Workshop 5

November 112014

1. Let $\phi \in \mathcal{D}(\mathbf{R})$ and assume that $\phi(0)=\phi^{\prime}(0)=\cdots=\phi^{(k)}(0)$. Show that there is $\psi \in \mathcal{D}(\mathbf{R})$ with $\phi(x)=x^{k+1} \psi(x)$.
2. Show that there is a $\psi \in \mathcal{D}(\mathbf{R})$ with $\phi=\psi^{(k)}$ if and only if $\int_{-\infty}^{+\infty} P(x) \phi(x) d x=$ 0 for each polynomial P of degree at most $k-1$.
3. (Homework problem) The principal value of $\frac{1}{x}$ is defined as $\mathcal{P} \frac{1}{x}(\phi)=\lim _{\epsilon \rightarrow 0} \int_{|x| \geq \epsilon} \frac{\phi(x)}{x} d x$

- Show that $\mathcal{P} \frac{1}{x}$ defines a distribution
- Represent $\mathcal{P} \frac{1}{x}(\phi)$ as a double integral.
- Find the primitive of $\mathcal{P} \frac{1}{x}$ in the sense of distributions.

4. Find all $f \in \mathcal{D}^{\prime}(\mathbf{R})$ with $x f(x)=1$.
5. Compute the following limits in $\mathcal{D}^{\prime}(\mathbf{R})$.

- (a) $\lim _{t \rightarrow \infty} t^{2} x \cos t x$
- (b) $\lim _{t \rightarrow \infty} t^{2}|x| \cos t x$
- (c) $\lim _{t \rightarrow \infty} \frac{\sin t x}{x}$
- (d) $\lim _{t \rightarrow \infty}(\cos t x) v p(1 / x)$
- (e) $\lim _{t \rightarrow \infty} t \sin (t|x|)$

6. Compute in $\mathcal{D}^{\prime}\left(\mathbf{R}^{2} \backslash\{(0,0)\}\right)$:

$$
\lim _{t \rightarrow \infty} t \sin \left(t\left|x^{2}+y^{2}-1\right|\right)
$$

Does this limit exist in $\mathcal{D}^{\prime}\left(\mathbf{R}^{2}\right)$?
7. Is there a distribution on \mathbf{R}, the restriction of which to $(0, \infty)$ equals $e^{1 / x}$?
8. Is there a distribution on \mathbf{R}, the restriction of which to $(0, \infty)$ equals $e^{1 / x} \exp \left(i e^{1 / x}\right)$?
9. (Homework problem) Let f be a function on \mathbf{R} which is zero for $x<0$, continuous for $x>0$ and assume that $\int_{0}^{1} x|f(x)| d x<\infty$. Show that f represents a distribution of order at most 1 .
10. Solve the following equations in $\mathcal{D}^{\prime}(\mathbf{R})$:
(a) $x f^{\prime}(x)=\delta(x)$,
(b) $x f^{\prime}(x)+f(x)=0$.

