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@ Fractional Laplacian and the Caffarelli-Silvestre extension

© Analytic regularity of solutions

© Finite element discretization

@ Numerical results
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Outline

@ Fractional Laplacian and the Caffarelli-Silvestre extension
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Fractional Laplacian
In the following Q C RY, d = 1,2, is a bounded, convex, polytopal domain.

Spectral Fractional Laplacian (—A)®

Let { Ak, @k }ken C RT x H3(Q) be the eigenpairs of the Dirichlet

Laplacian such that {¢}xen is an orthonormal basis of L2(2) and an
orthogonal basis of H}(2). Then for w € C5°(Q2),

(—A)°w = Z)\f(wktpk, Wy = / wek, keN, se(0,1).
k=1 s
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Spectral Fractional Laplacian (—A)®

Let { Ak, @k }ken C RT x H3(Q) be the eigenpairs of the Dirichlet
Laplacian such that {¢}xen is an orthonormal basis of L2(2) and an
orthogonal basis of H}(2). Then for w € C5°(Q2),

(—A)°w = Z)\f(wktpk, Wy = / wek, keN, se(0,1).
k=1 s

e By density (—A)® : H(Q2) — H () can be extended to
HS(Q) = [L3(Q), H3(R2)]s, where H(Q) is the dual space.

@ An alternative integral formulation is of equal interest.

@ The operator is non-local.

@ Generalisation to Lw = —div(AVw) + cw possible (see our 2017
arXiv paper).
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Motivation

In, e.g., high intensity focused ultrasound for therapeutic surgery, acoustic
attenuation typically exhibits a frequency dependency:

Plane wave solutions u = e/(*~%) satisfy Im k ~ ag|w]?, y €(0,2).
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Motivation

In, e.g., high intensity focused ultrasound for therapeutic surgery, acoustic
attenuation typically exhibits a frequency dependency:

Plane wave solutions u = e/(*~%) satisfy Im k ~ ag|w]?, y €(0,2).

@ Main models use fractional in time derivatives, but fractional in space
also of interest to reduce memory requirements.
@ Many other sources of motivation: Anomalous diffusion processes in

various areas such as electromagnetic fluids, ground-water solute
transport, biology, finance, human travel and predator search patterns.



Problem
Devise an efficient numerical method to compute the solution u of

(—AYu=f, inQ,

where (—A)? is the spectral fractional Laplacian.

There has been a flurry of activity in recent years: Bonito-Pasciak;
Nochetto-Otarola-Salgado; Ainsworth-Glusa etc.
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How to compute (—A)?
Main difficulty is due to non-locality.
@ In principle, can use the spectral definition, but in general this is very
expensive.

@ Use a Dunford-Taylor integral

1
(—A)Y°w = o 7 5(z 4 A) twdz;
T Jg

see [Bonito, Pasciak '15; Bonito, Nochetto, Otarola, Pasciak, Salgado '17]
@ Or (in this talk) to solve

(—A)’u=f, on Q,

use the Caffarelli-Silvestre extension on the semi—infinite cylinder
C :=Q x (0,00), which gives rise to a local boundary value problem.
» Can we truncate C?
» Can the number of degrees of freedom be as if we are working in
d-dimensions and not d + 17
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The Caffarelli-Silvestre extension

Let  solve
LU = —div(y®V%)=0 inC, x=(x,y)eRI,
U =0 on 9;C = 02 x (0, 00),
Opa U = dsf on Q x {0},

where ds := 217251 (1 — 5)/T(s), « = 1 — 25 € (—1,1), and

OpaW = — lim y°%,.

y—0t

The fractional powers of (—A) and the Dirichlet-to-Neumann operator of
the above problem are related by

ds(—=A)’u= 0y inQ
and hence

u= lim % =trq%.

y—07t
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Weighted spaces
If D C RYtY, [2(y®, D) is the Lebesgue space for the measure |y|* dx and

H'(y*,D) = {w € L*(y*, D) : |Vw| € L*(y*,D)}.

with the norm

NI

IWlinye0) = (IWlEzgye,0) + VW10 1)
Further define
H'(y*,C) = {w e H'(y*,C) : w=00n 0,C} .
We have the Poincaré inequality
Iwlli2gecy S IVWlizgeey Ywe AY(y*,C)
and for w € H(y®,C), trq w denotes its trace onto  x {0}

tro /i)ll(ya7C) = HS(Q)7 H tro W”HS(Q) S CtrQHWHI_(;l(ya C)‘



The extension problem
Define the bilinear form a¢ : H'(y*,C) x H*(y*,C) — R by

ac(v,w) = /yaVv -Vwdx dy, x=(x,y) € RI*!
C

and note that it is continuous and also coercive.
Weak formulation [Caffarelli,Silvestre '07, Stinga, Torrea '10]
Given f € H™°(Q) Let u € H*(Q2) solve

(—A)Pu=f.
If % € A'(y“,C) solves
ac(%,v) = ds(f,trq v) Vv e HY(y®,C),

then
u=troq%
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Truncated problem

Let Cy denote the truncated cylinder Cy = Q x (0,9) and
ac,(v,w) = / y*Vv - Vwdx dy.
Cy
Let U be the solution of the corresponding weak formulation with

homogeneous Dirichlet boundary condition on
Then ([Nochetto, Otérola, Salgado '15])

IV(Z — Ul 2pe ) S € V4 Fllg-s()-
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Outline

© Analytic regularity of solutions
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y-dependence of %

The unique solution % admits the representation [Nochetto et al. '15]
(o9}
U, y) = upe(X)(y),  uie = A
k=1
The functions 1, solve

d2 d
G+ %d—ywkm — Mt(y) =0, y € (0,00),
Pi(0) =1, lim ¥y(y) = 0.

y—00

Thus, if s = %, we have 1x(y) = exp(—v/Aky) and if s € (0,1) \ {3}, then
Ui(y) = CS(\/EY)SKS(\/EYL ¢ = 21751 (s).

Note:

: . m
i — =1 and ZI|_>rr;OK,,(z)ﬁe =13
(32)
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Global regularity of %

Let
wen(y) =yPe”,  0<y<2y/),
and
Mo = ([ [ wanlfaray)’
Theorem

Let % € HY(y®,C) be the solution of the extension problem and let
0<pP<sand0<wv <1+s. Then there exists k > 1 such that

10y ||
IV 0y % || 12
1850y || 12

wa+2£7217,'yvc)

S R+ D[ fllgs(),
< K+ DU s 0y,
5 Iié+1(€ TF 1)' HfH]HII*s*"(Q)'

Wad-2(041)—2v,y 70)

Wad-2(441)—2v,y ,C)
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Outline

© Finite element discretization
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Finite element space
Let
gM = {/m}l\n/lzl in [0,77] Im = [Ym—1,Ym|, Yo =0 and yyy =

and r = (r,r,...,my) € NM.
Then the finite element space is

Styy((0.9),6M) = {v € C10,97: v(9) = 0, vy, € P, (), Im € GM }.

In 2, we consider Lagrangian FEM of polynomial degree g > 1 based on
shape-regular, simplicial triangulations 7

ST T) = {vh € C(Q): vk €Pg(K) VK ET, vhlog=0}.
Finally we introduce the tensor product space

V(T GM) == S3(Q, T) @ 5,1, ((0,9),6") € A (y*,C).

16
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Finite element error
Let the discrete solution %, p = % € Vp m satisfy

aCy(%h,Ma ¢) = dS<f7trQ ¢> V(;S € Vh,/\/l .
Lemma (Céa and truncation)

We have

V(% = Zm)ll2yeey S min (V% = vim)l2(ye cy)

Vi, MEVh M

+ IV || 2y 0\ -
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Finite element error
Let the discrete solution %, p = % € Vp m satisfy

aCy(%h,Mv ¢) = ds<f7trQ ¢> \V/(ZS € Vh,/\/l .

Lemma (Céa and truncation)
We have
IN(% — U m)ll2yecy S min V(X = vim)lli2(pe cy)
Ve, MEVh M

+ IV || 2y 0\ -

On regular, simplicial triangulations of ) let the quasi-interpolation
operator N7, be uniformly stable on L?(Q) and H*(Q) and

7wy HY(y*, (0,9)) — Sfy}((o,y),g"/’) be a linear projector. Then

min V(% — vam)ll2yocyy S IV(% = NLU )| 2y )

v, MEVh M

+ \V(% — 7y )|l 12(y cy) 5
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Geometric meshes and hp-FEM
Consider geometric meshes gﬁ,ﬁop on [0,9] with o € (0,1) and

4

h=1[0,90cM1, I = [yoeM—*L oM~ fori=2,....M

a linear degree vector r with slope s
ri=max{1,[si]}, i=1,2,...,M.

Note that the corresponding 1D FEM space has O(M?) degrees of
freedom.

This leads to exponential convergence for analytic functions that may
have a singularity at y = 0.

The construction is essentially taken from the work by Babuska and
collaborators.

Note that, Nochetto et al. used graded meshes towards y = 0 with
P1-FEM.

Recently, Meidner, Pfefferer, Schrholz, and Vexler, '17, also used
hp-FEM in y.
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Error estimate

Consider the finite element space V},’jw(Te, gggova), with the geometric
hp-FEM in y-direction and a P; FEM on a sequence of shape-regular,
simplicial triangulations 7¢ with mesh-width hy.

Theorem

Let u e H5(Q) and % € H(y,C) be solutions of the problems with with
f e H=5(Q). Let M ~ |log hy|,  ~ |log hy| and

Un, M € V},Z?V,(Tg, gggo,(,) be the discrete solution. Then there exists a
minimal s i, such that

|u—tro %hmllus@) S IV(Z = U )l i2ye ) S hellf llm-s(a)-
The total number of degrees of freedom behaves like

dim V) (T4, GM, ) ~ Nay ~ M2h;? ~ hy?(log h)? ~ Na log Na,

where No = #T*.
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A y-semidiscrete eigenvalue decomposition

An eigenvalue problem
Find (v, p) € 5{’%((0,9/),9’\/’) \ {0} x R such that

¥ ¥
b /0 YV (y)w(y) dy = /0 Yvy)wly) dy  Vw € ST ((0,9),GM).

@ All  are positive, and Sfy}((O,Q/),gM) has eigenbasis (v;), such
that,

e e
/0 yVi(y)vi(y) dy = 6;, /0 yvi(y)vi(y) dy = pidj ;.

o IfgM = gé\;’o’g and cgM < 9 < oM, then there are constants C, b
depending only on ¢ such that

HViHLOO(o,y) < CM(I*Q)Q, Cls2M oM < i < CM2.
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Diagonalization and y-semidiscretization

y-semidiscrete problem

Find 2 € Vi,(Cy) = Hy(Q) @ 57,

ac(%m, ¢) = ds(f,tra¢) Vo € Viy(Cy).

((0,9),GM) such that

o Write (X', y) == Zj\;ll Ui(x")vi(y).

e Consider ¢(x,y) = V(X' )vi(y), with V € H}() as a test function.

@ This results in decoupled problems

p,-/(vu,-,vvwr/ UiV dx = dsvi(0)(F, V) YV e H(Q).
Q Q
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Importance of diagonalization

@ The diagonalization shows that upto exponentially small error the
solution % can be written as a sum of singularly perturbed problems.

@ It can also be used in a fully discrete setting.

@ One option is to discretize each singularly perturbed problem using an
optimised FEM in Q.
@ We choose to use the same FEM in  for all the M problems:

» We arrive at M decoupled linear systems with the same mass and
stiffness matrices that can be solved in parallel.

» Robust multigrid methods are available.

> In this case the computational cost is (almost) optimal:

computational cost = O(M?) + O(Mh=9) = O(Ngq log Ng)

for the discretization V;'1,,(T*,GM, ) with M ~ 9 ~ log h™*.



Outline

@ Numerical results
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Test cases

We let Q2 be the L-shape domain in 2D with vertices

{(07 0)7 (1’ 0)7 (1’ 1)7 (_17 1)7 (_17 _1)7 (Ov _1)}'

We will consider two test cases

@ The following smooth exact solution:
u(x1,xp) =sinmxysinmxp, f(x1,x) = (2772)s Sin X7 Sin TXo.
@ Further we also consider the solution with the right-hand side
f(xi,x)=1.

Notice that, in this case, f is analytic in Q but f € H!~5(Q) only for
s>1/2.
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Implementation

@ We use Netgen/NGSolve for the FEM in .
@ The hp-FEM in y implemented separately.

@ The error measure will always be the energy norm
||u—trQ %h7M||]?ﬂ5(Q) S HV(%—%h,M)‘|%2(ya,c) = ds/ f(u_trQ %h,l\/l)a
Q

where %p p denotes the discrete solution in Cy.
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Smooth solution

100
10"
o
2
3
s=1/4
102 ¢ - = =5=3/4
error < h

. .
1072 107"
h

Convergence of the error in the energy norm versus the meshwidth in Q for the

smooths solution for two different values of s. A P;-FEM on uniformly refined
meshes in Q and hp-FEM in (0,9) is used.
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Non-smooth solution, f =1

10°

107!
B
&
5}

uniform
102 s - = —graded
L7 error o< h
’
. 7’
1078 . .
1073 1072 107! 10°

@ Here f =1 and s = 3/4, leading to a solution with singular behavior near
the re-entrant corner (0,0). Error graphs are shown for a P;-FEM on
uniformly refined meshes in Q and on meshes refined towards the corner.

@ This case also analyzed in our arXiv '17 paper.
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Convergence against number of degrees of freedom

10°
tensor grid
- = =sparse grid
hp-FEM+P,-FEM
107"
5
2
)
102
10-3 L L 1
102 104 108 108 1010

degrees of freedom

Convergence of the error versus the number of degrees of freedom with f =1 and
s = 3/4. We compare hp-FEM in (0, ) with tensor grid and sparse grids, the
latter two employing radical meshes and Pi-FEM in (0, ).
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hp-FEM in Q x (0,9) in 1D

Solution on Q = (0, 1) with algebraic boundary singularity. Convergence of error
in energy norm of the hp-FEM on Q x (0, 9) against polynomial order g for
s=0.25and f = 1.
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Conclusions

@ We have developed and analyzed an almost optimal complexity
algorithm for the (spectral) fractional Laplacian using hp-FEM in the
extended and P;-FEM in smooth €.

@ For polygons we have proved that first order convergence is obtained
if refinement towards corners is used and f € H!~5(Q).

@ A sparse tensor product FEM based on multilevel P;-FEM in € and
P1-FEM on radical meshes in y also achieves (almost) optimal
complexity.

e Finally, we prove that if the data f is analytic in Q, but not
compatible, hp-FEM in full domain with anisotropic geometric meshes
towards 2 result in exponential rates of convergence. Here Q is
smooth in 1D or 2D.

Some of this we touched upon in the talk, the details are in 2017,
arXiv:1707.07367
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