Homework 4

October 27, 2014

(due on Tuesday November 4, 2.10pm, before class starts):

1. Let $L: C[0,1] \rightarrow \mathbf{C}$ denote the linear functional defined by

$$
L(f)=f(0) .
$$

a) Show $L \in\left(C[0,1],\|\cdot\|_{\infty}\right)^{*}$.
b) Show $L \notin\left(C[0,1],\|\cdot\|_{2}\right)^{*}$.

Solution: We check that L is bounded as an operator with domain $\left(C[0,1],\|\cdot\|_{\infty}\right)$. Indeed,

$$
\|L\|=\sup _{\|f\|_{\infty} \leq 1}|L f|=\sup _{\|f\|_{\infty} \leq 1}|f(0)| \leq \sup _{\|f\|_{\infty} \leq 1}\|f\|_{\infty}=1
$$

It follows that $\|L\| \leq 1$.
On the other hand if we consider $\left(C[0,1],\|\cdot\|_{2}\right)$ we want to show that L is unbounded. Consider functions that are $f_{n}(x)=A_{n}(1 / n-x)$ on $[0,1 / n]$ and 0 elsewhere. Such functions are continuous with norm

$$
\left\|f_{n}\right\|_{2}^{2}=A_{n}^{2} \int_{0}^{1 / n}(x-1 / n)^{2} d x=A_{n} /\left(3 n^{3}\right)
$$

Choose $A_{n}=3 n^{3}$, then $\left\|f_{n}\right\|_{2}=1$. If follows that

$$
\|L\|=\sup _{\|f\|_{2} \leq 1}|L f|=\sup _{\|f\|_{2} \leq 1}|f(0)| \geq\left|f_{n}(0)\right|=3 n^{3} / n^{2}=3 n .
$$

As n can be taken arbitrary large it follows that $\|L\|=\infty$, hence L is an unbounded operator.

2 Let H be a Hilbert space and $A: H \rightarrow H$ linear self-adjoint operator defined for any $x \in H$. Show that A is continuous. [Hint:] Use Banach-Steinhaus theorem.

Solution: We have for all $x \in H,\|x\| \leq 1$

$$
|\langle A x, y\rangle|=|\langle x, A y\rangle| \leq\|A y\| .
$$

and for all $y \in H$. From Riesz representation theorem we have that for all $x \in H,\|x\| \leq$ 1 we have $|L(A x)| \leq C(L)$ for any $L \in H^{*}$ with some constant $C(L)$ depending only on L. Thus from Banach-Steinhaus theorem A^{*} is bounded, but A is self-adjoint hence A is bounded and, in addition, continuous.

