Homework 2

October 27, 2014

Homework assignment 2 (due on Friday 03/10, 2.10pm, before class starts):

1) Consider the inner product space of continuously differentiable functions $C^{1}[0,1]$ with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x+\int_{0}^{1} f^{\prime}(x) \overline{g^{\prime}(x)} d x
$$

Show that $\langle f, \cosh \rangle=f(1) \sinh (1)$ for any $f \in C^{1}[0,1]$ and use this to show that the subspace

$$
\left\{f \in C^{1}[0,1]: f(1)=0\right\}
$$

is a closed subspace of $C^{1}[0,1]$.
Solution: Integration by parts shows that $\int_{0}^{1} f^{\prime}(x) \sinh (x) d x=-\int_{0}^{1} f(x) \cosh (x) d x+$ $f(1) \sinh (1)$ and hence $\langle f, \cosh \rangle=f(1) \sinh (1)$. Now consider a sequence $\left\{f_{n}\right\} \subset W=$ $\left\{f \in C^{1}[0,1]: f(1)=0\right\}$, that is, $f_{n}(1)=0$ for all n and suppose that $f_{n} \rightarrow f$ in $C^{1}[0,1]$. Then by the Cauchy-Schwarz inequality

$$
\left|\left\langle f_{n}, \cosh \right\rangle-\langle f, \cosh \rangle\right|=\left|\left\langle f_{n}-f, \cosh \right\rangle\right| \leq\left\|f_{n}-f\right\|\|\cosh \|
$$

which tends to zero as $n \rightarrow \infty$. But $\left\langle f_{n}, \cosh \right\rangle=f_{n}(1) \sinh (1)=0$ for all n. Hence $\langle f, \cosh \rangle=f(1) \sinh (1)=0$ and therefore $f \in W$ showing that W is closed.
2) Let $(X,\|\cdot\|)$ be a n.l.s and $\left\{x_{n}\right\}$ a sequence in X such that

$$
\sum_{i=1}^{\infty}\left\|x_{n+1}-x_{n}\right\|<\infty
$$

Prove that $\left\{x_{n}\right\}$ is Cauchy sequence. Is the converse statement true?
Solution: For $n>m$ consider

$$
\left\|x_{n}-x_{m}\right\|=\left\|x_{n}-x_{n-1}+x_{n-1}-x_{n-2}+\cdots+x_{m+1}-x_{m}\right\|
$$

and after applying triangle inequality successively we get

$$
\left\|x_{n}-x_{m}\right\| \leq \sum_{i=m-1}^{n-1}\left\|x_{i+1}-x_{i}\right\| \rightarrow 0
$$

as $m, n \rightarrow \infty$. Converse statement is not true, for instance take $x_{n}=\sum_{i=0}^{n} \frac{(-1)^{i}}{i}$, i.e. partial sums of alternating series (hence convergent). We see that $\sum_{i=1}^{\infty}\left\|x_{n+1}-x_{n}\right\|=$ $\sum_{i=1}^{\infty} \frac{1}{i}=\infty$. Then we have that $x_{i} \rightarrow 0$ but $\sum_{i=1}^{\infty} \mid x_{i}-$
3) Let $\left(C[0,1],\|\cdot\|_{2}\right)$ be the n.l.s. with $\|\cdot\|_{2}$ norm. For $x \in C[0,1]$ define

$$
\|x\|=\left(\int_{0}^{1} v(t)[x(t)]^{2} d t\right)^{\frac{1}{2}}
$$

where $v(t)$ is continuous on $[0,1]$ and $v(t) \geq \frac{1}{\sqrt{2}}$. Prove that $\|\cdot\|$ is equivalent to $\|\cdot\|_{2}$. Solution: Let $M=\max _{t \in[0,1]} v(t)$ (this is achieved because v is continuous on $[0,1]$). Thus we have

$$
\frac{1}{\sqrt[4]{2}}\left(\int_{0}^{1}[x(t)]^{2} d t\right)^{\frac{1}{2}} \leq\left(\int_{0}^{1} v(t)[x(t)]^{2} d t\right)^{\frac{1}{2}} \leq \sqrt{M}\left(\int_{0}^{1}[x(t)]^{2} d t\right)^{\frac{1}{2}}
$$

and the proof follows.

