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Fractional Laplacian
In the following Ω ⊂ Rd , d = 1, 2, is a bounded, convex, polytopal domain.

Spectral Fractional Laplacian (−∆)s

Let {λk , ϕk}k∈N ⊂ R+ × H1
0 (Ω) be the eigenpairs of the Dirichlet

Laplacian such that {ϕk}k∈N is an orthonormal basis of L2(Ω) and an
orthogonal basis of H1

0 (Ω). Then for w ∈ C∞0 (Ω),

(−∆)sw =
∞∑
k=1

λskwkϕk , wk =

∫
Ω
wϕk , k ∈ N, s ∈ (0, 1).

By density (−∆)s : Hs(Ω)→ H−s(Ω) can be extended to
Hs(Ω) = [L2(Ω),H1

0 (Ω)]s , where H−s(Ω) is the dual space.

An alternative integral formulation is of equal interest.

The operator is non-local.

Generalisation to Lw = −div(A∇w) + cw possible (see our 2017
arXiv paper).
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Motivation

In, e.g., high intensity focused ultrasound for therapeutic surgery, acoustic
attenuation typically exhibits a frequency dependency:

Plane wave solutions u = e i(kx−ωt) satisfy Im k ≈ α0|ω|y , y ∈ (0, 2).

Main models use fractional in time derivatives, but fractional in space
also of interest to reduce memory requirements.

Many other sources of motivation: Anomalous diffusion processes in
various areas such as electromagnetic fluids, ground-water solute
transport, biology, finance, human travel and predator search patterns.
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Problem

Devise an efficient numerical method to compute the solution u of

(−∆)su = f , in Ω,

where (−∆)s is the spectral fractional Laplacian.

There has been a flurry of activity in recent years: Bonito-Pasciak;
Nochetto-Otárola-Salgado; Ainsworth-Glusa etc.
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How to compute (−∆)s

Main difficulty is due to non-locality.

In principle, can use the spectral definition, but in general this is very
expensive.

Use a Dunford-Taylor integral

(−∆)sw =
1

2πi

∫
C
z−s(z + ∆)−1wdz ;

see [Bonito, Pasciak ’15; Bonito, Nochetto, Otárola, Pasciak, Salgado ’17]

Or (in this talk) to solve

(−∆)su = f , on Ω,

use the Caffarelli-Silvestre extension on the semi–infinite cylinder
C := Ω× (0,∞), which gives rise to a local boundary value problem.

I Can we truncate C?
I Can the number of degrees of freedom be as if we are working in

d-dimensions and not d + 1?
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The Caffarelli-Silvestre extension
Let U solve

LU = −div (yα∇U ) = 0 in C, x = (x ′, y) ∈ Rd+1,

U = 0 on ∂LC = ∂Ω× (0,∞),

∂ναU = ds f on Ω× {0},

where ds := 21−2sΓ(1− s)/Γ(s), α = 1− 2s ∈ (−1, 1), and

∂ναU = − lim
y→0+

yαUy .

The fractional powers of (−∆) and the Dirichlet-to-Neumann operator of
the above problem are related by

ds(−∆)su = ∂ναU in Ω

and hence
u = lim

y→0+
U = trΩ U .
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Weighted spaces
If D ⊂ Rd+1, L2(yα,D) is the Lebesgue space for the measure |y |α dx and

H1(yα,D) =
{
w ∈ L2(yα,D) : |∇w | ∈ L2(yα,D)

}
.

with the norm

‖w‖H1(yα,D) =
(
‖w‖2

L2(yα,D) + ‖∇w‖2
L2(yα,D)

) 1
2
.

Further define

◦
H1(yα, C) =

{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
.

We have the Poincaré inequality

‖w‖L2(yα,C) . ‖∇w‖L2(yα,C) ∀w ∈ ◦
H1(yα, C)

and for w ∈ H1(yα, C), trΩ w denotes its trace onto Ω× {0}

trΩ
◦
H1(yα, C) = Hs(Ω), ‖ trΩ w‖Hs(Ω) ≤ CtrΩ

‖w‖ ◦
H1(yα,C)

.
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The extension problem
Define the bilinear form aC :

◦
H1(yα, C)× ◦

H1(yα, C)→ R by

aC(v ,w) =

∫
C
yα∇v · ∇w dx ′ dy , x = (x ′, y) ∈ Rd+1

and note that it is continuous and also coercive.

Weak formulation [Caffarelli,Silvestre ’07, Stinga, Torrea ’10]

Given f ∈ H−s(Ω) Let u ∈ Hs(Ω) solve

(−∆)su = f .

If U ∈ ◦
H1(yα, C) solves

aC(U , v) = ds〈f , trΩ v〉 ∀v ∈ ◦
H1(yα, C),

then
u = trΩ U

.
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Truncated problem

Let CY denote the truncated cylinder CY = Ω× (0,Y ) and

aCY (v ,w) =

∫
CY

yα∇v · ∇w dx ′ dy .

Let U be the solution of the corresponding weak formulation with
homogeneous Dirichlet boundary condition on
Then ([Nochetto, Otárola, Salgado ’15])

‖∇(U − U)‖L2(yα,C) . e−
√
λ1Y /4‖f ‖H−s(Ω).
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y -dependence of U
The unique solution U admits the representation [Nochetto et al. ’15]

U (x ′, y) =
∞∑
k=1

ukϕk(x ′)ψk(y), uk := λ−sk fk .

The functions ψk solve
d2

dy2
ψk(y) +

α

y

d

dy
ψk(y)− λkψk(y) = 0, y ∈ (0,∞),

ψk(0) = 1, lim
y→∞

ψk(y) = 0.

Thus, if s = 1
2 , we have ψk(y) = exp(−

√
λky) and if s ∈ (0, 1) \ {1

2}, then

ψk(y) = cs(
√
λky)sKs(

√
λky), cs = 21−s/Γ(s).

Note:

lim
z↓0

Kν(z)
1
2 Γ(ν)

(
1
2z
)−ν = 1 and lim

z→∞
Kν(z)

√
zez =

√
π

2
.
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Global regularity of U

Let
ωβ,γ(y) = yβeγy , 0 ≤ γ < 2

√
λ1,

and

‖v‖L2(ωβ,γ ,C) :=

(∫ ∞
0

∫
Ω
ωβ,γ(y)|v(x ′, y)|2 dx ′ dy

) 1
2

.

Theorem

Let U ∈ ◦
H1(yα, C) be the solution of the extension problem and let

0 ≤ ν̃ < s and 0 ≤ ν < 1 + s. Then there exists κ > 1 such that

‖∂`+1
y U ‖L2(ωα+2`−2ν̃,γ ,C) . κ`+1(`+ 1)!‖f ‖H−s+ν̃(Ω),

‖∇x ′∂
`+1
y U ‖L2(ωα+2(`+1)−2ν,γ ,C) . κ`+1(`+ 1)!‖f ‖H−s+ν(Ω),

‖∆x ′∂
`+1
y U ‖L2(ωα+2(`+1)−2ν,γ ,C) . κ`+1(`+ 1)!‖f ‖H1−s+ν(Ω).
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Finite element space
Let

GM = {Im}Mm=1 in [0,Y ] Im = [ym−1, ym], y0 = 0 and yM = Y

and r = (r1, r2, . . . , rM) ∈ NM .
Then the finite element space is

S r
{Y }((0,Y ),GM) =

{
v ∈ C [0,Y ] : v(Y ) = 0, v |Im ∈ Prm(Im), Im ∈ GM

}
.

In Ω, we consider Lagrangian FEM of polynomial degree q ≥ 1 based on
shape-regular, simplicial triangulations T :

Sq
0 (Ω, T ) =

{
vh ∈ C (Ω̄) : vh|K ∈ Pq(K ) ∀K ∈ T , vh|∂Ω = 0

}
.

Finally we introduce the tensor product space

Vq,r
h,M(T ,GM) := Sq

0 (Ω, T )⊗ S r
{Y }((0,Y ),GM) ⊂ ◦

H1(yα, C).
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Finite element error
Let the discrete solution Uh,M = U ∈ Vh,M satisfy

aCY (Uh,M , φ) = ds〈f , trΩ φ〉 ∀φ ∈ Vh,M .

Lemma (Céa and truncation)

We have

‖∇(U −Uh,M)‖L2(yα,C) . min
vh,M∈Vh,M

‖∇(U − vh,M)‖L2(yα,CY )

+ ‖∇U ‖L2(yα,C\CY ).

On regular, simplicial triangulations of Ω let the quasi-interpolation
operator Πq

x ′ be uniformly stable on L2(Ω) and H1(Ω) and
πr
y : H1(yα, (0,Y ))→ S r

{Y }((0,Y ),GM) be a linear projector. Then

min
vh,M∈Vh,M

‖∇(U − vh,M)‖L2(yα,CY ) . ‖∇(U − Πq
x ′U )‖L2(yα,CY )

+ ‖∇(U − πr
yU )‖L2(yα,CY ) ,
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Geometric meshes and hp-FEM
Consider geometric meshes GMgeo,σ on [0,Y ] with σ ∈ (0, 1) and

I1 = [0,Y σM−1], Ii = [Y σM−i+1,Y σM−i ] for i = 2, . . . ,M

a linear degree vector r with slope s

ri := max{1, dsie} , i = 1, 2, ...,M.

Note that the corresponding 1D FEM space has O(M2) degrees of
freedom.

This leads to exponential convergence for analytic functions that may
have a singularity at y = 0.

The construction is essentially taken from the work by Babuška and
collaborators.

Note that, Nochetto et al. used graded meshes towards y = 0 with
P1-FEM.

Recently, Meidner, Pfefferer, Schrholz, and Vexler, ’17, also used
hp-FEM in y .
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Error estimate

Consider the finite element space V1,r
h,M(T `,GMgeo,σ), with the geometric

hp-FEM in y -direction and a P1 FEM on a sequence of shape-regular,
simplicial triangulations T ` with mesh-width h`.

Theorem

Let u ∈ Hs(Ω) and U ∈ ◦
H1(yα, C) be solutions of the problems with with

f ∈ H1−s(Ω). Let M ∼ | log h`|, Y ∼ | log h`| and
Uh`,M ∈ V1,r

h,M(T `,GMgeo,σ) be the discrete solution. Then there exists a
minimal smin such that

‖u − trΩ Uh,M‖Hs(Ω) . ‖∇(U −Uh`,M)‖L2(yα,C) . h`‖f ‖H1−s(Ω).

The total number of degrees of freedom behaves like

dimV1,r
h,M(T `,GMgeo,σ) ∼ NΩ,Y ∼ M2h−2

` ∼ h−2
` (log h`)

2 ∼ NΩ logNΩ,

where NΩ = #T `.
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A y -semidiscrete eigenvalue decomposition

An eigenvalue problem

Find (v , µ) ∈ S r
{Y }((0,Y ),GM) \ {0} × R such that

µ

∫ Y

0
yαv ′(y)w ′(y) dy =

∫ Y

0
yαv(y)w(y) dy ∀w ∈ S r

{Y }((0,Y ),GM).

All µ are positive, and S r
{Y }((0,Y ),GM) has eigenbasis (vi )

M
i=1 such

that,∫ Y

0
yαv ′i (y)v ′j (y) dy = δi ,j ,

∫ Y

0
yαvi (y)vj(y) dy = µiδi ,j .

If GM = GMgeo,σ and c1M ≤ Y ≤ c2M, then there are constants C , b
depending only on σ such that

‖vi‖L∞(0,Y ) ≤ CM(1−α)/2, C−1s−2M−1σM ≤ µi ≤ CM2.
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Diagonalization and y -semidiscretization

y -semidiscrete problem

Find UM ∈ Vr
M(CY ) = H1

0 (Ω)⊗ S r
{Y }((0,Y ),GM) such that

aC(UM , φ) = ds〈f , trΩ φ〉 ∀φ ∈ Vr
M(CY ).

Write UM(x ′, y) :=
∑M

j=1 Uj(x
′)vj(y).

Consider φ(x ′, y) = V (x ′)vi (y), with V ∈ H1
0 (Ω) as a test function.

This results in decoupled problems

µi

∫
Ω

(∇Ui ,∇V ) +

∫
Ω
UiV dx ′ = dsvi (0)〈f ,V 〉 ∀V ∈ H1

0 (Ω).
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Importance of diagonalization

The diagonalization shows that upto exponentially small error the
solution U can be written as a sum of singularly perturbed problems.

It can also be used in a fully discrete setting.

One option is to discretize each singularly perturbed problem using an
optimised FEM in Ω.

We choose to use the same FEM in Ω for all the M problems:
I We arrive at M decoupled linear systems with the same mass and

stiffness matrices that can be solved in parallel.
I Robust multigrid methods are available.
I In this case the computational cost is (almost) optimal:

computational cost = O(M3) + O(Mh−d) = O(NΩ logNΩ)

for the discretization V1,r
h,M(T `,GMgeo,σ) with M ∼ Y ∼ log h−1.
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Test cases

We let Ω be the L-shape domain in 2D with vertices

{(0, 0), (1, 0), (1, 1), (−1, 1), (−1,−1), (0,−1)}.

We will consider two test cases

1 The following smooth exact solution:

u(x1, x2) = sinπx1 sinπx2, f (x1, x2) = (2π2)s sinπx1 sinπx2.

2 Further we also consider the solution with the right-hand side

f (x1, x2) ≡ 1 .

Notice that, in this case, f is analytic in Ω but f ∈ H1−s(Ω) only for
s > 1/2.
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Implementation

We use Netgen/NGSolve for the FEM in Ω.

The hp-FEM in y implemented separately.

The error measure will always be the energy norm

‖u−trΩ Uh,M‖2
Hs(Ω) . ‖∇(U −Uh,M)‖2

L2(yα,C) = ds

∫
Ω
f (u−trΩ Uh,M),

where Uh,M denotes the discrete solution in CY .
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Smooth solution
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Convergence of the error in the energy norm versus the meshwidth in Ω for the

smooths solution for two different values of s. A P1-FEM on uniformly refined

meshes in Ω and hp-FEM in (0,Y ) is used.
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Non-smooth solution, f ≡ 1
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Here f ≡ 1 and s = 3/4, leading to a solution with singular behavior near

the re-entrant corner (0, 0). Error graphs are shown for a P1-FEM on

uniformly refined meshes in Ω and on meshes refined towards the corner.

This case also analyzed in our arXiv ’17 paper.
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Convergence against number of degrees of freedom
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Convergence of the error versus the number of degrees of freedom with f ≡ 1 and

s = 3/4. We compare hp-FEM in (0,Y ) with tensor grid and sparse grids, the

latter two employing radical meshes and P1-FEM in (0,Y ).
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hp-FEM in Ω× (0,Y ) in 1D
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Solution on Ω = (0, 1) with algebraic boundary singularity. Convergence of error

in energy norm of the hp-FEM on Ω× (0,Y ) against polynomial order q for

s = 0.25 and f ≡ 1.
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Conclusions

We have developed and analyzed an almost optimal complexity
algorithm for the (spectral) fractional Laplacian using hp-FEM in the
extended and P1-FEM in smooth Ω.

For polygons we have proved that first order convergence is obtained
if refinement towards corners is used and f ∈ H1−s(Ω).

A sparse tensor product FEM based on multilevel P1-FEM in Ω and
P1-FEM on radical meshes in y also achieves (almost) optimal
complexity.

Finally, we prove that if the data f is analytic in Ω, but not
compatible, hp-FEM in full domain with anisotropic geometric meshes
towards Ω result in exponential rates of convergence. Here Ω is
smooth in 1D or 2D.

Some of this we touched upon in the talk, the details are in 2017,
arXiv:1707.07367
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