Workshop 2

October 28, 2014

1. Let $(X, \|\cdot\|)$ be a normed linear space and let $W \subset X$ be a proper linear subspace. Show that W is not open.

2. Consider the following subspace of the vector space of all infinite sequences of complex numbers:

$$X = lin\{e_n : n \in \mathbf{N}\}.$$

Here e_j denotes the element whose *j*th component is 1 and all other components are zero.

i) Describe the vectors in X in terms of their components.

ii) Note that one can consider X as a subspace of ℓ^{∞} or ℓ^2 . Show that in either case, X is not a closed subspace.

iii) As a subspace of ℓ^2 , what is the closure of X? As a subspace of ℓ^{∞} , what is the closure of X?

3. Let X = C[0, 1] and $W = \{f \in X : f(0) = 0\}$. With respect to $\|\cdot\|_{\infty}$, what is the closure of W? With respect to $\|\cdot\|_1$, what is the closure of W? Give reasons for your answers.

4. Homework assignment Consider the inner product space of continuously differentiable functions $C^{1}[0, 1]$ with the inner product

$$\langle f,g\rangle = \int_0^1 f(x)\overline{g(x)}\,dx + \int_0^1 f'(x)\overline{g'(x)}\,dx.$$

Show that $\langle f, \cosh \rangle = f(1) \sinh(1)$ for any $f \in C^1[0, 1]$ and use this to show that the subspace

$${f \in C^1[0,1] : f(1) = 0}$$

is a closed subspace of $C^{1}[0, 1]$.

Additional problems for self-study:

5. Consider the open unit ball $B = \{x : ||x|| < 1\}$ in a nls $(X, ||\cdot||)$. Show that the closure of B is

$$\{x \in X : \|x\| \le 1\}.$$

6. Let X be a normed linear space and Y a closed proper subspace. Prove that for all $\epsilon > 0$, there is an $x \in X$ with ||x|| = 1 and such that $||x - y|| \ge 1 - \epsilon$ for all $y \in Y$.

7. Suppose X is an infinite dimensional nls. Use exercise 6 to construct an infinite sequence of unit vectors, $\{x_j\}$, in X such that $||x_j - x_k|| \ge 1/2$ for all $j \ne k$ and from this, deduce that in any infinite dimensional normed linear spaces, the closed unit ball $\{x : ||x|| \le 1\}$ is not compact.