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This paper focuses on solution methods for unit commitment problems which are to be solved repeatedly with

different data but with the same problem structure. Dantzig-Wolfe decomposition with a column generation

procedure has been shown to be successful for the unit commitment problem. We demonstrate use of a neural

network to generate initial dual values for the column generation procedure, and show how the neural network

can be trained efficiently using dual decomposition. Our numerical experiments compare our methods with

baselines based on the linear programming relaxation and coldstart as well as other machine learning based

approaches: random forest and nearest neighbour. They reveal that the machine learning approaches, in

particular the one based on a neural network, solves test instances to high precision in shorter computational

time and scales to handle larger-scale instances.
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1. Introduction

The unit commitment (UC) problem is an important optimisation problem in the energy

industry. It aims to compute the optimal operating schedules of power plants given demand

over a fixed time period. This problem is solved by electricity generating companies on a

daily basis to determine which generators are to be used. Given a demand forecast over

a planning horizon, the timing of switching and the amount of power dispatch have to be

optimised simultaneously. This gives rise to large-scale combinatorial problems and due to

their practical importance they have been extensively studied over the last few decades.

For a recent survey, see van Ackooij et al. (2018).
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This work focuses on UC problems which are to be solved repeatedly with different data

but with the same problem structure. This reflects practice: when a UC problem is solved

as a day-ahead planning problem, the characterisations of generators such as generation

costs and ramping rates remain the same and problems are solved with different demand

forecasts. This allows us to use machine learning techniques to accelerate solution methods.

One popular approach for UC problems is to use Dantzig-Wolfe decomposition to decom-

pose the problem by generators. The reformulated problem is then solved with a column

generation procedure. This procedure can be seen as the dual of a cutting plane approach

to Lagrangian relaxation, as discussed by Briant et al. (2008). When the problem at hand

is a mixed-integer linear programming (MILP) problem, the reformulation is not exact

but a relaxation of the original problem. However Bertsekas et al. (1983) and Bard (1988)

reported that the optimality gap introduced by the reformulation is typically small espe-

cially if the problem size is large. In such cases, Dantzig-Wolfe decomposition with a

suitable primal heuristic is likely to solve the UC problem to high precision.

In the aforementioned decomposition-based approaches, the dual variables play a key

role. It is expected that using appropriate dual values as an initial point may speed up

the solution method. One approach to generate such dual values is to solve an approxima-

tion of the original problem and obtain its optimal dual solution. Borghetti et al. (2002),

Schulze et al. (2017) relax the integrality constraints and obtain a continuous relaxation

while Takriti et al. (1996) further drop other constraints such as minimum up/down time

constraints and minimum power output constraints. However, the continuous relaxation

has a similar number of the variables and constraints to the original problem, and solving

it even without the integer variables takes a significant computational time.

To warmstart the column generation procedure we use a pre-trained model to generate

initial dual values. The training of the neural network is based on the method proposed by

Nair et al. (2018). In their work, neural networks were trained to compute dual values to

yield strong lower bounds on integer two-stage stochastic programming. In our work, we

combine the neural network with the column generation procedure to solve UC and obtain

guaranteed lower and upper bounds on the optimal objective value. After the training,

when solving a new instance, the neural network is used with problem data as input

to generate dual values that yield tight initial lower bounds. The generated dual values

are then used to warmstart the column generation procedure and the column generation
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procedure allows us to further tighten the lower bound and obtain feasible solutions. With

this approach, we can exploit the strength of the neural network while maintaining the

desirable property of the solution method, such as exactness. We have tested the above

approach on large-scale UC problems.

The rest of the paper is structured as follows. Section 2 briefly reviews Dantzig-Wolfe

decomposition and the column generation procedure. Section 3 presents a method based on

a neural network to generate initial values for column generation procedure. In Section 4 the

proposed approach is tested on large scale UC problems. Finally, in Section 5 conclusions

and further extensions of this work are presented.

2. Dantzig-Wolfe decomposition and column generation

In this section we briefly review Dantzig-Wolfe decomposition and the column generation

procedure. For further background, see Vanderbeck and Savelsbergh (2006).

Consider the following family of mixed-integer programmes parametrized by ω:

z(ω) =min
x

G∑
g=1

cg
Txg (1)

s.t.
G∑

g=1

Agxg = a(ω),

xg ∈Xg(ω), g= 1,2, . . . ,G,

where x1, x2, . . . , xG are vectors of decision variables and

Xg(ω) = {xg ∈ {0,1}n×Rm |Dgxg ≤ dg(ω)}, g= 1,2, . . . ,G.

In our model Xg(ω) is non-empty and bounded for every ω and g= 1,2, . . . ,G, and that

the problem (1) has a feasible solution for every ω. To reduce clutter in what follows we

drop the dependence on ω except where this might cause confusion.

In Dantzig-Wolfe decomposition we consider a relaxation of (1), referred to as the master

problem (MP), by replacing Xg with conv(Xg) for every g. Let {xgi | i ∈ Ig} denote the

extreme points of Xg. Given the boundedness assumption on Xg, the MP can be written

as

min
p

G∑
g=1

∑
i∈Ig

cg
Txgipgi (2)
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s.t.

G∑
g=1

∑
i∈Ig

Agxgipgi = a,

∑
i∈Ig

pgi = 1, g= 1,2, . . . ,G,

pgi ≥ 0, g= 1,2, . . . ,G, i∈ Ig.

Since the MP is too large to formulate and solve explicitly, a column generation pro-

cedure is used. The restricted master problem (RMP) is defined by replacing Ig in the

MP with a subset Îg ⊂ Ig for every g. Suppose that the RMP is feasible (Îg’s must have

suitable columns to satisfy the first constraint in (2)) and let y and σg for g= 1,2, . . . ,G

be the optimal dual solution to the RMP corresponding to the first and second constraint

respectively. To find columns to be added to the RMP, the following subproblems, known

as the pricing subproblems, are solved:

rg(y) =min
xg

{(cgT − yTAg)xg | xg ∈Xg}, g= 1,2, . . . ,G. (3)

If rg(y) ≥ σg for all g, the RMP has found the optimal solution to the MP. Otherwise,

the solutions to the pricing subproblems are added to the RMP and the above process is

repeated. It follows from linear programming (LP) duality that given dual values y

q(y) = aTy+
G∑

g=1

rg(y) (4)

is a lower bound to the MP, and since the MP is a relaxation of (1) it is also a lower bound

on z.

It is known that the naive column generation approach described above suffers from

instability. To tackle the issue quadratic regularisation of the dual variables may be added,

as is described by Briant et al. (2008). Dualizing the RMP and adding quadratic regulari-

sation on the dual variables gives

max
y,σ

aTy+

G∑
g=1

σg −
µ

2
∥y− ȳ∥22 (5)

s.t. σg ≤ (cg
T − yTAg)xgi g= 1,2, . . . ,G, i∈ Îg,

y, σ : free,
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where ȳ is a regularisation centre and µ is a parameter to adjust the strength of the

regularisation. In the regularised column generation procedure, the regularised RMP is used

in place of the RMP. The optimal solution to (5) is computed and the pricing subproblems

are solved based on this solution. The regularisation centre ȳ is updated to the current

dual values y when the lower bound (4) has improved.

3. Warmstarting

In the above algorithm, the dual variables y are updated iteratively to provide tighter lower

bounds. It can be shown that the lower bound q(y) is continuous (in fact concave) in the

dual variables y. It follows that in the case where near-optimal dual values are used as an

initial point the algorithm would provide a near-optimal lower bound in the first iteration.

Assuming that the lower bound is sufficiently tight, the algorithm would terminate as soon

as a primal feasible solution with sufficiently small suboptimality was found by primal

heuristics. It is expected that feeding near-optimal dual values as initial dual values help

the algorithm to terminate in a shorter execution time.

It is worth noting that regularisation on the dual variables is crucial in this context.

Without regularisation, even if near-optimal dual values are used as an initial point, the

algorithm is likely to be quite unstable, yielding dual values with poor lower bounds in the

following iterations. See Briant et al. (2008) for a further discussion.

As mentioned in the introduction Section 1, one option to find good dual values is to

solve some approximation of (1) such as the linear programming relaxation (LPR) and

obtain its optimal dual solution as used by Borghetti et al. (2002), Schulze et al. (2017).

This approach does not require any offline computation or pre-trained models. On the

other hand solving the approximations requires time.

An alternative approach, which we explore below, is to train a model which takes ω as

input and outputs dual values y that provides a tight lower bound. The training approach

is based on the work by Nair et al. (2018) where dual decomposition was applied to solve

a parametrized two-stage stochastic programming problem.

Consider a neural network f(ω, θ) which maps problem data ω and model parameter

θ to y. We aim to learn values of the parameter θ so that given ω the model outputs

dual values y = f(ω, θ) for which the lower bound q(y) in (4) is tight. In this section we

explicitly state the dependency of the lower bound on ω as q(ω,y), which was suppressed
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in (4). Assume that the distribution of ω is given (e.g. the empirical distribution based on

historical data). Our goal is to maximise the expected lower bound

p(θ) = Eω[q(ω,f(ω, θ))].

If subproblem g is sampled uniformly from 1,2, . . . ,G from (4) it follows that

q(ω,y) = aTy+
G∑

g=1

rg(y) =
1

|G|

G∑
g=1

(aTy+ |G|rg(y)) = Eg[q̃(ω,y, g)],

where

q̃(ω,y, g) = aTy+ |G|rg(y).

Therefore we get

p(θ) = Eω,g[q̃(ω,f(ω, θ), g)].

We follow the standard approach used for training a neural network which is to use the

stochastic gradient ascent method. That is, we sample ω and g, compute the gradient of q̃

with respect to θ and make a single gradient ascent step. We then resample ω and g and

repeat the process.

The gradient of q̃ with respect to θ can be computed as follows. Fix problem data ω and

subproblem index g and compute the duals value y= f(ω, θ) and the component q̃(ω,y, g)

of the lower bound corresponding to subproblem g. Suppose that the model output f(ω, θ)

is differentiable with respect to θ and the optimal value rg(y) of the pricing subproblem

(3) are differentiable with respect to y. Then the gradient of q̃(ω,y, g) with respect to y is

given by
∂q̃

∂y
= a− |G|Agxg

∗

where xg
∗ is the solution to the pricing subproblem g (3). Using the chain rule, we obtain

∂q̃

∂θ
= J

∂q̃

∂y
, (6)

where J is the Jacobian matrix of the neural network output y = f(ω, θ) with respect to

θ, which is typically given by automatic differentiation.

It is important to note that evaluating the above quantity (6) is much faster than solving

the original problem or the MP to optimality. This is because it requires the solution of
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only a single pricing subproblem, which is typically substantially smaller than the original

problem.

Once a model is trained, it can be used to compute initial dual values for the regularised

column generation procedure. It is expected that unlike solving an approximation such as

the LPR this model will run quickly and we later demonstrate that it produces near-optimal

initial dual values.

4. Numerical experiments

In this section the proposed initialisation method based on a neural network is compared

with standard approaches for the UC problem. All methods are implemented in Python.

IBM ILOG CPLEX 20.1.01 is used as the optimisation solver (the barrier method for the

RMP and the branch and bound method for the pricing subproblems) and PyTorch to

implement the neural networks. The experiments are done on a workstation with 16 cores

Intel® Xeon® E5-2670 with 126 GB of RAM.

4.1. Problem

In the experiments, we consider a setup in which UC problems are solved repeatedly

with a fixed set of generators but different demand forecasts. To assess the scalability,

we consider 3 different problem sizes; problems with 200, 600 and 1,000 generators. In all

cases, the length of the planning horizon is 48 hours with a time resolution of 1 hour. The

generator data is based on Borghetti et al. (2002). Since their sets of generators contain

200 generators at most, we combine multiple sets to create larger ones. For example, to

create a UC instance with 1,000 generators, we combine 5 distinct 200-generator sets. Each

generator is unique so combining these sets does not introduce symmetry. The demand

data is based on the historical demand data in the UK published by National Grid ESO.2

A detailed description of the problem formulation is given in Appendix A.

Dantzig-Wolfe decomposition with the regularised column generation procedure is used

to solve the UC problems. Various initialisation methods are compared, and these are

described in the next section. In each iteration of the column generation procedure, a local

search primal heuristic is run to find a primal feasible solution. Implementation details

including the primal heuristics are given in Appendix B.

1 https://www.ibm.com/products/ilog-cplex-optimization-studio

2 https://www.nationalgrideso.com/
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4.2. Initialisation methods

We consider the following 5 methods to initialise the dual variables.

Neural Network: An initialisation method based on a neural network is implemented as

described in Section 3. The neural network consists of 4 hidden layers of 1000 units per

layer, with skip connections between hidden layers. For each set of generators, a single

neural network is trained for 24 hours using 8 CPU cores. We follow the procedure used by

Nair et al. (2018), except that only a single neural network is trained for each set of gen-

erators to reduce the computational load. The hyperparameters on the model architecture

and the training are found in Appendix C.

Random forest: As a baseline of a trainable model, a method based on a random forest

(Briant et al. (2008)) is also evaluated. On the same training budget (24 hours on 8 CPU

cores), as many training instances as possible are solved to 0.25% optimality using Dantzig-

Wolfe decomposition with the LPR initialisation and the local search primal heuristic. The

parameter values and the corresponding optimal dual values of the training instances are

saved. After the timelimit, a random forest is trained by supervised learning to predict the

optimal dual values given a parameter value. The training took less than 30 seconds in all

cases. Unlike our neural network approach, this approach requires the solution of many

UC instances.

Nearest Neighbour: A nearest neighbour approach is also evaluated to provide an alter-

native trainable baseline. We use the dataset that was created to train the random forest

model. At runtime, given a test instance, its parameter is compared against those of the

training instances. The training instance with the closest parameter value in terms of the

Euclidean distance is selected, and the corresponding optimal dual values are used as ini-

tial dual values. As in the random forest approach, this requires the solution of many UC

instances.

LPR: This is the method based on the LPR described in Section 3. Given a test instance,

we first solve the LPR by CPLEX. This method does not require any training. This is the

method used by Schulze et al. (2017).

Coldstart: As a naive base line, column generation is run from y = 0. This method does

not require any training.
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Table 1 Tightness of initial lower bounds lb1 (%) and computational time (s). The
tightness of initial lower bounds lb1 is measured by comparing it with the best known lower

bound lb∗ obtained by running CPLEX for 4 hours and is reported as percentages.

size: 200 600 1000
method lb∗ − lb1 time lb∗ − lb1 time lb∗ − lb1 time
network 0.059 <0.1 0.051 <0.1 0.040 <0.1
forest 0.060 <0.1 0.073 <0.1 0.076 <0.1
nearest 0.048 <0.1 0.060 <0.1 0.063 <0.1
LPR 0.126 4.6 0.108 17.7 0.105 29.2
coldstart 99.854 0.0 99.831 0.0 99.873 0.0
LPR alone 0.179 4.6 0.176 17.7 0.163 29.2

4.3. Evaluation

To test the performances of the above methods, 40 test instances of each size were created

and solved by each method. The demand data to construct the test instances was sampled

from a different year than those of the training instances. Each method was run sequentially

on a single CPU core until a solution within 1%, 0.5% and 0.25% suboptimality was found

or the time limit of 10 minutes was reached.

Table 1 shows the tightness of the initial lower bound obtained in the first iteration of

the column generation procedure and the required time (all times in this section are wall

clock times) to run the initialisation methods. For each test instance, a lower bound on the

optimal objective value was also computed by running CPLEX for 4 hours. Then the initial

lower bounds obtained from the column generation procedure were compared with the

best lower bound found by CPLEX. For all the test instances the lower bounds found by

CPLEX after 4 hours were better than the initial lower bounds from the column generation

procedure. In the table the average gaps of the bounds are reported. For comparison, the

objective value of the LPR (which is also a valid lower bound) is shown in the table as

well (labelled as LPR alone).

Clearly, coldstart with y= 0 yields poor lower bounds. Although the lower bounds of the

remaining 4 methods are comparable, the lower bounds obtained from the methods based

on machine learning are significantly tighter than LPR. The solution time of the LPR

grows and it takes significant time especially on larger problems. On the other hand, the

computational time of the other methods remains small. Observe that the optimal LPR

objective value gives a lower bound, but evaluating the Lagrangian using the solution to

the LPR yields a tighter lower bound.

Table 2 shows the number of problems solved by the column generation procedure within

the time limit of 10 minutes, the average computational time and the average number of
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Table 2 Number of problems solved, average computational time (s) and iterations.

1% optimality 0.5% optimality 0.25% optimality
size method solved time iters solved time iters solved time iters
200 network 40 4.6 1.0 40 9.0 1.9 40 37.5 7.4

forest 40 4.3 1.0 40 8.0 1.8 40 42.0 8.2
neighbour 40 4.7 1.0 40 10.0 2.1 40 43.1 8.7

LPR 40 7.8 1.0 40 15.9 3.0 40 53.6 10.8
coldstart 40 103.8 16.6 40 161.1 21.7 40 235.6 27.4
CPLEX 39 235.8 - 39 244.1 - 38 336.9 -

600 network 40 13.4 1.0 40 20.5 1.5 40 48.4 3.4
forest 40 14.0 1.1 40 26.5 2.0 40 55.5 4.2

neighbour 40 13.8 1.1 40 27.6 2.0 40 57.8 4.4
LPR 40 28.7 1.0 40 43.0 2.0 40 86.9 5.4

coldstart 36 413.4 13.8 16 528.2 16.6 9 576.3 17.7
CPLEX 4 594.1 - 4 594.1 - 4 594.1 -

1000 network 40 21.5 1.0 40 34.3 1.5 40 74.2 3.2
forest 40 19.5 1.0 40 37.1 1.8 40 89.7 4.3

neighbour 40 23.5 1.2 40 46.5 2.1 40 96.5 4.4
LPR 40 45.6 1.0 40 67.4 1.8 40 120.4 4.2

coldstart 23 515.8 12.2 7 567.8 13.6 5 584.0 14.0
CPLEX 1 599.0 - 1 599.0 - 1 599.0 -

iterations to close the optimality gap or to reach the time limit. The computational time

reported in this table includes the time to run the initialisation methods such as solving

LPR as well as the time to solve the RMP and the pricing subproblems. For the instances

that are not solved within the time limit, the time is set to be 10 minutes and the number

of iterations reached by the 10 minute timelimit is used. For comparison, we also solve

the extensive form (1) to the same tolerances without decomposition (i.e. by branch and

bound) using CPLEX.

These results show that solving the problems without decomposition is the slowest.

Among the remaining 5 methods, which are based on the column generation procedure,

solving the problem with coldstart is by far the slowest in every case. The 3 methods based

on neural network, random forest and nearest neighbour are faster in all cases than the

method based on the LPR. The nearest neighbour is the slowest in many cases. The neural

network and random forest have a similar performance on the loose tolerances 1.0% and

0.5% but the neural network outperforms all the other methods on 0.25% tolerance.

To observe the effect of the quality of the initial dual values on the time taken by the

column generation procedure more clearly, in Figure 1 the total computational time (0.25%

tolerance) for each 1000-generator test instance is plotted against the tightness of the

initial lower bound. The initialisation methods based on a neural network and the LPR

are compared in the plot. We observe a correlation between the two metrics. That is, if the



Author: Use of a neural network to warmstart column generation for unit commitment
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 11

0 50 100 150 200 250 300
0.00

0.05

0.10

0.15

0.20

Total solution time (s)

T
ig
h
tn
es
s
o
f
in
it
ia
l
lo
w
er

b
ou

n
d
s
(%

)

Network
LPR

Figure 1 Tightness of the initial lower bound vs the total computational time required by the column generation

procedure

lower bound computed in the first iteration of the column generation procedure is tighter

then the total computational time required by the column generation procedure tends to

be smaller.

The method to generate initial dual values must balance the time to train, the quality

of the dual values and the computational time on a new instance. One extreme example

is the LPR. It does not require any offline training. However it produces dual values with

a relatively loose lower bound and the solution time grows as the problem size increases.

The method based on a neural network needs off-line training, but it runs very quickly

when solving a new instance and outputs dual values with a tight lower bound, resulting

in significant speed up of the time to solve new instances.

Table 3 shows a breakdown of the average computational time of the column generation

procedures based on the neural network and on the LPR for the 1000-generator instances

for the 40 test cases. The column labelled as ‘Initialisation’ shows the time required to run

the initialisation methods. In the LPR-based method, this is the time to solve the LPR,

while the method based on a neural network this is the time to evaluate the neural network

(but does not include the time to train the neural network). In cases of 1% tolerance, the

time required to solve the LPR is longer than the sum of the time spent on the other

routines. However as the tolerance becomes tighter, the number of iterations and the time

spent in the other routines increases, and by 0.25% tolerance the LPR initialisation time

is only 25% of the total time.
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Table 3 Breakdown of the average computational time (s).

tolerance method Initialisation RMP Subproblem Primal Heuristic
1% network 0.0 0.1 17.1 4.3

LPR 29.2 0.1 11.8 4.5
0.5% network 0.0 0.5 25.1 8.8

LPR 29.2 0.8 25.2 12.2
0.25% network 0.0 1.8 53.6 18.8

LPR 29.2 3.8 61.4 26.1

5. Conclusion

We have considered a neural network to accelerate Dantzig-Wolfe decomposition with a

column generation procedure to solve a parametrized UC problem. The neural network

was first trained to generate values for the dual variables which yield tight Lagrangian

lower bounds. The training was done efficiently using dual decomposition. We compared

the Lagrangian lower bounds of this approach with the Lagrangian lower bounds obtained

using the optimal dual solution to the LPR and the dual values generated by other super-

vised learning methods, namely random forest and nearest neighbour, and coldstart. The

coldstart always has the worst Lagrangian lower bound. The LPR generates dual values

with relatively tight Lagrangian lower bounds. However the computational time grows as

the instance size became larger. The methods based on machine learning yields dual values

with tighter Lagrangian lower bound than the LPR while the computational time remains

negligible even with large instances. Among the methods based on machine learning, the

neural network usually achieves the best Lagrangian lower bounds.

These methods were then used to warmstart the column generation procedure. In the

numerical experiments, we observed that solving the UC problem with decomposition was

always faster than solving the problem without decomposition using CPLEX. We further

noted that warmstarting the column generation procedure successfully reduced the number

of iterations and overall computational time to find a solution of prescribed suboptimality.

We observed that the initialisation methods that generates tighter initial Lagrangian lower

bounds produce a better performance of the column generation procedure. For example,

the initialisation methods based on machine learning outperformed the LPR in all cases

and the neural network was usually the best among them, especially if the target tolerance

was small. The numerical experiments also showed that the neural network approach scales

well and can be effective for solving large-scale unit commitment problems.

An interesting area for further study is the UC problem with stochastic demand forecasts.

In many solution methods, UC problems with deterministic demand forecasts appear as
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subproblems and are solved repeatedly. See Takriti et al. (1996) and Schulze et al. (2017)

for instance. Typically the subproblems share the same problem structure and only differ

in the cost coefficients and the demand forecasts. In such cases, it would be of interest to

use data gathered from previous instances and warmstart the algorithm when solving a

new instance.

Acknowledgments

Appendix A: Problem formulation

We closely follow one of the standard formulations in literature, referred to as the 3-binary variable formu-

lation by Ostrowski et al. (2012), and formulate the following constraints:

• Load balance: Generators have to meet all the demand in each time period (generation shedding at 0

cost is allowed).

• Reserve: To deal with contingencies, it is required to keep a sufficient amount of back up in each time

period, which can be activated quickly.

• Power output bounds: Each generator’s power output has to be within its limit.

• Ramp rate bounds: Generators can only change their outputs within the ramp rates.

• Minimum up/downtime: If switched on (off), each generator has to stay on (off) for a given minimum

period.

The formulation of the model is as follows.

• Parameters

—G: number of generators

—T : number of time periods where decisions are taken

—Cnl
g : no-load cost of generator g

—Cmr
g : marginal cost of generator g

—Cup
g : startup cost of generator g

—Pmax/min
g : maximum/minimum generation limit of generator g

—P ru/rd
g : operating ramp up/down limits of generator g

—P su/sd
g : startup/shutdown ramp limits of generator g

—T u/d
g : minimum up/downtime of generator g

—P d
t : power demand at time t

—P r
t : reserve requirement at time t

• Variables

—αgt ∈ {0,1}: 1 if generator g is on in period t, and 0 otherwise

—γgt ∈ {0,1}: 1 if generator g starts up in period t, and 0 otherwise

— ηgt ∈ {0,1}: 1 if generator g shuts down in period t, and 0 otherwise

—pgt ≥ 0: power output of generator g in period t
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• Total cost (the objective to be minimised)

min

T∑
t=1

G∑
g=1

(
Cnl

g αgt +Cmr
g pgt +Cup

g γgt

)
.

• Load balance
G∑

g=1

pgt ≥ P d
t t= 1,2, . . . , T.

• Reserve
G∑

g=1

(Pmax
g αgt − pgt)≥ P r

t t= 1,2, . . . , T.

• Power output bounds

Pmin
g αgt ≤ pgt ≤ Pmax

g αgt g= 1,2, . . . ,G, t= 1,2, . . . , T

• Ramp rate bounds

pgt − pg t−1 ≤ P ru
g αg t−1 +P su

g γgt g= 1,2, . . . ,G, t= 2,3, . . . , T.

pg t−1 − pgt ≤ P rd
g αgt +P sd

g ηgt g= 1,2, . . . ,G, t= 2,3, . . . , T.

• Minimum up/downtime

t∑
u=max{t−Tu

g +1,1}

γgu ≤ αgt g= 1,2, . . . ,G, t= 1,2, . . . , T

t∑
u=max{t−Tu

g +1,1}

ηgu ≤ 1−αgt g= 1,2, . . . ,G, t= 1,2, . . . , T

• Logical constraints (to enforce binaries to work as we expect)

αgt −αg t−1 = γgt − ηgt g= 1,2, . . . ,G, t= 2,3, . . . , T

1≥ γgt + ηgt g= 1,2, . . . ,G, t= 1,2, . . . , T

Appendix B: Implementation details

In the numerical experiments, a regularised column generation procedure is used. Initially, the regularisation

centre is set to the dual values given by the initialisation method. In each iteration, a lower bound is evaluated

using the current dual values and the regularisation centre is updated to the current dual values if the lower

bound gets improved. Furthermore, if the lower bound improves the regularisation parameter is divided by

two, and otherwise multiplied by two. This closely follows the implementation of the column generation

procedure described by Schulze et al. (2017).

In every iteration, after the pricing subproblems are solved, a primal heuristic based on local search

is run. Given the solutions to the pricing subproblems, this primal heuristic checks the feasibility and if

necessary switches on the cheapest available generators to make the solution feasible. Note that the solutions

to the pricing subproblems are feasible generator schedules and infeasibility only arises from an insufficient

generation capacity to meet the demand or insufficient reserve. This primal heuristic loosely follows that

proposed by Guan et al. (1992). In our experiments, we observe that it usually finds near-optimal primal
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solutions when the dual values get close to optimal. If the column generation procedure using the local search

primal heuristic fails to find a primal feasible solution satisfying the given optimality tolerance within 30

iterations, we use in addition a column combination primal heuristic. Then in the subsequent iterations, we

use both of the primal heuristics. The column combination primal heuristic is a popular primal heuristic in

the column generation procedure in general. The idea of this heuristics is to solve (1) with restricted patterns

of solutions, referred to as restricted master IP by Vanderbeck (2005). In the kth iteration, we replace Xs in

(1) with {x(k−l)
s }l=0,1,2 where {x(k−l)

s }l=0,1,2 are solutions to the sth pricing subproblem found in the current

iteration and or the previous two iterations. The resulting problem is still a mixed-integer programme but

the solution space is much smaller than the original problem. In our numerical experiments, we observed

that the problem is typically feasible without the need to add artificial variables (columns).

Appendix C: Hyperparameters for the neural networks

The model consists of 4 hidden layers of 1000 units per layer, with skip connections between hidden layers.

The tanh function is used as an activation function. This is because in earlier experiments we observed that

tanh performed better than ReLU, which is a more standard activation function. As De and Smith (2020)

proposed, the weights on the residual connections are initialised to zero. The other weights are initialised

based on the methods of Glorot and Bengio (2010). All biases are initialised to zero.

The Adam method (Kingma and Ba (2015)) is used to learn the parameters of the neural network. The

learning rate is initialised to 10−4. The model performance is evaluated every 5 minutes, and if it fails to

improve for successive 15 minutes, the learning rate is divided by 1.5.
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