Tensor Finite Element Methods for the Fractional Laplacian

Lehel Banjai
Maxwell Institute for Mathematical Sciences
Heriot-Watt University, Edinburgh

30th January 2018, Glasgow

Joint work with: J. Melenk, R. Nochetto, E. Otárola, A. Salgado, and Ch. Schwab

Outline of the talk

(1) Fractional Laplacian and the Caffarelli-Silvestre extension
(2) Analytic regularity of solutions
(3) Finite element discretization
(4) Numerical results

Outline

(1) Fractional Laplacian and the Caffarelli-Silvestre extension
(2) Analytic regularity of solutions
(3) Finite element discretization

4 Numerical results

Fractional Laplacian

In the following $\Omega \subset \mathbb{R}^{d}, d=1,2$, is a bounded, convex, polytopal domain.

Spectral Fractional Laplacian $(-\Delta)^{s}$

Let $\left\{\lambda_{k}, \varphi_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{R}^{+} \times H_{0}^{1}(\Omega)$ be the eigenpairs of the Dirichlet Laplacian such that $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$ is an orthonormal basis of $L^{2}(\Omega)$ and an orthogonal basis of $H_{0}^{1}(\Omega)$. Then for $w \in C_{0}^{\infty}(\Omega)$,

$$
(-\Delta)^{s} w=\sum_{k=1}^{\infty} \lambda_{k}^{s} w_{k} \varphi_{k}, \quad w_{k}=\int_{\Omega} w \varphi_{k}, \quad k \in \mathbb{N}, \quad s \in(0,1) .
$$

Fractional Laplacian

In the following $\Omega \subset \mathbb{R}^{d}, d=1,2$, is a bounded, convex, polytopal domain.

Spectral Fractional Laplacian $(-\Delta)^{s}$

Let $\left\{\lambda_{k}, \varphi_{k}\right\}_{k \in \mathbb{N}} \subset \mathbb{R}^{+} \times H_{0}^{1}(\Omega)$ be the eigenpairs of the Dirichlet Laplacian such that $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$ is an orthonormal basis of $L^{2}(\Omega)$ and an orthogonal basis of $H_{0}^{1}(\Omega)$. Then for $w \in C_{0}^{\infty}(\Omega)$,

$$
(-\Delta)^{s} w=\sum_{k=1}^{\infty} \lambda_{k}^{s} w_{k} \varphi_{k}, \quad w_{k}=\int_{\Omega} w \varphi_{k}, \quad k \in \mathbb{N}, \quad s \in(0,1) .
$$

- By density $(-\Delta)^{s}: \mathbb{H}^{s}(\Omega) \rightarrow \mathbb{H}^{-s}(\Omega)$ can be extended to $\mathbb{H}^{s}(\Omega)=\left[L^{2}(\Omega), H_{0}^{1}(\Omega)\right]_{s}$, where $\mathbb{H}^{-s}(\Omega)$ is the dual space.
- An alternative integral formulation is of equal interest.
- The operator is non-local.
- Generalisation to $\mathcal{L} w=-\operatorname{div}(A \nabla w)+c w$ possible (see our 2017 arXiv paper).

Motivation

In, e.g., high intensity focused ultrasound for therapeutic surgery, acoustic attenuation typically exhibits a frequency dependency:

Plane wave solutions $u=e^{i(k x-\omega t)}$ satisfy $\operatorname{Im} k \approx \alpha_{0}|\omega|^{y}, \quad y \in(0,2)$.

Motivation

In, e.g., high intensity focused ultrasound for therapeutic surgery, acoustic attenuation typically exhibits a frequency dependency:

$$
\text { Plane wave solutions } u=e^{i(k x-\omega t)} \text { satisfy } \operatorname{Im} k \approx \alpha_{0}|\omega|^{y}, \quad y \in(0,2) .
$$

- Main models use fractional in time derivatives, but fractional in space also of interest to reduce memory requirements.
- Many other sources of motivation: Anomalous diffusion processes in various areas such as electromagnetic fluids, ground-water solute transport, biology, finance, human travel and predator search patterns.

Problem

Devise an efficient numerical method to compute the solution u of

$$
(-\Delta)^{s} u=f, \quad \text { in } \Omega
$$

where $(-\Delta)^{s}$ is the spectral fractional Laplacian.

There has been a flurry of activity in recent years: Bonito-Pasciak; Nochetto-Otárola-Salgado; Ainsworth-Glusa etc.

How to compute $(-\Delta)^{s}$

Main difficulty is due to non-locality.

- In principle, can use the spectral definition, but in general this is very expensive.
- Use a Dunford-Taylor integral

$$
(-\Delta)^{s} w=\frac{1}{2 \pi \mathrm{i}} \int_{\mathscr{C}} z^{-s}(z+\Delta)^{-1} w d z
$$

see [Bonito, Pasciak '15; Bonito, Nochetto, Otárola, Pasciak, Salgado '17]

- Or (in this talk) to solve

$$
(-\Delta)^{s} u=f, \quad \text { on } \Omega
$$

use the Caffarelli-Silvestre extension on the semi-infinite cylinder $\mathcal{C}:=\Omega \times(0, \infty)$, which gives rise to a local boundary value problem.

- Can we truncate \mathcal{C} ?
- Can the number of degrees of freedom be as if we are working in d-dimensions and not $d+1$?

The Caffarelli-Silvestre extension

Let \mathscr{U} solve

$$
\begin{cases}\mathfrak{L} \mathscr{U}=-\operatorname{div}\left(y^{\alpha} \nabla \mathscr{U}\right)=0 & \text { in } \mathcal{C}, \quad x=\left(x^{\prime}, y\right) \in \mathbb{R}^{d+1}, \\ \mathscr{U}=0 & \text { on } \partial_{L} \mathcal{C}=\partial \Omega \times(0, \infty), \\ \partial_{\nu^{\alpha}} \mathscr{U}=d_{s} f & \text { on } \Omega \times\{0\},\end{cases}
$$

where $d_{s}:=2^{1-2 s} \Gamma(1-s) / \Gamma(s), \alpha=1-2 s \in(-1,1)$, and

$$
\partial_{\nu^{\alpha}} \mathscr{U}=-\lim _{y \rightarrow 0^{+}} y^{\alpha} \mathscr{U}_{y} .
$$

The fractional powers of $(-\Delta)$ and the Dirichlet-to-Neumann operator of the above problem are related by

$$
d_{s}(-\Delta)^{s} u=\partial_{\nu^{\alpha}} \mathscr{U} \quad \text { in } \Omega
$$

and hence

$$
u=\lim _{y \rightarrow 0^{+}} \mathscr{U}=\operatorname{tr}_{\Omega} \mathscr{U} .
$$

Weighted spaces

If $D \subset \mathbb{R}^{d+1}, L^{2}\left(y^{\alpha}, D\right)$ is the Lebesgue space for the measure $|y|^{\alpha} \mathrm{d} x$ and

$$
H^{1}\left(y^{\alpha}, D\right)=\left\{w \in L^{2}\left(y^{\alpha}, D\right):|\nabla w| \in L^{2}\left(y^{\alpha}, D\right)\right\} .
$$

with the norm

$$
\|w\|_{H^{1}\left(y^{\alpha}, D\right)}=\left(\|w\|_{L^{2}\left(y^{\alpha}, D\right)}^{2}+\|\nabla w\|_{L^{2}\left(y^{\alpha}, D\right)}^{2}\right)^{\frac{1}{2}} .
$$

Further define

$$
\dot{H}^{1}\left(y^{\alpha}, \mathcal{C}\right)=\left\{w \in H^{1}\left(y^{\alpha}, \mathcal{C}\right): w=0 \text { on } \partial_{L} \mathcal{C}\right\} .
$$

We have the Poincaré inequality

$$
\|w\|_{L^{2}\left(y^{\alpha}, \mathcal{C}\right)} \lesssim\|\nabla w\|_{L^{2}\left(y^{\alpha}, \mathcal{C}\right)} \quad \forall w \in \AA^{1}\left(y^{\alpha}, \mathcal{C}\right)
$$

and for $w \in H^{1}\left(y^{\alpha}, \mathcal{C}\right), \operatorname{tr}_{\Omega} w$ denotes its trace onto $\Omega \times\{0\}$

$$
\operatorname{tr}_{\Omega} \stackrel{H}{H}^{1}\left(y^{\alpha}, \mathcal{C}\right)=\mathbb{H}^{s}(\Omega), \quad\left\|\operatorname{tr}_{\Omega} w\right\|_{\mathbb{H}^{s}(\Omega)} \leq C_{\operatorname{tr}_{\Omega}}\|w\|_{\mathcal{H}^{1}\left(y^{\alpha}, \mathcal{C}\right)}
$$

The extension problem
Define the bilinear form $a_{\mathcal{C}}: \grave{H}^{1}\left(y^{\alpha}, \mathcal{C}\right) \times \dot{H}^{1}\left(y^{\alpha}, \mathcal{C}\right) \rightarrow \mathbb{R}$ by

$$
a_{\mathcal{C}}(v, w)=\int_{\mathcal{C}} y^{\alpha} \nabla v \cdot \nabla w \mathrm{~d} x^{\prime} \mathrm{d} y, \quad x=\left(x^{\prime}, y\right) \in \mathbb{R}^{d+1}
$$

and note that it is continuous and also coercive.
Weak formulation [Caffarelli,Silvestre '07, Stinga, Torrea '10]
Given $f \in \mathbb{H}^{-s}(\Omega)$ Let $u \in \mathbb{H}^{s}(\Omega)$ solve

$$
(-\Delta)^{s} u=f
$$

If $\mathscr{U} \in \AA^{1}\left(y^{\alpha}, \mathcal{C}\right)$ solves

$$
a_{\mathcal{C}}(\mathscr{U}, v)=d_{s}\left\langle f, \operatorname{tr}_{\Omega} v\right\rangle \quad \forall v \in \stackrel{H}{1}^{1}\left(y^{\alpha}, \mathcal{C}\right)
$$

then

$$
u=\operatorname{tr}_{\Omega} \mathscr{U}
$$

Truncated problem

Let \mathcal{C}_{y} denote the truncated cylinder $\mathcal{C}_{y}=\Omega \times(0, \mathcal{Y})$ and

$$
a_{\mathcal{C}_{y}}(v, w)=\int_{\mathcal{C}_{Y}} y^{\alpha} \nabla v \cdot \nabla w \mathrm{~d} x^{\prime} \mathrm{d} y .
$$

Let \mathcal{U} be the solution of the corresponding weak formulation with homogeneous Dirichlet boundary condition on Then ([Nochetto, Otárola, Salgado '15])

$$
\|\nabla(\mathscr{U}-\mathcal{U})\|_{L^{2}\left(y^{\alpha}, \mathcal{C}\right)} \lesssim e^{-\sqrt{\lambda_{1}} y / 4}\|f\|_{\mathbb{H}-s(\Omega)} .
$$

Outline

(1) Fractional Laplacian and the Caffarelli-Silvestre extension
(2) Analytic regularity of solutions

(3) Finite element discretization

4 Numerical results

y-dependence of \mathscr{U}

The unique solution \mathscr{U} admits the representation [Nochetto et al. '15]

$$
\mathscr{U}\left(x^{\prime}, y\right)=\sum_{k=1}^{\infty} u_{k} \varphi_{k}\left(x^{\prime}\right) \psi_{k}(y), \quad u_{k}:=\lambda_{k}^{-s} f_{k}
$$

The functions ψ_{k} solve

$$
\begin{cases}\frac{\mathrm{d}^{2}}{\mathrm{~d} y^{2}} \psi_{k}(y)+\frac{\alpha}{y} \frac{\mathrm{~d}}{\mathrm{dy} y} \psi_{k}(y)-\lambda_{k} \psi_{k}(y)=0, & y \in(0, \infty) \\ \psi_{k}(0)=1, & \lim _{y \rightarrow \infty} \psi_{k}(y)=0\end{cases}
$$

Thus, if $s=\frac{1}{2}$, we have $\psi_{k}(y)=\exp \left(-\sqrt{\lambda_{k}} y\right)$ and if $s \in(0,1) \backslash\left\{\frac{1}{2}\right\}$, then

$$
\psi_{k}(y)=c_{s}\left(\sqrt{\lambda_{k}} y\right)^{s} K_{s}\left(\sqrt{\lambda_{k}} y\right), \quad c_{s}=2^{1-s} / \Gamma(s)
$$

Note:

$$
\lim _{z \downarrow 0} \frac{K_{\nu}(z)}{\frac{1}{2} \Gamma(\nu)\left(\frac{1}{2} z\right)^{-\nu}}=1 \quad \text { and } \quad \lim _{z \rightarrow \infty} K_{\nu}(z) \sqrt{z} e^{z}=\sqrt{\frac{\pi}{2}}
$$

Global regularity of \mathscr{U}

Let

$$
\omega_{\beta, \gamma}(y)=y^{\beta} e^{\gamma y}, \quad 0 \leq \gamma<2 \sqrt{\lambda_{1}},
$$

and

$$
\|v\|_{L^{2}\left(\omega_{\beta, \gamma}, \mathcal{C}\right)}:=\left(\int_{0}^{\infty} \int_{\Omega} \omega_{\beta, \gamma}(y)\left|v\left(x^{\prime}, y\right)\right|^{2} \mathrm{~d} x^{\prime} \mathrm{d} y\right)^{\frac{1}{2}}
$$

Theorem

Let $\mathscr{U} \in \stackrel{H}{H}^{1}\left(y^{\alpha}, \mathcal{C}\right)$ be the solution of the extension problem and let $0 \leq \tilde{\nu}<s$ and $0 \leq \nu<1+s$. Then there exists $\kappa>1$ such that

$$
\begin{aligned}
\left\|\partial_{y}^{\ell+1} \mathscr{U}\right\|_{L^{2}\left(\omega_{\alpha+2 \ell-2 \tilde{\nu}, \gamma}, \mathcal{C}\right)} & \lesssim \kappa^{\ell+1}(\ell+1)!\|f\|_{\mathbb{H}^{-s+\tilde{\nu}}(\Omega)}, \\
\left\|\nabla_{\chi^{\prime}} \partial_{y}^{\ell+1} \mathscr{U}\right\|_{L^{2}\left(\omega_{\alpha+2(\ell+1)-2 \nu, \gamma}, \mathcal{C}\right)} & \lesssim \kappa^{\ell+1}(\ell+1)!\|f\|_{\mathbb{H}^{-s+\nu}(\Omega)} \\
\left\|\Delta_{x^{\prime}} \partial_{y}^{\ell \ell 1} \mathscr{U}\right\|_{L^{2}\left(\omega_{\alpha+2(\ell+1)-2 \nu, \gamma}, \mathcal{C}\right)} & \lesssim \kappa^{\ell+1}(\ell+1)!\|f\|_{\mathbb{H}^{1-s+\nu}(\Omega)} .
\end{aligned}
$$

Outline

(1) Fractional Laplacian and the Caffarelli-Silvestre extension
(2) Analytic regularity of solutions
(3) Finite element discretization

4 Numerical results

Finite element space

Let

$$
\mathcal{G}^{M}=\left\{I_{m}\right\}_{m=1}^{M} \text { in }[0, \mathcal{Y}] \quad I_{m}=\left[y_{m-1}, y_{m}\right], y_{0}=0 \text { and } y_{M}=\mathcal{Y}
$$

and $\boldsymbol{r}=\left(r_{1}, r_{2}, \ldots, r_{M}\right) \in \mathbb{N}^{M}$.
Then the finite element space is

$$
S_{\{y\}}^{r}\left((0, \mathscr{y}), \mathcal{G}^{M}\right)=\left\{v \in C[0, \mathscr{y}]: v(\mathcal{Y})=0, v \mid I_{m} \in \mathbb{P}_{r_{m}}\left(I_{m}\right), I_{m} \in \mathcal{G}^{M}\right\}
$$

In Ω, we consider Lagrangian FEM of polynomial degree $q \geq 1$ based on shape-regular, simplicial triangulations \mathcal{T} :

$$
S_{0}^{q}(\Omega, \mathcal{T})=\left\{v_{h} \in C(\bar{\Omega}):\left.v_{h}\right|_{K} \in \mathbb{P}_{q}(K) \quad \forall K \in \mathcal{T},\left.v_{h}\right|_{\partial \Omega}=0\right\}
$$

Finally we introduce the tensor product space

$$
\mathbb{V}_{h, M}^{q, r}\left(\mathcal{T}, \mathcal{G}^{M}\right):=S_{0}^{q}(\Omega, \mathcal{T}) \otimes S_{\{y\}}^{r}\left((0, \mathcal{Y}), \mathcal{G}^{M}\right) \subset \AA^{1}\left(y^{\alpha}, \mathcal{C}\right)
$$

Finite element error

Let the discrete solution $\mathscr{U}_{h, M}=\mathscr{U} \in \mathbb{V}_{h, M}$ satisfy

$$
a_{\mathcal{C}_{y}}\left(\mathscr{U}_{h, M}, \phi\right)=d_{s}\left\langle f, \operatorname{tr}_{\Omega} \phi\right\rangle \quad \forall \phi \in \mathbb{V}_{h, M} .
$$

Lemma (Céa and truncation)

We have

$$
\begin{aligned}
\left\|\nabla\left(\mathscr{U}-\mathscr{U}_{h, M}\right)\right\|_{L^{2}\left(y^{\alpha}, \mathcal{C}\right)} & \lesssim \min _{v_{h, M} \in \mathbb{V}_{h, M}}\left\|\nabla\left(\mathscr{U}-v_{h, M}\right)\right\|_{L^{2}\left(y^{\alpha}, \mathcal{C}_{y}\right)} \\
& +\|\nabla \mathscr{U}\|_{L^{2}\left(y^{\alpha}, \mathcal{C} \backslash \mathcal{C}_{y}\right)} .
\end{aligned}
$$

Finite element error

Let the discrete solution $\mathscr{U}_{h, M}=\mathscr{U} \in \mathbb{V}_{h, M}$ satisfy

$$
a_{\mathcal{C}_{y}}\left(\mathscr{U}_{h, M}, \phi\right)=d_{s}\left\langle f, \operatorname{tr}_{\Omega} \phi\right\rangle \quad \forall \phi \in \mathbb{V}_{h, M} .
$$

Lemma (Céa and truncation)

We have

$$
\begin{aligned}
\left\|\nabla\left(\mathscr{U}-\mathscr{U}_{h, M}\right)\right\|_{L^{2}\left(y^{\alpha}, \mathcal{C}\right)} & \lesssim \min _{v_{h, M} \in \mathbb{V}_{h, M}}\left\|\nabla\left(\mathscr{U}-v_{h, M}\right)\right\|_{L^{2}\left(y^{\alpha}, \mathcal{C}_{y}\right)} \\
& +\|\nabla \mathscr{U}\|_{L^{2}\left(y^{\alpha}, \mathcal{C} \backslash \mathcal{C}_{y}\right)} .
\end{aligned}
$$

On regular, simplicial triangulations of Ω let the quasi-interpolation operator $\Pi_{x^{\prime}}^{q}$ be uniformly stable on $L^{2}(\Omega)$ and $H^{1}(\Omega)$ and $\pi_{y}^{r}: H^{1}\left(y^{\alpha},(0, \mathcal{Y})\right) \rightarrow S_{\{y\}}^{r}\left((0, \mathcal{Y}), \mathcal{G}^{M}\right)$ be a linear projector. Then

$$
\begin{aligned}
\min _{v_{h, M} \in \mathbb{V}_{h, M}}\left\|\nabla\left(\mathscr{U}-v_{h, M}\right)\right\|_{L^{2}\left(y^{\alpha}, \mathcal{C}_{y}\right)} & \lesssim\left\|\nabla\left(\mathscr{U}-\Pi_{x^{\prime}}^{q} \mathscr{U}\right)\right\|_{L^{2}\left(y^{\alpha}, \mathcal{C}_{y}\right)} \\
& +\left\|\nabla\left(\mathscr{U}-\pi_{y}^{r} \mathscr{U}\right)\right\|_{L^{2}\left(y^{\alpha}, \mathcal{C}_{y}\right)},
\end{aligned}
$$

Geometric meshes and hp-FEM

Consider geometric meshes $\mathcal{G}_{\text {geo }, \sigma}^{M}$ on $[0, \mathcal{Y}]$ with $\sigma \in(0,1)$ and

- $I_{1}=\left[0, \mathscr{y} \sigma^{M-1}\right], I_{i}=\left[\mathscr{y} \sigma^{M-i+1}, \mathscr{Y} \sigma^{M-i}\right]$ for $i=2, \ldots, M$
- a linear degree vector \boldsymbol{r} with slope \mathfrak{s}

$$
r_{i}:=\max \{1,\lceil\mathfrak{s i}\rceil\}, \quad i=1,2, \ldots, M .
$$

- Note that the corresponding 1D FEM space has $O\left(M^{2}\right)$ degrees of freedom.
- This leads to exponential convergence for analytic functions that may have a singularity at $y=0$.
- The construction is essentially taken from the work by Babuška and collaborators.
- Note that, Nochetto et al. used graded meshes towards $y=0$ with P_{1}-FEM.
- Recently, Meidner, Pfefferer, Schrholz, and Vexler, '17, also used $h p-F E M$ in y.

Error estimate

Consider the finite element space $\mathbb{V}_{h, M}^{1, r}\left(\mathcal{T}^{\ell}, \mathcal{G}_{\text {geo }, \sigma}^{M}\right)$, with the geometric $h p$-FEM in y-direction and a P_{1} FEM on a sequence of shape-regular, simplicial triangulations \mathcal{T}^{ℓ} with mesh-width h_{ℓ}.

Theorem

Let $u \in \mathbb{H}^{s}(\Omega)$ and $\mathscr{U} \in \dot{H}^{1}\left(y^{\alpha}, \mathcal{C}\right)$ be solutions of the problems with with $f \in \mathbb{H}^{1-s}(\Omega)$. Let $M \sim\left|\log h_{\ell}\right|, \mathcal{Y} \sim\left|\log h_{\ell}\right|$ and $\mathscr{U}_{h,, M} \in \mathbb{V}_{h, M}^{1, r}\left(\mathcal{T}^{\ell}, \mathcal{G}_{\text {geo }, \sigma}^{M}\right)$ be the discrete solution. Then there exists a minimal $\mathfrak{s}_{\text {min }}$ such that

$$
\left\|u-\operatorname{tr}_{\Omega} \mathscr{U}_{h, M}\right\|_{\mathbb{H}^{s}(\Omega)} \lesssim\left\|\nabla\left(\mathscr{U}-\mathscr{U}_{h_{\ell}, M}\right)\right\|_{L^{2}\left(y^{\alpha}, \mathcal{C}\right)} \lesssim h_{\ell}\|f\|_{\mathbb{H}^{1-s}(\Omega)} .
$$

The total number of degrees of freedom behaves like

$$
\operatorname{dim} \mathbb{V}_{h, M}^{1, \boldsymbol{r}}\left(\mathcal{T}^{\ell}, \mathcal{G}_{g e o, \sigma}^{M}\right) \sim \mathcal{N}_{\Omega, y} \sim M^{2} h_{\ell}^{-2} \sim h_{\ell}^{-2}\left(\log h_{\ell}\right)^{2} \sim \mathcal{N}_{\Omega} \log \mathcal{N}_{\Omega}
$$

where $\mathcal{N}_{\Omega}=\# \mathcal{T}^{\ell}$.

A y-semidiscrete eigenvalue decomposition

An eigenvalue problem

Find $(v, \mu) \in S_{\{y\}}^{r}\left((0, \gamma), \mathcal{G}^{M}\right) \backslash\{0\} \times \mathbb{R}$ such that
$\mu \int_{0}^{y} y^{\alpha} v^{\prime}(y) w^{\prime}(y) \mathrm{d} y=\int_{0}^{y} y^{\alpha} v(y) w(y) \mathrm{d} y \quad \forall w \in S_{\{\hat{\gamma}\}}^{r}\left((0, y), \mathcal{G}^{M}\right)$.

- All μ are positive, and $S_{\{y\}}^{r}\left((0, \mathscr{Y}), \mathcal{G}^{M}\right)$ has eigenbasis $\left(v_{i}\right)_{i=1}^{\mathcal{M}}$ such that,

$$
\int_{0}^{y} y^{\alpha} v_{i}^{\prime}(y) v_{j}^{\prime}(y) \mathrm{d} y=\delta_{i, j}, \quad \int_{0}^{y} y^{\alpha} v_{i}(y) v_{j}(y) \mathrm{d} y=\mu_{i} \delta_{i, j} .
$$

- If $\mathcal{G}^{M}=\mathcal{G}_{\text {geo } \sigma}^{M}$ and $c_{1} M \leq \mathcal{Y} \leq c_{2} M$, then there are constants C, b depending only on σ such that

$$
\left\|v_{i}\right\|_{L^{\infty}(0, y)} \leq C M^{(1-\alpha) / 2}, \quad C^{-1} \mathfrak{s}^{-2} M^{-1} \sigma^{M} \leq \mu_{i} \leq C M^{2} .
$$

Diagonalization and y-semidiscretization

y-semidiscrete problem

Find $\mathscr{U}_{M} \in \mathbb{V}_{M}^{r}\left(\mathcal{C}_{y}\right)=H_{0}^{1}(\Omega) \otimes S_{\{y\}}^{r}\left((0, \mathscr{Y}), \mathcal{G}^{M}\right)$ such that

$$
a_{\mathcal{C}}\left(\mathscr{U}_{M}, \phi\right)=d_{s}\left\langle f, \operatorname{tr}_{\Omega} \phi\right\rangle \quad \forall \phi \in \mathbb{V}_{M}^{r}\left(\mathcal{C}_{y}\right) .
$$

- Write $\mathscr{U}_{M}\left(x^{\prime}, y\right):=\sum_{j=1}^{\mathcal{M}} U_{j}\left(x^{\prime}\right) v_{j}(y)$.
- Consider $\phi\left(x^{\prime}, y\right)=V\left(x^{\prime}\right) v_{i}(y)$, with $V \in H_{0}^{1}(\Omega)$ as a test function.
- This results in decoupled problems

$$
\mu_{i} \int_{\Omega}\left(\nabla U_{i}, \nabla V\right)+\int_{\Omega} U_{i} V \mathrm{~d} x^{\prime}=d_{s} v_{i}(0)\langle f, V\rangle \quad \forall V \in H_{0}^{1}(\Omega)
$$

Importance of diagonalization

- The diagonalization shows that upto exponentially small error the solution \mathscr{U} can be written as a sum of singularly perturbed problems.
- It can also be used in a fully discrete setting.
- One option is to discretize each singularly perturbed problem using an optimised FEM in Ω.
- We choose to use the same FEM in Ω for all the M problems:
- We arrive at M decoupled linear systems with the same mass and stiffness matrices that can be solved in parallel.
- Robust multigrid methods are available.
- In this case the computational cost is (almost) optimal:

$$
\text { computational cost }=O\left(M^{3}\right)+O\left(M h^{-d}\right)=O\left(\mathcal{N}_{\Omega} \log \mathcal{N}_{\Omega}\right)
$$

for the discretization $\mathbb{V}_{h, M}^{1, r}\left(\mathcal{T}^{\ell}, \mathcal{G}_{\text {gee }, \sigma}^{M}\right)$ with $M \sim \mathcal{Y} \sim \log h^{-1}$.

Outline

(1) Fractional Laplacian and the Caffarelli-Silvestre extension
(2) Analytic regularity of solutions
(3) Finite element discretization
(4) Numerical results

Test cases

We let Ω be the L-shape domain in 2D with vertices

$$
\{(0,0),(1,0),(1,1),(-1,1),(-1,-1),(0,-1)\}
$$

We will consider two test cases
(1) The following smooth exact solution:

$$
u\left(x_{1}, x_{2}\right)=\sin \pi x_{1} \sin \pi x_{2}, \quad f\left(x_{1}, x_{2}\right)=\left(2 \pi^{2}\right)^{s} \sin \pi x_{1} \sin \pi x_{2}
$$

(2) Further we also consider the solution with the right-hand side

$$
f\left(x_{1}, x_{2}\right) \equiv 1
$$

Notice that, in this case, f is analytic in $\bar{\Omega}$ but $f \in \mathbb{H}^{1-s}(\Omega)$ only for $s>1 / 2$.

Implementation

- We use Netgen/NGSolve for the FEM in Ω.
- The hp-FEM in y implemented separately.
- The error measure will always be the energy norm
$\left\|u-\operatorname{tr}_{\Omega} \mathscr{U}_{h, M}\right\|_{\mathbb{H}^{s}(\Omega)}^{2} \lesssim\left\|\nabla\left(\mathscr{U}-\mathscr{U}_{h, M}\right)\right\|_{L^{2}\left(y^{\alpha}, \mathcal{C}\right)}^{2}=d_{s} \int_{\Omega} f\left(u-\operatorname{tr}_{\Omega} \mathscr{U}_{h, M}\right)$,
where $\mathscr{U}_{h, M}$ denotes the discrete solution in \mathcal{C}_{y}.

Smooth solution

Convergence of the error in the energy norm versus the meshwidth in Ω for the smooths solution for two different values of s. A P_{1}-FEM on uniformly refined meshes in Ω and $h p$-FEM in $(0, \mathcal{Y})$ is used.

Non-smooth solution, $f \equiv 1$

- Here $f \equiv 1$ and $s=3 / 4$, leading to a solution with singular behavior near the re-entrant corner $(0,0)$. Error graphs are shown for a P_{1}-FEM on uniformly refined meshes in Ω and on meshes refined towards the corner.
- This case also analyzed in our arXiv '17 paper.

Convergence against number of degrees of freedom

Convergence of the error versus the number of degrees of freedom with $f \equiv 1$ and $s=3 / 4$. We compare $h p$-FEM in $(0, \gamma)$ with tensor grid and sparse grids, the latter two employing radical meshes and P_{1}-FEM in $(0, \vartheta)$.

$h p-F E M$ in $\Omega \times(0, \mathcal{Y})$ in 1D

Solution on $\Omega=(0,1)$ with algebraic boundary singularity. Convergence of error in energy norm of the $h p$-FEM on $\Omega \times(0, \mathscr{y})$ against polynomial order q for $s=0.25$ and $f \equiv 1$.

Conclusions

- We have developed and analyzed an almost optimal complexity algorithm for the (spectral) fractional Laplacian using hp-FEM in the extended and P_{1}-FEM in smooth Ω.
- For polygons we have proved that first order convergence is obtained if refinement towards corners is used and $f \in \mathbb{H}^{1-s}(\Omega)$.
- A sparse tensor product FEM based on multilevel P_{1}-FEM in Ω and P_{1}-FEM on radical meshes in y also achieves (almost) optimal complexity.
- Finally, we prove that if the data f is analytic in $\bar{\Omega}$, but not compatible, $h p$-FEM in full domain with anisotropic geometric meshes towards Ω result in exponential rates of convergence. Here Ω is smooth in 1D or 2D.

Some of this we touched upon in the talk, the details are in 2017, arXiv:1707.07367

