Workshop 1

September 23, 2014

1. Show that on $M_{n}(\mathbf{C})=(n \times n$ complex matrices $)$ the prescription $\langle A, B\rangle=$ trace $B^{*} A$ defines an inner product. Describe the corresponding norm.
2. For any $f \in C[0,1]$, show that

$$
\left|\int_{0}^{1} f(x) \sin (\pi x) d x\right| \leq \frac{1}{\sqrt{2}}\left[\int_{0}^{1}|f(x)|^{2} d x\right]^{1 / 2} .
$$

3. Let X be the vector space of complex polynomials.
a) Find the inner product on X which gives rise to the norm

$$
\|f\|=\left[\int_{-1}^{1}|x||f(x)|^{2}+3\left|f^{\prime}(x)\right|^{2} d x\right]^{1 / 2}
$$

b) Show that for any complex polynomial $f \in X$,

$$
\left.\left|\int_{-1}^{1}\right| x\right|^{3} f(x)+6 x f^{\prime}(x) d x \left\lvert\, \leq \frac{5}{\sqrt{3}}\left[\int_{-1}^{1}|x||f(x)|^{2}+3\left|f^{\prime}(x)\right|^{2} d x\right]^{1 / 2}\right.
$$

4. (Homework) Show that if x and y are two vectors in an inner product space such that $\|x+y\|=\|x\|+\|y\|$, then x and y are linearly dependent.
5. (Homework) Show the following version of polarization identity:

$$
\langle x, y\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\|x+\mathrm{e}^{i \theta} y\right\|^{2} \mathrm{e}^{i \theta} d \theta
$$

Additional problems for self-study

6. Show that the normed linear space $\left(C([0,1]),\|\cdot\|_{1}\right)$ does not satisfy the parallelogram law. Hence deduce that the norm $\|\cdot\|_{1}$ does not arise from an inner product.
7. Fix a positive integer N, put $\omega=\mathrm{e}^{2 \pi i / N}$, prove the orthogonality relations

$$
\frac{1}{N} \sum_{n=1}^{N} \omega^{n k}=1, \quad \text { if } \quad k=0, \quad \text { and } \quad \frac{1}{N} \sum_{n=1}^{N} \omega^{n k}=0, \quad \text { if } \quad 1 \leq k \leq N-1
$$

and use them to derive the identities

$$
\langle x, y\rangle=\frac{1}{N} \sum_{n=1}^{N}\left\|x+\omega^{n} y\right\|^{2} \omega^{n}
$$

which hold in any inner product space if $N \geq 3$.
8. By a trigonometric polynomial we mean a function of the form

$$
f(x)=\sum_{n=1}^{k} a_{n} e^{i \lambda_{n} x}
$$

for some positive integer k and some collection of complex coefficients $\left\{a_{n}\right\}$ and real frequencies $\left\{\lambda_{n}\right\}$. Let $T P$ denote the collection of all trigonometric polynomials ($T P$ forms a vector space with the usual vector addition and scalar multiplication of adding and scalar multiplying functions). Show that

$$
\langle f, g\rangle=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f(x) \overline{g(x)} d x
$$

defines an inner product on $T P$.
9. (For the ambitious) If $(X,\|\cdot\|)$ is a normed linear space for which the parallelogram law holds, show that the norm $\|\cdot\|$ arises from an inner product. (Hint: Try it first with real scalars and let the polarization identity guide you. First do additivity, then scalar multiplicativity.)

