci. Comput., 2013]
- hp-IPDG [c, Georgoulis \& Houston, M3AS, 2014]

Outline \& goals

(1) $h p$-version IP-dG methods ($h p$-DGFEM)

- Extending $h p$-DGFEM to extremely general meshes \rightarrow including non shape regular elements with degenerating or curved interfaces
- A posteriori analysis of fitted discretisations on curved domains
(2) C^{0}-conforming Virtual Element Method (VEM)
- A posteriori error analysis \& adaptivity

NOTE:The VEM framework is much more than just polytopic FEM.
Eg. globally C^{k}, div-free, $\mathrm{H}($ div $)$ and H (curl) conforming, Trefftz.

DRIVING PRINCIPLES

- Computational cost should be comparable to that of standard FEMs
- Allow the use of standard FEM locally.
- Allow flexible mesh adaptation

Linear PDEs with non-negative characteristic form

Includes elliptic, parabolic, hyperbolic, as well as hypoelliptic and mixed-type PDEs.
On $\Omega \subset \mathbb{R}^{d}, d=2,3$, bounded open polyhedral domain ${ }^{1}$, consider

$$
-\nabla \cdot(A \nabla u)+\mathbf{b} \cdot \nabla u+c u=f
$$

with

$$
\xi^{\top} A(x) \xi \geq 0 \quad \forall \xi \in \mathbb{R}^{d}, \quad \text { a.e. } \quad x \in \bar{\Omega}
$$

Supplemented on $\Gamma=\partial \Omega$ with

$$
\begin{array}{lll}
u=g_{\mathrm{D}} & \text { on } & \Gamma_{\mathrm{D}} \cup \Gamma_{-}, \\
\mathbf{n} \cdot(A \nabla u)=g_{\mathrm{N}} & \text { on } & \Gamma_{\mathrm{N}} .
\end{array}
$$

where

$$
\begin{aligned}
& \Gamma_{0}=\left\{x \in \Gamma: \mathbf{n}(x)^{\top} a(x) \mathbf{n}(x)>0\right\}=: \Gamma_{D} \cup \Gamma_{N} \\
& \Gamma_{-}=\left\{x \in \Gamma \backslash \Gamma_{0}: \mathbf{b}(x) \cdot \mathbf{n}(x)<0\right\}, \quad \Gamma_{+}=\Gamma \backslash \Gamma_{0} \cup \Gamma_{-}
\end{aligned}
$$

${ }^{1}$ Later: Curved boundaries/multi-compartment problems.

Physical frame $h p$-DGFEM (p) on polytopic meshes

On meshes \mathcal{T}_{h} made of non-overlapping polygons/polyhedra, set ${ }^{2}$

$$
V_{h}^{\mathbf{p}}:=\left\{v \in L^{2}(\Omega):\left.\quad v\right|_{\kappa} \in \mathcal{P}_{p_{\kappa}}(\kappa), \quad \forall \kappa \in \mathcal{T}_{h}\right\}
$$

- Local space independent of element shape;
- dG space with minimal number of degrees of freedom per element.
(IP-) $h p-\operatorname{DGFEM}(p)$ method: Find $u_{h} \in V_{h}^{\text {p }}$ such that

$$
B\left(u_{h}, v_{h}\right)=\ell\left(v_{h}\right) \quad \forall v_{h} \in V_{h}^{\text {p }}
$$

${ }^{2} \mathcal{P}_{p}(\kappa)$ space of polynomials of total degree up to p.

Physical frame $h p-\operatorname{DGFEM}(p)$ on polytopic meshes

$$
\begin{aligned}
B(u, v) & :=B_{\mathrm{d}}(u, v)+B_{\mathrm{ar}}(u, v) \text { and } \\
B_{\mathrm{d}}(u, v) & :=\sum_{\kappa \in \mathcal{T}} \int_{\kappa} A \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\Gamma_{\text {int }} u \Gamma_{\mathrm{D}}}(\{A \nabla u \cdot n\} \cdot[v]+\{A \nabla v \cdot n\} \cdot[u]-\sigma[u][v]) \mathrm{d} s \\
B_{\mathrm{ar}}(u, v) & :=\sum_{\kappa \in \mathcal{T}} \int_{\kappa}(\boldsymbol{b} \cdot \nabla u+c u) v \mathrm{~d} x-\sum_{\kappa \in \mathcal{T}} \int_{\partial_{-} \kappa \backslash \Gamma_{\mathrm{N}}}(\boldsymbol{b} \cdot \mathbf{n})\lfloor u\rfloor v^{+} \mathrm{d} s
\end{aligned}
$$

where

$$
\left.\{u\}\right|_{\partial \kappa_{i} \cap \partial \kappa_{j}}=\frac{u_{\kappa_{i}}+u_{\kappa_{j}}}{2} \quad\left[\left.u\right|_{\partial \kappa_{i} \cap \partial \kappa_{j}}=u_{\kappa_{i}} \mathbf{n}_{\kappa_{i}}+\left.u_{\kappa_{j}} \mathbf{n}_{\kappa_{j}} \quad\lfloor u\rfloor\right|_{\partial \kappa}=u^{+}-u^{-}\right.
$$

with u^{-}, u^{+}upwind and downwind values ${ }^{3}$ and
σ a interior discontinuity-penalization (IP-) parameter.
Finally,

$$
\ell(v):=\sum_{\kappa \in \mathcal{T}} \int_{\kappa} f v d x+(\text { boundary terms }) .
$$

Heat equation in 2D: square mesh comparison

Forcing chosen so that $u(t, x, y)=\sin (20 \pi t) e^{\left(-5(x-0.5)^{2}-5(y-0.5)^{2}\right)}$.

'DG Q' and 'FEM Q': DG and conforming FEM tensor-product elenagnts yersirof in space, with DG time-stepping.

IP-parameter and stability

DG-norm: $\left\|\|w\|^{2}:=\right\|\left|\left\|\left\|_{\text {ar }}^{2}+\mid\right\| w\right\|_{\text {d }}^{2}\right.$ with

$$
\|w\|_{\mathrm{d}}:=\left(\sum_{\kappa \in \mathcal{T}} \int_{\kappa}|\nabla w|^{2} \mathrm{~d} \mathbf{x}+\int_{\Gamma \backslash \Gamma_{\mathrm{N}}} \sigma|[w]|^{2} \mathrm{~d} s\right)^{1 / 2}
$$

Stability analysis and IP-parameter choice of $h p$-DGFEM depends on the inverse estimates from every face $f \in \partial \kappa$ into κ.

For κ simplex/hexahedron: $\quad\|v\|_{f}^{2} \leq C \frac{|f| p^{2}}{|\kappa|}\|v\|_{\kappa}^{2} \quad \forall v \in \mathcal{P}_{p}(\kappa)$.
What about this kind of meshes??

A. Cangiani

VERSITY OF
ICESTER

Challenges

- Classical hp-inverse estimates not sharp in presence of arbitrarily small, degenerating $(d-k)$-dim interfaces, $k=1, \ldots, d-1$.
\rightarrow new sharp hp-inverse estimates.
- No sharp hp-approximation results for L_{2}-projector (key for first order terms Houston, Schwab \& Süli ('02)) over polytopic meshes.
\rightarrow error analysis via hp-inf-sup stability on stronger norms.
à la Johnson \& Pitkäranta ('86), Buffa, Hughes \& Sangalli ('06), Ayuso \& Marini ('09),
C., Chapman, Georgoulis, \& Jensen ('13).

Inverse estimates for arbitrarily small interfaces

Inverse estimates for d-simplexes $/ d$-hexahedra. For each face $f \subset \partial \kappa$

$$
\|v\|_{f}^{2} \leq C \frac{|f| p^{2}}{|\kappa|}\|v\|_{\kappa}^{2} \quad \forall v \in \mathcal{P}_{p}(\kappa)
$$

For each element $\kappa \in \mathcal{T}$, define the family \mathcal{F}_{f}^{κ} of all simplices contained in κ and having f as one of their faces.

Inverse estimate for polytopes. For $v \in \mathcal{P}_{p}(\kappa)$, we have

$$
\|v\|_{f}^{2} \leq C_{\mathrm{inv}} \frac{p^{2}|f|}{\left|\tau_{f}^{\kappa}\right|}\|v\|_{\tau_{f}^{\kappa}}^{2} \leq C_{\mathrm{inv}} \frac{p^{2}|f|}{\left|\tau_{f}^{\kappa}\right|}\|v\|_{\kappa}^{2}, \quad \forall \tau_{f}^{\kappa} \in \mathcal{F}_{f}^{\kappa} .
$$

The first inequality permits arbitrarily small elemental interfaces!

An inverse estimate

We say κ is p-coverable if it can be covered by at most m_{κ} shape-regular simplexes $K_{i}, i=1, \ldots, m_{\kappa}$, with $\left|K_{i}\right| \geq c_{a s}|\kappa|$ and

$$
\operatorname{dist}\left(\kappa, \partial K_{i}\right) \lesssim \operatorname{diam}\left(K_{i}\right) / p^{2}
$$

Lemma (C., Georgoulis \& Houston, M3AS, 2014)
If κ is p-coverable and $f \subset \partial \kappa$ is one of its faces, then for each $v \in \mathcal{P}_{p}(\kappa)$

$$
\|v\|_{f}^{2} \lesssim C_{\mathrm{INV}}(p, \kappa, f) \frac{p^{2}|f|}{|\kappa|}\|v\|_{\kappa}^{2}
$$

with $C_{\mathrm{INV}}(p, \kappa, f):=\min \left\{\frac{|\kappa|}{\sup _{\tau_{f}^{\kappa} \subset \kappa}\left|\tau_{f}^{\kappa}\right|}, p^{2(d-1)}\right\}$.
This inverse estimate permits arbitrarily small elemental interfaces! It leads to new jump penalisation parameter.

$h p-\operatorname{DGFEM}(p)$ a priori analysis

Inverse estimate permits to generalise a priori hp-error analysis [Houston, Schwab \& suli, SINUM,2002] to meshes with

- possibly degenerating interfaces
- no shape regularity assumptions,
- uniformly bounded number of faces

Alternative assumption: allowing for arbitrary number of faces. For all κ, for all $f \in \partial \kappa$ there exists $\tau_{f}^{\kappa} \in \mathcal{F}_{f}^{\kappa}$:

$$
h_{\kappa} \leq C_{s} \frac{d\left|\tau_{f}^{\kappa}\right|}{|f|}
$$

Lemma (C., Dong \& Georgoulis, SIAM J. Sci. Comput., 2014)

Under the above assumption, for each $v \in \mathcal{P}_{p}(\kappa)$,

$$
\|v\|_{\partial \kappa}^{2} \leq C_{s} C_{\mathrm{inv}} d \frac{p^{2}}{h_{\kappa}}\|v\|_{\kappa}^{2}
$$

Transport problem in 3D with known solution

$$
\Omega=(0,1)^{3}, \quad A \equiv 0, \quad \mathbf{b}=(-y, z, x), \quad c=x y^{2} z
$$

Forcing chosen so that $u(x, y, z)=1+\sin \left(\pi x y^{2} z / 8\right)$.

64 agglomerated elements

32768 agglomerated elements

Transport problem in 3D

Agglomerated mesh 'DGFEM' vs square mesh 'DGFEM(P)'

Figure: Convergence under h-refinement for uniform $p=1,2,3,4$. 图 Univegity LEICESTER

Multidomain pbm with flux-balancing interface conditions

 Eg. modelling semipermeable membranes$\Omega=\Omega_{1} \cup \Omega_{2} \cup \Gamma^{t r}$,
$\Gamma^{t r}:=\left(\partial \Omega_{1} \cap \partial \Omega_{2}\right) \backslash \partial \Omega$ Lipschitz
P permeability function

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =f, & & \text { in }(0, T] \times \Omega_{1} \cup \Omega_{2} \\
u & =u_{0} & & \text { in }\{0\} \times \Omega_{1} \cup \Omega_{2} \\
u & =0, & & \text { on }(0, T] \times \partial \Omega \\
\mathbf{n}^{1} \cdot \nabla u_{1} & =\left.P(u)\left(u_{2}-u_{1}\right)\right|_{\Omega_{1}} & & \text { on }(0, T] \times \bar{\Omega}_{1} \cap \Gamma^{t r} \\
\mathbf{n}^{2} \cdot \nabla u_{2} & =\left.P(u)\left(u_{1}-u_{2}\right)\right|_{\Omega_{2}} & & \text { on }(0, T] \times \bar{\Omega}_{2} \cap \Gamma^{t r}
\end{aligned}\right.
$$

Curved interface problems

Unfitted mesh approaches

- A number of very successful methods available (unfitted FEM, immersed interface, fictitious domain, composite FE, cut-cell, ...).
- Using PDE stability linking error with the residual is cumbersome \Rightarrow Energy norm a posteriori analysis difficult ${ }^{4}$!

Fitted mesh approach

- Physical frame hp-DGFEM with curved elements to fit the interface.
- Natural approach to energy norm a posteriori analysis.
- Applies to problems with non-essential boundary conditions on a single domain with curved boundary.
- Numerical difficulty moved to hard quadrature evaluation.
${ }^{4}$ See [Dörfler \& Rumpf, Math Comp 1998, Ainsworth \& Rankin, Tech Rep 2012]

Fitted $h p$-DGFEM (p) discretisation

The mesh \mathcal{T}_{h} is standard, but may contain curved elements to fit the interface.

Elliptic problem Find $u_{h} \in V_{h}^{\text {p }}$:

$$
\begin{gathered}
B\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle \quad \text { for all } v_{h} \in V_{h}^{\mathbf{p}} \\
B\left(u_{h}, v_{h}\right)= \\
\sum_{K \in \mathcal{T}} \int_{K} \nabla u_{h} \cdot \nabla v_{h} d x-\int_{\Gamma \backslash \Gamma^{t r}}\left(\left\{\nabla u_{h}\right\} \cdot \llbracket v_{h} \rrbracket+\left\{\nabla v_{h}\right\} \cdot \llbracket u_{h} \rrbracket\right) d s \\
+\int_{\Gamma \backslash \Gamma^{t r}} \frac{\sigma}{\mathbf{h}} \llbracket u_{h} \rrbracket \cdot \llbracket v_{h} \rrbracket d s+\int_{\Gamma^{t r}} P\left(u_{h}\right) \llbracket u_{h} \rrbracket \cdot \llbracket v_{h} \rrbracket d s ;
\end{gathered}
$$

Parabolic problem By standard timestepping, eg. backward Euler.

Elements with curved faces

For elements with curved faces, take the process described earlier to the limit!

Assumptions:
Star-shaped w.r.t.

$$
\frac{\mathbf{m}}{|\boldsymbol{m}|} \cdot \mathbf{n} \geq c>0
$$

Inverse estimate

Lemma (C., Georgoulis \& Sabawi, Math. Comp., 2017)

Let κ be a simplex/hexahedron with a curved face F. For each $v \in \mathcal{P}_{p}(\kappa)$,

$$
\|v\|_{f}^{2} \leq C \frac{p^{2}}{h_{\kappa}}\|v\|_{\kappa}^{2} .
$$

Apply inverse estimate from each f_{j} to κ_{j} and sum up.

KP recovery operator

Lemma (C., Georgoulis \& Sabawi, Math. Comp., 2017)
Given the above mesh assumptions, there exists a recovery operator $\mathcal{E}: S_{h}^{p} \rightarrow H^{1}\left(\Omega_{1} \cup \Omega_{2}\right)$, such that

$$
\begin{equation*}
\sum_{\kappa \in \mathcal{T}}\left\|\nabla^{\alpha}\left(v_{h}-\mathcal{E}\left(v_{h}\right)\right)\right\|_{\kappa}^{2} \leq C_{\alpha} \sum_{E \subset\left\ulcorner\backslash \Gamma^{t r}\right.}\left\|\sqrt{\theta \eta} \mathbf{h}^{1 / 2-\alpha} \llbracket v_{h} \rrbracket\right\|_{E}^{2}, \tag{1}
\end{equation*}
$$

for all $v_{h} \in S_{h}^{p}, C_{\alpha}>0, \alpha=0,1$, independent of v_{h}, θ and \mathbf{h}.

- Here, θ, η measure how far κ is from straight. They must satisfy some mild saturation assumptions of the approximation of the geometry by the mesh.
- If κ is not curved, then $\eta=\theta=1$ and recovery operator and bound reduces to that of Karakashian \& Pascal [Karakshian \& Pascal, sinum,2003].
- Note: reconstruction not continuous across the interface. A posteriori analysis for meshes with internal curved interfaces degenerating interfaces still open!

Elliptic problem with curved interface

$$
\Omega=(-1,1)^{2}, \Omega_{1}=\left\{x^{2}+y^{2}<0.5^{2}\right\}, \Omega_{2}=\Omega \backslash \bar{\Omega}_{1}, C_{t r}=0.75
$$

Forcing \& boundary conditions chosen so that

$$
u=\left\{\begin{aligned}
\left(x^{2}+y^{2}\right)^{3 / 2}, & \text { in } \Omega_{1} \\
\left(x^{2}+y^{2}\right)^{3 / 2}+1, & \text { in } \Omega_{2}
\end{aligned}\right.
$$

$p=1$. Implementation of interface by $4^{\text {th }}$-order (polynomial) mapping.

UNIVERSITY OF
LEICESTER

Elliptic problem with curved interface

$$
\Omega=(-1,1)^{2}, \Omega_{1}=\left\{x^{2}+y^{2}<0.5^{2}\right\}, \Omega_{2}=\Omega \backslash \bar{\Omega}_{1}, C_{t r}=0.75
$$

Forcing \& boundary conditions chosen so that

$$
u=\left\{\begin{aligned}
\left(x^{2}+y^{2}\right)^{3 / 2}, & \text { in } \Omega_{1} \\
\left(x^{2}+y^{2}\right)^{3 / 2}+1, & \text { in } \Omega_{2}
\end{aligned}\right.
$$

$p=1$. Implementation of interface by $4^{\text {th }}$-order (polynomial) mapping.

Total Dofs	Estimate	Rate	E.norm	Rate	Est./E.norm
768	7.6178	-	0.84377	-	9.03
3072	3.9836	0.9349	0.39946	1.0789	9.97
12288	2.0257	0.9755	0.19146	1.0610	10.58
49152	1.02	0.9897	0.093261	1.0378	10.9
196608	0.51507	0.9857	0.045982	1.0202	11.2

Convection-diffusion problem (straight interface)

[S. Metcalfe, PhD Thesis, Leicester, 2015]

A conforming approach: the C^{0}-conforming VEM

Model problem: find $u \in V=H_{0}^{1}(\Omega)$:

$$
A(u, v):=(\nabla u, \nabla v)=(f, v) \quad \forall v \in V
$$

Recall the local generalised harmonic FE of order p :

$$
\begin{aligned}
V_{h}^{\kappa}:=\left\{v \in H^{1}(\kappa):\right. & \Delta v \in \mathcal{P}_{p-2}(\kappa) ; \\
& \left.\left.v\right|_{\partial \kappa} \in C^{0}(\partial \kappa) \quad \text { and }\left.\quad v\right|_{e} \in \mathcal{P}_{p}(e), \forall e \in \partial \kappa\right\}
\end{aligned}
$$

from which we may construct a C^{0}-conforming space as

$$
V_{h}=\left\{v \in C^{0}(\Omega):\left.v\right|_{\kappa} \in V_{h}^{\kappa}, \forall \kappa \in \mathcal{T}_{h}\right\} \subset H_{0}^{1}(\Omega)
$$

yielding the generalised harmonic formulation: find $u_{h} \in V_{h}$:

$$
A\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V
$$

ISSUE: hard to compute!!!

A conforming approach: the C^{0}-conforming VEM

VEM approach : find $u_{h} \in V_{h}$:

$$
\sum_{\kappa \in \mathcal{T}_{h}} A_{h}^{\kappa}\left(u_{h}, v_{h}\right)=: A_{h}\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle:=\sum_{\kappa \in \mathcal{T}_{h}}\left\langle f, v_{h}\right\rangle_{\kappa} \quad \forall v_{h} \in V
$$

with A_{h}^{κ} and $\langle\cdot, \cdot\rangle_{\kappa}$ local discrete forms computable by accessing only directly available information on the ansatz, ie. the DoF, ...
... and such that:

- Stability. There exists $\alpha_{*}, \alpha^{*}>0$ independent of h and κ such that

$$
\alpha_{*}\left(\nabla v_{h}, \nabla v_{h}\right)_{\kappa} \leq A_{h}^{\kappa}\left(v_{h}, v_{h}\right) \leq \alpha^{*}\left(\nabla v_{h}, \nabla v_{h}\right)_{\kappa} \quad \forall v_{h} \in V_{h}^{\kappa}
$$

- Polynomial consistency. For all $p \in \mathcal{P}_{p}(\kappa)$ and $v_{h} \in V_{h}^{\kappa}$

$$
\begin{aligned}
A_{h}^{\kappa}\left(p, v_{h}\right) & =\left(\nabla p, \nabla v_{h}\right)_{\kappa} \\
\langle f, p\rangle_{\kappa} & =(f, p)_{\kappa}
\end{aligned}
$$

Local DoF for VEM of order p

2D element:

- vertex value
- (if $p>1$) edge polynomial moments of degree $\leq p-2$
- (if $p>1$) internal polynomial moments of degree $\leq p-2$

3D element: the above on each face + analogous internal moments.

Computability of a local H^{1}-projector

[Beirao da Veiga, Brezzi, C, Manzini, Marini \& Russo, M3AS, 2013]

Recall:

$$
\begin{aligned}
& V_{h}^{\kappa}:=\left\{v \in H^{1}(\kappa): \Delta v \in \mathcal{P}_{p-2}(\kappa)\right. \\
&\left.v\right|_{\partial \kappa} \in C^{0}(\partial \kappa) \quad \text { and }\left.\quad v\right|_{e} \in \mathcal{P}_{p}(e), \forall e \in \partial \kappa
\end{aligned}
$$

CRUCIAL OBSERVATION: The H^{1}-type projector Π_{p}^{1} :

$$
\left\{\begin{aligned}
\left(\nabla \Pi_{p}^{1} v_{h}, \nabla p\right)_{E}= & \left(\nabla v_{h}, \nabla p\right)_{E}
\end{aligned} \begin{array}{ll}
\forall p \in \mathcal{P}_{p}(\kappa) \\
\frac{1}{|\kappa|} \int_{\kappa} \Pi_{p}^{1} v_{h} d x= \begin{cases}\frac{1}{\sharp(v)} \sum_{v} v_{h}(v) & \text { if } p=1 \\
\frac{1}{|\kappa|} \int_{\kappa} v_{h} d x & \text { if } p>1\end{cases}
\end{array}\right.
$$

is computable just by accessing the DoF of v_{h}.

Computability of a local H^{1}-projector

[Beirao da Veiga, Brezzi, C, Manzini, Marini \& Russo, M3AS, 2013]

Recall:

$$
\begin{aligned}
V_{h}^{\kappa}:=\left\{v \in H^{1}(\kappa):\right. & \Delta v \in \mathcal{P}_{p-2}(\kappa) ; \\
& \left.v\right|_{\partial \kappa} \in C^{0}(\partial \kappa) \text { and }\left.\quad v\right|_{e} \in \mathcal{P}_{p}(e), \forall e \in \partial \kappa
\end{aligned}
$$

CRUCIAL OBSERVATION: The H^{1}-type projector Π_{p}^{1} :

$$
\left\{\begin{array}{l}
\left(\nabla \Pi_{p}^{1} v_{h}, \nabla p\right)_{E}=-\left(v_{h}, \Delta p\right)_{E}+\sum_{e \in \partial \kappa}\left(v_{h}, \mathbf{n} \cdot \nabla p\right)_{e} \\
\frac{1}{|\kappa|} \int_{\kappa} \Pi_{p}^{1} v_{h} d x= \begin{cases}\frac{1}{\sharp(v)} \sum_{v} v_{h}(v) & \text { if } p=1 \\
\frac{1}{|\kappa|} \int_{\kappa} v_{h} d x & \text { if } p>1\end{cases}
\end{array}\right.
$$

is computable just by accessing the DoF of v_{h}.
DRAWBACK: L^{2}-projection is not computable.

An enhanced Virtual Element space

$$
\begin{aligned}
V_{h}^{\kappa}:=\left\{v \in H^{1}(\kappa):\right. & \Delta v \in \mathcal{P}_{p}(\kappa) ; \\
& \left.v\right|_{\partial \kappa} \in C^{0}(\partial \kappa) \quad \text { and }\left.\quad v\right|_{e} \in \mathcal{P}_{p}(e), \forall e \in \partial \kappa ; \\
& \left.\left(v-\Pi_{p}^{1} v, p\right)_{\kappa}=0 \quad \forall p \in \mathcal{P}_{p, p-1}(\kappa)\right\}
\end{aligned}
$$

$L^{2}(E)$-projection $\Pi_{p}^{0} v_{h}: V_{h}^{\kappa} \rightarrow \mathcal{P}_{p}(\kappa)$ is computable:

- moments up to degree $p-2$ are DoF
- moments of degree p and $p-1$ coincide with those of $\Pi_{p}^{1} v_{h}$

GLOBAL VE SPACE formed by glueing elementwise spaces:

$$
V_{h}=\left\{\chi \in C^{0}(\Omega):\left.\chi\right|_{\kappa} \in V_{h}^{\kappa}, \forall \kappa \in \mathcal{T}_{h}\right\} \subset H_{0}^{1}(\Omega)
$$

VEM computable, stable, and p-consistent forms

We fix the local bilinear form as

$$
A_{h}^{\kappa}\left(u_{h}, v_{h}\right):=\left(\nabla \Pi_{p}^{1} u_{h}, \nabla \Pi_{p}^{1} v_{h}\right)_{\kappa}+\left(\left(I-\Pi_{p}^{0}\right) u_{h},\left(I-\Pi_{p}^{0}\right) v_{h}\right) S_{S_{A}}
$$

with VEM stabilising term, eg.
$\left.\left(\left(I-\Pi_{p}^{1}\right) u_{h},\left(I-\Pi_{p}^{0}\right) v_{h}\right)\right)_{s_{A}}:=h_{\kappa}^{d-2} \overrightarrow{\operatorname{DoF}}_{\kappa}\left(\left(I-\Pi_{p}^{1}\right) u_{h}\right) \cdot \overrightarrow{\operatorname{DoF}}_{\kappa}\left(\left(I-\Pi_{p}^{1}\right) v_{h}\right)$
with $\overrightarrow{\operatorname{DoF}}_{\kappa}(\cdot)$ the vector of appropriately scaled Degrees of Freedom.
For the local right-hand side:

$$
\left\langle f, v_{h}\right\rangle_{\kappa}:=\left(f, \Pi_{p}^{0} v_{h}\right)_{\kappa}
$$

In this setting, optimal a priori error bound in the L^{2} and H^{1} norms can be proven under appropriate shape-regularity assumptions.
[da Veiga, Brezzi, C., Manzini, Marini, Russo, M3AS, 2013], [Ahmad, Alsaedi, Brezzi, Marini \& Russo, C\&MA, 2013],

Energy norm a posteriori error analysis

1 The VEM does NOT satisfy Galerkin orthogonality. For $v_{h} \in V_{h}$,

$$
A\left(u-u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle-\left(f, v_{h}\right)_{h}+\left[A_{h}\left(u_{h}, v_{h}\right)-A\left(u_{h}, v_{h}\right)\right]
$$

2 The usual residuals:

$$
\left.\left(f+\Delta u_{h}\right)\right|_{\kappa}
$$

and

$$
\left.\left[\nabla u_{h}\right]\right|_{f}
$$

can't be computed!

Energy norm a posteriori error analysis

1 The VEM does NOT satisfy Galerkin orthogonality. For $v_{h} \in V_{h}$,

$$
A\left(u-u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle-\left(f, v_{h}\right)_{h}+\left[A_{h}\left(u_{h}, v_{h}\right)-A\left(u_{h}, v_{h}\right)\right]
$$

2 We can compute the projected residuals

$$
\left.\left(\Pi_{p}^{0} f+\Delta \Pi_{p}^{1} u_{h}\right)\right|_{\kappa}
$$

and

$$
\left.\left[\nabla \Pi_{p}^{1} u_{h}\right]\right|_{f}
$$

A posteriori error bound

[C, Georgoulis, Pryer, Sutton, Numer. Math., 2017] \& [Sutton, PhD, Leicester, 2017]

Theorem (Upper bound)

There exists a constant C, independent of h, u and u_{h}, such that

$$
\left\|\nabla\left(u-u_{h}\right)\right\|^{2}+\left\|\nabla\left(u-\Pi_{p}^{0} u_{h}\right)\right\|^{2} \leq C \sum_{\kappa \in \mathcal{T}_{h}} \eta_{\kappa}^{2}+\Theta_{\kappa}^{2}+\mathcal{S}_{\kappa}^{2}
$$

where

$$
\begin{array}{ll}
\eta_{\kappa}^{2}:=h_{\kappa}^{2}\left\|\Pi_{p}^{0} f+\Delta \Pi_{p}^{1} u_{h}\right\|_{\kappa}^{2}+\sum_{f \subset \partial \kappa} h_{f}\left\|\left[\nabla \Pi_{p}^{0} u_{h}\right]\right\|_{f}^{2} & \text { (residual) } \\
\Theta_{\kappa}^{2}:=h_{\kappa}^{2}\left\|f-\Pi_{p}^{0} f\right\|_{\kappa}^{2} & \text { (data oscillation) } \\
\mathcal{S}_{\kappa}^{2}:=\left(u_{h}-\Pi_{p}^{0} u_{h}, u_{h}-\Pi_{p}^{0} u_{h}\right) S_{A} & \text { (projection indicator) }
\end{array}
$$

This can be generalised to diffusion-advection-reaction problems with non-constant coefficients: extra virtual inconsistency terms appear.

A posteriori error bound: local lower bound

Theorem (Local lower bound)
There exists a constant C, independent of h, u and u_{h}, such that

$$
\eta_{\kappa}^{2} \leq C \sum_{\hat{\kappa} \in \omega_{\kappa}}\left(\left\|\nabla\left(u-u_{h}\right)\right\|_{\hat{\kappa}}^{2}+\left\|\nabla\left(u-\Pi_{p}^{0} u_{h}\right)\right\|_{\hat{\kappa}}^{2}+\Theta_{\hat{\kappa}}^{2}\right)
$$

with ω_{κ} the patch made of κ and its neighbours.
Proof is based on the classical bubble function techniques.

Numerical example

$$
-\Delta u+\boldsymbol{b} \cdot \nabla u+c u=f
$$ with

$$
\begin{aligned}
\boldsymbol{b}(x, y) & =\left[\begin{array}{l}
x+1 \\
y+1
\end{array}\right] \\
c(x, y) & =\sin (x) \sin (y)
\end{aligned}
$$

and f such that exact solution is:

$$
u(x, y)=\exp \left(-\left(1000(x-0.5)^{2}+1000(y-0.5)^{2}\right)\right)
$$

Conclusions

- Possible to efficiently generalise classical FE families
\rightarrow Fitted discretisation a posteriori analysis for curved boundary (natural b.c.)
- General meshes can be advantageous in mesh (in facts, $h p$-) adaptivity

Outlook

- A posteriori analysis for degenerating interfaces (and curved boundary with essential b.c)
- More applications \& implementations of adaptive

SPRINGER BRIEFS IN MATHEMATICS

Andrea Gangiani
Zhaonan Dong
Emmanuil H. Georgoulis
Paul Houston
$h p$-Version
Discontinuous
Galerkin Methods
on Polygonal and
Polyhedral Meshes algorithms

[^0]: ${ }^{1}$ Seminal papers: [Babuska \& Osborn, SINUM, 1983] and [Babuska \& Melenk, CMAME, 1996].

