Mock exam

10 December 2014

- 1. State the definition of inner product and give two examples of inner product space.
- 2. Write down the polarisation identity and prove it.
- 3. Prove Bessel's inequality.
- 4. Let X = C[0,1] and $W = \{f \in X : f(0) = 0\}$. With respect to $\|\cdot\|_{\infty}$, what is the closure of W? With respect to $\|\cdot\|_1$, what is the closure of W? Give reasons for your answers.
- 5. Consider the inner product space of continuously differentiable functions $C^{1}[0, 1]$ with the inner product

$$\langle f,g\rangle = \int_0^1 f(x)\overline{g(x)}\,dx + \int_0^1 f'(x)\overline{g'(x)}\,dx.$$

Show that $\langle f, \cosh \rangle = f(1) \sinh(1)$ for any $f \in C^1[0, 1]$ and use this to show that the subspace

$${f \in C^1[0,1] : f(1) = 0}$$

is a closed subspace of $C^1[0, 1]$.

- 6. Let $x = (x_1, x_2, x_3, x_4, ...)$ be an element of ℓ^2 . Define the left shit operator as $Sx = (x_2, x_3, x_4, ...)$. Find the adjoint of S.
- 7. Prove that ℓ^2 is complete.
- 8. Give an example of self-adjoint operator on $L^2(0, 1)$.
- 9. Is a finite rank operator compact? Justify your answer.
- 10. Define $T \in \mathcal{L}(L^2[0,1])$ by

$$Tf(x) = \int_0^1 K(x, y) f(y) dy$$
 when $f \in C[0, 1]$.

When

$$K(x,y) = \begin{cases} 1, & \text{if } 0 \le y \le x \le 1; \\ 0, & \text{if } 0 \le x < y \le 1, \end{cases}$$

show that T has no eigenvalues.

- 11. Let *H* be the Hilbert space of 2π periodic functions with equipped with the inner product $\langle f, g \rangle = \int_0^{2\pi} f(x) \overline{g(x)} dx$. Consider the shift operator $T_s f(x) = f(x+s)$ where s > 0. Is T_s Hilbert-Schmidt operator? Justify your answer.
- 12. Let H be a Hilbert space and $A : H \to H$ linear self-adjoint operator defined for any $x \in H$. Show that A is continuous. [Hint: Use Banach-Steinhaus theorem.]
- 13. Let H be a Hilbert space, M a closed subspace of H and let $P: H \to M$ be the orthogonal projection onto M.
 - a) Show that P is self-adjoint.
 - b) Show that P is compact if and only if M is finite dimensiona
- 14. Let $\phi \in \mathcal{D}(\mathbf{R})$ and assume that $\phi(0) = \phi'(0) = \cdots = \phi^{(k)}(0)$. Show that there is $\psi \in \mathcal{D}(\mathbf{R})$ with $\phi(x) = x^{k+1}\psi(x)$.
- 15. Find all $f \in \mathcal{D}'(\mathbf{R})$ with xf(x) = 1.
- 16. Compute the limit $\lim_{t\to\infty} \frac{\sin tx}{x}$ in $\mathcal{D}'(\mathbf{R})$.
- 17. Compute in $\mathcal{D}'(\mathbf{R}^2 \setminus \{(0,0)\})$:

$$\lim_{t \to \infty} t \sin(t|x^2 + y^2 - 1|)$$

Does this limit exist in $\mathcal{D}'(\mathbf{R}^2)$?