Stability of implicit and implicit–explicit multistep methods for nonlinear parabolic equations in Hilbert spaces

Georgios Akrivis

Department of Computer Science & Engineering University of Ioannina, Greece

Modern numerical discretisations of p.d.e's and adaptivity Scottish Numerical Methods Network 2018 University of Strathclyde, Glasgow

G. Akrivis (akrivis@cse.uoi.gr)

Outline

- Nonlinear parabolic equations
 Quantification of the non-self-adjointness of linear elliptic operators
- Implicit multistep methods
- The stability result
- Implicit-explicit multistep methods
- Sey ingredients in the stability analysis
- **6** An example
 - A.: IMA J. Numer. Anal. (2018)
 - Math. Comp. (2013, 2016)
 - M. Zlámal: Math. Comp. (1975)

Key issues

- Choice of suitable assumptions
- Ochoice of stability technique
 - Energy method
 - Semigroup technique
 - Spectral technique
 - Fourier technique (= Parseval's identity)¹
 - Perturbation arguments
 - Discrete maximal parabolic regularity
 - • •

An assumption may be suitable for a stability technique but not suitable for another stability technique.

¹C. Lubich: Numer. Math. (1988, 1991)

G. Akrivis (akrivis@cse.uoi.gr)

Key issues

- Choice of suitable assumptions
- Ochoice of stability technique
 - Energy method
 - Semigroup technique
 - Spectral technique
 - Fourier technique (= Parseval's identity)¹
 - Perturbation arguments
 - Discrete maximal parabolic regularity

• • • •

An assumption may be suitable for a stability technique but not suitable for another stability technique.

¹C. Lubich: Numer. Math. (1988, 1991) G. Akrivis (akrivis@cse.uoi.gr) Multistep methods for parabolic equations Glasgow, Jar

Key issues

- Choice of suitable assumptions
- Ochoice of stability technique
 - Energy method
 - Semigroup technique
 - Spectral technique
 - Fourier technique (= Parseval's identity)¹
 - Perturbation arguments
 - Discrete maximal parabolic regularity
 - • •
- An assumption may be suitable for a stability technique but not suitable for another stability technique.

¹C. Lubich: Numer. Math. (1988, 1991)

G. Akrivis (akrivis@cse.uoi.gr)

1. Nonlinear parabolic equations

Consider the initial value problem

$$\begin{cases} u'(t) + A(t)u(t) = B(t, u(t)), & 0 < t < T, \\ u(0) = u^0, \end{cases}$$

in a usual triple $V \subset H = H' \subset V'$ of separable complex Hilbert spaces, with V densely and continuously embedded in H.

Here

- $A(t): V \rightarrow V'$ uniformly coercive and bounded linear operator,
- $B(t, \cdot): V \to V', t \in [0, T]$, possibly nonlinear, "small".

For instance: in the case of second order parabolic equations subject to homogeneous Dirichlet b.c., we have

$$H = L^2(\Omega), \quad V = H_0^1(\Omega), \quad V' = H^{-1}(\Omega).$$

- $|\cdot|, \|\cdot\|, \|\cdot\|_{\star}$ norms on H, V, and V', respectively.
- (\cdot, \cdot) inner product on H and duality pairing between V' and V.
- $A_s(t) := \frac{1}{2} [A(t) + A(t)^*], \quad A_a(t) := \frac{1}{2} [A(t) A(t)^*]$
- $A(t) = A_s(t) + A_a(t)$

Quantification of the non-self-adjointness of A(t)

Consider the bounded linear operator $\mathcal{A}(t): H \to H$ and its anti-self-adjoint part $\mathcal{A}_a(t)$,

 $\mathcal{A}(t) := A_s^{-1/2}(t)A(t)A_s^{-1/2}(t), \quad \mathcal{A}_a(t) = A_s^{-1/2}(t)A_a(t)A_s^{-1/2}(t),$

 $\mathcal{A}(t) = I + \mathcal{A}_a(t).$ We have $|\mathcal{A}(t)|^2 = 1 + |\mathcal{A}_a(t)|^2$ and

$$\forall v \in V \ (\boldsymbol{A}(t)v, v) \in S_{\varphi} \iff |\mathcal{A}(t)| \leq \frac{1}{\cos \varphi} \iff |\mathcal{A}_{a}(t)| \leq \tan \varphi,$$

for any angle $\varphi < 90^{\circ}$, and the sector

$$S_{\varphi} := \{ z \in \mathbb{C} : z = \rho e^{i\psi}, \rho \ge 0, |\psi| \le \varphi \}.$$

The smallest half-angle of a sector $S_{\varphi(t)}^2$ as well as the norms of $\mathcal{A}_a(t)$ or $\mathcal{A}(t)$ are exact measures of the non-self-adjointness of A(t).

²G. Savaré: Numer. Math. (1993)

G. Akrivis (akrivis@cse.uoi.gr)

Comparison to the commonly used estimate

Let

and

Then

$$\begin{split} \|A(t)v\|_{\star} &\leq \nu(t) \|v\| \quad \forall v \in V \\ \operatorname{Re}(A(t)v, v) &\geq \kappa(t) \|v\|^2 \quad \forall v \in V. \\ |\mathcal{A}(t)| &\leq \frac{\nu(t)}{\kappa(t)}. \end{split}$$

The ratio $\nu(t)/\kappa(t)$ is an estimate of the non-self-adjoindness of A(t). Since it depends on the choice of the specific norm $\|\cdot\|$ on V, it may be a crude one!³

The ratio $\nu(t)/\kappa(t)$ attains its minimal value, namely $|\mathcal{A}(t)|$, if we endow V with the time-dependent norm $\|\cdot\|_t$,

 $||v||_t := (A_s(t)v, v)^{1/2} \quad \forall v \in V.$

³A.: SINUM (2015), A., Lubich: Numer. Math. (2015)

G. Akrivis (akrivis@cse.uoi.gr)

Assumptions on A and B

• Uniform boundedness of $|\mathcal{A}_a(t) := A_s^{-1/2}(t)A_a(t)A_s^{-1/2}(t)|$:

 $\forall t \in [0,T] \; \forall v \in H \quad |\mathcal{A}_a(t)v| \le \lambda_1(t)|v|$

with a stability function $\lambda_1(t)$.

- Q Local Lipschitz condition on B:⁴
 Let T_u := {v ∈ V : min_t ||v − u(t)|| ≤ 1} and assume that
 |A_s^{-1/2}(t)(B(t,v) − B(t, ṽ))| ≤ λ₂(t)|A_s^{1/2}(t)(v − ṽ)| + μ₂(t)|v − ṽ|,
 for v, ṽ ∈ T_u, with a "small" stability function λ₂(t).
- "Weak" Lipschitz (or bounded variation) conditions on A(t) and $B(t, \cdot)$ in time.

⁴A., Crouzeix, Makridakis: Numer. Math. (1999) G. Akrivis (akrivis@cse.uoi.gr) Multistep methods for parabolic equations G

Parabolic equations satisfying our assumptions

- Reaction-diffusion equation $u_t \Delta u = f(u).$
- Quasi-linear parabolic equations.
- Cahn–Hilliard equation

 $u_t + \nu u_{xxxx} - (u^3 - u)_{xx} = 0.$

- Kuramoto–Sivashinsky equation (with low-order dispersion) $u_t + \nu u_{xxxx} + \delta u_{xxx} + u_{xx} + uu_x = 0.$
- **o** Topper-Kawahara equation.
- Systems of Kuramoto-Sivashinsky-type equations.
- Parabolic equations of the form

$$\begin{split} &u_t - \sum_{i,j=1}^d \left((a_{ij}(x,t) + \tilde{a}_{ij}(x,t)) u_{x_j} \right)_{x_i} = B(t,u) \\ &\text{with positive definite and Hermitian, and anti-Hermitian matrices,} \\ &\text{respectively, with smooth entries } a_{ij}(x,t) \text{ and } \tilde{a}_{ij}(x,t), \text{ respectively,} \\ &\text{and } B(t,\cdot) \text{ suitable, possibly nonlinear, operators.} \end{split}$$

2. Implicit multistep schemes

• (α, β) an implicit q-step scheme generated by the polynomials

$$\alpha(\zeta) = \sum_{i=0}^{q} \alpha_i \zeta^i, \quad \beta(\zeta) = \sum_{i=0}^{q} \beta_i \zeta^i.$$

- Let $N \in \mathbb{N}$, k := T/N, and $t^n := nk$, $n = 0, \dots, N$.
- Let $U^0, \ldots, U^{q-1} \in V$ be given starting approximations.
- Define approximations U^m to $u^m := u(t^m), \ m = q, \ldots, N,$ by

$$\sum_{i=0}^{q} \left[\alpha_{i} I + k \beta_{i} A(t^{n+i}) \right] U^{n+i} = k \sum_{i=0}^{q} \beta_{i} B(t^{n+i}, U^{n+i}),$$

 $n=0,\ldots,N-q.$

G. Akrivis (akrivis@cse.uoi.gr)

Multistep methods for parabolic equations

Glasgow, January 30, 2018 10 / 34

Assumption: The scheme (α, β) is (strongly) $A(\vartheta)$ -stable, i.e., for $z \in S_{\vartheta}, \chi(z; \cdot) = \alpha(\cdot) + z\beta(\cdot)$ satisfies the root condition, and the roots of β are (strictly) less than 1 in modulus.

An important constant

Let

$$K_{(\alpha,\beta)} := \sup_{x>0} \max_{\zeta \in \mathcal{K}} \frac{|x\beta(\zeta)|}{|\alpha(\zeta) + x\beta(\zeta)|} = \frac{1}{\sin \vartheta},$$

with \mathcal{K} the unit circle, $\mathcal{K} := \{\zeta \in \mathbb{C} : |\zeta| = 1\}$, and ϑ as large as possible s.t. the scheme (α, β) is $A(\vartheta)$ -stable.

G. Akrivis (akrivis@cse.uoi.gr)

Example: BDF methods

Let
$$\alpha(\zeta) = \sum_{j=1}^{q} \frac{1}{j} \zeta^{q-j} (\zeta - 1)^{j}, \quad \beta(\zeta) = \zeta^{q}, \quad q = 1, \dots, 6$$

 (α, β) is the *q*-step BDF scheme; its order is *q*. The *q*-step BDF scheme is strongly $A(\vartheta_q)$ -stable with

 $\vartheta_1 = \vartheta_2 = 90^\circ, \ \vartheta_3 = 86.03^\circ, \ \vartheta_4 = 73.35^\circ, \ \vartheta_5 = 51.84^\circ, \ \vartheta_6 = 17.84^\circ.$

3. The stability result

Let $V^m \in T_u$ satisfy the perturbed equations $\sum_{i=0}^q \left[\alpha_i I + k \beta_i A(t^{n+i}) \right] V^{n+i} = k \sum_{i=0}^q \beta_i B(t^{n+i}, V^{n+i}) + k E^n.$

Theorem

Let $\vartheta^m := V^m - U^m$. If

$$(\cot\vartheta)\lambda_1(t)+ \frac{K_{(\alpha,\beta)}}{\lambda_2(t)}<1 \quad \forall t\in[0,T],$$

then we have the stability estimate

$$|\vartheta^{n}|^{2} + k \sum_{\ell=q}^{n} \|\vartheta^{\ell}\|^{2} \leq C \sum_{j=0}^{q-1} \left(|\vartheta^{j}|^{2} + k \|\vartheta^{j}\|^{2} \right) + Ck \sum_{\ell=0}^{n-q} \|E^{\ell}\|_{\star}^{2},$$

 $n = q, \ldots, N$, with a constant C independent of k, n, U^m, V^m and E^m .

G. Akrivis (akrivis@cse.uoi.gr)

Geometric interpretation of the stability condition

 $(\cot \vartheta)\lambda_1(t) + K_{(\alpha,\beta)}\lambda_2(t) < 1 \iff (\cos \vartheta)\lambda_1(t) + \lambda_2(t) < \sin \vartheta$

G. Akrivis (akrivis@cse.uoi.gr)

Multistep methods for parabolic equations

Glasgow, January 30, 2018 15 / 34

Sharpness of the stability condition

 $(\cot\vartheta)\lambda_1(t) + K_{(\alpha,\beta)}\lambda_2(t) < 1 \iff \lambda_2(t) < \sin\vartheta - (\cos\vartheta)\lambda_1(t)$

G. Akrivis (akrivis@cse.uoi.gr)

Multistep methods for parabolic equations

Glasgow, January 30, 2018 16 / 34

The method (α, β) is unstable for the equation

 $u' + \hat{z}_2 A_s u = u' + A_s u + i \lambda_1 A_s u - (z_1 - \hat{z}_2) A_s u = 0.$

G. Akrivis (akrivis@cse.uoi.gr)

Alternative forms of the sufficient stability condition

Uniform boundedness of $\mathcal{A}_a(t) := A_s^{-1/2}(t)A_a(t)A_s^{-1/2}(t)$:

 $\forall t \in [0,T] \; \forall v \in H \quad |\mathcal{A}_a(t)v| \le \lambda_1(t)|v|$

with a stability function $\lambda_1(t)$. Sufficient stability condition: $(\cos \vartheta)\lambda_1(t) + \lambda_2(t) < \sin \vartheta$

Alternative assumptions: 1. Uniform boundedness of $\mathcal{A}(t):=A_s^{-1/2}(t)A(t)A_s^{-1/2}(t)$:

 $\forall t \in [0,T] \; \forall v \in H \quad |\mathcal{A}(t)v| \le \tilde{\lambda}_1(t)|v|$

with a stability function $\lambda_1(t)$. Since $|\mathcal{A}(t)|^2 = 1 + |\mathcal{A}_a(t)|^2$, we may assume that $\tilde{\lambda}_1(t)^2 = 1 + \lambda_1(t)^2$. Then, the stability condition reads

$$(\cos\vartheta)\sqrt{\tilde\lambda_1(t)^2-1}+\lambda_2(t)<\sin\vartheta$$

G. Akrivis (akrivis@cse.uoi.gr)

2. Let $\varphi(t)$ be the smallest half-angle of a sector containing the numerical range of A(t),

$$(A(t)v,v) \in S_{\varphi(t)} \quad \forall v \in V \ \forall t \in [0,T].$$

Then,

 $\forall t \in [0,T] \ \forall v \in H \quad |\mathcal{A}_a(t)v| \le \lambda_1(t)|v|$

with $\lambda_1(t) = \tan \varphi(t)$.

Then, the sufficient stability takes the form

 $(\cos\vartheta)\tan\varphi(t) + \lambda_2(t) < \sin\vartheta$

which can also be written as

$$\lambda_2(t) < \frac{\sin(\vartheta - \varphi(t))}{\cos \varphi(t)}$$

G. Akrivis (akrivis@cse.uoi.gr)

Multistep methods for parabolic equations

Glasgow, January 30, 2018 19 / 34

G. Akrivis (akrivis@cse.uoi.gr)

Multistep methods for parabolic equations

Glasgow, January 30, 2018 20 / 34

3. Let

and

Then

$$\begin{split} \|A(t)v\|_{\star} &\leq \nu(t) \|v\| \quad \forall v \in V \\ \operatorname{Re}(A(t)v, v) &\geq \kappa(t) \|v\|^2 \quad \forall v \in V. \\ |\mathcal{A}(t)| &\leq \frac{\nu(t)}{\kappa(t)}. \end{split}$$

We may assume that $ilde{\lambda}_1(t) \leq rac{
u(t)}{\kappa(t)}$ and the stability condition reads

$$(\cos \vartheta)\sqrt{rac{
u(t)^2}{\kappa(t)^2}-1}+\lambda_2(t)<\sin artheta$$

G. Akrivis (akrivis@cse.uoi.gr) Multistep methods for parabolic equations Glasgow, January 30, 2018 21 / 34

Comparison to the energy technique

For $q \in \{1, \ldots, 5\}$, stability results for BDF schemes have also been established via energy techniques under the sufficient stability condition

$$\hat{\eta}_q \tilde{\lambda}_1(t) + (1 + \hat{\eta}_q) \lambda_2(t) < 1 \quad \forall t \in [0, T]$$

with

 $\hat{\eta}_1 = \hat{\eta}_2 = 0, \ \hat{\eta}_3 = 1/13 = 0.07692, \ \hat{\eta}_4 = 0.2878, \ \hat{\eta}_5 = 0.80973.$

For q = 3, 4, 5, since $\hat{\eta}_q > \cos \vartheta_q$ and $1 + \hat{\eta}_q > 1/\sin \vartheta_q$, this is not a best possible linear stability condition.

- Nevanlinna, Odeh: Numer. Funct. Anal. Optim. (1981)
- Lubich, Mansour, Venkataraman: IMA J. Numer. Anal. (2013)
- A., Lubich: Numer. Math. (2015)
- A.: SINUM (2015)
- A., Katsoprinakis: Math. Comp. (2016)

4. Implicit-explicit multistep schemes

• $(\pmb{\alpha}, \pmb{\beta})$ an implicit q-step scheme

 $(\pmb{\alpha},\gamma)$ an explicit q-step scheme,

$$\alpha(\zeta) = \sum_{i=0}^{q} \alpha_i \zeta^i, \quad \beta(\zeta) = \sum_{i=0}^{q} \beta_i \zeta^i, \quad \gamma(\zeta) = \sum_{i=0}^{q-1} \gamma_i \zeta^i.$$

- Let $N \in \mathbb{N}$, k := T/N, and $t^n := nk$, $n = 0, \dots, N$.
- Let $U^0, \ldots, U^{q-1} \in V$ be given starting approximations.
- Define approximations U^m to $u^m:=u(t^m), m=q,\ldots,N,$ by

$$\sum_{i=0}^{q} \left[\alpha_{i} I + k \beta_{i} A(t^{n+i}) \right] U^{n+i} = k \sum_{i=0}^{q-1} \gamma_{i} B(t^{n+i}, U^{n+i}).$$

M. Crouzeix: Numer. Math. (1980)

The stability result

Let

$$K_{(lpha,eta,\gamma)}:=\sup_{x>0}\max_{\zeta\in\mathcal{K}}rac{|x\gamma(\zeta)|}{|lpha(\zeta)+xeta(\zeta)|}.$$

Example: Implicit-explicit BDF methods

$$\alpha(\zeta) = \sum_{j=1}^{q} \frac{1}{j} \zeta^{q-j} (\zeta - 1)^{j}, \quad \beta(\zeta) = \zeta^{q}, \quad \gamma(\zeta) = \zeta^{q} - (\zeta - 1)^{q}.$$

 (α, γ) the unique explicit *q*-step scheme of order *q*.

In this case
$$ig| K_{(lpha,eta,\gamma)} = |\gamma(-1)| = 2^q - 1 ig|^5$$

Let $V^m \in T_u$ satisfy the perturbed equations

$$\sum_{i=0}^{q} \left[\alpha_i I + k\beta_i A(t^{n+i}) \right] V^{n+i} = k \sum_{i=0}^{q-1} \gamma_i B(t^{n+i}, V^{n+i}) + k E^n.$$

⁵A., Crouzeix, Makridakis: Numer. Math. (1999)

G. Akrivis (akrivis@cse.uoi.gr)

Theorem

Let
$$\vartheta^m := V^m - U^m$$
. If

$$(\cot \vartheta)\lambda_1(t) + K_{(\alpha,\beta,\gamma)}\lambda_2(t) < 1 \quad \forall t \in [0,T],$$
then we have the stability estimate
 $|\vartheta^n|^2 + k \sum_{\ell=q}^n ||\vartheta^\ell||^2 \le C \sum_{j=0}^{q-1} (|\vartheta^j|^2 + k ||\vartheta^j||^2) + Ck \sum_{\ell=0}^{n-q} ||E^\ell||_{\star}^2,$
 $n = q, \dots, N,$ with a constant C independent of k, n, U^m, V^m and E^m .

In this case the stability condition is:

- Best possible linear sufficient stability condition.
- Sharp if the implicit scheme is A-stable.

G. Akrivis (akrivis@cse.uoi.gr)

5. Key ingredients in the stability analysis

1 Stability technique: Combination of spectral and Fourier techniques

⁽²⁾ Advantageous decomposition of the linear operator Rewrite u'(t) + A(t)u(t) = B(t, u(t)) in the form

$$u'(t) + \widehat{A}_s(t)u(t) + \widetilde{A}(t)u(t) = B(t, u(t))$$

with

$$\widehat{A}_s(t) := (1+\eta)A_s(t), \quad \widetilde{A}(t) := A_a(t) - \eta A_s(t),$$

with η a nonnegative quantity that may depend on $\lambda_1(t)$ and $\lambda_2(t)$.

- Time independent operators Choose $\eta := (\tan \vartheta)\lambda_1$ and apply a known stability result.
- Time dependent operators
 Freeze the time, use the previous stability estimate and employ a discrete perturbation argument.

G. Akrivis (akrivis@cse.uoi.gr) Multistep methods for parabolic equations Glasgow, January 30, 2018 26 / 34

$$\begin{cases} \frac{1}{\alpha(\zeta) + x\beta(\zeta)} = \sum_{\ell=q}^{\infty} e(\ell, x) \zeta^{-\ell}, & |\zeta| \ge 1, \\ \frac{\beta(\zeta)}{\alpha(\zeta) + x\beta(\zeta)} = \sum_{\ell=0}^{\infty} f(\ell, x) \zeta^{-\ell}, & |\zeta| \ge 1. \end{cases}$$

Now, with $b^\ell := B(V^\ell) - B(U^\ell),$ let

$$\theta_i^n := \begin{cases} -k \sum_{\ell=0}^n f(n-\ell, kA_s) A_a \vartheta^\ell, & i = 1, \\ k \sum_{\ell=0}^n f(n-\ell, kA_s) b^\ell, & i = 2, \\ k \sum_{\ell=0}^{n-q} e(n-\ell, kA_s) E^\ell, & i = 3, \end{cases}$$

G. Akrivis (akrivis@cse.uoi.gr)

Multistep methods for parabolic equations Glasg

Glasgow, January 30, 2018 27 / 34

and

$$\vartheta_4^n := \vartheta^n - \vartheta_1^n - \vartheta_2^n - \vartheta_3^n,$$

 $n=0,\ldots,N.$

Then, we have

$$\sum_{i=0}^{q} (\alpha_i I + k\beta_i A_s) \vartheta_{\mathbf{2}}^{n+i} = k \sum_{i=0}^{q} \beta_i b^{n+i}, \quad n = 0, \dots, N-q.$$

Claim:

$$k \sum_{\ell=0}^{n} \|\theta_{2}^{\ell}\|^{2} \leq K_{(\alpha,\beta)}^{2} k \sum_{\ell=0}^{n} \|b^{\ell}\|_{\star}^{2}, \quad n = 0, \dots, N.$$

It suffices to show this estimate for $b^{\ell} = 0$ for $\ell \ge n$, and n replaced by ∞ .

We introduce \hat{b} and $\hat{\theta}_2$ by

$$\hat{b}(t) = \sum_{\ell=0}^{\infty} b^{\ell} e^{2i\pi\ell t}, \quad \hat{\theta}_2(t) = \sum_{\ell=0}^{\infty} \theta_2^{\ell} e^{2i\pi\ell t}.$$

From the definition of θ_2 , we deduce

$$\hat{\theta}_2(t) = k\beta(\mathrm{e}^{-2\,\mathrm{i}\,\pi\ell t}) \left\{ \alpha(\mathrm{e}^{-2\,\mathrm{i}\,\pi\ell t})I + \beta(\mathrm{e}^{-2\,\mathrm{i}\,\pi\ell t})kA_s \right\}^{-1} \hat{b}(t).$$

Therefore, $\|\hat{\theta}_2(t)\| \leq K_{(\alpha,\beta)} \|\hat{b}(t)\|_{\star}$, whence, using Parseval's identity,

$$\sum_{\ell=0}^{\infty} \|\theta_2^{\ell}\|^2 = \int_0^1 \|\hat{\theta}_2(t)\|^2 \ dt \le K_{(\alpha,\beta)}^2 \int_0^1 \|\hat{b}(t)\|_{\star}^2 \ dt = K_{(\alpha,\beta)}^2 \ \sum_{\ell=0}^{\infty} \|b^{\ell}\|_{\star}^2$$

G. Akrivis (akrivis@cse.uoi.gr) Multistep methods for parabolic equations Glasgow, January 30, 2018 29 / 34

6. An example

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary $\partial \Omega$, and consider the following initial and boundary value problem

$$\begin{cases} u_t - \sum_{i,j=1}^d \left((a_{ij}(x,t) + \tilde{a}_{ij}(x,t)) u_{x_j} \right)_{x_i} = B(t,u) & \text{in} \quad \Omega \times [0,T], \\ u = 0 & \text{on} \quad \partial \Omega \times [0,T], \\ u(\cdot,0) = u^0 & \text{in} \quad \Omega, \end{cases}$$

with T positive and $u^0: \Omega \to \mathbb{C}$ a given initial value. Here, $\mathcal{O}, \widetilde{\mathcal{O}}: \Omega \times [0,T] \to \mathbb{C}^{d,d}$ are uniformly positive definite and Hermitian, and anti-Hermitian matrices, respectively, with smooth entries $a_{ij}(x,t)$ and $\tilde{a}_{ij}(x,t)$, respectively, and $B(t, \cdot)$ are suitable, possibly nonlinear, operators. Consider the antihermitian matrices

$$S(x,t) := \mathcal{O}^{-1/2}(x,t)\widetilde{\mathcal{O}}(x,t)\mathcal{O}^{-1/2}(x,t).$$

The boundedness condition is then satisfied with

$$\lambda_1(t) := \max_{x \in \overline{\Omega}} \rho(S(x,t)), \quad t \in [0,T],$$

with $\rho(\cdot)$ the spectral radius.

Two special cases

First case: Let

$$\widetilde{\mathcal{O}}(x,t) = \mathrm{i}\,a(x,t)\mathcal{O}(x,t), \quad x \in \Omega, \quad 0 \le t \le T,$$

with a a smooth real-valued function, $a:\overline{\Omega}\times[0,T]\to\mathbb{R}$. Then, $S(x,t)=\mathrm{i}\,a(x,t)I_d$, whence

$$\lambda_1(t) = \max_{x \in \overline{\Omega}} |a(x,t)| \quad \forall t \in [0,T].$$

Second case: d = 2.

It is well known that

$$\mathcal{O}^{1/2} = \frac{1}{\sqrt{\operatorname{tr} \mathcal{O} + 2\sqrt{\operatorname{det} \mathcal{O}}}} \big(\mathcal{O} + \sqrt{\operatorname{det} \mathcal{O}} I_2 \big),$$

and

$$\mathcal{O}^{-1/2} = \frac{1}{\sqrt{\det \mathcal{O}} \sqrt{\operatorname{tr} \mathcal{O} + 2\sqrt{\det \mathcal{O}}}} \Big(\big(\operatorname{tr} \mathcal{O} + \sqrt{\det \mathcal{O}} \big) I_2 - \mathcal{O} \Big),$$

with tr $\mathcal{Q} := a_{11} + a_{22}$ the trace of \mathcal{Q} . Therefore,

$$S = \frac{1}{\det \mathcal{O}\left(\operatorname{tr} \mathcal{O} + 2\sqrt{\det \mathcal{O}}\right)} \left(c_{\mathcal{O}}^2 \widetilde{\mathcal{O}} - c_{\mathcal{O}}(\mathcal{O}\widetilde{\mathcal{O}} + \widetilde{\mathcal{O}}\mathcal{O}) + \mathcal{O}\widetilde{\mathcal{O}}\mathcal{O}\right),$$

with the constant $c_{\mathcal{O}} := \operatorname{tr} \mathcal{O} + \sqrt{\operatorname{det} \mathcal{O}}$.

G. Akrivis (akrivis@cse.uoi.gr)

Thank you very much!