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Abstract

We consider many-server queueing systems with heterogeneous exponential servers and re-
newal arrivals. The service rate of each server is a random variable drawn from a given dis-
tribution. We develop a framework for analyzing the heavy traffic limit of these queues in
random environment using probability measure-valued stochastic processes. We introduce the
measure-valued fairness process which denotes the proportion of cumulative idleness experienced
by servers whose rates fall in a Borel subset of the support of the service rates. It can be shown
that these fairness processes do not converge in the usual Skorokhod-J1 topology, hence we
introduce a new notion of convergence based on shifted versions of these processes. We also
introduce some useful martingales to identify limiting fairness processes under different routing
policies.

1 Introduction

Many server queues have been the subject of much research due to their applicability in large
scale service systems, especially in call centers. Exact analysis of many-server systems is generally
intractable and one resorts to approximation methods relying on functional strong law of large
numbers and functional central limit theorems. In this work, we adopt the scaling introduced in
the seminal paper of Halfin and Whitt [13], where they show that it is possible to achieve high
quality of service along with high utilization of resources. This is achieved by setting the number of
servers to what is required to stabilize the system, generally referred as offered load plus an amount
proportional to the square root of the offered load.

The conventional analysis in the literature following [13] focuses on either identical servers or
servers classified in finitely many pools where servers are identical within each pool. However, in
many real world applications the servers are humans who have inherently different abilities and
serve with different rates which depends on the individual abilities, mood and health of the person.
Hence, in the modeling process, each server requires individual attention and this generally results
in either loss of Markov property and/or explosion of the state space dimensions.

A series of papers by Atar and his colleagues [2, 3, 4] tackle this individuality problem by
assuming that service rates of servers in the systems are independent and identically distributed
(henceforth referred as i.i.d.) random variables that are realized at the beginning and constant
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through time but may not be available to the system controller. Atar [2] investigates two routing
policies, namely longest-idle-server first and fastest server first, in an ad hoc manner. Under
these two policies Atar [2] show that the many-server systems with random service rates can
be approximated by one-dimensional diffusion processes with a random drift coefficient, which
has the same structure for both policies, and a mean reversion coefficient which depends on the
routing policy. Our setting in this paper is similar to the i.i.d. service rate setting of the work of
Atar and his colleagues. The main difference is that we develop a general framework relying on
probability measure-valued processes without assuming a particular routing policy and propose a
generic representation for the parameters of the limiting diffusion. Technically speaking, Atar [2]
adopts a Riemann-type approach in the analysis by dividing the support of the random service rates
into small intervals and shows convergence as these intervals become finer. In contrast, ours is more
of a Lebesgue-type analysis where we consider Borel subsets of the support of service rates and
introduce a measure relying on how the total idleness is distributed among servers with different
service rates. This allows us to treat the general case without assuming a specific routing policy.

Another important feature omitted in the aforementined literature with i.i.d. service rates is
the consideration of customer abandonments. Garnett et al. [9] show that abandonments plays
an important role in the design of many-server systems. We believe that abandonment behavior
is particularly important when service rate uncertainty is present. In the Halfin-Whitt scaling as
introduced in [2], there is always a positive probability that the total service capacity is less than
the offered load and hence, the queueing system is unstable. This is also reflected in the diffusion
limits derived in [2] as the probability of the drift coefficient being positive, which makes a thorough
steady-state analysis of the system impossible.

The key concept in our analysis is the probability measure-valued fairness process which is a
left-continuous process indicating the proportion of total cumulative idleness experienced by servers
belonging to a certain set. To have a well-defined fairness process, this process assumes an arbitrary
probability measure as a constant value until some of the servers in the system experiences idleness
and is equal to the self-normalized cumulative idleness process after the total cumulative idleness
is positive. The point of singularity where the system experiences idleness for the first time raises
difficulties in the analysis. This singularity point is the only possible discontinuity of the measure-
valued processes and it can be shown that the fairness processes do not converge in any of the
four topologies introduced by Skorokhod [25]. To overcome this issue, we define a new notion of
convergence based on the shifted versions of the fairness process around this singularity point. We
then relate this new notion of convergence to the convergence of Radon measure-valued cumulative
idleness processes (before the normalization) in the usual Skorokhod-J1 topology. We demonstrate
the use of this result by deriving limiting fairness measures for priority-based policies such as
fastest-server-first and slowest-server-first. We then show that the policy dependent parameter of
the diffusion limits derived in [2] is the expected value of a random variable following the probability
measure given by the fairness process.

As the next step, we focus on the problem of identifying the fairness process for specific policies.
We introduce a sequence of martingales related to the total cumulative idleness experienced by the
servers belonging to a given set. We show that under some mild conditions these martingales
converge in probability to 0 and this provides us an alternative characterization of the weak limit
of the cumulative idleness process. Then, we use this alternative characterization to show that
the policy dependent parameter identified by Atar [2] for the longest-idle-server-first policy is the
same for a much more general class of policies, which we call totally blind policies. We also provide
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explanation for the structure of this parameter relating it to the basic properties of minimum of
independent exponential random variables.

1.1 Notation

We denote the set of real numbers, set of positive real numbers and the set of positive integers as
R,R+ and N, respectively. To simplify notation, for any a, b ∈ R, we define

a ∧ b := min{a, b} and a ∨ b := max{a, b}.

For any separable metric space X, B(X) denotes the set of all Borel subsets of X. We assume
that all the random elements defined in this paper lies in the generic probability space (Ω,F ,P),
unless stated otherwise. We also define P to denote the space of probability measures defined
on (R+,B(R+)) equiped with Prokhorov metric [6]. We denote Pn ⇒ P if probability measures
converge with respect to Prokhorov metric, which is equivalent to weak convergence of these proba-
bility measures. With a slight abuse of notation, we denote Xn ⇒ X, if the probability laws of the
random elements Xn weakly converge to the probability law of X. We denote the σ-field generated
by any random element X as σ(X).

We denote the spaces of continuous, bounded continuous, right-continuous and left-continuous
functions that map interval [a, b] ⊂ R to X as CX[a, b], CbX[a, b], DX[a, b] and GX[a, b], respectively.
The space CX[a, b] is equipped with the topology of uniform convergence, i.e., the supremum norm,
and the spaces DX[a, b] is equipped with Skorokhod-J1 topology and dS denote the usual Skorokhod-
J1metric. If b < ∞ and f(t) ∈ GX[a, b], then gf (t) := f(b − t) ∈ DX[a − b, 0] and we define the
Skorokhod-J1 metric on GX[a, b] as d′S(f1, f2) := dS(gf1 , gf2) for any f1, f2 ∈ GX[a, b]. Following
Whitt [27], for fn, f ∈ DX[a,∞) fn → f in Skorokhod-J1 topology if and only if for any T > a, the
modifications of these functions on DX[a, T ] converge in Skorokhod-J1 topology. The topology on
GX[a,∞) is defined in a similar manner. For any function f : [0, T ]→ R, we also define

|f |∗,T := sup
0≤t≤T

|f(t)|, f+(t) := max{f(t), 0} and f−(t) := max{−f(t), 0}.

For functions f : X → R and measure ζ defined on (X,B(X)), we use the inner-product notation
for the integral

〈〈f, ζ〉〉 :=

∫
X
f(x)dζ(x).

Defining the identity function ι : R → R such that ι(x) = x for all x ∈ R, the expected value of a
random variable following the distribution ζ ∈ P can be denoted as 〈〈ι, ζ〉〉.

2 Related Literature

This work is a part of the literature initiated by the seminal work of Halfin and Whitt [13], where
they develop diffusion approximations by scaling arrival rates along with the number of exponential
servers. This work has important practical impications as it shows both quality of service and
efficiency of the system can be achieved by using the so-called square-root safety-staffing, i.e.,
setting the staffing level to be the number required to stabilize the incoming load plus a multiple
of the square root of this number. The main line of research in this direction assumes that all the
servers are identical, i.e., the service times of customers follow an exponential distribution with
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a known rate independent of the chosen server. However, in most cases the servers are humans
with inherently different abilities and serve customers at different rates. Gans et al. [8] provide a
thorough numerical analysis of how the server heterogeneity affects the performance based on real
call center data.

A common approach in modeling server heterogeneity is to assume that the servers can be
grouped as “server pools” and that service rate can vary between pools, but all servers are identical
within the same pool and serve with the same rate (see, e.g. [1]). We believe that there are several
limitations of this approach. First, this approach does not explicity model the inherent individual
differences between servers due to human nature. Second, in general the rate of service in each pool
are assumed to be known, or at the very least the pool that each server belongs to is known, which
is not always possible in practice. We believe that these limitations can be remedied by modeling
the service rates as random variables following the same distribution.

In the last decade, there has been some research effort to analyze queueing systems with random
parameters. Following the methodology introduced by Harrison and Zeevi [14], fluid limits are
used in conjuction with stochastic programming to characterize how queueing systems should be
designed and controlled under parameter uncertainty. Much of this research concentrates on arrival
rate uncertainty due to forecasting errors [5, 29]. Indeed, Bassamboo et al. [5] show that if the
coefficient of variation of random arrival rate is greater than a certain threshold, fluid limits for the
many-server systems yield more reliable approximations compared with the diffusion limits. The
literature on the uncertainty related to service is relatively few. In a recent paper, Ibrahim [15]
studies the problem of staffing many-server queueing systems when the actual number of servers is
random using fluid limits.

Our current work is most closely related to the excellent paper by Atar [2]. In [2], Atar develops
diffusion limits for many-server systems with random service rates for two routing policies, namely
longest-idle-server-first and fastest-server-first in an ad hoc manner. To achieve this, he partitions
the support of the random service rates into small intervals and approximates the system as an
inverted-V system (as studied in Armony [1]) where each interval corresponds to a pool of servers.
Under the stated routing policies, the inverted-V systems admit a one-dimensional diffusion limit
for any finite number of pools, exhibiting a phenomenon referred as state-space collapse in the
queueing literature and as the intervals become finer the inverted-V system and the system with
random service rates converge together to the same limit. In a related paper, Atar and Shwartz [4]
show that it is possible to efficiently operate a system with random service rates by sampling only a
small portion of the service rates. Atar, Shaki and Shwartz [3] suggest a blind policy, i.e., a policy
which does not require the exact knowledge of service rates, to equalize the cumulative idleness
experienced by servers.

In this paper, we analyze the system with i.i.d. random service rates introduced in [2] without
assuming any particular routing policy. To achieve this generality, we use stochastic processes
assuming values in the space of probability measures. Measure-valued processes have been used to
obtain fluid limits for single server queueing systems (e.g., [7, 10, 11]) and more recently for many-
server queues by Kaspi and Ramanan [18], Kang and Ramanan [17] and Reed and Talreja [24]. In
a more recent paper, Kaspi and Ramanan [19] also use measure-valued processes to come up with
limits involving stochastic partial differential equations to many-server queueing systems. In this
line of work, Ramanan and co-authors use the number of customers who has a certain age in the
service or queue to define the measure-valued processes. Different from the aforementioned work,
we use a measure-valued process to keep track of the proportion of cumulative idleness experience
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by different servers in the system. This definition is motivated by the idleness-ratio used to design
routing policies to control finite pool systems [12, 26].

3 Dynamics of the System Processes

In this work, we consider an infinite sequence of queueing systems, where the nth system has n
servers. The arrivals at the nth system occur according to a renewal process with rate λn. More
specificallly, assuming that unks are i.i.d. random variables with mean 1 for each k, n ∈ N, the
number of arrivals at the nth system by time t ≥ 0 is

An(t) = sup

{
k :

k∑
i=1

uni
λn
≤ t

}
.

Each customer can be served by any server in the system. However, the service time of each
customer depends on the agent serving her/him and if the customer is served by agent k (1 ≤ k ≤ n),
the service time is distributed exponentially with rate µ̃nk . The service rates µ̃nks are positive i.i.d.
random variables with a general distribution F (µ) and are constant through time for each server.
We assume that µ̄ = E[µ̃nk ] and E[(µ̃nk)2] < ∞. We also assume the following Halfin-Whitt type
heavy traffic condition between arrival and the expected service rates:

Assumption 1. As n→∞, n−1/2(λn − nµ̄)→ λ̂, where λ̂ ∈ R.

Each customer has an i.i.d. exponential patience time with rate γ and abandons the system if
her/his service has not commenced until the patience time expires. Once the service starts, the
customer stays in the system until the service is finished. The customers are served on a first-
come-first-served basis and if more than one server is idle when a customer arrives, the customer is
routed to a server according to a pre-specified service discipline. At this point, the only restrictions
we impose on the service discipline are (i) it is non-idling, i.e., servers cannot stay idle if there is
work in the system, (ii) it is non-anticipating, i.e., when the routing is done the server is chosen
based on the information available so far and (iii) it is non-preemptive, i.e., once a service starts
for a customer at a server, it continues at the same server until the service finishes.

For the nth system, the number of customers in the system at time t, the number of customers
routed to the kth agent and the number of customers who completes service at agent k by time t are
denoted Xn(t), Rnk (t) and Dn

k (t), respectively. The idleness process for each agent, Ink (t), is defined
to be 1 if the kth server in the nth system is idle at time t and 0 otherwise. The idleness processes
play a critical role in our analysis and can be related to the routing and departure processes as

Ink (t) = Ink (0)−Rnk (t) +Dn
k (t), for all t ≥ 0, 1 ≤ k ≤ n.

The routing process is a counting process and the customers are routed to server k only when it is
idle, which implies

(1− Ink (t−))dRnk (t) = 0, for all t ≥ 0 and 1 ≤ k ≤ n.

The non-idling property of the policies can be expressed as

(Xn(t)− n)− =

n∑
k=1

Ink (t),∀t ≥ 0, n ∈ N. (3.1)
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Due to the exponential nature of service and patience times, the counting processes for service
completions and abandonments can be modelled as time changes and/or thinings of homogeneous
Poisson processes. Pang et al. [22] provide a detailed overview of pathwise construction of such
processes. We take {Sn(t), t ≥ 0} to be Poisson processes with rate 1 and event epochs {θni }. We
also take a sequence of independent uniform(0,1) random variables, Uni , and define the sequence of
random variables

κni := min

k :

 n∑
j=1

µ̃nj

Uni ≤
k∑
j=1

µ̃nj

 , for all i, n ∈ N.

To construct the departure process for each server, we first consider {SnP (t) = S(
∑n

i=1 µ̃
n
k t), t ≥ 0},

a time change of the standard Poisson process, to act as the potential service completion process
for the nth system, i.e., the event epochs of this process are the potential candidates for the
actual service completion times. Using splitting property of Poisson processes, if κni = k, we treat
the ith event of the potential service completion process SnP occuring at time θni as a potential

service completion by server k and define {SnP,k(t) =
∑SnP (t)

i=1 δk(κ
n
i ), t ≥ 0} as the potential service

completion process by server k in the nth system. To convert the potential times to actual service
completion times, we need to apply another splitting by checking whether server k is busy right
before a potential service completion time. Hence, we represent the service completion process for
server k as

Dn
k (t) =

∫ t

0
(1− Ink (s−))dSnP,k(s) =

SnP (t)∑
i=1

(1− Ink (θni −))δk(κ
n
i ), t ≥ 0.

Similarly, taking {Nn(t), t ≥ 0} to be Poisson processes with rate 1, independent of other processes
defined so far, we can represent the abandonment process for the nth system as{

Nn

(
γ

∫ t

0
(Xn(s)− n)+ds

)
, t ≥ 0

}
.

Now, we can write the dynamics of the system length process {Xn(t), t ≥ 0} as

Xn(t) = Xn(0) +An(t)−
n∑
k=1

Dn
k (t)−Nn

(
γ

∫ t

0
(Xn(s)− n)+ds

)
, ∀t ≥ 0, n ∈ N.

We define the scaled system length process X̂n(t) := Xn(t)−n√
n

and after some simple algebraic

manipulations, we get

X̂n(t) = X̂n(0) +
An(t)− λn√

n
+
λnt− nµ̄t√

n
−
∑n

k=1D
n
k (t)− µ̃nk

∫ t
0 (1− Ink (s))ds

√
n

−
n∑
k=1

µ̃nk
∫ t

0 I
n
k (s)ds
√
n

+

n∑
k=1

µ̃nk t− µ̄t√
n

−
Nn

(
γ
∫ t

0 (Xn(s)− n)+ds
)
− γ

∫ t
0 (Xn(s)− n)+ds

√
n

−
γ
∫ t

0 (Xn(s)− n)+ds
√
n

.

(3.2)

We have the following assumption on the initial conditions Xn(0):
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Assumption 2. X̂n(0) =
Xn(0)− n√

n
⇒ ξ0.

We also define the filtrations Fn = {Fnt : t ≥ 0} as

Fnt := σ

(
{µ̃nk}nk=1, X

n(0), {Uni }
SnP (t)
i=1 , An(s), SnP (s), {Ink (s)}nk=1, N

n

(
γ

∫ s

0
(Xn(u)− n)+du

)
: 0 ≤ s ≤ t

)
for all t ≥ 0. We are now ready to further analyze the idleness process and define the fairness
process.

3.1 Analysis of the Total Idleness Process

In this section, we analyze the scaled versions of the total idleness process which we define as

Īn(t) :=

∑n
k=1 I

n
k (t)

n
, Înk (t) :=

Ink (t)√
n
, for all 1 ≤ k ≤ n and În(t) :=

n∑
k=1

Înk (t), t ≥ 0.

To be able to manipulate the system equations and define the fairness process properly, we need to
understand how the total idleness behaves. We prove that the total idleness experienced by time
t, scales with

√
n as n increases by showing the tightness of the appropriately scaled maximum

number of idle servers.

Lemma 1. For any fixed T > 0 and nonidling policy,
{
|În|∗,T

}
n∈N

is tight.

Proof. We need to prove that for any ε > 0, there exists a Kε > 0, such that

P(|În|∗,T> Kε) < ε, for all n ∈ N.

Using (3.1),

n∑
k=1

Ink (t) =

(
Xn(0)− n+An(t)−

n∑
k=1

Dn
k (t)−Nn

(
γ

∫ t

0
(X(s)− n)+ds

))−

≤

(
Xn(0)− n+An(t)−

n∑
k=1

SnP,k (µ̃kt)−Nn

(
γ

∫ t

0
(X(s)− n)+ds

))−
,

which implies

|În(t)|∗,T ≤
∣∣∣∣Xn(0)− n√

n

∣∣∣∣+

∣∣∣∣An(t)− λnt√
n

∣∣∣∣
∗,T

+

∣∣∣∣∣(
∑n

k=1 S
n
P,k(t)−

∑n
k=1 µ̃kt)√

n

∣∣∣∣∣
∗,T

+

∣∣∣∣∑n
k=1 µ̃kt− λnt√

n

∣∣∣∣
∗,T

+

∣∣∣∣∣Nn(γ
∫ t

0 (Xn(s)− n)+ds)− γ
∫ t

0 (Xn(s)− n)+ds
√
n

∣∣∣∣∣
∗,T

+

∣∣∣∣∣γ
∫ t

0 (Xn(s)− n)+ds
√
n

∣∣∣∣∣
∗,T

.

(3.3)

Assumptions 1 and 2, and the functional central limit theorem for renewal processes guarantees
that the first four terms on the righthand side of (3.3) are tight. The fifth term corresponds to the
supremum of a martingale with predictable quadratic variation〈

Nn(γ
∫ t

0 (Xn(s)− n)+ds)− γ
∫ t

0 (Xn(s)− n)+ds
√
n

〉
=
γ
∫ t

0 (Xn(s)− n)+ds

n
.
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Hence, using Lenglart-Rebolledo inequality (c.f. Lemma 5.7 in [22]), the tightness of the last two
terms in (3.3) are spontaneously proved once we show the tightness of∣∣∣∣∣

∫ t
0 (Xn(s)− n)+ds

√
n

∣∣∣∣∣
∗,T

.

To do so, we define Ln := {0 ≤ s ≤ T : Xn(s) − n > 0}. The paths of Xn(·) are in DR[0,∞) and
hence, we can express Ln as the union of disjoint intervals as Ln =

⋃∞
i=1[αni , β

n
i ).∫ T

0 (Xn(s)− n)+ds
√
n

=

∫
Ln(Xn(s)− n)ds

√
n

=

∑∞
i=1

∫ βni
αni

(Xn(s)− n)ds
√
n

.

Note that each αni is the start of a busy period. Hence, if s ∈ [αni , β
n
i )

Xn(s) ≤ Xn(αni ) +An(s)−A(αni )− SnP (s) + SnP (αni ).

Hence,∫ T
0 (X(s)− n)+ds

√
n

≤
∞∑
i=1

X(αni )− n√
n

+
∞∑
i=1

∫ βniαni (A(s)−A(αni )− λn(s− αni )) ds
√
n


−
∞∑
i=1

∫ βni

αni

(SnP (s)− SnP (αni )−
∑n

k=1 µ̃
n
k(s− αni )) + (λn −

∑n
k=1 µ̃

n
k)(s− αni )√

n
ds

≤ T max{Xn(0)− n, 1}√
n

+ 2T sup
0≤s≤T

{
|An(s)− λns|√

n

}
+ 2T sup

0≤s≤T

{
|SnP (s)−

∑n
k=1 µ̃

n
ks|√

n

}
+
T |λn −

∑n
k=1 µ̃

n
k |√

n
.

Using the functional central limit theorem for Poisson and renewal processes and continuous map-
ping theorem along with the fact that supremum is continuous in J1 topology, the right-hand side

converges weakly and hence is tight. This proves
{
|În|∗,T

}
is tight.

Corollary 1. |Īn|∗,T
p→ 0 and

∣∣∣∣∣
∫ t

0 (Xn(s)− n)+ds

n

∣∣∣∣∣
∗,T

p→ 0.

Proof. For any ε > 0, P(|Īn|∗,T> ε) = P(|În|∗,T>
√
nε) → 0. The proof of the second claim is

similar.

The proof of the following lemma is similar in nature to that of Lemma 3.1 in [2].

Lemma 2. For any nonidling policy we have

sup
0≤t≤T

∑n
k=1 µk

∫ t
0 Ik(s)ds

n

p→ 0.

for any given T .
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Proof. We know that Ik(t) =
√
Ik(t). Using Cauchy-Schwarz inequality

sup
0≤t≤T

∑n
k=1 µk

∫ t
0 Ik(s)ds

n
=

∑n
k=1 µk

∫ T
0 Ik(s)ds

n

=

∫ T

0

(
n∑
k=1

µk
√
Ik(s)

n

)
ds

≤
∫ T

0

√√√√ n∑
k=1

µ2
k

n

√√√√ n∑
k=1

Ik(s)

n

 ds

=

√√√√ n∑
k=1

µ2
k

n

∫ T

0

√
I(s)

n
ds

≤

√√√√ n∑
k=1

µ2
k

n

T

√
|I|∗,T
n

Hence, our result follows from Lemma 1.

Our key observation is that how the total idleness is distributed among different servers plays
the key role in the analysis of many server queueing systems with random service rates. In the next
section, we introduce the fairness process which keeps track of the distribution of total cumulative
idleness among servers.

3.2 The Fairness Process

In this section, we concentrate on the analysis of

n∑
k=1

µ̃nk
∫ t

0 I
n
k (s)ds
√
n

,

the fifth term on the righthand side of (3.2). For any ε ≥ 0 and n ∈ N we define the random times

τnε := inf

{
t :

∫ t

0
În(s)ds > ε

}
.

Now, we are ready to define the measure-valued fairness process. Intuitively, the fairness process
keeps track of how the total cumulative idleness is distributed among different servers in the system.
Specifically, if the system has been idle for some time by t (i.e., t > τn0 ), the fairness process, ηnt (A),
represents the proportion of cumulative idleness experienced by servers whose service rates, µ̃nks, are
in A ∈ B(R+). When the cumulative experienced idleness is 0, this proportion is not well-defined,
and we choose a probability measure ζ ∈ P as a placeholder and set ηnt (A) = ζ(A) for any t ≤ τ0

and A ∈ B(R+). We also define the ε-shifted version of the fairness process as the process which is
equal to ζ when t ≤ τε and is equal to ηnt for t > τε. Formally, we define the fairness process for
the nth system and its ε-shifted version as

ηnt (A) :=


∫ t

0

∑n
k=1 δµk(A)Ik(s)ds∫ t

0

∑n
k=1 Ik(s)ds

if t > τn0

ζ(A) if t ≤ τn0

,

9



Snε ηnt (A) :=

{
ηnt (A) if t > τnε
ζ(A) if t ≤ τnε

. (3.4)

The fairness process and its shifted versions assume values in the space of probability measures and
have paths in GP [0,∞). We are interested in the convergence of the fairness process in some sense.
Unfortunately, the sequence of fairness measures is not tight in the Skorokhod-J1 topology (or in
any of the four topologies introduced in [25]). Hence, we resort to the following idea of convergence
relying on the shifted processes.

Definition 1. Assume that τnε ⇒ τε for any ε ≥ 0 and define Sεη by replacing τnε with τε in (3.4).
We say that {ηt}t∈R+ is the limiting fairness process if for any ε > 0

Snε ηn ⇒ Sεη, on GP [0,∞) endowed with Skorokhod-J1 topology.

Lemma 1 and the continuous mapping theorem guarantee that {τnε }n∈N is tight. Also, if ε1 < ε2
and Snε1η

n ⇒ Sε1η, we also have Snε2η
n ⇒ Sε2η. Hence, rather than considering all real ε > 0, we

can concentrate on any sequence {εn}n∈N with εn → 0. For the sake of simplicity, we take εn = 1/n
for the rest of this paper.

Now, our next step is to prove the tightness of the ε-shifted processes for any ε > 0. Jakubowski [16]
provides useful criteria to prove the tightness of measure-valued processes, by converting the prob-
lem to that of real-valued processes. This result has been used by Kaspi and Ramanan [18] in the
study of measure-valued processes arising in many server queueing systems and our approach is
similar. For completeness, we state Jakubowski’s criteria below.

Theorem 1 (Jakubowski [16]). A sequence of stochastic processes {ηn}n∈N taking values in DP [0.T ]
is tight if and only if:

J1. (Compact Containment Condition) For each ρ, T > 0, there exists a compact set Kρ ⊂ P
such that

lim inf
n→∞

P(ηnt ∈ Kρ, for all t ∈ [0, T ]) > 1− ρ.

J2. There exists a family of functions F such that

i. H ∈ F : P → R and F separates points in P,

ii. F is closed under addition,

iii. For any fixed H ∈ F, the sequence of functions {hn(t) := H(ηnt ), for all t ∈ R}n∈N is
tight in GR[0,∞)] endowed with usual Skorokhod-J1 topology.

Following the example of Kaspi and Ramanan [18], we choose the family of functions

F := {H : ∃f ∈ CbR[0,∞) such that H(η) = 〈〈f, η〉〉 for all η ∈ P}.

We impose a slightly stronger uniform integrability condition on our fairness processes.

Assumption 3. For any given ρ, % > 0 and T > 0, there exists an M such that

lim inf
n→∞

P
(∫ ∞

M
µdηnt (µ) < %, for all t ∈ [0, T ]

)
> 1− ρ.

10



This condition is slightly stronger than J1 and holds for any policy if the service rates have
bounded support. Now, we are ready to prove the tightness of shifted fairness processes.

Theorem 2. For any ε > 0, the sequence of ε-shifted processes {Snε ηn}n∈N is tight.

Proof. Again it is enough to show the tightness restricting our attention to all finite intervals [0, T ].
Assumption 3 guarantees that the condition J1 holds. As η takes values in the space of probability
measures, {〈〈f,Snε ηn〉〉}n∈N is also bounded for any f ∈ Cb[0,∞). To prove J2, we need to show the
modulus of continuity condition holds, i.e., for any given ρ, ς > 0, there exists a C% such that for
any % < C%

lim inf
n→∞

P(w′(〈〈f,Snε ηn〉〉, %) ≥ ρ) < ς,

where w′(〈〈f,Snε ηn〉〉, %) := inf w(〈〈f,Snε ηn〉〉, (ti, ti+1]) and

w(〈〈f,Snε ηn〉〉, (ti, ti+1]) := sup
ti<s,t≤ti+1

|〈〈f,Snε ηn〉〉t − 〈〈f, η
n〉〉s|.

The infimum is taken over all partitions {ti}i∈N of [0, T ] with |ti+1 − ti|≥ % for all i. For more
details on modulus of continuity condition, we refer the reader to Chapter 3 in [6], noting that the
condition we provide is modified for left-continuous functions.

For any given t2 > t1 > τnε , we have

|〈〈f,Snε ηnt2〉〉 − 〈〈f,S
n
ε η

n
t1〉〉|

=

∣∣∣∣∣∣∣∣∣∣

∫ t2

0

n∑
k=1

f(µ̃nk)Înk (s)ds

∫ t2

0

n∑
k=1

Înk (s)ds

−

∫ t1

0

n∑
k=1

f(µ̃nk)Înk (s)ds

∫ t1

0

n∑
k=1

Înk (s)ds

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

∫ t1

0

n∑
k=1

f(µ̃nk)Înk (s)ds+

∫ t2

t1

n∑
k=1

f(µ̃nk)Înk (s)ds

∫ t1

0

n∑
k=1

Înk (s)ds+

∫ t2

t1

n∑
k=1

Înk (s)ds

−

∫ t1

0

n∑
k=1

f(µ̃nk)Înk (s)ds

∫ t1

0

n∑
k=1

Înk (s)ds

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

(∫ t2

t1

n∑
k=1

f(µ̃nk)Înk (s)ds

)(∫ t1

0

n∑
k=1

Înk (s)ds

)
−

(∫ t1

0

n∑
k=1

f(µ̃nk)Înk (s)ds

)(∫ t2

t1

n∑
k=1

Înk (s)ds

)
(∫ t2

0

n∑
k=1

Înk (s)ds

)(∫ t1

0

n∑
k=1

Înk (s)ds

)
∣∣∣∣∣∣∣∣∣∣

Hence, for any partition of [0, T ] such that t1 = 0, t2 = τε and |ti+1 − ti|= % for i ≥ 2,

w(〈〈f,Snε ηn〉〉, (ti, ti+1]) ≤ 2|f |∗,∞|I|∗,∞%
ε

By definition τε > ε/|I|∗,∞ and

P(w′(〈〈f,Snε ηn〉〉, %) ≥ ρ) ≤ P
(
|I|∗,∞> max

{
ρε

2|f |∗,∞%
,
ε

%

})
.
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The tightness of |I|∗,∞ guarantees that this probability approaches 0 as % → 0, which proves our
theorem.

In our analysis of the system length process, we are mainly concerned with the process 〈〈ι, ηn〉〉
which is equal to the expected value of a random variable following the probability distribution ηnt
at any time t and our next result shows that tightness of the shifted versions of these processes is
implied by Theorem 2.

Corollary 2. For any ε > 0, the set of real-valued processes {〈〈ι,Snε ηn〉〉}n∈N is tight.

Proof. The compact containment condition is implied by Assumption 3 as for any given ρ, % > 0
and T > 0

lim inf
n→∞

P (〈〈ι,Snε ηnt 〉〉 < M + %, for all t ∈ [0, T ]) > 1− ρ.

We now prove the modulus of continuity condition, we first define the truncated identity function
as ιM (µ) = µδ{µ≤M}(µ) +Mδ{µ<M}(µ). Using that for any t1, t2 ≥ 0,

〈〈ι,Snε ηnt2〉〉 − 〈〈ι,S
n
ε η

n
t1〉〉 ≤ 〈〈ιM ,S

n
ε η

n
t2〉〉 − 〈〈ιM ,S

n
ε η

n
t1〉〉+

∫ ∞
M

µdSnε ηnt2 +

∫ ∞
M

µdSnε ηnt1 .

we write

P(w′(〈〈ι,Snε ηn〉〉, %) ≥ ρ) ≤ P(w′(〈〈ιM ,Snε ηn〉〉, %) ≥ ρ−2ς)+P
(∫ ∞

M
µdηnt (µ) > ς, for some t ∈ [0, T ]

)
.

For any ρ > 0 we can find ∆, % and M such that the righthand side is less than ς for all n, and our
result is proved.

Choosing εn = 1/n and using a diagonal argument, Theorem 2 implies that any sequence of
{ηn}n∈N has a subsequence where shifted fairness processes weakly converges for all ε > 0. However,
doing the analysis for each ε > 0 can be tedious for specific applications. We define the measure-
valued scaled total cumulative idleness process as

Ĉn(t, A) :=
n∑
k=1

δµ̃nk (A)

∫ t

0
Înk (s)ds, for all t ≥ 0, A ∈ B(R+), n ∈ N.

We now show that it is possible to identify the limiting fairness process, by examining Ĉn(t, A)
rather than the ε-shifted versions of the fairness process.

Lemma 3. Suppose for all A ∈ B(R+) and T > 0,

lim
n→∞

sup
0≤t≤T

∣∣∣Ĉn(t, A)− Ĉ(t, A)
∣∣∣ p→ 0. (3.5)

Then

ηt(A) =


Ĉ(t, A)

Ĉ(t,R+)
if Ĉ(t,R+) > 0

ζ(A) otherwise

is the limiting fairness process.
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Proof. It is clear that {η(t, ·)} is a probability measure valued process. For any Borel set A ∈ B(R+)
processes {Ĉn(t, A), t ≥ 0} are continuous processes and converge in probability to {Ĉ(t, A), t ≥ 0}
in CR+ [0,∞). The stopping times τnε = inf{t > 0 : Ĉn(t,R+) > ε} and can be thought of as a

continuous function of Ĉn(·,R+). Using the continuous mapping theorem,

τnε
p→ τε = inf{t > 0 : Ĉ(t,R+) > 0}.

For any fixed ε > 0, define

Λn(t) =


τε
τnε

if 0 ≤ t ≤ τnε
T − τε
T − τnε

t+
T (τε − τnε )

T − τnε
if τnε < t ≤ T.

Clearly, |Λn(t)− t| p→ 0. We now prove for any A ∈ B(R+)

lim
n→∞

|ηn(t, A)− η(Λn(t), A)| p→ 0, in GR[0, T ]. (3.6)

For t ≤ τnε , we have |ηn(t, A)− η(Λn(t), A)| = 0 for all A. Λn(t) is defined so that τε > τnε if and
only if t < Λn(t) for all t. For t ≥ τnε
|ηn(t, A)− η(Λn(t), A)| = δ(τε > τnε ) |ηn(t, A)− η(Λn(t), A)|+ δ(τε ≤ τnε ) |ηn(t, A)− ηn(Λ(t), A)|

≤ δ(τε ≤ τnε ) (|ηn(t, A)− η(t, A)|+ |η(Λn(t), A)− η(t, A)|)
+ δ(τε > τnε ) (|ηn(Λn(t), A)− η(Λn(t), A)|+ |ηn(Λn(t), A)− ηn(t, A)|)

= δ(τε ≤ τnε )

(∣∣∣∣∣ Ĉn(t, A)

Ĉn(t,R+)
− Ĉ(t, A)

Ĉ(t,R+)

∣∣∣∣∣+

∣∣∣∣∣ Ĉn(Λn(t), A)

Ĉn(Λn(t),R+)
− Ĉn(t, A)

Ĉn(t,R+)

∣∣∣∣∣
)

+ δ(τε > τnε )

(∣∣∣∣∣ Ĉn(Λn(t), A)

Ĉn(Λn(t),R+)
− Ĉ(Λn(t), A)

Ĉ(Λn(t),R+)

∣∣∣∣∣+

∣∣∣∣∣ Ĉn(Λn(t), A)

Ĉn(Λn(t),R+)
− Ĉn(t, A)

Ĉn(t,R+)

∣∣∣∣∣
)
.

We think of the righthand side of the last equality as four summands and if we can show converge
of each summand to 0 in probability, then we can conclude that for all A, ηn(·, A)

p→ η(·, A) in
GR+ [0, T ]. For the first summand, we have∣∣∣∣∣ Ĉn(t, A)

Ĉn(t,R+)
− Ĉ(t, A)

Ĉ(t,R+)

∣∣∣∣∣ =

∣∣∣∣∣ Ĉ(t,R+)(Ĉn(t, A)− Ĉ(t, A)) + Ĉ(t, A)(Ĉn(t,R+)− Ĉ(t,R+))

Ĉ(t,R+)Ĉn(t,R+)

∣∣∣∣∣
≤
În(t)T

(∣∣∣Ĉn(t, A)− Ĉ(t, A)
∣∣∣+
∣∣∣Ĉn(t,R+)− Ĉ(t,R+)

∣∣∣)
ε2

,

and for the second summand,∣∣∣∣∣ Ĉn(Λn(t), A)

Ĉn(Λn(t),R+)
− Ĉn(t, A)

Ĉn(t,R+)

∣∣∣∣∣ =

∣∣∣∣∣ Ĉn(Λn(t), A)Ĉn(t,R+)− Ĉn(t, A)Ĉn(Λn(t),R+)

Ĉn(Λn(t),R+)Ĉn(t,R+)

∣∣∣∣∣
=

∣∣∣∣∣ Ĉn(Λn(t), A)Ĉn(t,R+)− Ĉn(t, A)Ĉn(Λn(t),R+)

Ĉn(Λn(t),R+)Ĉn(t,R+)

∣∣∣∣∣
≤ |Ĉ

n(t,R+)− Ĉn(Λn(t),R+)|
ε

+
|Ĉn(t, A)− Ĉn(Λn(t), A)|

ε

≤ 2În(t)|t− Λn(t)|
ε

,
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which implies convergence of both terms to 0 in probability. The convergence of third and fourth
terms can be proven similarly, which in turn imply (3.6).

Using the convergence for individual A ∈ B(R+), we now prove the convergence of the measure-
valued processes. To prove our result, we use part 2 of Theorem 5.3 in Mitoma [20], which translated
into our case, states that if

1. For each f ∈ Cb(R+), {〈〈f,Snε ηn〉〉t, t ≥ 0} is tight in DR[0.T ].

2. For each f1, f2, . . . , fm ∈ Cb(R+) and t1, t2, . . . , tm ∈ [0, T ],

(〈〈f1,Snε ηnt1〉〉, 〈〈f2,Snε ηnt2〉〉, · · · , 〈〈fm,S
n
ε η

n
tm〉〉)⇒ (〈〈f1,Sεηt1〉〉, 〈〈f2,Sεηt2〉〉, · · · , 〈〈fm,Sεηtm〉〉) ∈ Rm

then Snε ηn ⇒ Sεη.
We proved the tightness condition in Theorem 2. We prove the second part by proving conver-

gence in probability which is slightly stronger than what is deserved. For any % > 0

lim
n→∞

P(
∣∣(〈〈f1,Snε ηnt1〉〉, · · · , 〈〈fm,S

n
ε η

n
tm〉〉)− (〈〈f1,Sεηt1〉〉, · · · , 〈〈fm,Sεηtm〉〉)

∣∣ > %)

≤ lim
n→∞

m∑
i=1

P(
∣∣〈〈fi,Snε ηnti〉〉 − 〈〈fi,Sεηti〉〉∣∣ > %

m
)

The functions fi(x) ∈ Cb, i.e., |fi(x)|< bi for some bi and fi(x) can be approximated by a simple
function such that ∣∣∣∣∣∣fi(x)−

ki∑
j=1

aijδx(Aij)

∣∣∣∣∣∣ < ε

6m
, for 1 ≤ i ≤ m.
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Therefore,

P(
∣∣〈〈fi,Snε ηnti〉〉 − 〈〈fi,Sεηti〉〉∣∣ > %

m
) ≤ P

(∣∣〈〈fi,Snε ηnti〉〉 − 〈〈fi,SεηΛn(ti)〉〉
∣∣

+
∣∣〈〈fi,Sεηti〉〉 − 〈〈fi,SεηΛn(ti)〉〉

∣∣ > %

m

)
≤ P(

∣∣〈〈fi,Snε ηnti〉〉 − 〈〈fi,SεηΛn(ti)〉〉
∣∣ > %

2m
) + P(2bi|ti − Λn(ti)|>

%

m
)

≤ P

∣∣∣∣∣∣〈〈fi,Snε ηnti〉〉 − 〈〈
ki∑
j=1

aijδx(Aij),Snε ηnti〉〉

∣∣∣∣∣∣ > %

6m


+ P

∣∣∣∣∣∣〈〈fi,SεηΛn(ti)〉〉 − 〈〈
ki∑
j=1

aijδx(Aij),SεηΛn(ti)〉〉

∣∣∣∣∣∣ > %

6m


+ P

∣∣∣∣∣∣〈〈
ki∑
j=1

aijδx(Aij),Snε ηnti〉〉 − 〈〈
ki∑
j=1

aijδx(Aij),SεηΛn(ti)〉〉

∣∣∣∣∣∣ > %

6m


+ P(2bi|ti − Λn(ti)|>

%

m
)

≤
ki∑
j=1

P
(∣∣ηn(ti, A

i
j)− η(Λn(ti), A

i
j)
∣∣ > %

6bimki

)
+ P(2bi|ti − Λn(ti)|>

%

m
),

which converges to 0 as implied by (3.6).

Limiting Fairness Measures for Fastest-Server First and Slowest-Server-First Policies

We use Lemma 3 to derive the limiting fairness processes for fastest-server-first and slowest-server-
first policies, where the system controller has the knowledge of individual service rates and routes
the arriving customer to the fastest and slowest idle servers, respectively.

Theorem 3. If ζ = δµmin. where µmin := ess inf(µ̃nk), then the limiting fairness measure for
Fastest-Server-First policy is

ηt(A) = δµmin(A) for all t ≥ 0.

Proof. We prove that for any ε > 0 Aε = [µmin + ε,∞) and T > 0∣∣∣Ĉn(t, Aε)
∣∣∣
∗,T

= Ĉn(T,Aε)
p→ 0.

We define Ln as in Lemma 1 and use the fact that it can be partitioned into disjoint intervals as

Ĉn(T,Aε) =
∞∑
i=0

∫ βni

αni

∑n
k=1 δµk(Aε)Ink (s)ds√

n
≤
∞∑
i=1

(βni − αni )|În|∗,t.

Since, we know that |În|∗,t is tight, if we can show that
∑∞

i=1(βni − αni )
p→ 0, our result will follow.

The FSF policy guarantees that if there is an arrival when at least one of the servers with service
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rate in Aε is idle, then the new arrival is routed to one of the servers in this set. Hence, within the
interval (αni , β

n
i ) with i = 1, 2, . . ., the number of service completions by the servers with service

rate in Aε should be greater than the number of arrivals. Hence,

P(

∞∑
i=1

|βni − αni |> 0) ≤ P

(
sup

0<s1<s2<t

n∑
k=1

δµk(Aε)

(
SnP.k(s2)− SnP,k(s1)

√
n

)
− A(s2)−A(s1)√

n
> 0

)

= P

(
sup

0<s1<s2<t

n∑
k=1

δµk(Aε)
SnP.k(s2)− SnP,k(s1)− µ̃k(s2 − s1)

√
n

+
(
∑n

k=1 µ̃k − nµ̄)(s2 − s1)√
n

−
∑n

k=1(1− δµ̃k(Aε))µ̃k(s2 − s1)√
n

−A(s2)−A(s1)− λn(s2 − s1)√
n

+
(nµ̄− λn)(s2 − s1)√

n
> 0

)
.

The term
∑n
k=1(1−δµ̃k (Aε))µ̃k(s2−s1)√

n
diverges to infinity as n → ∞. Using the functional central

limit theorems for Poisson and renewal processes and continuous mapping theorem for the supre-
mum, we know that the other terms converge in distribution and hence tight. This implies that
the probability approaches 0 as n→∞.

As will be shown in Theorem 5 in the next section, the diffusion approximation provided in
Theorem 2.2 in Atar [2] also implies the same limiting fairness measure for the fastest-server-first
policy. Our result is slightly stronger as we do not require the support of the service rates to be
bounded. However, for Assumption 3 to be satisfied for the slowest-server-first policy, we need to
impose the boundedness condition. The rest of the proof of the following theorem is similar to the
proof of Theorem 3 and we omit it here.

Theorem 4. Suppose that ζ = δµmax, where µmax := ess sup(µ̃nk) <∞. Then, the limiting fairness
measure for Slowest-Server-First policy is

ηt(A) = δµmax(A) for all t ≥ 0.

Remark 1. Unfortunately, the sequences of fairness processes do not converge in any of the four
topologies provided by Skorokhod [25] in general. We try to provide some insight into this claim by
considering fastest-server-first policy as an example. Assume X̂n(0) and their limit ξ0 is bounded
away from 0, hence τn0 > 0. We take ζ = δµmin and as we prove in Theorem 3 the limiting
fairness process is continuous and is also equal to δµmin. Choosing A = [µmin + ε,∞) such that
P(µ̃nk ∈ A) > 0,

P
(

sup
0<t<T

|ηn(t)− η(t)|> ε

)
≥ P (∃t > 0 such that ηn(t) = δµ∗ where µ∗ ∈ A|F0) =

∑n
k=1 δµ̃nk (A)µ̃nk∑n

k=1 µ̃
n
k

.

The equality follows using the basic properties of minimum of exponential random variables and
realizing that a time t as stated above exists if the first server to become idle is in set A. Hence, it
is not possible to find any Λ(·) to show convergence of fairness processes in J1 and J2 topologies. The
distance between graphs of sample paths also is greater than ε in the case above, making convergence
in M1 and M2 topologies impossible.
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3.3 Convergence of the System Length Process

In this section, we analyze the weak limit of the scaled system length processes X̂n(t). Theorem 2
and the completeness of the space of probability measures guarantee that for any sequence of
fairness processes, there exists a subsequence with a limiting fairness process. The uniqueness of
the limiting process can be proven if the finite dimensional distributions of the process converge.
Henceforth, we assume that the sequence of fairness processes has a unique limiting process in the
sense in Definition 1.

A general approach in proving limit theorems for queueing systems is to use the structure of
Equation (3.2) in conjuction with the continuous mapping theorem (c.f. Theorem 2.7 in Billings-
ley [6] and Section 4.1 in [22]). The nonstandard definition of the limiting fairness processes in
Definition 1 makes it harder for us to use this theorem directly. The proof of the continuous map-
ping theorem relies on the Skorokhod Representation Theorem for which we provide an extension
in the following lemma.

Lemma 4. Let Sk be Polish spaces and Ξn = (Xn
1 , X

n
2 , . . .) be random elements where Xn

k ∈ Sk
for all k, n ∈ N and {Xk,n}n∈N is tight for each k. There exist n1 < n2 < · · · in N and random

variables Ynj defined on the same probability space (Ω̂, F̂ , P̂), taking values in Snj such that for each
j the family (Ykj)k∈N has the same joint law with (Xknj )k∈N and for each k ∈ N, Ykj converges
almost surely as j →∞.

Proof. Let S̃ = S1 × S2 × · · ·, an infinite Cartesian product, which is a Polish space. Then X̃n =
(X1n, X2n, · · ·) are S̃-valued random elements for each n ∈ N. As {Xn

k }n∈N is tight, there exists a
compact set Ek ⊂ Sk such that P(Xkn /∈ Ek for some n) < 2−kε for each k ∈ N. This implies that
P(Xkn /∈ Ek for some k, n ∈ N) < ε. Using Tychonoff’s theorem (see Chapter 5, Munkres [21]),
E1 × E2 × · · · is compact in S̃. Hence, we conclude that {X̃n}n∈N is also tight. Hence, using
Skorokhod’s representation theorem, we can find n1 < n2 < · · · and Ỹj on a probability space

(Ω̂, F̂ , P̂) which has the same distribution as X̃nj and converges almost surely as j → ∞. Hence,
the lemma follows.

Now, we are ready to prove our main result.

Theorem 5. Suppose that {ηt}t∈R is the limiting fairness process for the sequence of queueing
systems as defined in Definition 1. Then, the scaled process X̂n converges weakly to ξ, where ξ is
the solution of

ξ(t) = ξ0 + (µ̄
√
c2
a + 1)W (t) + βt+ 〈〈ι, ηt〉〉

∫ t

0
ξ−(s)ds− γ

∫ t

0
ξ+(s)ds, for all t ≥ 0, (3.7)

where c2
a := var(unk)/µ̄2, i.e., the coefficient of variation of unks, β := λ̂−σ̃, σ̃ is distributed normally

with mean 0 and variance var(µ̃).

Proof. We focus on Equation (3.2) and use the martingale method outlined in [22]. The processes

M̂n
1 (t) :=

∑n
k=1D

n
k (t)− µ̃nk

∫ t
0 (1− Ink (s))ds

√
n

M̂n
2 (t) :=

Nn
(
γ
∫ t

0 (Xn(s)− n)+ds
)
− γ

∫ t
0 (Xn(s)− n)+ds

√
n

,
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corresponding to the fourth and sixth terms in (3.2) are martingales with predictable quadratic
variations

〈M̂n
1 〉t =

∑n
k=1 µ̃

n
k

∫ t
0 (1− Ink (s))ds

n

〈M̂n
2 〉t =

γ
∫ t

0 (Xn(s)− n)+ds

n
,

respectively. Using Corollary 1,∑n
k=1 µ̃kt−

∑n
k=1 µ̃k

∫ t
0 I

n
k (s)ds

n

p→ µ̄t in DR+ [0,∞) and

∣∣∣∣∣
∫ t

0 (Xn(s)− n)+ds

n

∣∣∣∣∣
∗,T

p→ 0.

Hence, using the martingale central limit theorem

M̂n
1 (t)⇒ µ̄W2(t) and M̂n

2 (t)
p→ 0.

And as a result of central limit theorem for renewal processes and standard central limit theorem,
we have

Ân(t) =
An(t)− λnt√

n
⇒ caµ̄W1(t) and σ̂n =

µ̃nk − µ̄√
n
⇒ σ̃.

Taking εk = 1/k for all k ∈ N and Ξn = (X̂n(0)Ân, M̂n
1 , M̂

n
2 , σ̂

n,Snε1η
n,Snε2η

n, . . .), Lemma 4

implies that we can find Ξ̆k = (X̆n(0), Ăk, M̆k
1 , M̆

k
2 , σ̆

k,Skε1 η̆
k,Skε2 η̆

k, . . .) such that Ξ̆k has the same
distribution as Ξnk and

Ξ̆k → (ξ̆0, caµ̄W̆1, µ̄W̆2, 0, σ̆,Sε1 η̆,Sε2 η̆, . . .),

where (ξ̆0, caµ̄W̆1, µ̄W̆2, 0, σ̆,Sε1 η̆,Sε2 η̆, . . .) has the same joint distribution as

(ξ0, caµ̄W1, µ̄W2, 0, σ̃,Sε1η,Sε2η, . . .).

As the convergence occurs in Skorokhod-J1 topology, Theorem 4.1 in [28] implies that for any fixed
ε > 0 we can find a common sequence of homeomorphisms Λn : [0, T ] → [0, T ] such that with
probability 1,∣∣∣Ăn(t)− µ̄caW̆1(Λn(t))

∣∣∣
∗,T
∨
∣∣∣M̆n

1 (t)− µ̄W̆2(Λn(t))
∣∣∣
∗,T
∨
∣∣〈〈ι,Sεη̆nt 〉〉 − 〈〈ι,Sεη̆Λn(t)〉〉

∣∣
∗,T∨

∣∣∣Λ̇n(t)− 1
∣∣∣
∗,T
→ 0,

as n → ∞, where Λ̇n denotes the derivative of Λ with respect to t. Also, Assumption 3 and the
tightness proved in Lemma 1 imply that for any ρ > 0, there exists an Kρ > 0 such that

P
(

sup
n∈N

{
|〈〈ι, η̆nt 〉〉|∗,T ∨

∣∣∣X̆n(t)
∣∣∣
∗,T

}
> Kρ

)
< ρ.

Let ξ̆(t) be the unique strong solution of

ξ̆(t) = ξ̆0 + caµ̄W̆1(t) + µ̄W̆2(t) + βt+ 〈〈ι, η̆t〉〉
∫ t

0
ξ̆−(s)ds− γ

∫ t

0
ξ̆+(s)ds, for all t ≥ 0.
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Defining X̆ by replacing Ξ with Ξ̆ in (3.2), we need to prove that for any ρ, % > 0, we can find a
Nρ,% such that n > Nρ,% implies

P(dS(X̆n, ξ̆) > %) < ρ.

Choosing Kρ/2 as defined above

P
(
dS(X̆n, ξ̆) > %

)
≤ P

(
dS(X̆n, ξ̆) > %, sup

n∈N

{
|〈〈ι, η̆nt 〉〉|∗,T ∨

∣∣∣X̆n(t)
∣∣∣
∗,T

}
≤ Kρ/2

)
+
ρ

2
. (3.8)

Hence, we concentrate on the scenarios corresponding to the first term on the righthand side of (3.8)
and assume

sup
n∈N

{
|〈〈ι, η̆nt 〉〉|∗,T ∨

∣∣∣X̆n(t)
∣∣∣
∗,T

}
≤ Kρ/2

For any ε > 0, there is a sufficiently large N0, such that for any n > N0

|X̆n(t)− ξ̆(Λn(t))| ≤ ε+ γ

∣∣∣∣∣
∫ t

0
(X̆n(s))+ds−

∫ Λn(t)

0
ξ̆(s)+ds

∣∣∣∣∣
+

∣∣∣∣∣〈〈ι, η̆nt 〉〉
∫ t

0
(X̆n(s))−ds− 〈〈ι, η̆Λn(t)〉〉

∫ Λ(t)

0
ξ̆(s)−ds

∣∣∣∣∣
≤ ε+ γ

∣∣∣∣∫ t

0

(
(X̆n(s))+ − ξ̆ (Λn(s))+

)
ds+

∫ t

0
(1− Λ̇n(s))ξ̆ (Λn(s))+ ds

∣∣∣∣
+

∣∣∣∣(〈〈ι, η̆nt 〉〉 − 〈〈ι,Sεη̆nt 〉〉)∫ t

0
(X̆n(s))−ds〉〉t

−
(
〈〈ι, η̆Λn(t)〉〉 − 〈〈ι,Sεη̆Λn(t)〉〉

) ∫ Λ(t)

0
ξ̆(s)−ds

∣∣∣∣∣
+

∣∣∣∣(〈〈ι,Sεη̆nt 〉〉 − 〈〈ι,Sεη̆Λn(t)〉〉
) ∫ t

0
(X̆n(s))−ds

−〈〈ι,Sεη̆Λn(t)〉〉
∫ t

0

(
(X̆n(s))− − ξ̆(Λ(s))−

)
ds

∣∣∣∣
+

∣∣∣∣〈〈ι,Sεη̆Λn(t)〉〉
∫ t

0
Λ̇(s)ξ̆(Λ(s))−ds

∣∣∣∣
≤ ε+ γ

∫ t

0

∣∣∣(X̆n(s))− ξ̆ (Λn(s))
∣∣∣ ds+ εKρ/2T + 4εKρ/2 + εKρ/2

+Kρ/2

∫ t

0

∣∣∣X̆n(s)− ξ̆(Λ(s))
∣∣∣ ds+ ε

(
Kρ/2

)2
T

Now, using Gronwall’s inequality (c.f. Lemma 4.1 in [22]), we have

dS(X̆n, ξ̆) ≤ sup
0≤t≤T

|X̆n(t)− ξ̆(Λn(t))|≤ (ε(1 +Kρ/2(1 + T +Kρ/2T ) + 4εKρ/2)e(γ+Kρ/2)T

Hence, choosing ε and ε appropriately and N0 large enough, we prove our result.
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4 Totally Blind Routing Policies

4.1 A Related Martingale

In this section, our goal is to identify fairness processes corresponding to some specific policies.
The key term in defining the fairness process is the cumulative idle time by time t experienced by
servers whose service rate fall in set A. To analyze the total idleness process further, we use the
doubly stochastic process {SnP (t)}t≥0 that represents the potential service completion times and
define

φni = inf{t− θni : Iκni (t) = 0, t > θni } for all i ∈ N and n ∈ N.

The random variable φni represents the length of the idle period experienced by the server who
becomes idle at time θni . If an actual service completion occurs at θni , then Iκni (θni −) = 1 and
φni > 0, and if θni is not an actual service completion time, i.e., Iκni (θni −) = 0, then φni = 0.
Similarly, we define

φn−k = inf{t > 0 : Ink (t) = 0}, for all 1 ≤ k ≤ n and n ∈ N,

which represents the duration of the idle period experienced by servers who are idle at time 0.
Hence, defining

Υn
i (A) =

{
1 if µ̃κni ∈ A
0 otherwise,

we can equivalently represent the total cumulative idleness experienced by servers in A by time t
as

n∑
k=1

δµ̃nk (A)

∫ t

0
Ink (s)ds =

n∑
k=1

δµ̃nk (A)(φn−k ∧ t) +

SnP (t)∑
i=1

Υn
i (A)(φni ∧ (t− θni )).

To analyze the righthand side further, we introduce the following martingale:

Lemma 5. For any Borel set A ⊂ R+,

Mn
A(t) = n−1/2

SnP (t)∑
i=1

Υn
i (A)(φni ∧ (t− θni ))−

SnP (t)∑
i=1

E
[
Υn
i (A)φni |Fnθni −

]

+

SnP (t)∑
i=1

(
Υn
i (A)E[(φni − t+ θni )+|Fnt ]

) (4.1)

is an Fn-martingale.

Proof. Being conditional expectations, second and third sums on the right-hand side of (4.1) are
clearly Ft-measurable. The random variables (φni + θni ) are stopping times for any 0 < i ≤ SP (t),
which implies that the first sum is also measurable with respect to Ft. For any n ≥ 1 and t > θi,
we have

0 ≤ Xn(t) < n and φni − θ < inf{s > t : Xn(s) = n}.

Considering the discrete-time Markov chain Y n
k = Xn(

∑k
i=1 u

n
i /λ

n) and the positive recurrence of
this chain when restricted to be between 0 and n proves that E[|Mt(A)n|] < ∞ for all t ≥ 0. The
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rest of the proof relies on the basic relationship that φni ∧ (t− θni ) = φni − (φni + θni − t)+. We have

E[Mn
A(t+ s)−Mn

A(t)|Ft] = E

SnP (t+s)∑
i=1

Υn
i (A)φni −

SnP (t+s)∑
i=1

Υn
i (A)(φni − t− s+ θni )+

−
SnP (t+s)∑
i=1

E[Υn
i (A)φni |Fθni −] +

SnP (t+s)∑
i=1

E[Υn
i (A)(φni − t− s+ θni )+|Ft+s]

−
SnP (t)∑
i=1

Υn
i (A)φni +

SnP (t)∑
i=1

Υn
i (A)(φni − t+ θni )+

+

SnP (t)∑
i=1

E[Υn
i (A)φni |Fθni −]−

SnP (t)∑
i=1

E[Υn
i (A)(φni − t+ θni )+|Ft]

∣∣∣∣∣∣Ft


= E

 SnP (t+s)∑
i=SnP (t)+1

Υn
i (A)φni −

SnP (t)∑
i=1

Υn
i (A)(φni − t− s+ θni )+

−
SnP (t+s)∑
i=SnP (t)+1

Υn
i (A)(φni − t− s+ θni )+ −

SnP (t+s)∑
i=SnP (t)+1

E[Υn
i (A)φni |Fθni −]

+

SnP (t)∑
i=1

E[Υn
i (A)(φni − t− s+ θni )+|Ft+s]

+

SnP (t+s)∑
i=SnP (t)+1

E[Υn
i (A)(φni − t− s+ θni )+|Ft+s] +

SnP (t)∑
i=1

Υn
i (A)(φni − t+ θni )+

−
Nn(t)∑
i=1

E[Υn
i (A)(φni − t+ θni )+|Ft]

∣∣∣∣∣∣Ft
 = 0

This proves the lemma.

The Ĉn(t, A) is a continuous function of time t for any A ∈ B(R+) and hence a previsible
process. Hence, in Lemma 5, rather than finding a compensator for the cumulative total idleness
process, we find a process who is compensator is the cumulative total idleness process and hence
there is no uniqueness claim.

Lemma 6. If for any T > 0, there exist random variables ϑn,T such that E[ϑnT ] → 0 as n → ∞
and

sup
0≤t≤T

sup
−n≤i≤SnP (t)

E
[
(φni − t+ θni )+|Fnt

]
< ϑnT , (4.2)

then

sup
0≤t≤SnP (T )

∣∣∣∣∣∣Ĉn(t, A)−
∑SnP (t)

i=1 E[Υn
i (A)φni |Fθni −]
√
n

∣∣∣∣∣∣ p→ 0.
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Proof. To prove our result we show that the martingale Mn
A and the third term on the righthand

side of (4.1) converge to 0 in probability under the stated conditions. Condition (4.2) imply that
for all T ≥ 0 and n ∈ N, ϑnT is positive and converges 0 in probability using Markov inequality. If
the expected maximum jump and the optional quadratic variation of Mn

A converges 0, the latter
being in probability, the martingale can be shown to converges 0 in probability using the martingale
central limit theorem (c.f. Theorem 8.1 in [22]). We first note that (4.2) also implies

sup
1≤i≤SnP (T )

E
[
φni |Fnθni −

]
p→ 0,

which also imply the expected maximum jump ofMn
A converges 0. Expanding the optional quadratic

variation of Mn
A, we get

[Mn
A] ≤

2
[∑SnP (t)

i=1 Υn
i (A)(φni ∧ (t− θni ))

]
n

+
2
[∑SnP (t)

i=1 E
[
Υn
i (A)φni |Fnθni −

]]
n

+
2
[∑SnP (t)

i=1 (Υn
i (A)E[(φni − t+ θni )+|Fnt ])

]
n

. (4.3)

The first term on the righthand side of (4.3) is the optional quadratic variation of a continuously
increasing process and hence is 0 for all T ≥ 0 and n ∈ N. The second term is the optional quadratic
variation of an increasing pure jump process and

SnP (t)∑
i=1

E
[
Υn
i (A)φni |Fnθni −

]
n

=

SnP (t)∑
i=1

E[Υn
i (A)φni |Fθni −]2

n
≤

(
sup

1≤i≤SnP (t)
E[Υn

i (A)φni |Fθni −]

)2
SnP (t)

n

p→ 0.

For analyzing the third term, we define $n
i (t) = inf{Iκi(s) : θni ≤ s ≤ t}, for i ≤ SnP (t), n ∈ N,

which is 1 if the server completing the service at θni stays idle until time t and is 0 otherwise. The
function $n

i (t) enables us to explicitly address only the servers who are idle at time t as for any
θni ≤ SnP (t),

E[(φni − t+ θi)
+|Ft] = $i(t)E[(φni − t+ θi)

+|Ft].

We now analyze the optional quadratic variation of the third term on the righthand side of (4.3)
directly using the definition (c.f. Theorem 3.3 in [22]). Consider any finite partition of [0, T ] such
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that 0 = t0 < t1 < · · · < tm = T and

n−1
m∑
l=1

SP (tl)∑
i=1

Υi(A)$i(tl)E[(φni − tl + θi)
+|Ftl ]−

SP (tl−1)∑
i=1

Υi(A)$i(tl−1)E[(φni − tl−1 + θi)
+|Ftl−1

]

2

= n−1
m∑
l=1

 SP (tl)∑
i=SP (tl−1+1)

Υi(A)$i(tl)E[(φni − tl + θi)
+|Ftl ]

+

SP (tl−1)∑
i=1

Υi(A)
(
$i(tl)E[(φni − tl + θi)

+|Ftl ]−$i(tl−1)E[(φni − tl−1 + θi)
+|Ftl−1

]
)2

≤ 2n−1
m∑
l=1

 SP (tl)∑
i=SP (tl−1+1)

Υi(A)$i(tl)E[(φni − tl + θi)
+|Ftl ]

2

+2n−1
m∑
l=1

SP (tl−1)∑
i=1

Υi(A)
(
$i(tl)E[(φni − tl + θi)

+|Ftl ]−$i(tl−1)E[(φni − tl−1 + θi)
+|Ftl−1

]
)2

To analyze the second term further, we realize that $i(tl) ≤ $i(tl−1) for any i < SP (tl−1) and
write

m∑
l=1

SP (tl−1)∑
i=1

Υi(A)
(
$i(tl)E[(φni − tl + θi)

+|Ftl ]−$i(tl−1)E[(φni − tl−1 + θi)
+|Ftl−1

]
)2

=
m∑
l=1

− SP (tl−1)∑
i=1

Υi(A)(1−$i(tl))$i(tl−1)E[(φni − tl−1 + θi)
+|Ftl−1

]

+

SP (tl−1)∑
i=1

Υi(A)($i(tl))$i(tl−1)
(
E[(φni − tl + θi)

+|Ftl ]− E[(φni − tl−1 + θi)
+|Ftl−1

]
)2

≤ 2
m∑
l=1

SP (tl−1)∑
i=1

Υi(A)(1−$i(tl))$i(tl−1)E[(φni − tl−1 + θi)
+|Ftl−1

]

2

+ 2
m∑
l=1

SP (tl−1)∑
i=1

Υi(A)($i(tl))$i(tl−1)
(
E[(φni − tl + θi)

+|Ftl ]− E[(φni − tl−1 + θi)
+|Ftl−1

]
)2
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Again considering the second term on the righthand side, we have

m∑
l=1

SP (tl−1)∑
i=1

Υi(A)($i(tl))$i(tl−1)
(
E[(φni − tl + θi)

+|Ftl ]− E[(φni − tl−1 + θi)
+|Ftl−1

]
)2

≤ 2
m∑
l=1

SP (tl−1)∑
i=1

Υi(A)($i(tl))$i(tl−1)
(
E[(φni − tl + θi)

+|Ftl ]− E[(φni − tl−1 + θi)
+|Ftl ]

)2

+ 2
m∑
l=1

SP (tl−1)∑
i=1

Υi(A)($i(tl))$i(tl−1)
(
E[(φni − tl−1 + θi)

+|Ftl ]− E[(φni − tl−1 + θi)
+|Ftl−1

]
)2

≤ 2

m∑
l=1

SP (tl−1)∑
i=1

Υi(A)($i(tl))$i(tl−1) (tl − tl−1)

2

+ 2
m∑
l=1

SP (tl−1)∑
i=1

Υi(A)($i(tl))$i(tl−1)
(
E[(φni − tl−1 + θi)

+|Ftl ]− E[(φni − tl−1 + θi)
+|Ftl−1

]
)2

Aggregating all our calculations above, we get[∑SnP (t)
i=1 (Υn

i (A)E[(φni − t+ θni )+|Fnt ])
]

n
≤ 2V n

1 (t) + 4V n
2 (t) + 8(V n

3 (t) + V n
4 (t)),

where

V n
1 (t) =

lim
sup|tl−tl−1|→0

m∑
l=1

 SnP (tl)∑
i=SP (tl−1+1)

Υi(A)$i(tl)E[(φni − tl + θi)
+|Ftl ]

2

n
,

V n
2 (t) =

lim
sup|tl−tl−1|→0

m∑
l=1

SnP (tl−1)∑
i=1

Υi(A)(1−$i(tl))$i(tl−1)E[(φni − tl−1 + θi)
+|Ftl−1

]

2

n
,

V n
3 (t) =

lim
sup|tl−tl−1|→0

m∑
l=1

SnP (tl−1)∑
i=1

Υi(A)$i(tl)$i(tl−1) (tl − tl−1)

2

n
,

V n
4 (t) =

lim
sup|tl−tl−1|→0

m∑
l=1

SnP (tl−1)∑
i=1

Υi(A)$i(tl)$i(tl−1)
(
E[(φni − tl−1 + θi)

+|Ftl ]− E[(φni − tl−1 + θi)
+|Ftl−1

]
)2

n
.

The first term V n
1 is the definition of the quadratic variation of a pure jump process and hence,

V n
1 (t) =

∑SP (t)
i=1

(
Υi(A)E[φni |Fθni ]

)2
n

=

(
sup

1≤i≤SnP (t)
E[Υn

i (A)φni |Fθni ]

)2
SnP (t)

n

p→ 0.
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For V n
2 (t),

V n
2 (t) ≤ (ϑnT )2

lim
sup|tl−tl−1|→0

m∑
l=1

SP (tl−1)∑
i=1

Υi(A)(1−$i(tl))$i(tl−1)

2

n

The fraction above defines the optional quadratic variation of a counting process, which counts the
number of customers routed to a server by time t. This counting process is bounded by the arrival
process An(t) and hence (4.2) implies that V n

2 (t)
p→ 0 in DR[0, T ].

For V n
3 (t), write

V n
3 (t) ≤

lim
sup|tl−tl−1|→0

SP (t)

m∑
l=1

SP (tl−1)∑
i=1

(Υi(A)$i(tl)$i(tl−1) (tl − tl−1))2

n

≤

2SP (t)

SP (t)∑
i=1

lim
sup|tl−tl−1|→0

m∑
l=1

(tl − tl−1)2

n
= 0

For the analysis of V n
4 (t), we use a similar approach but this time making explicit use of the fact

that the non-zero terms in the summation at any tl−1 is bounded by the number of idle servers at
that time. Also,

V n
4 (t) ≤ lim

sup|tl−tl−1|→0

m∑
l=1

2In(tl)

SP (tl−1)∑
i=1

(
Υi(A)$i(tl)$i(tl−1)E[(φni − tl−1 + θi)

+|Ftl ]
n

−
Υi(A)$i(tl)$i(tl−1)E[(φni − tl−1 + θi)

+|Ftl−1
]

n

)2

≤

2|In|2t,∗ lim
sup|tl−tl−1|→0

m∑
l=1

(
E[(φni |Ftl ]− E[φni |Ftl−1

]
)2

n

Theorem 2 imply that |In|2t,∗/n is tight. The limit and summation is the optional quadratic vari-
ation of the square integrable martingale E[φni |Ft] and using Burkholder-Davis-Gundy inequality
(Theorem iV.48 in [23]) with p = 1

[E[φni |Fnt ]] ≤ c1E[ sup
0≤s≤t

sup
1≤i≤SnP (t)

E[φni |Fns ]] ≤ c1E[ϑnT ]

and hence the optional quadratic variation of E[φni |Ft] converges 0 in probability. This proves that

[Mn
A]

p→ 0 in probability and using the martingale functional central limit theorem we conclude

that Mn
A(t)

p→ 0. Using a similar approach, the term on the righhand side of (4.1)

SnP (t)∑
i=1

(
Υn
i (A)E[(φni − t+ θni )+|Fnt ]

)
≤ |În|T,∗ϑnT

p→ 0.
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This implies

n−1/2

SnP (t)∑
i=1

Υn
i (A)(φni ∧ (t− θni ))−

SnP (t)∑
i=1

E
[
Υn
i (A)φni |Fnθni −

] p→ 0 in DR[0, T ].

Since the limiting function is constant and hence continuous, we conclude that the same convergence
also holds with the supremum norm, which proves the lemma.

4.2 The Fairness Measure for Totally Blind Policies

We are now ready to address specific policies when service rates are random. Atar [2] proves that
for the Longest-Idle-Server-First policy, the system length process converges to a diffusion as given
in (1), where

〈〈ι, η〉〉t =

∫∞
0 µ2dF (µ)∫∞
0 µdF (µ)

, for all t ≥ 0.

This implies that the limiting fairness process is constant through time and

ηt(A) =

∫
A µdF (µ)∫∞
0 µdF (µ)

, for all t ≥ 0.

In this section, under some mild conditions which readily holds for the LISF policy, we prove that
the scaled system length process converges to the same limiting diffusion for a more general class
of policies, which we call to be “totally blind policies”. Ward and Armony [26] describe a blind
policy to be a control policy that can depend on the system state but not the system parameters.
According to this definition and its usage in the literature, a blind policy is assumed not to have
perfect information of parameters, however it can make decisions that have implicit dependencies
on parameters through the system state. For our purposes we need to define the notion of blindness
a bit more restrictively , to mean the expected idling time of a server who becomes idle at time θni
is asymptotically the same with or without the knowledge of the service rate of the server.

Definition 2. A routing policy is a totally blind policy, if and only if

sup
1≤i≤SnP (T )

√
n
∣∣∣E[φni |Fnθni −]− E[φni |Fnθni ]

∣∣∣ p→ 0

Theorem 6. Under any totally blind policy, i.e.,

lim
n→∞

sup
1≤i≤SnP (T )

√
n
∣∣∣E[φni |Fnθni −]− E[φni |Fnθni ]

∣∣∣ p→ 0, for all T > 0,

where condition (4.2) holds, then

ηt(A) =

∫
A µdF (µ)∫∞
0 µdF (µ)

, for all t ≥ 0.
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Proof. First, we analyze

SnP (t)∑
i=1

E[Υi(A)φi|Fθni −]
√
n

=

SnP (t)∑
i=1

E[E[Υi(A)φi|Fθni ]|Fθni −]
√
n

=

SnP (t)∑
i=1

E[Υi(A)E[φi|Fθni ]|Fθni −]
√
n

=

SnP (t)∑
i=1

E[Υi(A)(E[φi|Fθni ]− E[φi|Fθni −])|Fθni −]
√
n

+

SnP (t)∑
i=1

E[Υi(A)E[φi|Fθni −]|Fθni −]
√
n

=

SnP (t)∑
i=1

E[Υi(A)(E[φi|Fθni ]− E[φi|Fθni −])|Fθni −]
√
n

+

SnP (t)∑
i=1

E[Υi(A)|Fθni −]E[φi|Fθni −]
√
n

Hence, we have

SnP (t)∑
i=1

E[Υi(A)φi|Fθni −]
√
n

−
E[Υi(A)|Fθni −]E[φi|Fθni −]

√
n

=

SnP (t)∑
i=1

E[Υi(A)(E[φi|Fθni ]− E[φi|Fθni −])|Fθni −]
√
n

For any ε > 0

P

∣∣∣∣∣∣
SnP (t)∑
i=1

E[Υi(A)(E[φi|Fθni ]− E[φi|Fθni −])|Fθni −]
√
n

∣∣∣∣∣∣ > ε1


= P

∣∣∣∣∣∣
SnP (t)∑
i=1

E[Υi(A)(E[φi|Fθni ]− E[φi|Fθni −])|Fθni −]
√
n

∣∣∣∣∣∣ > ε1,
|SnP (T )− nµ̄T |

n
< ε2


+P
(
|SnP (T )− nµ̄T |

n
> ε2

)
≤ P

SnP (t)∑
i=1

E[
∣∣(E[φi|Fθni ]− E[φi|Fθni −])

∣∣ |Fθni −]
√
n

> ε1,
|SnP (T )− nµ̄T |

n
< ε2


+P
(
|SnP (T )− nµ̄T |

n
> ε2

)

≤ P

(µ̄T + ε2)
√
n sup

1≤i≤SP (T )
E[
∣∣(E[φi|Fθni ]− E[φi|Fθni −])

∣∣ |Fθni −]

√
n

> ε1


+P
(
|SnP (T )− nµ̄T |

n
> ε2

)
This implies

SnP (t)∑
i=1

(E[Υi(A)φi|Fθni −]
√
n

−
E[Υi(A)|Fθni −]E[φi|Fθni −]

√
n

)
p→ 0 in DR[0, T ].
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Again, since the limiting function (zero function) is constant and hence continuous, this convergence
can be taken in the supremum norm. Combining this with Lemma 6 and realizing that

E[Υn
i (A)|Fθni −] =

n−1
∑n

k=1 δµ̃nk (A)(1− Ink (θni −))µ̃nk
n−1

∑n
k=1 µ̃

n
k

→
∫
A µdF (µ)∫∞
0 µdF (µ)

w.p. 1,

we have

sup
0≤s≤T

∣∣∣∣Ĉn(t, A)−
∫
A µdF (µ)∫∞
0 µdF (µ)

∫ t

0
Î(s)ds

∣∣∣∣ p→ 0.

Our theorem is then implied by Lemma 2.

Intuitively, as the number of servers approaches infinity, the number of idle servers are negligible
compared to the servers who are busy. It is well known from basic probability that if we have two
independent exponential random variables, say U and V , with rates λ1 and λ2, the probability that
U is less than V is λ1/(λ1 +λ2). Hence, using this basic property and the fact that the idle servers
are negligible, the probability that a server becoming idle at any given time belongs to set A is
asymptotically constant in time and equal to∫

A µdF (µ)∫∞
0 µdF (µ)

.

In other words, totally blind policies asymptotically equalize the time to stay idle for all servers once
they become idle. The servers with higher service rates become idle more frequently, proportional
to their service rates and hence, their share of total cumulative idle time is also proportional to
their service rates.

Longest-Idle-Server-First Policy

We show that Longest-Idle-Server-First policy is totally blind and the condition 4.2 holds. We
know that the server who becomes idle at time θni starts the next service exactly after arrival of
the next

∑n
k=1 I

n
k (θni ) customers. Hence,

E[φni |Ft] ≤ n−1

(
sup

0≤s≤T
E[unAn(s)+1|Fs] + E[un1 ] sup

0≤s≤T

n∑
k=1

Ink (s)

)
.

and
E[φni |Fθni ] = E[φni |Fθni −] (4.4)

for all i, n ∈ N, as it only depends on the number of idle servers at θni , which is Fθni − measurable
and the future behavior of the arrivals which is a renewal process. Hence, we have

Theorem 7. Longest-Idle-Server-First policy is totally blind and satisfies (4.2) and hence the
limiting fairness process is as given in Theorem 6.

Proof. For any fixed T > 0, sup0≤t≤T E[unAn(s)+1|Ft] is bounded and
{
|În|∗,T

}
n∈N

is tight, which

implies the (4.2) holds. Also, for any i and n, (4.4) implies E[φni |Fθni ]− E[φni |Fθni −] = 0 and hence
LISF policy is totally blind.
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5 Conclusion

In this work, we analyze many-server queueing systems where the service rates of servers in the
system are i.i.d. random variables. These systems have been studied in an earlier paper by Atar [2]
for two routing policies, longest-idle-server-first and fastest-server-first policies, in an ad hoc man-
ner. Our main contribution is to develop a general framework to analyze many-server queueing
systems with service rate uncertainty using measure-valued stochastic processes. We introduce the
fairness process which assumes values in the space of probability measures denoting the proportion
of cumulative idleness shared by servers having different service rates. Unfortunately, it is possi-
ble to show that the fairness processes cannot be analyzed in the standard Skorokhod topologies
and we introduce a modified notion of convergence for these processes. We also include customer
abandonments into our analysis, which we believe to be indispensible for systems with service raet
uncertainty. We also show how the limits obtained in [2] can be obtained using martingale methods.

Even though, the many-server systems with uncertain service rates can be seen as a replacement
for servers belonging to pools where servers are identical, we believe that this work also should be
extended to include networks of queues with pools of servers, where within a server pool the
service rates follow the same distribution, but may follow different distributions among pools. The
introduced diffusion limits can also be used to analyze staffing of many-server systems with service
rate uncertainty, and how the variability of the service rate affect the staffing and routing decisions.
We also believe that the similar fairness processes can be defined to analyze service systems with
heterogeneous and non-exponential service times and data-driven systems where the service rates
are either time dependent or learned through data as time evolves.
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