Homework 5

November 11, 2014

(due on Tuesday November 18, 2.10pm, before class starts):

1. The principal value of $\frac{1}{x}$ is defined as

$$
P \frac{1}{x}(\phi)=\lim _{\epsilon \rightarrow 0} \int_{|x| \geq \epsilon} \frac{\phi(x)}{x} d x .
$$

- Show that $P \frac{1}{x}$ defines a distribution
- Represent $P \frac{1}{x}(\phi)$ as a double integral.
- Find the primitive of $P \frac{1}{x}$ in the sense of distributions.

2. Let f be a function on \mathbb{R} which is zero for $x<0$, continuous for $x>0$ and assume that $\int_{0}^{1} x|f(x)| d x<\infty$. Show that f represents a distribution of order at most 1 .
