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Abstract—A mathematical formulation for the islanding of
power networks is presented. Given an area of uncertainty in
the network, the proposed approach uses mixed integer linear
programming to isolate unhealthy components of the network
and create islands, while maximizing load supply. Rather than
disconnecting transmission lines, the new method splits the
network at its nodes, which are modelled as busbars with switches
between lines, generators and loads. DC power flow equationsand
network constraints are explicitly included in the MILP pro blem,
resulting in balanced, steady-state feasible islands. Numerical
simulations on the IEEE 14-bus test network demonstrate the
effectiveness of the approach.

I. I NTRODUCTION

In recent years, there has been a number of occurrences of
wide-area blackouts of power networks. For example, 2003
saw separate blackouts in Italy [1], Sweden/Denmark [2] and
USA/Canada [3], affecting millions of customers. The wide-
area disturbance in 2006 to the UCTE system caused the sys-
tem to split in an uncontrollable way [4], forming three islands.
While the exact causes of wide-area blackouts differ from case
to case, some common driving factors emerge. Modern power
systems are being operated closer to limits; liberalization of the
markets, and the subsequent increased commercial pressures,
has led to a reduction in security margins [5]–[7]. A more
recently occurring factor is increased penetration of variable
distributed generation, notably from wind power, which brings
significant challenges to secure system operation [8].

For several large disturbance events, studies have shown that
wide-area blackout could have been prevented by intentionally
splitting the system into islands [9]. By isolating the faulty
part of the network, the total load disconnected in the event
of a cascading failure is reduced.Controlled islanding or
system splitting is therefore attracting an increasing amount of
attention. The problem is how to efficiently split the network
into ‘viable’ islands. Motives for splitting range from islands
balanced in load and generation to electro-mechanically stable
islands. For example, Sun et al. [10] use ordered binary deci-
sion diagrams (OBDDs) to determine sets of balanced islands,
while several authors propose that islands be formed around
coherent [11]–[13] or controlling [14] groups of generators.

Regardless of motive, splitting is a considerable challenge,
since the search space of line cutsets grows combinatorially
with network size, and is exacerbated by the requirement
for strategies that obey non-linear power flow equations and

satisfy operating constraints. Approaches include exhaustive
search [11], minimal-flow minimal-cutset determination using
breadth-/depth-first search [12], heuristic methods [14],graph
simplification and partitioning [10], [13], and power flow
tracing [15].

In a recent paper [16], we proposed an optimization-based
approach to system islanding and load shedding. Given some
uncertain or unhealthy parts of the network, the aim is to
isolate—by cutting lines—these parts of the network while
minimizing the load shed or at risk. An advantage of this
approach is that islanding is in response to specific contin-
gencies, rather than along pre-determined boundaries, so the
island containing the impacted area need not be too large. In
common with the optimal transmission switching technique of
Fisher et el. [17], binary variables represent switches that open
or close each line. Solving a MILP optimization determines
the optimal set of lines to cut and which loads to shed. Thus,
optimal islanding may be viewed as an extension of optimal
transmission switching or network topology optimization [18].
Any islands created are balanced, and satisfy DC power flow
equations and operating constraints.

In this paper, we propose a newbus splittingapproach to
system islanding. The premise for islanding is the same as that
outlined above and in [16]. When partitioning the network,
however, we may either disconnect lines or divide thenodes
of the network by opening switches between busbars. In the
latter case, we switch network components—generators, loads
and lines—between busbars to obtain an optimal configuration.
Busbar switching or splitting as a method of transmission
switching has been proposed before, but always in the context
of corrective control of flows [19], [20] or voltages [21]. The
advantages of bus switching are significant; being an opera-
tional action, it can be executed quickly and re-route flows
in a short time, with minimal disturbances, while incurring
no extra economic cost [21]. In terms of islanding, allowing
system splitting via the nodes enlarges the set of feasible
islanding solutions. We show that by splitting the network
in this way, less load may be required to be shed or lost.
Furthermore, although the search space grows combinatorially
with the number of extra binary decision variables, we propose
cuts and constraints that reduce symmetry, thus shortening
computation time.

The organization of this paper is as follows. The next section



outlines the motivation and assumptions that underpin the ap-
proach. The islanding formulation is developed in Section III,
and extra symmetry-breaking constraints and cuts are proposed
in Section IV. In Section V, preliminary numerical simulations
are presented. Finally, conclusions are drawn in Section VI.

II. M OTIVATION

Following some failure, we assume that limited information
is available about the network and its exact state is uncertain;
there are parts of the network that are suspected of having a
fault and some where we are reasonably sure have no faults.
We assume that in such a case, a robust solution to prevent
cascading failures is to isolate the uncertain part of the network
from the certain part, by forming one or more stable islands.
Fig. 1(a) depicts such a situation for a fictional network;
uncertain lines and buses are indicated.

?
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?
?
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Fig. 1. (a) Fictional network with an uncertain bus, and (b) the islanding of
that network by splitting buses and disconnecting lines.

Our aim is to split the network into disconnected sections
so that the possible faults are all in one section. It is desirable
that this section be small, since it may be prone to failure,
and that the other section is able to operate with little load
shedding. We would also like the problem section to shed as
little load as possible. Fig. 1(b) shows a possible islanding
solution for this network, where all uncertain buses have been
placed in a section0 by splitting nearby buses, and uncertain
lines with an end in section1 have been cut. We make the
following distinction betweensectionsand islands.

• The optimized network consists of two sections, an
“unhealthy” section0 and a “healthy” section1. No lines
connect the two sections. On the other hand, neither
section is required to be a single, connected component.

• An island is a connected component of the network.

Thus, either section may contain a number of islands, as
in fig. 1(b), where section1 comprises islands1, 3 and 4,
while section0 is a single island. Islands are formed by a
combination of splitting buses and disconnecting lines. The

boundaries of sections and the number of islands formed will
depend on the optimization.

We will assume that generator outputs and load levels imme-
diately after the initial fault are known. We have central control
of generation, load shedding and switches and breakers; we
may instantaneously reduce the demand and open or close
switches and breakers. Furthermore, we assume that we have a
certain degree of control over a generator’s output. We require
that after the adjustments the system is a feasible equilibrium.

III. MILP FORMULATION

This section describes the islanding formulation. The ar-
rangement of the busbars at a bus is first described, and
constraints are developed to switch between configurationsand
direct the power flows. Operating constraints and sectioning
constraints that split the network to isolate the unhealthyparts
are subsequently presented.

Consider a network that comprises a set of busesB =
{1, 2, . . . , nB} and a set of linesL = {1, 2, . . . , nL}. The
vectors F and T describe the connection topology of the
network: a linel ∈ L connects busFl to Tl. We assume there
also exists a set of generatorsG = {1, 2, . . . , nG} and a set of
loadsD = {1, 2, . . . , nD}. The setsBG andBD, indexed by
(b, g) and (b, d) respectively, describe the sets of generators
and demands connected to each bus.

A. Connection and flow constraints

1) Busbar connections:The bus configuration is shown in
fig. 2 and described as follows. Each busb ∈ B is assumed
to comprise two busbars. A switchηB

b ∈ {0, 1} connects
or disconnects the two busbars;ηB

b = 1 means that the
switch is closed and the busbars are connected. Connected
components—lines, generators and loads—are shown also;
each may be connected to either of the busbars by means
of further switches.

δB
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∼
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Fig. 2. Busbar configuration for busb, and notation.

With each busbar is associated a voltage phase angle, thus
δB
b,1 andδB

b,2. If the interconnecting switch is closed then these
must be equal; otherwise they may differ.

−∆+(1 − ηB
b ) ≤ δB

b,1 − δB
b,2 ≤ ∆+(1 − ηB

b ), ∀b ∈ B, (1)



where ∆+ is a sufficiently large number. In addition, real
power may flow between the two busbars only if the con-
necting switch is closed.

−P B+ηB
b ≤ pB

b ≤ P B+ηB
b , ∀b ∈ B. (2)

where P B+ is a sufficiently large number. A positivepB
b

represents a real power flow from busbar1 to busbar2.
2) Generator and load connections to busbars:We assume

that any single generatorg ∈ G or single loadd ∈ D
is connected to only one bus. Then, for connecting these
components to one of the two busbars via the switches shown,
we introduce binary variablesηG

g andηD
d for eachg ∈ G and

d ∈ D. If ηG
g = 1 (ηD

d = 1) then generatorg (load d) is
connected to busbar1 at its busb, and otherwise it is connected
to busbar2.

Now consider the power flows to and from busbars. The
output pG

g of generatorg ∈ G is the sum of the individual
flows onto busbars1 and 2, of which only one can be non-
zero. Suppose the maximum possible real power output of a
generatorg ∈ G, after islanding, isP G+

g . Then, for allg ∈ G,

0 ≤ pG
g,1 ≤ P G+

g ηG
g , (3a)

0 ≤ pG
g,2 ≤ P G+

g (1 − ηG
g ) (3b)

pG
g = pG

g,1 + pG
g,2. (3c)

wherepG
g,1 is the flow on to busbar1 of the bus andpG

g,2 is
the flow on to busbar2.

Demands are similarly treated. For a loadd ∈ D with real
power demandP D

d supplied withpD
d ≤ P D

d ,

0 ≤ pD
d,1 ≤ P D

d ηD
d , (4a)

0 ≤ pD
d,2 ≤ P D

d (1 − ηD
d ), (4b)

pD
d = pD

d,1 + pD
d,2. (4c)

3) Line connections to busbars:At each end of a line, a
switch exists at the bus to connect the line to one of the two
busbars. This requires two binary variables for each line, one
for each end. A third binary variable,ρl, is used to break the
line completely, if desired. The arrangement is shown in fig.3.
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Fig. 3. Line between busesFl andTl. The switches at each end (controlled by
ηL

l,1
andηL

l,2
) connect the line to one of two busbars. The line disconnection

switch, controlled byρl, allows the line to be broken.

Supposing we denote the ‘from’ end (busFl) as1 and the
‘to’ end (busTl) as2, a line l has two binary variables,ηL

l,1

andηL
l,2. A positive power flow through the line corresponds

to a flow from busFl to busTl. At each end, the real power

flow is the sum of the real power flows from/to each busbar,
as was done for the generators, and is limited byP L+

l , the
maximum possible real power flow through the line. Power
flow switching constraints at each ende ∈ {1, 2} of the line
l ∈ L are then

−P L+
l ηL

l,e ≤ pL
l,e,1 ≤ P L+

l ηL
l,e, (5a)

−P L+
l (1 − ηL

l,e) ≤ pL
l,e,2 ≤ P L+

l (1 − ηL
l,e), (5b)

pL
l = pL

l,e,1 + pL
l,e,2. (5c)

The real power flow through the line depends on the phase
angle difference across it. We have the phase angle at each of
the busbars—δB

b,1 and δB
b,2 for a busb—but the phase angle

that the line will adopt depends on the switchηL
l,e. Thus, define

line-end phase anglesδL
l,e, with e ∈ {1, 2}, for a line l. Then

these line-end phase angles are connected to bus phase angles
by the constraints.

−∆+(1 − ηL
l,1) ≤ δL

l,1 − δB
Fl,1 ≤ ∆+(1 − ηL

l,1), (6a)

−∆+ηL
l,1 ≤ δL

l,1 − δB
Fl,2 ≤ ∆+ηL

l,1, (6b)

−∆+(1 − ηL
l,2) ≤ δL

l,2 − δB
Tl,1

≤ ∆+(1 − ηL
l,2), (6c)

−∆+ηL
l,2 ≤ δL

l,2 − δB
Tl,2

≤ ∆+ηL
l,2. (6d)

That is, if at the ‘from’ end (e = 1) the switchηL
l,e = 1 then

δL
l,e will be equal to theδB

Fl,1
of busbar1; otherwise,δL

l,e is
equal to theδB

Fl,2
of busbar2. The same constraints are applied

at the ‘to’ end (e = 2), which is connected to busTl.
4) DC power flow—Kirchhoff ’s voltage law:When a line

l is connected, Kirchhoff’s voltage law (KVL) demands that
a flow of real power is established depending only on the
difference in phase angle across the line. However, we may not
equatepL

l directly to this flow, since if a line is disconnected
by the optimization, zero power will flow through that line. In
this case, we must allow different phase angles at each end of
the line. To achieve this, the KVL expression is equated to a
variablep̂L

l .

p̂L
l =

−BL
l

τl

(

δL
l,1 − δL

l,2

)

. (7)

where constantsBL
l , τl are, respectively, the susceptance and

off-nominal turns ratio of linel. Then, when linel is connected
we will set pL

l = p̂L
l , and whenl is disconnectedpL

l = 0. We
model this as follows.

Assume the maximum possible magnitude of real power
flow through a linel is P L+

l . Then

−ρlP
L+
l ≤ pL

l ≤ P L+
l ρl, (8a)

−(1 − ρl)P̂
L+
l ≤ p̂L

l − pL
l ≤ P̂ L+

l (1 − ρl). (8b)

When the sectioning constraints set a particularρl = 0, then
pL

l = 0 but p̂L
l may take whatever value is necessary to

satisfy the KVL constraint (7). Conversely, ifρl = 1 then
pL

l = p̂L
l . Note that at the very minimum̂P L+

l ≥ P L+
l , but

these limits should be of large enough to allow two buses
across a disconnected line to maintain sufficiently different
phase angles.



5) Kirchhoff ’s current law:All flows must balance at each
busbar. For allb ∈ B, i ∈ {1, 2}:

∑

(b,g)∈BG

pG
g,i =

∑

(b,d)∈BD

pD
d,i +

∑

l∈L:Fl=b

pL
l,1,i

−
∑

l∈L:Tl=b

pL
l,2,i − (−1)ipB

b . (9)

The final term is the busbar-to-busbar flowpB
b , a positive value

of which flows from busbari = 1 to busbari = 2 of busb.

B. Operating constraints

1) Generator outputs:In situations where there is a need
to react quickly to an unplanned contingency, to prevent
cascading failures the time available to island the networkand
adjust loads and generators will be short. Therefore, we must
assume that full re-scheduling of generators and/or the addition
of new units to the network will not be possible. On the other
hand, a certain amount of spinning reserve will be available
in the network for small-scale changes. For any unit, we will
assume that a new set-point, close to the current operating
point, may be commanded. This set-point should be reachable
within a short time period, and also must not violate limits.
In practice, fast governor action will quickly raise/lowerreal
power output to the new set-point, before the spinning reserve
takes over.

A further assumption we make is that a generator obeys a
binary regime: either it operates near its previous real power
output, or it may have its output switched to zero. That is,

pG
g ∈

[

P G−
g , P G+

g

]

∪ {0}.

This latter case models the removal of the source of me-
chanical input power; it is assumed that electrical power will
fall to zero within the time-frame of islanding. Although the
switched-off generating unit contributes no power in steady
state to the network, it remains electrically connected to the
network.

To model this disjoint set constraint, we introduce a binary
variableζd ∈ {0, 1} for each generator.

ζgP
G−
g ≤ pG

g ≤ ζgP
G+
g , (10)

for all g ∈ G. If ζg = 0 then generatorg is switched off;
otherwise it outputspG

g ∈
[

P G−
g , P G+

g

]

. We may protect any
generatorg from switch-off by assigning it to a setG1 ⊆ G
and including the constraint

ζg = 1, ∀g ∈ G1. (11)

2) Load shedding:Following separation of the network into
islands, and given the limits on generator power outputs, it
follows that it may not be possible to fully supply all loads.
However, the optimization is to determine a feasible steady-
state for the islanded network, and thus it is necessary to
permit some shedding of loads.

Suppose that a loadd ∈ D has a constant real power demand
P D

d . We assume this load may be reduced by disconnecting a
proportion1 − αd. For all d ∈ D:

pD
d = αdP

D
d , (12)

where0 ≤ αd ≤ 1. In determining a feasible islanded network,
it is in our interests to promote full load supply, and so load
shedding is minimized in the objective function.

3) Line limits: Line limits P L+
l may be expressed either

directly as MW ratings on real power for each line, using (8),
or as a limit on the phase angle difference across a line. Since
in the model the real power through a line is just a simple
scaling of the phase difference across it, then any phase angle
limit may be expressed as a corresponding MW limit.

C. Sectioning constraints

We aim to allocate buses and lines into the two sections
0 and 1. We suspect that some subsetB0 ⊆ B of buses and
some subsetL0 ⊆ L of lines have a possible fault. These
subsets thus contain all “uncertain” buses and lines, whilethe
remainder of buses/lines are defined as “certain”. It is the
uncertain components that we wish to confine to section0.
The constraints developed in the sequel achieve this by forcing
busbar splits and line disconnections.

1) Bus assignment:In [16], we introduced a binary decision
variable γb for each busb ∈ B; γb is set equal to0 if b
is placed in section0 and γb = 1 otherwise. With the bus-
splitting formulation, we may now place the two busbars at a
bus in different sections, thus we define two binary variables
for each bus,γB

b,1 andγB
b,2.

Constraints (13) set the values ofγB
b,i for a busb depending

on what section that bus was assigned to. We defineB1 to be
the set of buses that are desired to remain in section1. It may
be that we wish to exclude buses from the “unhealthy” section,
and such an assignment will in general reduce computation
time. If any bus is assigned to the setsB0 or B1 then both
busbars at that bus will lie in the same section.

γB
b,i = 0, ∀i ∈ {1, 2}, b ∈ B0, (13a)

γB
b,i = 1, ∀i ∈ {1, 2}, b ∈ B1. (13b)

Constraints (14) apply to all buses not assigned toB0 or B1,
and state that if the two busbars at a busb are placed in
different sections then the interconnection between them must
be opened. For allb ∈ B \ (B0 ∪ B1),

ηB
b ≤ 1 + γB

b,1 − γB
b,2, (14a)

ηB
b ≤ 1 − γB

b,1 + γB
b,2. (14b)

2) Line disconnection:We must disconnect a linel (by
setting ρl = 0) if its two ends lie in different sections.
However, an end of a linel may be switched between the
two busbars, as we saw in the previous section. Thus, define
variablesγL

l,e ∈ {0, 1}, for the ‘from’ and ‘to’ ends,e ∈ {1, 2},
of each linel ∈ L, such that

γL
l,1 ⇔ ηL

l,1γ
B
Fl,1

+ ηL
l,1γ

B
Fl,2

,

γL
l,2 ⇔ ηL

l,2γ
B
Tl,1 + ηL

l,2γ
B
Tl,2.



where the over-bar denotes logical ‘not’. These may be re-
formulated as the following linear constraints

γB
b,1 + ηL

l,e − 1 ≤ γL
l,e ≤ 1 + γB

b,1 − ηL
l,e, (15a)

γB
b,2 − ηL

l,e ≤ γL
l,e ≤ γB

b,2 + ηL
l,e, (15b)

for all e ∈ {1, 2}, l ∈ L, and whereb = Fl if e = 1 andb = Tl

if e = 2. These constraints forceγL
l,e at ende of line l to take

on the value of eitherγB
b,1 or γB

b,2 depending on whetherηL
l,e

is 1 or 0.
Subsequently, lines are disconnected in the following way.

Any line l not assigned toL0 is disconnected if its two ends
lie in different sections, as indicated by non-equal valuesof
γL

l,1 andγL
l,2. For all l ∈ L\L0,

ρl ≤ 1 + γL
l,1 − γL

l,2, (16a)

ρl ≤ 1 − γL
l,1 + γL

l,2. (16b)

Secondly, any line assigned toL0 is disconnected if at least
one of its ends is in section1. For all l ∈ L0,

ρl ≤ 1 − γL
l,1, (17a)

ρl ≤ 1 − γL
l,2. (17b)

Aside from constraints (16) and (17), the decision of
whether to cut a line that lies wholly within a section is
free. Although research has shown that disconnecting lines
in an intact network can lower generation cost or increase
load supply [17], line disconnections in addition to those
necessary to create islands may be undesirable in terms of
security. However, we may not simply limit the total number
of disconnections, since we do not know,a priori, how many
line cuts are required to create islands. Instead, the following
constraints, when included, prohibit the disconnection ofany
line not assigned toL0, and whose both ends lie within the
same section.

ρl ≥ 1 − γL
l,1 − γL

l,2, (18a)

ρl ≥ −1 + γL
l,1 + γL

l,2, (18b)

for all l ∈ L\L0. Alternatively, the number of such disconnec-
tions may be limited to within some numberncuts. Introduce
a binary variableρX

l for each linel. Then (18) is modified to

ρl + ρX
l ≥ 1 − γL

l,1 − γL
l,2, (19a)

ρl + ρX
l ≥ −1 + γL

l,1 + γL
l,2, (19b)

for all l ∈ L\L0, and with the additional constraint
∑

l∈L\L0

ρX
l ≤ ncuts. (19c)

3) Load placement:A load will be placed in either section
0 or section1 depending on the placement of the busbar to
which it is connected. In a way similar to the line sectioning
approach, we define variablesγD

d ∈ {0, 1} for eachd ∈ D,

whose value will be equal to the value ofγB
b,i if the load is

connected to busbari of busb. For all (b, d) ∈ BD,

γB
b,1 + ηD

d − 1 ≤ γD
d ≤ 1 + γB

b,1 − ηD
d , (20a)

γB
b,2 − ηD

d ≤ γD
d ≤ γB

b,2 + ηD
d . (20b)

The value ofγD
d will be used in the definition of the objective.

D. Objective function

The overall objective of islanding is to minimize the risk
of system failure. In our motivation we assumed that there is
some uncertainty associated with a particular subset of buses
and/or lines; we suspect there may be a fault and so we wish
to isolate these components from the rest of the network.

Suppose we associate a rewardMd per unit supply of load
d. In islanding the uncertain components, we wish to maximize
the total value of supplied load. However, in placingany load
in section0, we assume a risk of not being able to supply
power to that load, since that section contains “unhealthy”
components and may fail. Accordingly, we introduce a load
loss penalty0 ≤ βd < 1, which may be interpreted as the
probability of being able to supply a loadd if placed in
section 0. If d is placed in section1 we realize a reward
Md per unit supply, but ifd is placed in section0, with the
uncertain components, we realize a reward ofβdMd < Md.
The objective is to maximize the expected load supplied,J∗:

J∗ = max
∑

d∈D

MdPd

(

βdα0d + α1d

)

. (21)

where,

αd = α0d + α1d, (22a)

0 ≤ α1d ≤ γD
d , (22b)

Here we have introduced a new variableαsd ≥ 0 for the load
d delivered in sections ∈ {0, 1}. If γD

d = 0, and the loadd
is in section0, thenα1d = 0, α0d = αd; otherwise, because
βd < 1, α0d = 0 andα1d = αd. Thusα0d andα1d may not
be simultaneously non-zero.

Remark 1:While the sectioning constraints force the values
of certain binary variables, it may be desirable encourage other
binary variables to take on integer values in the LP relaxations
of the problem. To do so will also discourage the unnecessary
disconnection of switches and breakers. For example, we may
wish to discourage the cutting of lines in the healthy part ofthe
network, which we may do so by subtracting a small penalty
from the objective for zero values ofρl:

ǫ1
∑

l∈L\L0

1 − ρl (23)

As another example, it may be desirable to penalize the
switching-off of generators in the objective by penalizingzero
values ofζg

ǫ2
∑

g∈G

Wg(1 − ζg), (24)

where Wg is some weight. A uniform weight,e.g., Wg =
1, ∀g, will encourage large generators to switch off, rather than



several small units, for any given decrease in total generation.
Generation disconnection can be more evenly penalized by
instead settingWg equal to the generator’s capacityP G+

g .

E. Overall formulation

The overall formulation for islanding by bus splitting is to
maximize (21) subject to (1)–(17), and (18) or (19).

IV. CUTS AND SYMMETRY-BREAKING CONSTRAINTS

Redundancy is inherent in the network as modelled, since
similar bus configurations can be represented by different
binary variable settings. For example, a bus with all binary
switches for connected components set to1 is equivalent to
one with all set to0. Such redundancy is likely to add to
computation time, and therefore it is desirable, where possible,
to include additional constraints that break the symmetry of
problems.

The next constraint eliminates the example case just de-
scribed. We hard-set one of the component switches at every
bus, so that all other switches at the bus are set relative to
this. The only component sure to be present at each bus is a
line. DefineBLE ⊂ B × L × {1, 2} as the set that lists, for
each bus, a single line connected to that bus and which end
(1 or 2) is incident. Then, without loss of generality, we can
connect that line end to busbar1 of busb.

ηL
l,e = 1, ∀(b, l, e) ∈ BLE. (25)

Simulations show that this constraint can significantly reduce
computation time.

Next, manipulation of the logical relations that gave rise to
constraints (15) yields the constraints

0 ≤ γB
b,1 + γB

b,2 − γL
l,e ≤ 1, (26)

for all l ∈ L, at each ende ∈ {1, 2}, and whereb = Fl if
e = 1 and b = Tl if e = 2. Similarly, the constraint (20) is
complemented by

0 ≤ γB
b,1 + γB

b,2 − γD
d ≤ 1, (27)

for all (b, d) ∈ BD. It is simple to show these constraints
are facets of the convex relaxation of the set of feasible
(γB

b,1, γ
B
b,2, η

L
l,e, γ

L
l,e) and (γB

b,1, γ
B
b,2, η

D
d , γD

d ) respectively. In-
vestigation of all facets for these constraints found no further
facets other than the trivial (e.g.0 ≤ γB

b,1 ≤ 1).
Finally, consideration of the generation capability in the

network allows an upper bound on the objective, the expected
load supplied, to be derived. The best possible solution forany
network will have each generator operating at its maximum
output. Any unit attached to a busb ∈ B0 will be confined
to supplying loads in section0, while all others could supply
loads in section1. This implies the constraint

∑

d∈D

Pd

(

βdα0d + α1d

)

≤
∑

(b,g)∈BG:b/∈B0

P G+
g

+ max
d∈D

{βd}
∑

(b,g)∈BG:b∈B0

P G+
g

(28)

This constraint cuts off no feasible integer solutions. While
apparently trivial, tests show that its inclusion can for some
problems offer a significantly lower best upper bound than that
deduced by the solver during the MILP solution process.

Further constraints that attempt to eliminate redundancy are
possible, but may just add to the size of the MILP problem.
Simulations have shown that the constraints presented here
have the most profound effect on reducing computation time.
It may be helpful to include additional small terms in the
objective—in the way outlined in Remark 1—to encourage
binary variables to take binary variables in the solution ofthe
LP relaxation.

V. NUMERICAL SIMULATIONS

This section presents preliminary simulation results using
the new formulation. Comparisons with the line-cutting ap-
proach of [16] show that the bus-splitting approach has the
potential to significantly lower the amount of load that need
be shed when islanding.

A. 14-bus network case study

The test network is the IEEE14-bus system, shown in fig. 4,
which comprises two synchronous generators (indicated by
single circles), three synchronous condensers (double circles),
and ten loads. The total generation capacity is400 MW against
a total demand of259 MW.
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Fig. 4. 14-bus test network with a failure line(2, 5) and bus2 uncertain.

Firstly, a steady-state operating point for the network is
established by solving an AC OPF. Generator real and reactive
power output limits as set to the values reported in [22].
The resulting OPF solution sets the generator outputs as in
tab. I. The largest phase angle difference across any line in
the solution is8.1 degrees, for line(1, 5).

The scenario to be simulated is described as follows. While
operating at this point, line(2, 5) breaks and bus2 is assigned
to the uncertain setB0 for islanding. We then seek islanding
solutions by (i) cutting lines only, (ii) splitting buses only, and
(iii) a combination of both. For the islanding optimizations, the
two generators are permitted to vary outputs by up to5% of
their pre-islanding levels or switch off, as per (10). The value



TABLE I
REAL AND REACTIVE POWER OUTPUTS OF GENERATORS AND

CONDENSERS IN THEAC-OPFSOLUTION.

Gen,g Bus, b P G
g (MW) QG

g (MVAr)

1 1 200.00 −12.62
2 2 70.92 40.94
3 3 0.00 30.23
4 6 0.00 10.83
5 8 0.00 8.42

of βd, for placing loads in section0, is 0.5. Since line limits
are not present in the network data, a phase angle limit ofπ/7
radians (25.71 degrees)—far in excess of the AC-OPF flows—
is applied to each line, giving a corresponding maximum MW
limit, for (8), of

P L+
l =

πBL
l

7τl
.

1) Line cutting only: An optimal islanding solution by
using only line cuts is obtained using the method of [16].
In the problem, the objective assumes a reward ofMd = 1
per unit supply of load. Line disconnections are unlimited in
number but penalized, using (23), with a weightǫ1 = 0.1,
while generator switch-offs are discouraged by imposing the
penalty (24) withǫ2 = 10−3 andWg = P G+

g . These penalties
make up less than1% of the overall objective value.

The islanded network is shown in fig. 5. Bus2 has been
isolated by disconnecting lines(1, 2), (2, 3), (2, 4) in addition
to the failed line(2, 5). No lines have been cut extra to those
required to island bus2. As the demand at bus2 is only
21.7 MW but the pre-islanding output of generator2 was
70.92 MW, the generator has been switched off and the load
shed. In section1, 50.1% of the 94.2 MW load at bus3
has been shed, but all other loads are fully served. In total,
68.93 MW of the 259 MW load has been shed, and all of
the load remaining is in the healthy section1. The objective
value—the expected load supplied—is190.07 MW.
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Fig. 5. The14-bus network as islanded by line cuts.

An interesting feature of the solution is that the remaining
generator, at bus1, is not operating at its maximum output.
Inspection of the line flows shows that line(1, 5)—the sole

remaining path from the generator to the rest of the network—
is at its phase angle limit, transferring190.07 MW of real
power. Thus, this line is acting as a ‘bottleneck’ in the islanded
network.

2) Bus-splitting only:To obtain an islanding solution us-
ing only bus splitting, we permit no line disconnections by
imposing the constraintρl = 1, ∀l ∈ L. Other parameters in
the problem are set as follows. The maximum phase angle
difference and real power flow between two busbars at a
bus areπ radians and250 MW respectively. In the objective
function, as well as the generator switch-off penalty already
mentioned, we penalize zero values of all binary variables bar
γB

b,i with a weighting of0.1. This will change the optimal
solution only negligibly, if at all, but will encourage binary
variables to take integer values in the LP relaxations during
the solution process, aiding computation time. The line dis-
connection penalty subtracts nothing from the objective, since
line cuts are not permitted.

Using AMPL 11.0 with Parallel CPLEX 12.2 to model and
solve the islanding MILP problem, on a2.66 GHz quad-core
Linux machine with4 GiB RAM, the solver finds an optimal
solution in around4 seconds.

The islanded network is shown in fig. 6. The sections0
and1 are overlapping in this solution; since no line cuts were
permitted, some buses have been split and have one busbar
in section0 and the other in section1. Section0 contains
the peripheral buses of the network, with loads served by the
generator at bus2. Section1 contains more of the central
buses, served by the generator at bus1. Though the sections
appear to be of equal size, section0 contains68.9 MW of
demand compared with190.1 MW in section 1; thus, the
healthy section contains the largest loads. The solution sheds
0.03 MW at bus 3 in section 1 and nothing in section0.
The objective value—the expected load supply taking into
account the ‘probability’βd—is 224.52 MW, which is34 MW
higher than that obtained with line cuts only. Therefore, the
expectation is that less load is lost by islanding in this way.

Inspection of the power flows in the solution shows that
the generator outputs have changed little from their pre-fault
AC values, withpG

1 = 190.07 MW and pG
2 = 68.90 MW.

The output of generator1 is again limited by the maximum
power that can be transferred along line(1, 5). However, the
generator at2 has not been switched off in this solution, which
enables more load to be supplied.

3) Bus splitting and line cutting:The islanding optimiza-
tion was re-solved, now permitting any number of line dis-
connections as well as bus splitting. To penalize line cutting
more heavily than bus splitting, the line disconnection penalty
ǫ1 was increased to0.5 while the bus splitting penalty was
held at0.1. The optimal islanding solution is identical to that
obtained using bus splitting only—no lines are cut, and the
objective value is the same. Restoring the line cut penalty to
0.1 finds an optimal solution that splits fewer buses; buses1
and3 are instead isolated from bus2 by cutting lines(1, 2) and
(2, 3). The optimal objective value is identical, confirming that
the maximum expected supply can be obtained by a number of
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Fig. 6. Sections of the islanded14-bus network as islanded by bus splitting.

different islanding solutions, and suggesting that line cutting
and bus splitting should be given different priorities.

Allowing line cuts raised the solve time from4 to 40 sec-
onds. However, firstly, note that the optimal integer solution
was obtained near the start of the solution process, with
the majority of time spent proving optimality. For practical
application, with the network in an emergency state, sub-
optimal feasible islands are likely to be satisfactory. Secondly,
it may not be necessary to model the entire network in full
detail; for example, buses far away from the disturbance need
not be modelled as double busbars with a full complement of
switches. Thus, complexity of the problem for larger networks
may be minimized.

VI. CONCLUSIONS

In this paper, a new MILP-based approach to islanding of
power networks has been presented. The formulation models
each bus in the network as a double busbar arrangement,
with interconnecting switches and switches to lines, loads
and generators. Islanding is then by a combination of bus
splitting and line disconnections. Preliminary simulations on
the14-bus test network show that partitioning the network by
splitting buses, rather than cutting lines, can lead to islands
with significantly smaller amounts of load shedding. Future

research will investigate the application of the method to
larger networks and techniques and heuristics for shortening
computation time.
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