Homework 1

October 27, 2014
4. (Homework) Show that if x and y are two vectors in an inner product space such that $\|x+y\|=\|x\|+\|y\|$, then x and y are linearly dependent.
Solution: We square the equality. We get that

$$
\|x+y\|^{2}=\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2} .
$$

Expanding left-hand side as an inner product $\langle x+y, x+y\rangle$ we get that

$$
\langle x, y\rangle+\langle y, x\rangle=2\|x\|\|y\| .
$$

The left-hand side is equal to $2 \operatorname{Re}\langle x, y\rangle \leq 2|\langle x, y\rangle|$. Hence it follows that $\|x\|\|y\| \leq$ $|\langle x, y\rangle|$ which is a reverse of Cauchy-Schwartz inequality. We conclude that equality must hold (so that Cauchy-Schwartz is not violated). But we know that equality in Cauchy-Schwartz inequality only if the vectors are linearly dependent.
5. (Homework) Show the following version of polarization identity:

$$
\langle x, y\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\|x+\mathrm{e}^{i \theta} y\right\|^{2} \mathrm{e}^{i \theta} d \theta .
$$

Solution:

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\|x+\mathrm{e}^{i \theta} y\right\|^{2} \mathrm{e}^{i \theta} d \theta=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[\langle x, x\rangle \mathrm{e}^{i \theta}+\langle y, y\rangle \mathrm{e}^{i \theta} \mathrm{e}^{-i \theta}+\langle y, x\rangle \mathrm{e}^{2 i \theta}+\langle x, y\rangle\right] d \theta=\langle x, y\rangle .
$$

