Workshop 3

October 28, 2014

1. Let H be a Hilbert space and $x_{0} \in H$. If M be a closed subspace of H, show that

$$
\min \left\{\left\|x-x_{0}\right\|: x \in M\right\}=\max \left\{\left|\left\langle x_{0}, y\right\rangle\right|: y \in M^{\perp},\|y\|=1\right\}
$$

Solution Decomposing $x_{0}=P x_{0}+Q x_{0}$ we get

$$
\left\|x-x_{0}\right\|^{2}=\left\|\left(x-P x_{0}\right)-Q x_{0}\right\|^{2}=\left\|\left(x-P x_{0}\right)\right\|^{2}+\left\|Q x_{0}\right\|^{2}
$$

thus the minimum is achieved for $x=P x_{0}$ and is equal $\left\|Q x_{0}\right\|^{2}$. Now let us explore the maximum on the right hand side. Again, by decomposing x_{0} we have

$$
\left|\left\langle x_{0}, y\right\rangle\right|=\left|\left\langle P x_{0}+Q x_{0}, y\right\rangle\right|=\left|\left\langle Q x_{0}, y\right\rangle\right|
$$

hence the maximum is achieved for $y=\frac{Q x_{0}}{\left\|Q x_{0}\right\|}$ and is equal to $\left\|Q x_{0}\right\|$. Comparing max and min the result follows.
2. Compute

$$
\min _{a, b, c \in \mathbf{R}} \int_{-1}^{1}\left|x^{3}-a-b x-c x^{2}\right|^{2} d x
$$

and find max $\int_{-1}^{1} x^{3} g(x) d x$ where $g \in C[-1,1]$ is subject to the restrictions

$$
\int_{-1}^{1} g(x) d x=\int_{-1}^{1} x g(x) d x=\int_{-1}^{1} x^{2} g(x) d x=0 ; \quad \int_{-1}^{1}|g(x)|^{2} d x=1
$$

Solution Hint; Take $H=L^{2}[-1,1], f(x)=x^{3}$ and $q(x)=a+b x+c x^{2}$ and consider $\min _{g}\|f-g\|_{L^{2}}$ when $g \in H$ and $g \in M$ where $M \subset H$ is defined by

$$
\int_{-1}^{1} g(x) d x=\int_{-1}^{1} x g(x) d x=\int_{-1}^{1} x^{2} g(x) d x=0 ; \quad \int_{-1}^{1}|g(x)|^{2} d x=1
$$

Homework Assignment

3. Suppose that M is a closed subspace of a Hilbert space H.
a) Show that $M=\left(M^{\perp}\right)^{\perp}$.
b) Is there a similar statement for subspaces M which are not necessarily closed?
4. Consider $C[0,1]$ with two different norms, $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ (recall $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$ and $\left.\|f\|_{\infty}=\sup _{0 \leq x \leq 1}|f(x)|\right)$. Show that $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ are not equivalent norms on $C[0,1]$.

Solution Hint: consider the functions $f_{n}(t)=t^{\frac{1}{n}}$ as $n \rightarrow \infty$.

Additional problem for self-study

5. Compute

$$
\min _{a, b, c \in \mathbf{R}} \int_{0}^{\infty}\left|x^{3}-a-b x-c x^{2}\right|^{2} \mathrm{e}^{-x} d x
$$

State and solve the corresponding maximum problem, as in Exercise 1.
6. Let L be a continuous linear functional on a Hilbert space H (i.e., $L \in H^{*}$). If $L \not \equiv 0$ and $M=\{x \in H: L x=0\}$, show that $\operatorname{dim} M^{\perp}=1$.

Solution Hint: Use Riesz representation theorem and the homework problem above on $\left(M^{\perp}\right)^{\perp}=M$
7. Let H be a Hilbert space, M a closed subspace of H and let $P: H \rightarrow M$ be the orthogonal projection onto M. Prove that P is bounded and calculate its norm. Observe that there are two cases, $M=\{0\}$ and $\operatorname{dim} M \geq 1$.

Solution $\|P\|=1$ it follows from Pythagoras theorem.
8. Let H be a Hilbert space and let $L \in H^{*}$. Show that there exists an $x \in H$, $\|x\|=1$ such that $|L(x)|=\|L\|$.

Solution Hint: Use Riesz representation theorem

