Stability of implicit and implicit-explicit multistep methods for nonlinear parabolic equations in Hilbert spaces

Georgios Akrivis

Department of Computer Science \& Engineering University of Ioannina, Greece

Modern numerical discretisations of p.d.e's and adaptivity Scottish Numerical Methods Network 2018

University of Strathclyde, Glasgow

Outline

(1) Nonlinear parabolic equations

Quantification of the non-self-adjointness of linear elliptic operators
(2) Implicit multistep methods
(3) The stability result
(9) Implicit-explicit multistep methods
(6) Key ingredients in the stability analysis
(6) An example

- A.: IMA J. Numer. Anal. (2018)
- Math. Comp. $(2013,2016)$
- M. Zlámal: Math. Comp. (1975)
G. Akrivis (akrivis@cse.uoi.gr)

Key issues

(1) Choice of suitable assumptions
(2) Choice of stability technique

- Energy method
- Semigroup technique
- Spectral techniaue
- Fourier technique $(=\text { Parseval's identity })^{1}$
- Perturbation arguments

Discrete maximai parabolic regularity
(3) An assumption may be suitable for a stability technique but for another stability technique.

Key issues

(1) Choice of suitable assumptions
(2) Choice of stability technique

- Energy method
- Semigroup technique
- Spectral technique
- Fourier technique (= Parseval's identity $)^{1}$
- Perturbation arguments
- Discrete maximal parabolic regularity
(3) An assumption may be suitable for a stabilit
for another stability technique.

[^0]
Key issues

(1) Choice of suitable assumptions
(2) Choice of stability technique

- Energy method
- Semigroup technique
- Spectral technique
- Fourier technique $(=\text { Parseval's identity })^{1}$
- Perturbation arguments
- Discrete maximal parabolic regularity
(3) An assumption may be suitable for a stability technique but not suitable for another stability technique.
${ }^{1}$ C. Lubich: Numer. Math. $(1988,1991)$
G. Akrivis (akrivis@cse.uoi.gr)

1. Nonlinear parabolic equations

Consider the initial value problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)+A(t) u(t)=B(t, u(t)), \quad 0<t<T \\
u(0)=u^{0}
\end{array}\right.
$$

in a usual triple $V \subset H=H^{\prime} \subset V^{\prime}$ of separable complex Hilbert spaces, with V densely and continuously embedded in H.

Here

- $A(t): V \rightarrow V^{\prime}$ uniformly coercive and bounded linear operator,
- $B(t, \cdot): V \rightarrow V^{\prime}, t \in[0, T]$, possibly nonlinear, "small".

For instance: in the case of second order parabolic equations subject to homogeneous Dirichlet b.c., we have

$$
H=L^{2}(\Omega), \quad V=H_{0}^{1}(\Omega), \quad V^{\prime}=H^{-1}(\Omega)
$$

Notation:

- $|\cdot|,\|\cdot\|,\|\cdot\|_{\star}$ norms on H, V, and V^{\prime}, respectively.
- (\cdot, \cdot) inner product on H and duality pairing between V^{\prime} and V.
- $A_{s}(t):=\frac{1}{2}\left[A(t)+A(t)^{\star}\right], \quad A_{a}(t):=\frac{1}{2}\left[A(t)-A(t)^{\star}\right]$
- $A(t)=A_{s}(t)+A_{a}(t)$

Quantification of the non-self-adjointness of $A(t)$

Consider the bounded linear operator $\mathcal{A}(t): H \rightarrow H$ and its anti-self-adjoint part $\mathcal{A}_{a}(t)$,

$$
\mathcal{A}(t):=A_{s}^{-1 / 2}(t) A(t) A_{s}^{-1 / 2}(t), \quad \mathcal{A}_{a}(t)=A_{s}^{-1 / 2}(t) A_{a}(t) A_{s}^{-1 / 2}(t)
$$

$\mathcal{A}(t)=I+\mathcal{A}_{a}(t)$. We have $|\mathcal{A}(t)|^{2}=1+\left|\mathcal{A}_{a}(t)\right|^{2}$ and

$$
\forall v \in V \quad(A(t) v, v) \in S_{\varphi} \Longleftrightarrow|\mathcal{A}(t)| \leq \frac{1}{\cos \varphi} \Longleftrightarrow\left|\mathcal{A}_{a}(t)\right| \leq \tan \varphi
$$

for any angle $\varphi<90^{\circ}$, and the sector

$$
S_{\varphi}:=\left\{z \in \mathbb{C}: z=\rho \mathrm{e}^{\mathrm{i} \psi}, \rho \geq 0,|\psi| \leq \varphi\right\} .
$$

The smallest half-angle of a sector $S_{\varphi(t)}{ }^{2}$ as well as the norms of $\mathcal{A}_{a}(t)$ or $\mathcal{A}(t)$ are exact measures of the non-self-adjointness of $A(t)$.
${ }^{2}$ G. Savaré: Numer. Math. (1993)
G. Akrivis (akrivis@cse.uoi.gr)

Comparison to the commonly used estimate

Let

$$
\|A(t) v\|_{\star} \leq \nu(t)\|v\| \quad \forall v \in V
$$

and

$$
\operatorname{Re}(A(t) v, v) \geq \kappa(t)\|v\|^{2} \quad \forall v \in V
$$

Then

$$
|\mathcal{A}(t)| \leq \frac{\nu(t)}{\kappa(t)}
$$

The ratio $\nu(t) / \kappa(t)$ is an estimate of the non-self-adjoindness of $A(t)$. Since it depends on the choice of the specific norm $\|\cdot\|$ on V, it may be a crude one! ${ }^{3}$

The ratio $\nu(t) / \kappa(t)$ attains its minimal value, namely $|\mathcal{A}(t)|$, if we endow V with the time-dependent norm $\|\cdot\|_{t}$,

$$
\|v\|_{t}:=\left(A_{s}(t) v, v\right)^{1 / 2} \quad \forall v \in V
$$

${ }^{3}$ A.: SINUM (2015), A., Lubich: Numer. Math. (2015)
G. Akrivis (akrivis@cse.uoi.gr)

Multistep methods for parabolic equations

Assumptions on A and B

(1) Uniform boundedness of $\mathcal{A}_{a}(t):=A_{s}^{-1 / 2}(t) A_{a}(t) A_{s}^{-1 / 2}(t)$:

$$
\forall t \in[0, T] \forall v \in H \quad\left|\mathcal{A}_{a}(t) v\right| \leq \lambda_{1}(t)|v|
$$

with a stability function $\lambda_{1}(t)$.
(2) Local Lipschitz condition on $B:^{4}$

Let $T_{u}:=\left\{v \in V: \min _{t}\|v-u(t)\| \leq 1\right\}$ and assume that $\left|A_{s}^{-1 / 2}(t)(B(t, v)-B(t, \tilde{v}))\right| \leq \lambda_{2}(t)\left|A_{s}^{1 / 2}(t)(v-\tilde{v})\right|+\mu_{2}(t)|v-\tilde{v}|$, for $v, \tilde{v} \in T_{u}$, with a "small" stability function $\lambda_{2}(t)$.
(3) "Weak" Lipschitz (or bounded variation) conditions on $A(t)$ and $B(t, \cdot)$ in time.

[^1]G. Akrivis (akrivis@cse.uoi.gr)

Parabolic equations satisfying our assumptions

(1) Reaction-diffusion equation

$$
u_{t}-\Delta u=f(u)
$$

(2) Quasi-linear parabolic equations.
(3) Cahn-Hilliard equation $u_{t}+\nu u_{x x x x}-\left(u^{3}-u\right)_{x x}=0$.
(9) Kuramoto-Sivashinsky equation (with low-order dispersion) $u_{t}+\nu u_{x x x x}+\delta u_{x x x}+u_{x x}+u u_{x}=0$.
(9) Topper-Kawahara equation.
(0) Systems of Kuramoto-Sivashinsky-type equations.
(3) Parabolic equations of the form
$u_{t}-\sum_{i, j=1}^{d}\left(\left(a_{i j}(x, t)+\tilde{a}_{i j}(x, t)\right) u_{x_{j}}\right)_{x_{i}}=B(t, u)$ with positive definite and Hermitian, and anti-Hermitian matrices, respectively, with smooth entries $a_{i j}(x, t)$ and $\tilde{a}_{i j}(x, t)$, respectively, and $B(t, \cdot)$ suitable, possibly nonlinear, operators.

2. Implicit multistep schemes

- (α, β) an implicit q-step scheme generated by the polynomials

$$
\alpha(\zeta)=\sum_{i=0}^{q} \alpha_{i} \zeta^{i}, \quad \beta(\zeta)=\sum_{i=0}^{q} \beta_{i} \zeta^{i} .
$$

- Let $N \in \mathbb{N}, k:=T / N$, and $t^{n}:=n k, n=0, \ldots, N$.
- Let $U^{0}, \ldots, U^{q-1} \in V$ be given starting approximations.
- Define approximations U^{m} to $u^{m}:=u\left(t^{m}\right), m=q, \ldots, N$, by

$$
\sum_{i=0}^{q}\left[\alpha_{i} I+k \beta_{i} A\left(t^{n+i}\right)\right] U^{n+i}=k \sum_{i=0}^{q} \beta_{i} B\left(t^{n+i}, U^{n+i}\right),
$$

$$
n=0, \ldots, N-q .
$$

Assumption: The scheme (α, β) is (strongly) $A(\vartheta)$-stable, i.e., for $z \in S_{\vartheta}, \chi(z ; \cdot)=\alpha(\cdot)+z \beta(\cdot)$ satisfies the root condition, and the roots of β are (strictly) less than 1 in modulus.

An important constant

Let

$$
K_{(\alpha, \beta)}:=\sup _{x>0} \max _{\zeta \in \mathcal{K}} \frac{|x \beta(\zeta)|}{|\alpha(\zeta)+x \beta(\zeta)|}=\frac{1}{\sin \vartheta},
$$

with \mathcal{K} the unit circle, $\mathcal{K}:=\{\zeta \in \mathbb{C}:|\zeta|=1\}$, and ϑ as large as possible s.t. the scheme (α, β) is $A(\vartheta)$-stable.

Example: BDF methods

Let

$$
\alpha(\zeta)=\sum_{j=1}^{q} \frac{1}{j} \zeta^{q-j}(\zeta-1)^{j}, \quad \beta(\zeta)=\zeta^{q}, \quad q=1, \ldots, 6 .
$$

(α, β) is the q-step BDF scheme; its order is q.
The q-step BDF scheme is strongly $A\left(\vartheta_{q}\right)$-stable with
$\vartheta_{1}=\vartheta_{2}=90^{\circ}, \vartheta_{3}=86.03^{\circ}, \vartheta_{4}=73.35^{\circ}, \vartheta_{5}=51.84^{\circ}, \vartheta_{6}=17.84^{\circ}$.

3. The stability result

Let $V^{m} \in T_{u}$ satisfy the perturbed equations

$$
\sum_{i=0}^{q}\left[\alpha_{i} I+k \beta_{i} A\left(t^{n+i}\right)\right] V^{n+i}=k \sum_{i=0}^{q} \beta_{i} B\left(t^{n+i}, V^{n+i}\right)+k E^{n} .
$$

Theorem

Let $\vartheta^{m}:=V^{m}-U^{m}$. If

$$
(\cot \vartheta) \lambda_{1}(t)+K_{(\alpha, \beta)} \lambda_{2}(t)<1 \quad \forall t \in[0, T],
$$

then we have the stability estimate

$$
\left|\vartheta^{n}\right|^{2}+k \sum_{\ell=q}^{n}\left\|\vartheta^{\ell}\right\|^{2} \leq C \sum_{j=0}^{q-1}\left(\left|\vartheta^{j}\right|^{2}+k\left\|\vartheta^{j}\right\|^{2}\right)+C k \sum_{\ell=0}^{n-q}\left\|E^{\ell}\right\|_{\star}^{2},
$$

$n=q, \ldots, N$, with a constant C independent of k, n, U^{m}, V^{m} and E^{m}.

Geometric interpretation of the stability condition

$$
(\cot \vartheta) \lambda_{1}(t)+K_{(\alpha, \beta)} \lambda_{2}(t)<1 \Longleftrightarrow(\cos \vartheta) \lambda_{1}(t)+\lambda_{2}(t)<\sin \vartheta
$$

Sharpness of the stability condition

$$
(\cot \vartheta) \lambda_{1}(t)+K_{(\alpha, \beta)} \lambda_{2}(t)<1 \Longleftrightarrow \lambda_{2}(t)<\sin \vartheta-(\cos \vartheta) \lambda_{1}(t)
$$

$$
\lambda_{2}=\sin \hat{\vartheta}-(\cos \hat{\vartheta}) \lambda_{1}, \quad \vartheta<\hat{\vartheta}<90^{\circ}
$$

The method (α, β) is unstable for the equation

$$
u^{\prime}+\hat{z}_{2} A_{s} u=u^{\prime}+A_{s} u+\mathrm{i} \lambda_{1} A_{s} u-\left(z_{1}-\hat{z}_{2}\right) A_{s} u=0 .
$$

Alternative forms of the sufficient stability condition

Uniform boundedness of $\mathcal{A}_{a}(t):=A_{s}^{-1 / 2}(t) A_{a}(t) A_{s}^{-1 / 2}(t)$:

$$
\forall t \in[0, T] \forall v \in H \quad\left|\mathcal{A}_{a}(t) v\right| \leq \lambda_{1}(t)|v|
$$

with a stability function $\lambda_{1}(t)$.
Sufficient stability condition: $(\cos \vartheta) \lambda_{1}(t)+\lambda_{2}(t)<\sin \vartheta$
Alternative assumptions: 1. Uniform boundedness of $\mathcal{A}(t):=A_{s}^{-1 / 2}(t) A(t) A_{s}^{-1 / 2}(t):$

$$
\forall t \in[0, T] \forall v \in H \quad|\mathcal{A}(t) v| \leq \tilde{\lambda}_{1}(t)|v|
$$

with a stability function $\tilde{\lambda}_{1}(t)$.
Since $|\mathcal{A}(t)|^{2}=1+\left|\mathcal{A}_{a}(t)\right|^{2}$, we may assume that $\tilde{\lambda}_{1}(t)^{2}=1+\lambda_{1}(t)^{2}$.
Then, the stability condition reads

$$
(\cos \vartheta) \sqrt{\tilde{\lambda}_{1}(t)^{2}-1}+\lambda_{2}(t)<\sin \vartheta
$$

2. Let $\varphi(t)$ be the smallest half-angle of a sector containing the numerical range of $A(t)$,

$$
(A(t) v, v) \in S_{\varphi(t)} \quad \forall v \in V \quad \forall t \in[0, T]
$$

Then,

$$
\forall t \in[0, T] \forall v \in H \quad\left|\mathcal{A}_{a}(t) v\right| \leq \lambda_{1}(t)|v|
$$

with $\lambda_{1}(t)=\tan \varphi(t)$.
Then, the sufficient stability takes the form

$$
(\cos \vartheta) \tan \varphi(t)+\lambda_{2}(t)<\sin \vartheta
$$

which can also be written as

$$
\lambda_{2}(t)<\frac{\sin (\vartheta-\varphi(t))}{\cos \varphi(t)}
$$

3. Let

$$
\|A(t) v\|_{\star} \leq \nu(t)\|v\| \quad \forall v \in V
$$

and

$$
\operatorname{Re}(A(t) v, v) \geq \kappa(t)\|v\|^{2} \quad \forall v \in V .
$$

Then

$$
|\mathcal{A}(t)| \leq \frac{\nu(t)}{\kappa(t)}
$$

We may assume that $\tilde{\lambda}_{1}(t) \leq \frac{\nu(t)}{\kappa(t)}$ and the stability condition reads

$$
(\cos \vartheta) \sqrt{\frac{\nu(t)^{2}}{\kappa(t)^{2}}-1}+\lambda_{2}(t)<\sin \vartheta
$$

Comparison to the energy technique

For $q \in\{1, \ldots, 5\}$, stability results for BDF schemes have also been established via energy techniques under the sufficient stability condition

$$
\hat{\eta}_{q} \tilde{\lambda}_{1}(t)+\left(1+\hat{\eta}_{q}\right) \lambda_{2}(t)<1 \quad \forall t \in[0, T]
$$

with

$$
\hat{\eta}_{1}=\hat{\eta}_{2}=0, \quad \hat{\eta}_{3}=1 / 13=0.07692, \quad \hat{\eta}_{4}=0.2878, \quad \hat{\eta}_{5}=0.80973
$$

For $q=3,4,5$, since $\hat{\eta}_{q}>\cos \vartheta_{q}$ and $1+\hat{\eta}_{q}>1 / \sin \vartheta_{q}$, this is not a best possible linear stability condition.

- Nevanlinna, Odeh: Numer. Funct. Anal. Optim. (1981)
- Lubich, Mansour, Venkataraman: IMA J. Numer. Anal. (2013)
- A., Lubich: Numer. Math. (2015)
- A.: SINUM (2015)
- A., Katsoprinakis: Math. Comp. (2016)

4. Implicit-explicit multistep schemes

- (α, β) an implicit q-step scheme (α, γ) an explicit q-step scheme,

$$
\alpha(\zeta)=\sum_{i=0}^{q} \alpha_{i} \zeta^{i}, \quad \beta(\zeta)=\sum_{i=0}^{q} \beta_{i} \zeta^{i}, \quad \gamma(\zeta)=\sum_{i=0}^{q-1} \gamma_{i} \zeta^{i} .
$$

- Let $N \in \mathbb{N}, k:=T / N$, and $t^{n}:=n k, n=0, \ldots, N$.
- Let $U^{0}, \ldots, U^{q-1} \in V$ be given starting approximations.
- Define approximations U^{m} to $u^{m}:=u\left(t^{m}\right), m=q, \ldots, N$, by

$$
\sum_{i=0}^{q}\left[\alpha_{i} I+k \beta_{i} A\left(t^{n+i}\right)\right] U^{n+i}=k \sum_{i=0}^{q-1} \gamma_{i} B\left(t^{n+i}, U^{n+i}\right) .
$$

- M. Crouzeix: Numer. Math. (1980)

The stability result

Let

$$
K_{(\alpha, \beta, \gamma)}:=\sup _{x>0} \max _{\zeta \in \mathcal{K}} \frac{|x \gamma(\zeta)|}{|\alpha(\zeta)+x \beta(\zeta)|}
$$

Example: Implicit-explicit BDF methods

$$
\alpha(\zeta)=\sum_{j=1}^{q} \frac{1}{j} \zeta^{q-j}(\zeta-1)^{j}, \quad \beta(\zeta)=\zeta^{q}, \quad \gamma(\zeta)=\zeta^{q}-(\zeta-1)^{q}
$$

(α, γ) the unique explicit q-step scheme of order q.
In this case $K_{(\alpha, \beta, \gamma)}=|\gamma(-1)|=2^{q}-1{ }^{5}$
Let $V^{m} \in T_{u}$ satisfy the perturbed equations

$$
\sum_{i=0}^{q}\left[\alpha_{i} I+k \beta_{i} A\left(t^{n+i}\right)\right] V^{n+i}=k \sum_{i=0}^{q-1} \gamma_{i} B\left(t^{n+i}, V^{n+i}\right)+k E^{n} .
$$

[^2]G. Akrivis (akrivis@cse.uoi.gr)

Multistep methods for parabolic equations
Glasgow, January 30, 2018

Theorem

Let $\vartheta^{m}:=V^{m}-U^{m}$. If

$$
(\cot \vartheta) \lambda_{1}(t)+K_{(\alpha, \beta, \gamma)} \lambda_{2}(t)<1 \quad \forall t \in[0, T]
$$

then we have the stability estimate

$$
\left|\vartheta^{n}\right|^{2}+k \sum_{\ell=q}^{n}\left\|\vartheta^{\ell}\right\|^{2} \leq C \sum_{j=0}^{q-1}\left(\left|\vartheta^{j}\right|^{2}+k\left\|\vartheta^{j}\right\|^{2}\right)+C k \sum_{\ell=0}^{n-q}\left\|E^{\ell}\right\|_{\star}^{2},
$$

$n=q, \ldots, N$, with a constant C independent of k, n, U^{m}, V^{m} and E^{m}.

In this case the stability condition is:

- Best possible linear sufficient stability condition.
- Sharp if the implicit scheme is A-stable.

5. Key ingredients in the stability analysis

(1) Stability technique: Combination of spectral and Fourier techniques
(2) Advantageous decomposition of the linear operator Rewrite $u^{\prime}(t)+A(t) u(t)=B(t, u(t))$ in the form

$$
u^{\prime}(t)+\widehat{A}_{s}(t) u(t)+\widetilde{A}(t) u(t)=B(t, u(t))
$$

with

$$
\widehat{A}_{s}(t):=(1+\eta) A_{s}(t), \quad \widetilde{A}(t):=A_{a}(t)-\eta A_{s}(t)
$$

with η a nonnegative quantity that may depend on $\lambda_{1}(t)$ and $\lambda_{2}(t)$.
(3) Time independent operators

Choose $\eta:=(\tan \vartheta) \lambda_{1}$ and apply a known stability result.
(9) Time dependent operators

Freeze the time, use the previous stability estimate and employ a discrete perturbation argument.

$$
\left\{\begin{array}{l}
\frac{1}{\alpha(\zeta)+x \beta(\zeta)}=\sum_{\ell=q}^{\infty} e(\ell, x) \zeta^{-\ell}, \quad|\zeta| \geq 1 \\
\frac{\beta(\zeta)}{\alpha(\zeta)+x \beta(\zeta)}=\sum_{\ell=0}^{\infty} f(\ell, x) \zeta^{-\ell}, \quad|\zeta| \geq 1
\end{array}\right.
$$

Now, with $b^{\ell}:=B\left(V^{\ell}\right)-B\left(U^{\ell}\right)$, let

$$
\vartheta_{i}^{n}:= \begin{cases}-k \sum_{\ell=0}^{n} f\left(n-\ell, k A_{s}\right) A_{a} \vartheta^{\ell}, & i=1 \\ k \sum_{\ell=0}^{n} f\left(n-\ell, k A_{s}\right) b^{\ell}, & i=2 \\ k \sum_{\ell=0}^{n-q} e\left(n-\ell, k A_{s}\right) E^{\ell}, & i=3\end{cases}
$$

and

$$
\vartheta_{4}^{n}:=\vartheta^{n}-\vartheta_{1}^{n}-\vartheta_{2}^{n}-\vartheta_{3}^{n}
$$

$n=0, \ldots, N$.
Then, we have

$$
\sum_{i=0}^{q}\left(\alpha_{i} I+k \beta_{i} A_{s}\right) \vartheta_{2}^{n+i}=k \sum_{i=0}^{q} \beta_{i} b^{n+i}, \quad n=0, \ldots, N-q .
$$

Claim:

$$
k \sum_{\ell=0}^{n}\left\|\theta_{2}^{\ell}\right\|^{2} \leq K_{(\alpha, \beta)}^{2} k \sum_{\ell=0}^{n}\left\|b^{\ell}\right\|_{\star}^{2}, \quad n=0, \ldots, N
$$

It suffices to show this estimate for $b^{\ell}=0$ for $\ell \geq n$, and n replaced by ∞.

We introduce \hat{b} and $\hat{\theta}_{2}$ by

$$
\hat{b}(t)=\sum_{\ell=0}^{\infty} b^{\ell} \mathrm{e}^{2 \mathrm{i} \pi \ell t}, \quad \hat{\theta}_{2}(t)=\sum_{\ell=0}^{\infty} \theta_{2}^{\ell} \mathrm{e}^{2 \mathrm{i} \pi \ell t}
$$

From the definition of θ_{2}, we deduce

$$
\hat{\theta}_{2}(t)=k \beta\left(\mathrm{e}^{-2 \mathrm{i} \pi \ell t}\right)\left\{\alpha\left(\mathrm{e}^{-2 \mathrm{i} \pi \ell t}\right) I+\beta\left(\mathrm{e}^{-2 \mathrm{i} \pi \ell t}\right) k A_{s}\right\}^{-1} \hat{b}(t) .
$$

Therefore, $\left\|\hat{\theta}_{2}(t)\right\| \leq K_{(\alpha, \beta)}\|\hat{b}(t)\|_{\star}$, whence, using Parseval's identity,

$$
\sum_{\ell=0}^{\infty}\left\|\theta_{2}^{\ell}\right\|^{2}=\int_{0}^{1}\left\|\hat{\theta}_{2}(t)\right\|^{2} d t \leq K_{(\alpha, \beta)}^{2} \int_{0}^{1}\|\hat{b}(t)\|_{\star}^{2} d t=K_{(\alpha, \beta)}^{2} \sum_{\ell=0}^{\infty}\left\|b^{\ell}\right\|_{\star}^{2}
$$

6. An example

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with smooth boundary $\partial \Omega$, and consider the following initial and boundary value problem

$$
\begin{cases}u_{t}-\sum_{i, j=1}^{d}\left(\left(a_{i j}(x, t)+\tilde{a}_{i j}(x, t)\right) u_{x_{j}}\right)_{x_{i}}=B(t, u) & \text { in } \Omega \times[0, T] \\ u=0 & \text { on } \partial \Omega \times[0, T], \\ u(\cdot, 0)=u^{0} & \text { in } \Omega,\end{cases}
$$

with T positive and $u^{0}: \Omega \rightarrow \mathbb{C}$ a given initial value. Here, $\mathcal{A}, \widetilde{\mathcal{A}}: \Omega \times[0, T] \rightarrow \mathbb{C}^{d, d}$ are uniformly positive definite and Hermitian, and anti-Hermitian matrices, respectively, with smooth entries $a_{i j}(x, t)$ and $\tilde{a}_{i j}(x, t)$, respectively, and $B(t, \cdot)$ are suitable, possibly nonlinear, operators.

Consider the antihermitian matrices

$$
S(x, t):=\mathcal{Q}^{-1 / 2}(x, t) \widetilde{\mathcal{O}}(x, t) \mathcal{Q}^{-1 / 2}(x, t)
$$

The boundedness condition is then satisfied with

$$
\lambda_{1}(t):=\max _{x \in \bar{\Omega}} \rho(S(x, t)), \quad t \in[0, T]
$$

with $\rho(\cdot)$ the spectral radius.

Two special cases

First case: Let

$$
\widetilde{\mathcal{O}}(x, t)=\mathrm{i} a(x, t) \mathcal{O}(x, t), \quad x \in \Omega, \quad 0 \leq t \leq T,
$$

with a a smooth real-valued function, $a: \bar{\Omega} \times[0, T] \rightarrow \mathbb{R}$. Then, $S(x, t)=\mathrm{i} a(x, t) I_{d}$, whence

$$
\lambda_{1}(t)=\max _{x \in \bar{\Omega}}|a(x, t)| \quad \forall t \in[0, T] .
$$

Second case: $d=2$.
It is well known that

$$
\mathcal{O}^{1 / 2}=\frac{1}{\sqrt{\operatorname{tr} \mathcal{Q}+2 \sqrt{\operatorname{det} \mathcal{O}}}}\left(\mathcal{O}+\sqrt{\operatorname{det} \mathcal{O}} I_{2}\right)
$$

and

$$
\mathcal{A}^{-1 / 2}=\frac{1}{\sqrt{\operatorname{det} \mathcal{O}} \sqrt{\operatorname{tr} \mathcal{O}+2 \sqrt{\operatorname{det} \mathcal{O}}}}\left((\operatorname{tr} \mathcal{Q}+\sqrt{\operatorname{det} \mathcal{O}}) I_{2}-\mathcal{O}\right)
$$

with $\operatorname{tr} \mathcal{O}:=a_{11}+a_{22}$ the trace of \mathcal{O}.
Therefore,

$$
S=\frac{1}{\operatorname{det} \mathcal{O}(\operatorname{tr} \mathcal{O}+2 \sqrt{\operatorname{det} \mathcal{O}})}\left(c_{\mathcal{O}}^{2} \widetilde{\mathcal{O}}-c_{\mathcal{O}}(\mathcal{O} \widetilde{\mathcal{O}}+\widetilde{\mathcal{O}} \mathcal{O})+\mathcal{O} \widetilde{\mathfrak{O}} \mathfrak{A}\right)
$$

with the constant $c_{\mathcal{Q}}:=\operatorname{tr} \mathcal{Q}+\sqrt{\operatorname{det} \mathcal{O}}$.

Thank you very much!

[^0]: ${ }^{1}$ C. Lubich: Numer. Math. $(1988,1991)$
 G. Akrivis (akrivis@cse.uoi.gr)

 Multistep methods for parabolic equations

[^1]: ${ }^{4}$ A., Crouzeix, Makridakis: Numer. Math. (1999)

[^2]: ${ }^{5}$ A., Crouzeix, Makridakis: Numer. Math. (1999)

