
DEEP- AND SHALLOW-WATER LIMITS OF STATISTICAL

EQUILIBRIA FOR THE INTERMEDIATE LONG WAVE EQUATION

ANDREIA CHAPOUTO, GUOPENG LI, TADAHIRO OH, AND GUANGQU ZHENG

Abstract. XXX

Contents

1. Introduction 2

1.1. The intermediate long wave equation 2

1.2. BO and KdV as limits of ILW 2

1.3. Construction and convergence of weighted Gaussian measures 4

1.4. Dynamical problem and invariance 8

2. Preliminaries 10

2.1. Notations and function spaces 10

2.2. Gδ operator and friends 11

2.3. Tools from stochastic analysis 12

3. Construction and convergence of measures in the deep-water regime 13

3.1. Conservation laws in the deep-water regime 13

3.2. Equivalence and convergence of the base Gaussian measures 14

3.3. Uniform bounds on the density - deep-water regime 16

3.4. Construction of the measures ρδ, k
2

for 0 < δ ≤ ∞ 26

3.5. Convergence of ρδ, k
2

as δ →∞ 30

4. Construction and convergence of measures in the shallow-water regime 33

4.1. Conservation laws in the shallow-water regime 34

4.2. Singularity and convergence of the base Gaussian measures 35

4.3. Uniform bounds on the density - shallow-water regime 39

4.4. Construction of the measures ρ̃δ, k
2

for 0 ≤ δ <∞ 47

4.5. Convergence of ρ̃δ, k
2

as δ → 0 51

5. Almost almost-sure conservation for truncated dynamics 53

5.1. Proof of Proposition 5.1 55

5.2. Proof of Proposition 5.2 65

6. Dynamical problem 66

6.1. Approximation by the truncated flow 66

6.2. Proof of Theorem 1.5 70

Appendix A. Structure of the conserved quantities for ILW 76

Date: November 16, 2023.
2020 Mathematics Subject Classification. 35Q35, 60F15, 60H30.
Key words and phrases. intermediate long wave equation; Benjamin-Ono equation; Korteweg-de Vries

equation; Gibbs measures.

1



2 A. CHAPOUTO, G. LI, T. OH, AND G. ZHENG

A.1. Deriving the conserved quantities for ILW and BO 76

A.2. Some useful properties of conserved quantities for ILW 79

Appendix B. Conserved quantities for sILW 90

B.1. Structure of the sILW conserved quantities 91

B.2. Convergence of sILW conserved quantities 96

B.3. Structure of remainder R̃δ, k
2
(u) of conserved quantities Ẽδ, k
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1. Introduction

1.1. The intermediate long wave equation. We consider the intermediate long wave

equation (ILW) on the one-dimensional torus T = R/(2πZ):{
∂tu− Gδ∂2

xu = ∂x(u2),

u|t=0 = u0,
(t, x) ∈ R× T. (1.1)

This equation was derived in [20, 28] to model the propagation of an internal wave at the

interface of a stratified fluid of depth δ > 0, where u denotes the amplitude of the interface.

The phase speed is determined by the Fourier multiplier operator Gδ defined by

Ĝδf(n) = −i
(

coth(δn)− 1

δn

)
f̂(n), n ∈ Z∗,

where Z∗ = Z\{0}, with the convention that coth(δn)− 1
δn = 0 for n = 0. The ILW equation

(1.1) has garnered much attention due to its physical relevance, playing a crucial rule in the

study of gravitational waves in stratified fluids, wave propagation in atmospheric sciences

and oceanography, and quantum field theory [13, 38, 47, 27, 52, 48, 49, 37, 35, 40, 5].

From an analysis perspective, (1.1) displays a rich structure, such as the existence of

soliton solutions, an inverse scattering transform, a Lax pair structure, an infinite number

of conservation laws, and a strong connection with the Korteweg-de Vries (KdV) and the

Benjamin-Ono (BO) equations. However, the study of ILW (1.1) remains mostly open

when compared to KdV and BO. For an overview on ILW, see the recent book [24] and the

survey [51].

Our main goal in this work is to further the rigorous understanding of the convergence

of ILW to BO and KdV from a statistical viewpoint. In particular, we construct an infinite

family of measures which are invariant under the flow of ILW (1.1) and converge to cor-

responding invariant measures for BO (δ → ∞) and KdV (δ → 0), establishing the first

probabilistic convergence result with uniqueness.

1.2. BO and KdV as limits of ILW. The ILW equation can be seen as an intermediate

model between BO and KdV. In the deep-water limit (as δ → ∞), since the symbol of

the operator Gδ converges to that of the Hilbert transform H (see Lemma 2.2), the ILW

equation (1.1) formally converges to BO:

∂tu−H∂2
xu = ∂x(u2). (1.2)
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In the shallow-water regime (as δ → 0), to avoid a dispersionless limiting equation, we

consider the scaling transformation introduced in [1]:

v(t, x) = 1
δu(1

δ t, x), (1.3)

which leads to the following scaled ILW (sILW):

∂tv − G̃δ∂2
xv = ∂x(v2), (1.4)

where G̃δ := 1
δGδ. In particular, u is a solution to ILW (1.1) if and only if v is a solution

to sILW (1.4). Similarly to the deep-water regime, as δ → 0, due to the convergence of the

symbol G̃δ (see Lemma 2.3), we see that sILW (1.1) formally converges to KdV:

∂tv + ∂3
xv = ∂x(v2). (1.5)

There has been significant interest in rigorously establishing these questions of conver-

gence [20, 28, 50, 2, 30, 26, 31, 49, 34, 33, 12]. We emphasize the recent works [34, 12]

where the regularity assumptions on the solutions were significantly lowered, in the periodic

and Euclidean settings. These are deterministic results, where the convergence is estab-

lished for each fixed initial data. In our work, we instead consider this convergence from a

probabilistic viewpoint, as in [33].

In the present paper, we are concerned with the construction, invariance, and convergence

of an infinite family of measures associated with ILW (1.1) (and sILW (1.4)), from which

we infer on the limiting behavior of solutions as a statistical ensemble. Analogously to BO

(1.2) and KdV (1.5), ILW (1.1) is completely integrable and it exhibits an infinite number of

conserved quantities [50, 26, 16, 30, 25, 31, 39, 1, 11]. Alongside the mean Eδ,−1(u) =
∫
u dx,

(1.1) has a conserved quantity Eδ, k
2
(u) at the level of the L2-based Sobolev norm ‖u‖

Ḣ
k
2

for each k ∈ N ∪ {0}:

Eδ,0(u) =
1

2
‖u‖2L2 , Eδ, k

2
(u) =

1

2

k∑
`=0
` even

a`‖G
k−`
2

δ u‖2
Ḣ
k
2

+Rδ, k
2
(u), k ≥ 1, (1.6)

for positive constants a` and a remainder Rδ, k
2
(u) which contains terms which are cubic

and higher in u. The first conserved quantities for (1.1) with k = 1, 2, 3 are as follows:

E
δ,

1
2
(u) = 1

2‖G
1
2
δ u‖

2

Ḣ
1
2

+ 1
3

∫
u3 dx, (1.7)

Eδ,1(u) = 1
8‖u‖

2
Ḣ1 + 3

8‖Gδu‖
2
Ḣ1 +

∫ [
1
4u

4 + 3
4u

2Gδ∂xu+ 1
4δu

3
]
dx, (1.8)

E
δ,

3
2
(u) = ... (1.9)

See Subsection 3.1 for further details on the structure of these conserved quantities and

Subsection 4.1 for the structure of the corresponding conserved quantities Ẽδ, k
2
(v) for

sILW (1.4).

In [33], the convergence of ILW (1.1) to BO (1.2) and of sILW (1.4) to KdV (1.5) was

shown with respect to the Gibbs measure, i.e., a weighted Gaussian measure associated

with Eδ, 1
2
(u) via the compactness argument introduced in []. A natural question is if this

convergence holds if we sample initial data from measures associated with the higher order
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conservation laws in 1.6. Since these measures are supported on smoother spaces as k

increases (see Lemma ??), this is a physically relevant question.

Our strategy is three-fold: (1) for fixed 0 < δ < ∞, we construct weighted Gaussian

measures associated with each conservation law Eδ, k
2
(u) (and Ẽδ, k

2
(v) for (1.4)); (2) prove

the convergence of these measures to the corresponding BO measures as δ → ∞ (and to

the KdV ones as δ → 0, resp.); (3) establish invariance of the measures and dynamical

convergence.

1.3. Construction and convergence of weighted Gaussian measures. The Hamil-

tonian structure of ILW (1.1), associated with the conserved quantity Eδ, 1
2
(u) in (1.7),

naturally leads to the question of the existence of invariant measures for this system. In

particular, for k ∈ N, we are interested in constructing invariant measures ρδ, k
2

associated

with each conserved quantity Eδ, k
2
(u) and establishing their convergence as we vary the

depth parameter δ.

The study of invariant measures for infinite-dimensional Hamiltonian systems was initi-

ated by Lebowitz-Rose-Speer [32] and Bourgain [7, 8], has regained popularity in the past

15 years []. We emphasize the known results for invariant measures for ILW, BO, and KdV

associated with polynomial conservation laws. In [58], Zhidkov constructed an infinite fam-

ily of invariant measures for KdV associated with its higher order conserved quantities,

while the question for BO was addressed by an extensive program due to Deng, Tzvetkov,

and Visciglia [53, 54, 55, 56, 14, 15]. For ILW, in [33], Li-Oh-Zheng constructed the Gibbs

measure ρδ, 1
2

and established its convergence in the deep- and shallow-water limits. Here,

we make the first step towards completing this program by constructing, establishing in-

variance and convergence of the measures ρδ, k
2

for k ≥ 3 for ILW. See Remark ?? for further

details on k = 1, 2.

We first focus on the deep-water regime. For 0 < δ ≤ ∞ and k ≥ 2, we construct

the measure ρδ, k
2

associated with the k-th conserved quantity Eδ, k
2
(u) on (1.6), formally

given by

ρδ, k
2
(du)“ = ”Z−1

δ, k
2

exp
(
− Eδ, k

2
(u)
)
du

= Z−1

δ, k
2

exp
(
−Rδ, k

2
(u)
)
dµδ, k

2
(u). (1.10)

In particular, we construct ρδ, k
2

as a weighted Gaussian measure with base Gaussian µδ, k
2
:

µδ, k
2
(du) = Z−1

δ, k
2

exp

(
−

k∑
`=0
` even

a`‖G
k−`
2

δ u‖2
Ḣ
k
2

)
du. (1.11)

Here, µδ, k
2

can be understood as the induced probability measure under the map

ω ∈ Ω 7→ Xδ, k
2
(x;ω) =

1√
2π

∑
n∈Z∗

gn(ω)

(Tδ, k
2
(n))

1
2

einx, (1.12)

where

Tδ, k
2
(n) :=

k∑
`=0
` even

a`|n|`|Kδ(n)|k−`, (1.13)
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Kδ(n) = inĜδ(n) and {gn}n∈Z∗ is a sequence of independent standard complex-valued

Gaussian random variables satisfying g−n = gn. One can easily show that µδ, k
2

(and conse-

quently ρδ, k
2
) is supported on H(k−1)/2−ε(T) for all ε > 0, but µδ, k

2

(
H(k−1)/2(T)

)
= 0.

Due to the involved structure of the remainder Rδ, k
2
(u) in (1.10) (see also (3.2)) and the

fact that it is not sign-definite, we do not expect the weight exp(−Rδ, k
2
(u)) to be integrable

with respect to µδ, k
2
. This difficulty was also present for KdV and BO in [58, 54]; see

also [32, 7, 8] for the analogous issue in the context of Schrödinger equations. There, they

propose to renormalized the measure ρδ, k
2

in (1.10) by restricting to invariant sets where

the lower order energies Eδ, j
2
(u), for j = 0, . . . , k − 1, are bounded. This was sufficient

for KdV in [58], but a more involved renormalization was needed for BO in [54] due to

E∞,(k−1)/2(u) being infinite in the support of µ∞, k
2
.

Although the same phenomenon is true for ILW (1.1), in our construction, we need only

introduce an L2-cutoff:

ρδ, k
2
(du) = Z−1

δ, k
2

ηK(‖u‖2L2) exp(−Rδ, k
2
(u)) dµδ, k

2
(u), (1.14)

where ηK(·) = η(·/K) and η a smooth cutoff with η ≡ 1 on [−1, 1] and supported on [−2, 2].

More precisely, we first consider the following normalized truncated measures

ρδ, k
2
,N,K(du) = Z−1

δ, k
2
,N
Fδ, k

2
,N,K(u) dµδ, k

2
(du), (1.15)

where

Fδ, k
2
,N,K(u) = ηK

(
‖PNu‖2L2

)
exp

(
−Rδ, k

2
(PNu)

)
, (1.16)

and construct ρδ, k
2

in (1.14) as the limit of the truncated measures ρδ, k
2
,N,K as N → ∞.

This construction extends to BO (1.2) when δ = ∞, where the base Gaussian measure

associated with (1.2) is given by

µ∞, k
2
(du) = Z−1

∞, k
2

exp
(
− ‖u‖2

Ḣ
k
2

)
du, (1.17)

and it can be understood as the induced probability measure under the map (1.12), where

we extend the definition of (1.13) to T∞, k
2
(n) := |n|k.

We can now state our first main result regarding the construction and convergence of

the measures ρδ, k
2

in the deep-water limit (δ →∞).

Theorem 1.1 (Construction and convergence in the deep-water regime). Let k ∈ N with

k ≥ 2. Then, the following statements hold:

(i) Let 0 < δ ≤ ∞ and K > 0. Then, for any 1 ≤ p <∞, we have that

lim
N→∞

Fδ, k
2
,N,K(u) = Fδ, k

2
,K(u) in Lp(dµδ, k

2
), (1.18)

where the convergence holds uniformly in 2 ≤ δ ≤ ∞. Consequently, the truncated measure

ρδ, k
2
,N,K in (1.15) converges to the limiting measure ρδ, k

2
,K given by

ρδ, k
2
,K(du) = Z−1

δ, k
2

Fδ, k
2
,K(u) dµδ, k

2
(u).

In particular, ρδ, k
2
,N,K converges to ρδ, k

2
,K in total variation uniformly in δ.
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(ii) The limiting measure ρδ, k
2
,K and the base Gaussian measure with smooth L2-cutoff

ηK(‖u‖2L2)dµδ, k
2
(u) are equivalent, and⋃

K>0

supp(ρδ, k
2
,K) = µδ, k

2
.

(iii) For 2 ≤ δ <∞, the measures ρδ, k
2
,K for (1.1) and ρ∞, k

2
,K for (1.2) are equivalent and,

as δ →∞, the measure ρδ, k
2
,K converges to ρ∞, k

2
,K in total variation.

We now turn our attention to the shallow-water regime and sILW (1.4). The first diffi-

culty in this setting comes from identifying the correct structure for the conservation laws.

In light of the scaling (1.3), Eδ, k
2
(δv) are conserved quantities for sILW (1.4), however, for

large k, it is not clear if these are suitable to study the limit as δ → 0, as they may have

terms with negative powers of δ. Consequently, we must instead introduce conservation

laws Ẽδ, k
2
(v) which are do not necessarily agree with Eδ, k

2
(δv), and thus require an alto-

gether new description of their structure; see Remark 1.4 for a further discussion on this.

Here, we find Ẽδ, k
2
(v) for k ∈ N satisfying

Ẽδ, 2k−1
2

(v) =
1

2

2k−1∑
`=1
odd

a`δ
`−1‖G̃

`
2
δ v‖

2

Ḣ
2k−1

2
+ R̃δ, 2k−1

2
(v),

Ẽδ, 2k
2

(v) =
1

2

2k∑
`=0
even

a`δ
`‖G̃

`
2
δ v‖

2

Ḣ
2k
2

+ R̃δ, 2k
2

(v),

(1.19)

for some positive constants a` and remainders R̃δ, k
2
(v) with cubic and higher order terms in

v; see Subsection 4.1 for further detail on their structure. For k = 1, 2, 3, these conservation

laws are as follows:

Ẽδ, 1
2
(v) = 1

2‖G̃
1
2
δ v‖

2

Ḣ
1
2

+ 1
3

∫
v3 dx,

Ẽδ,1(v) = . . . ,

Ẽδ, 3
2
(v) = . . . .

(1.20)

Similarly to the deep-water setting, we are interested in constructing the renormalized

weighted Gaussian measures ρ̃δ, k
2
,K

ρ̃δ, k
2
,K(dv) = Z̃−1

δ, k
2

ηK(‖v‖2L2) exp
(
− R̃δ, k

2
(v)
)
dµ̃δ, k

2
(v),

where the Gaussian measures µ̃δ, k
2

formally given by

µ̃δ, k
2
(dv) = Z̃−1

δ, k
2

exp

(
−

k∑
`=0

`≡k mod 2

a`δ
`−1`≡k mod 2‖G̃

`
2
δ v‖

2

Ḣ
k
2

)
dv, (1.21)

can be understood as the induced probability measure under the map

ω ∈ Ω 7→ X̃δ, k
2
(ω;x) =

1√
2π

∑
n∈Z∗

gn(ω)

(T̃δ, k
2
(n))

1
2

einx,
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where T̃δ, k
2

is defined in (4.2).

The construction of the measures ρ̃δ, k
2

is analogous to the deep-water regime, albeit more

algebraically involved due to the structure of the conservation laws Ẽδ, k
2
. However, there

are stark distinctions between the two regimes regarding the convergence. Before discussing

these, we introduce relevant notation related to KdV (1.5). For k ∈ N, let Ẽ0,k(v) denote

the k-th conservation law for KdV, which can be written as

Ẽ0,k(v) = 1
2‖v‖

2
Ḣk + R̃0,k(v),

where R̃0,k(v) contains terms which are cubic or higher order in v. We also introduce the

Gaussian measure µ̃0,k as the induced probability measure under the map

ω ∈ Ω 7→ X̃0,k(x;ω) =
1√
2π

∑
n∈Z∗

gn(ω)

|n|k
einx,

and the weighted renormalized measures ρ̃0,k,K

ρ̃0,k,K(dv) = Z̃−1
0,k,KηK(‖v‖2L2) exp

(
− R̃0,k(v)

)
dµ̃0,k(v).

Firstly, we observe a 2-to-1 collapse of the measures ρ̃δ, k
2

to sILW (1.4) as we take the

limit δ → 0. In particular, for k ∈ N we observe that ρ̃δ, 2k−1
2

and ρ̃δ, 2k
2

converge to the

same KdV measure ρ̃0,k! Secondly, as observed in [33] for ρ̃δ, 1
2
, this convergence holds

only weakly, as opposed to the convergence in total variation in the deep-water regime.

Moreover, the measures ρ̃δ, 2k−1
2

, ρ̃δ, 2k
2

, and ρ̃0,k are mutually singular. These results are

summarized in the following theorem.

Theorem 1.2 (Construction and convergence in the shallow-water regime). Let k ∈ N
with k ≥ 2. Then, the following statements hold:

(i) Let 0 ≤ δ <∞ and K > 0. Then, for any 1 ≤ p <∞, we have that

lim
N→∞

F̃δ, k
2
,N,K(u) = F̃δ, k

2
,K(u) in Lp(dµ̃δ, k

2
), (1.22)

where the convergence holds uniformly in 0 ≤ δ ≤ 1. Consequently, the truncated measure

ρ̃δ, k
2
,N,K in (??) converges in total variation to the limiting measure ρ̃δ, k

2
,K given by

ρ̃δ, k
2
,K(du) = Z−1

δ,k F̃δ, k
2
,K(u) dµ̃δ, k

2
(u).

In particular, this convergence is uniform in δ. Moreover, the limiting measure ρ̃δ, k
2
,K and

the base Gaussian measure with smooth L2-cutoff ηK(‖u‖2L2)dµ̃δ, k
2
(u) are equivalent.

(ii) For 0 < δ <∞, the measures ρ̃δ, 2k−1
2

,K , ρ̃δ, 2k
2
,K for (1.4) and ρ̃0,k,K for (1.5) are singular

and, as δ → 0, the measures ρ̃δ, 2k−1
2

,K and ρ̃δ, 2k
2
,K converge weakly to ρ̃0,k,K .

Remark 1.3. (i) The difficulty in constructing the measures ρδ, k
2

and the convergence as

the depth parameter δ varies is not due to the rough support of the measures (since for

k ≥ 2 this is smooth(er)). Instead, we must tackle two issues: (1) the δ-dependence of

both the base Gaussian measure µδ, k
2

in (1.11) and the truncated density Fδ, k
2
,N,K in (1.16)

which require uniform in N and δ bounds to first construct the measure ρδ, k
2

for a given

δ and then prove its convergence as δ → ∞. This difficulty was already observed in [33]

for the Gibbs measure case k = 1; (2) the increased complexity of the conserved quantities
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as k becomes larger, for which we need a good description in order to control the density

Fδ, k
2
,N,K and choose the correct base Gaussian µδ, k

2
.

(ii) To establish the uniform in N and δ bounds needed to prove Theorems 1.1-1.2, we use a

variational approach. For δ =∞ and δ = 0, we provide an alternative construction to that

in [53] and [58] for the BO and KdV measures ρ∞, k
2
, ρ̃0,k, respectively. Our construction

only requires an L2-cutoff instead of cutoffs involving the conserved quantities of order

0 ≤ ` ≤ k − 1. This alternative construction also simplifies the invariance argument in

Theorem 1.5.

Remark 1.4. Due to the scaling in (1.3), one possible choice for the shallow-water conser-

vation laws would be

Ẽδ, k
2
(v) := δ−2Eδ, k

2
(δv), (1.23)

which are conserved under the sILW dynamics for each fixed 0 < δ < ∞. Although

this definition leads to a suitable choice of conservation laws for the explicit quantities in

(1.6) with k = 1, 2, 3, it is not clear from our definition of Eδ, k
2
(u) for arbitrarily large

values of k that (1.23) defines a suitable conservation law to consider the limit as δ →
0. In Proposition A.6 in Appendix A, we see that Eδ, k

2
(u) are defined as suitable linear

combinations of conserved quantities whose densities χj (see (A.5)) which satisfy a given

recurrence relation:

Eδ, k
2
(u) ∼

∫
χk+2 dx−

k+1∑
j=1

1

δk+2−j cj

∫
χj dx. (1.24)

This definition guarantees that the quadratic in u terms of Eδ, k
2
(u) are of the form in (1.6),

where all coefficients are positive, and thus suitable to define the Gaussian measure µδ, k
2

in

(1.11). It is not clear from the definition of the terms χj , if the transformation u 7→ δv if

all the terms appearing in (1.24) will have only positive powers of δ. To avoid this issue, we

instead define Ẽδ, k
2

as linear combinations of analogues of
∫
χj dx which are already adapted

to the scaling dynamics (1.4), with no need for a posteriori rescaling. See Appendix B and

(B.17) for precise definitions. We note that this approach is not without difficulties, as we

are motivated by the construction in [16, 30] where half of the conservation laws derived

have trivial limits as δ → 0. Fortunately, this derivation hides all the relevant information

for our analysis and through careful algebraic manipulations, for each k ∈ N, we can recover

conservation laws Ẽδ, k
2
(v) as in (1.19) and show that they all have a non-trivial limit to

a corresponding KdV conservation law. Moreover, we observe the 2-to-1 collapse of these

conservation laws in the limit δ → 0 responsible for the analogous phenomenon described

above for the corresponding measures ρ̃δ, k
2
,K :

lim
δ→0

Ẽδ, 2k−1
2

(v) = lim
δ→0

Ẽδ, 2k
2

(v) = Ẽ0,k(v).

We believe this is a novel observation in the study of the convergence of ILW in the shallow-

water regime. See Proposition B.7 for a precise statement.

1.4. Dynamical problem and invariance. We now focus on the dynamics of (1.1) and

(1.4). Since the approach is analogous in the deep- and shallow-water regimes, we restrict

our discussion to the former.
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Our goal is to establish the invariance of the measures ρδ, k
2

for k ≥ 3 under the flow of

ILW (1.1). To address this question, we require global-in-time dynamics for ILW (1.1) in

the support of the measures ρδ, k
2
. In [1], Abdelouhab-Bona-Felland-Saut established global

well-posedness in Hs(T) for s > 3
2 via the energy method, without exploiting the dispersive

nature of the equation. The best known result is due to Molinet-Vento [41] where they

proved global well-posedness of (1.1) in H
1
2 (T) through a refinement of the energy method.

Consequently, we know that (1.1) is globally well-posed in the support of µδ, k
2

for k ≥ 3.

In order to establish the invariance of µδ, k
2
, we will focus on the following truncated ILW

dynamics: {
∂tuN − Gδ∂2

xuN = PN∂x(PNuN )2,

uN (0) = u0.
(1.25)

The arguments in [41] also apply to the truncated dynamics (1.25), from which we can

show that for a fixed 0 < δ ≤ ∞, k ≥ 3, and 1
2 < s < σ < k−1

2 , then for all R > 0 there

exists t = t(R) > 0 such that

lim
N→∞

sup
t∈(−t,t)
A⊂Bσ(R)

‖ΦN
t (u0)− Φt(u0)‖Hs = 0, (1.26)

where ΦN
t ,Φt denote the unique global data-to-solution maps of (1.25) and (1.1), respec-

tively. This approximation property between the truncated and full solutions to ILW is

essential to establishing invariance. See Proposition 6.3 for further details.

In [54, 55, 56], it was observed that for BO (1.2), the conserved quantities E∞, k
2
(u) for

the original equation are no longer conserved for the analogous truncated dynamics, for

k ≥ 2. This problem persists for the ILW dynamics (1.1). In fact, we have that

d

dt
Eδ, k

2
(PNΦN

t (u0)) 6= 0, k ≥ 2.

To bypass this difficulty, we proceed as in [54, 55, 56] and reduce the problem to time t = 0

and establish an almost almost-sure conservation of the energies for the truncated dynamics

with Gaussian initial data:

lim
N→∞

∥∥∥∥ ddtEδ, k2 (PNu)

∥∥∥∥
Lq(µ

δ, k2
)

= 0, (1.27)

for all 1 ≤ q <∞. This result relies heavily on the orthogonality properties of the Gaussian

data. Combining (1.27) with a global-in-time improvement of the good approximation of

the full flow by the truncated flow in (1.26), we establish the invariance of the measures

ρδ, k
2

for k ≥ 3.

Theorem 1.5 (Invariance). Let k ≥ 3, 2 ≤ δ ≤ ∞, and K > 0. Then, the measures ρδ, k
2
,K

are invariant under the unique global-in-time flow Φt of ILW (1.1) defined on H
k−1
2
−(T).

Similarly, the measures ρ̃δ, k
2
,K are invariant under the unique global-in-time flow Φ̃t of sILW

(1.4) defined on H
k−1
2
−(T).

We complete the introduction with some additional remarks.
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Remark 1.6. (i) Theorem 1.5 establishes the first result on construction and convergence

of invariant measures for ILW (1.1) (and sILW (1.4), resp.) with uniqueness. Note that the

result in [33] for the Gibbs measures ρδ, 1
2
, ρ̃δ, 1

2
relies on a compactness argument, therefore

uniqueness is not yet known. The measures we are considering are supported at higher

regularity (where global well-posedness is known), which allows us to establish a stronger

notion of invariance in Theorem 1.5, from which one can infer on the recurrence properties

of the flow of (1.1) via Poincaré’s recurrence theorem, for example. It would be of interest

to improve the result in [33] by extending Theorem 1.5 to k = 1, which would require a

significant improvement on the well-posedness theory for ILW due to the low regularity

support of ρδ, 1
2
.

(ii) The almost almost-sure conservation for the truncated energies also holds for k = 2.

Unfortunately, at this time, there is no known available local well-posedness for ILW (1.1)

in a space which contains the support of the measure ρδ,1 which does not rely on gauge

transforms. Note that at the level of L2-based Sobolev spaces, this support is contained

in H
1
2
−ε(T) for any ε > 0, which is just missed by the results in [41]. In future work, we

hope to extend Theorem 1.5 to the case k = 2 by combining the recent well-posedness in

[12] and the ideas in [15, 14]. Another alternative is to consider a different scale of spaces,

namely adapt the improved energy method of [41] to the Fourier-Lebesgue spaces FLs,p.
Since ILW (1.1) is a completely integrable equation which admits a Lax pair, it may also

be possible to use the method of commuting flows in [23, 22] as for KdV and BO, to obtain

an optimal result in the Hs-scale.

2. Preliminaries

2.1. Notations and function spaces. We start by introducing some useful notations.

Let A . B denote an estimate of the form A ≤ CB for some constant C > 0. We write

A ∼ B if A . B and B . A, while A � B will denote A ≤ εB, for some small constant

0 < ε � 1. When relevant, we may write .δ,∼δ to emphasize the dependence of the

implicit constant on the parameter δ. The notations a+ and a− represent a+ ε and a− ε
for arbitrarily small ε > 0, respectively. We will use the shorthand notation n1···k for the

sum n1 + · · ·+ nk.

Throughout this paper, we fix a probability space (Ω,F ,P). The realization ω ∈ Ω is

often omitted in writing. We will use L(X) to denote the law of the random variable X.

Our conventions for the Fourier transform are as follows. Let f : T→ R be a mean zero

function and Z∗ = Z \ {0}. Then, we have the following

f̂(n) =
1√
2π

∫
f(x)e−inx dx, f(x) =

1√
2π

∑
n∈Z∗

f̂(n)einx.

Given N ∈ N, we denote by PN the Dirichlet projection onto spatial frequencies {|n| ≤ N}
defined as follows

PNf(x) := (DN ∗ f)(x) =
1√
2π

∑
0<|n|≤N

f̂(n)einx,

where DN (x) =
∑
|n|≤N

einx is the Dirichlet kernel.
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We also introduce some relevant function spaces. Let s ∈ R and 1 ≤ p ≤ ∞. We define

the Lp-based Sobolev space W s,p(T) through the norm

‖f‖W s,p := ‖F−1
x (〈n〉sf̂(n))‖Lpx ,

where 〈n〉 = (1 + n2)
1
2 . When p = 2, we use Hs(T) for the L2-based Sobolev spaces with

norm

‖f‖Hs = ‖〈n〉sf̂(n)‖`2n .

We will often use the short-hand notations LqTH
s
x and LpωHs

x for Lq
(
[−T, T ];Hs(T)

)
and

Lp(Ω;Hs(T)), respectively. Lastly, we recall some known results in these function spaces;

see [3, 17, 19], for example.

Lemma 2.1. The following estimates hold:

(i) (interpolation) For 0 < s1 < s2, r1, r2 ∈ R, θ ∈ (0, 1), and r = θr1 + (1− θ)r2, we have

‖u‖Hs1
x
. ‖u‖

s1
s2

H
s2
x
‖u‖

s2−s1
s2

L2
x

, (2.1)

‖u‖Hr
x
. ‖u‖θ

H
r1
x
‖u‖1−θ

H
r2
x
. (2.2)

(ii) (fractional Leibniz rule) Let 0 ≤ s ≤ 1, 1 < pj , qj , r <∞, 1
pj

+ 1
qj

= 1
r , j = 1, 2, then

‖〈∇〉s(fg)‖Lrx . ‖〈∇〉
sf‖Lp1x ‖g‖Lq1x + ‖f‖Lp2x ‖〈∇〉

sg‖Lq2x . (2.3)

2.2. Gδ operator and friends. In this subsection, we recall important lemmas on the

operators Gδ,Qδ = (Gδ − H)∂x, and their scaled counterparts G̃δ,Q̃δ in the shallow-water

regime. Recall that for n ∈ Z∗ we have

Ĝδ(n) = −i(coth(δn)− 1
δn),

̂̃Gδ(n) = 1
δ Ĝδ(n) = − i

δ (coth(δn)− 1
δn),

Q̂δ(n) = (n coth(δn)− 1
δ − |n|),

̂̃Qδ(n) = 1
δ Q̂δ(n) = 1

δ (n coth(δn)− 1
δ − |n|),

Kδ(n) = inĜδ(n) = n coth(δn)− 1
δ , Lδ(n) = 1

δKδ(n) = 1
δ (n coth(δn)− 1

δ ).

We recall the following important results on the multipliers Kδ,Lδ. For a proof, see [33],

for example.

Lemma 2.2. For any δ > 0, we have

max
(
0, |n| − 1

δ

)
< Kδ(n) < |n|, (2.4)

for n ∈ Z∗. In particular,

Kδ(n) ∼δ |n|, n ∈ Z∗,

where the constant can be made independent of 2 ≤ δ ≤ ∞. Furthermore, for all n ∈ Z∗,
Kδ(n) is strictly increasing in δ ≥ 1 and it converges to |n| as δ →∞.

Lemma 2.3. The scaled multiplier Lδ satisfies the following:

(i) 0 < Lδ(n) < min(1
3n

2, 1
δ |n|) for all n ∈ Z∗, δ > 0.

(ii) For each n ∈ Z∗, Lδ(n)↗ 1
3n

2 as δ → 0.

(iii) For all δ0 > 0 and all C0 > 0, we have for 0 < δ ≤ δ0

Lδ(n) ≥

{
1
δC1|n|, if δ|n| > C0,

C2|n|2, if δ|n| ≤ C0,
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where C1 = 2(1
2 −

arctan(π/C0)
π ) and C2 =

∞∑
k=1

2
k2π2+C2

0
.

(iv) We can write Lδ(n) = 1
3n

2 − 1
3n

2h(δ, n) where

h(δ, n) = 6δ2
∞∑
k=1

n2

k2π2(k2π2 + δ2n2)
,

from which it follows that lim
n→∞

h(δ, n) = C 6= 0.

From Lemma 2.2 and properties of the coth function, we can easily conclude the following

results on H− Gδ, Qδ, Q̃δ, and Gδ.
Lemma 2.4. For 0 < δ <∞ and n ∈ Z∗, we have that∣∣Fx(H− Gδ)(n)

∣∣ ≤ 1

δ|n|
,

∣∣Fx(1
δH− G̃δ)(n)

∣∣ ≤ 1

δ2|n|
(2.5)

|Q̂δ(n)| ≤ 1

δ
, |̂̃Qδ(n)| ≤ 1

δ2
. (2.6)

Also, for 0 < δ, η <∞ and n ∈ Z∗, we have that

|Ĝδ(n)| ≤ 1,

|Ĝδ(n)| ≤ coth(η)− 1
η , if δ|n| ≤ η.

(2.7)

Lastly, we recall some important properties of the Gδ operator.

Lemma 2.5. We can write the Gδ operator as

Gδ = Tδ −
1

δ∂x
where Tδ is a Fourier operator with multiplier

T̂δ(n) = −i coth(δn), n ∈ Z∗,

and T̂δ(0) = 0. Moreover, it satisfies the following property for mean zero functions u, v:

Tδ[(Tδu)v + u(Tδv)] = (Tδu)(Tδv)− uv.
2.3. Tools from stochastic analysis. In the following we review some basic facts from

stochastic analysis. See, for example, [21, 29, 43] for proofs.

Lemma 2.6 (Wiener chaos estimate). Let g = {gn}n∈Z be an independent family of stan-

dard complex-valued Gaussian random variables satisfying g−n = gn. Given k ∈ N, let

{Qj}j∈N be a sequence of polynomials in g of degree at most k. Then, for any 2 ≤ p <∞,

we have ∥∥∥∥∑
j∈N

Qj(g)

∥∥∥∥
Lp(Ω)

≤ (p− 1)
k
2

∥∥∥∥∑
j∈N

Qj(g)

∥∥∥∥
L2(Ω)

.

Lemma 2.7 (Kakutani’s theorem). Let {An}n∈Z∗ and {Bn}n∈Z∗ be two sequences of in-

dependent, real-valued, mean-zero Gaussian random variables with E[A2
n] = an > 0 and

E[B2
n] = bn > 0 for all n ∈ N. Then, the laws of the sequences {An}n∈Z∗ , {Bn}n∈Z∗ are

equivalent if and only if ∑
n∈N

(an
bn
− 1
)2

<∞. (2.8)

It they are not equivalent, then they are singular.
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3. Construction and convergence of measures in the deep-water regime

In this section we prove Theorem 1.1 on construction of the weighted measures ρδ, k
2

for each fixed 0 < δ ≤ ∞ and k ∈ N, and we prove the convergence of ρδ, k
2

to ρ∞, k
2

in

total variation. In Subsections 3.1- 3.3, we establish preliminary results. We first detail

the structure of the conservation laws Eδ, k
2
(u) of ILW (1.1) in Subsection 3.1. Secondly, in

Subsection 3.2, we show the equivalence and convergence of the base Gaussian measures µδ, k
2

and µ∞, k
2

in total variation. Then, in Subsection 3.3 we prove uniform in δ and N bounds

on the truncated densities Fδ, k
2
,N,K via a variational approach. Lastly, in Subsection 3.4 we

complete the proof of Theorem 1.1.

3.1. Conservation laws in the deep-water regime. In this section, we describe the

structure of the conserved quantities for ILW (1.1) in the deep-water regime. The derivation

of the conserved quantities can be found in [50, 25, 31, 39]. For completeness, we include

the derivation and some relevant results on the structure in Appendix A.

Recall that Qδ = (Gδ −H)∂x. Our description of the conservation laws for ILW (1.1) is

motivated by seeing ILW as a perturbation of BO and the description of the BO conservation

laws in [54]. The following sets are essential to the structure of the conserved quantities.

Let u ∈ C∞(T) and define

P1(u) :=
{
Hα1Qβ1δ ∂

γ1
x u : α1 ∈ {0, 1}, β1, γ1 ∈ N ∪ {0}

}
,

P2(u) :=
{[
Hα1Qβ1δ ∂

γ1
x u
][
Hα2Qβ2δ ∂

γ2
x u
]

: α1, α2 ∈ {0, 1}, β1, β2, γ1, γ2 ∈ N ∪ {0}
}
,

Pn(u) :=

{ k∏
`=1

Hα`Qβ`δ pj`(u) : α` ∈ {0, 1}, β` ∈ N ∪ {0}, j` ∈ N, j1···k = n,

k ∈ {2, . . . , n}, pj` ∈ Pj`(u)

}
.

Moreover, we define the map Pn(u) 3 pn(u) 7→ p̃n(u) ∈ Pn(u) which associates to every

pn(u) ∈ Pn(u) the unique essential element p̃n(u) ∈ Pn(u) obtained by “dropping” the

Qδ,H operators. Also, we introduce the following quantities associated with pn(u): let

p̃n(u) =
∏n
i=1 ∂

γi
x u, then

|pn(u)| := sup
i=1,...,n

|γi|,

‖pn(u)‖ := γ1 + . . .+ γn,

|||pn(u)||| := number of Qδ terms in pn(u).

We can now write the conserved quantities in a succinct manner. For k ∈ N, the k-th

conserved quantity of ILW (1.1) is given by

Eδ, k
2
(u) =

1

2

k∑
`=0
` even

a`‖G
k−`
2

δ u‖2
Ḣ
k
2

+Rδ, k
2
(u), (3.1)
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for positive constants a` with even ` ∈ {0, . . . , k} which add up to 1, and where the remain-

der term Rδ, k
2
(u) is given by

Rδ, k
2
(u) = A k

2
, k
2
(u) +

k−1∑
`=1

1

δ`
A k

2
, k−`

2
(u), (3.2)

where A k
2
, `
2
(u) are defined as follows depending on the parity of `:

A k
2
, 2m

2
(u) :=

∑
p(u)∈P3(u)

p̃(u)=u∂m−1
x u∂mx u

|||p(u)|||=0

ck,m(p)

∫
p(u) dx+

∑
p(u)∈Pj(u),
j=3,...,2m+2

‖p(u)‖+|||p(u)|||=2m+2−j
|p(u)|≤m−1

ck,m(p)

∫
p(u) dx, (3.3)

A k
2
, 2m+1

2
(u) :=

∑
p(u)∈P3(u)

p̃(u)=u∂mx u∂
m
x u

|||p(u)|||=0

ck,m+ 1
2
(p)

∫
p(u) dx+

∑
p(u)∈P3(u)

p̃(u)=∂xu∂
m−1
x u∂mx u

|||p(u)|||=0,1

ck,m+ 1
2
(p)

∫
p(u) dx

+
∑

p(u)∈P4(u)

p̃(u)=u2∂m−1
x u∂mx u

|||p(u)|||=0

ck,m+ 1
2
(p)

∫
p(u) dx+

∑
p(u)∈Pj(u),

j=3,...,(2m+1)+2
‖p(u)‖+|||p(u)|||=(2m+1)+2−j

|p(u)|≤m−1

ck,m+ 1
2
(p)

∫
p(u) dx, (3.4)

for suitable constants ck,m, ck,m+ 1
2
. By Lemma A.9 and Lemma A.10, we can rewrite the

first contributions in A k
2
, 2m

2
(u) and A k

2
, 2m+1

2
(u) as

c k
2
,m

∫
u(H∂m−1

x u)(∂mx u) dx and
∑

(α1,α2,α3)∈C

cα

∫
[Hα1u][Hα2∂mx u][Hα3∂mx u] dx, (3.5)

respectively, with C = {(0, 0, 0), (1, 1, 0), (0, 1, 1)}, and for some constants c k
2
,m, cα1,α2 .

3.2. Equivalence and convergence of the base Gaussian measures. Let k ∈ N and

0 < δ ≤ ∞. We focus on the base Gaussian measures µδ, k
2

and µ∞, k
2

defined in (1.11) and

(1.17), respectively. Recall that for n ∈ Z∗, the multiplier Tδ, k
2
(n) in (1.13) is given by

Tδ, k
2
(n) =

k∑
`=0
even

a`|n|`|Kδ(n)|k−`, T∞, k
2
(n) = |n|k,

for 0 < δ <∞ and constants a` as in (3.1). Then, µδ, k
2

is the probability measure induced

by the following random Fourier series in (1.12)

Xδ, k
2
(x;ω) =

1√
2π

∑
n∈Z∗

gn(ω)(
Tδ, k

2
(n)
) 1

2

einx, (3.6)

where {gn}n∈Z∗ is a sequence of independent standard complex-valued Gaussian random

variables conditioned by g−n = gn.

Note that from Lemma 2.2, we have that for 0 < δ ≤ ∞
0 ≤ Tδ, k

2
(n) ∼δ |n|k and lim

δ→∞
Tδ, k

2
(n) = |n|k, ∈ Z∗, (3.7)

where the constant is independent of δ for 2 ≤ δ ≤ ∞.
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One can easily show that the typical element in the support of the µδ, k
2

measure Xδ, k
2

is

in H
k−1
2
−ε(T) \H

k−1
2 (T) for all ε > 0, almost surely. Indeed, for N ∈ N and 1 ≤ p < ∞,

with Xδ, k
2
,N = PNXδ, k

2
, it follows from the Wiener chaos estimate (Lemma 2.6) and (3.7)

that

‖Xδ, k
2
,N‖

LpωH
k−1
2 −ε

x

. p
1
2 ‖Xδ, k

2
,N‖

L2
ωH

k−1
2 −ε

x

.δ p
1
2

( ∑
0<|n|≤N

1

|n|1+2ε

) 1
2

∼δ p
1
2 ,

uniformly in N ∈ N, for ε > 0. From this, we can conclude that Xδ, k
2
,N converges, in Lp(Ω)

and almost surely, to Xδ, k
2

in H
k−1
2
−ε(T) for all ε > 0.

The following result establishes the convergence of the random variables Xδ, k
2

to X∞, k
2

as well as the convergence of the corresponding Gaussian measures µδ, k
2

to µ∞, k
2
, and their

equivalence.

Proposition 3.1. For k ∈ N, the following results hold:

(i) Let Xδ, k
2
, X∞, k

2
be as in (3.6). Then, given any ε > 0 and 1 ≤ p < ∞, Xδ, k

2
converges

to X∞, k
2

in Lp(Ω;H
k−1
2
−ε(T)) and in H

k−1
2
−ε(T) almost surely, as δ → ∞. In particular,

the Gaussian measure µδ, k
2

converges weakly to µ∞, k
2
, as δ →∞.

(ii) For any 0 < δ <∞, the measures µδ, k
2

and µ∞, k
2

are equivalent.

(iii) As δ →∞, the measure µδ, k
2

converges to µ∞, k
2

in the Kullback-Leibler divergence. In

particular, µδ, k
2

converges to µ∞, k
2

in total variation.

Proof. We first show (i). Let ε > 0 and fix 1 ≤ p <∞. Then, by the Wiener chaos estimate

(Lemma 2.6)

E
[∥∥Xδ, k

2
−X∞, k

2

∥∥p
H
k−1
2 −ε

]
.p E

[∥∥Xδ, k
2
−X∞, k

2

∥∥2

H
k−1
2 −ε

]
∼
( ∑
n∈Z∗

E[|gn|2]〈n〉k−1−2ε

[
1

(Tδ, k
2
(n))

1
2

− 1

|n|
k
2

]2) 1
2

.

( ∑
n∈Z∗

1

〈n〉1+2ε

∣∣|n|k − Tδ, k
2
(n)
∣∣

Tδ, k
2
(n)

) 1
2

(3.8)

using the fact that
√
a−
√
b ≤
√
a− b for a ≥ b ≥ 0. Looking at the numerator, by (2.4)

0 ≤ |n|k − Tδ, k
2
(n) =

k∑
`=0
` even

a`|n|`
[
|n|k−` − (Kδ(n))k−`

]

≤
k∑
`=0
` even

a`|n|`
[
|n|k−` − (|n| − 1

δ )k−`
]

=
1

δ

k−1∑
`=0
` even

a`

k−`−1∑
j=0

|n|k−1−j(|n| − 1
δ )j ,
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from which we get that

0 ≤ |n|k − Tδ, k
2
(n) .

{
1
δ |n|

k−1, if |n| ≥ 1
δ ,

1
δk
, if |n| ≤ 1

δ .
(3.9)

Combining (3.8), (3.7), and (3.9), we get

E
[∥∥Xδ, k

2
−X∞, k

2

∥∥p
H
k−1
2 −ε

]
.

(
1

δk

∑
0<|n|≤ 1

δ

1

〈n〉k+1+2ε
+

1

δ

∑
|n|> 1

δ

1

〈n〉2+2ε

) 1
2

.
1

δ
1
2

→ 0

as δ →∞, giving the Lp
(
Ω;H

k−1
2
−ε(T)

)
convergence of Xδ, k

2
. For almost sure convergence,

instead of using the fact that E[|gn|2] = 1, we use the bound

sup
n∈Z∗
〈n〉−ε0 |gn(ω)| ≤ Cε0,ω <∞,

almost surely, for some random constant Cε,ω > 0. Proceeding as in the earlier estimate,

we have that∥∥Xδ, k
2
−X∞, k

2

∥∥2

H
k−1
2 −ε

≤ Cε0,ω
δ

(
1

δk−1

∑
0<|n|≤ 1

δ

1

〈n〉k+1+2ε−ε0 +
∑
|n|> 1

δ

1

〈n〉2+2ε−ε0

)

≤ C̃ε0,ω
δ
→ 0

as δ → ∞ as long as 0 < ε0 < 1 + 2ε. Since µδ, k
2
, µ∞, k

2
are the laws of Xδ, k

2
, X∞, k

2
,

respectively, the convergence of the random variables implies the weak convergence of the

Gaussian measures.

To show (ii), we first rewrite Xδ, k
2

as follows

Xδ, k
2
(x;ω) =

1√
2π

∑
n∈N

2

(Tδ, k
2
(n))

1
2

[
Re gn cos(nx)− Im gn sin(nx)

]
.

The above also holds for δ =∞. For n ∈ N, set

An =
Re gn

(Tδ, k
2
(n))

1
2

, A−n = − Im gn

(Tδ, k
2
(n))

1
2

, Bn =
Re gn

|n|
k
2

, B−n = − Im gn

|n|
k
2

,

with a±n = E[A2
±n] = (Tδ, k

2
(n))−1 and b±n = E[B2

±n] = |n|−k. Then, using (3.9), we have

that ∑
n∈Z∗

(
an
bn
− 1

)2

=
∑
n∈Z∗

(
|n|k

Tδ, k
2
(n)
− 1

)2

.
1

δ2k

∑
0<|n|≤ 1

δ

1

|n|2k
+

1

δ2

∑
|n|> 1

δ

1

|n|2
<∞.

Then, by Kakutani’s theorem (Lemma 2.7), we conclude that µδ, k
2

and µ∞, k
2

are equivalent.

�

3.3. Uniform bounds on the density - deep-water regime. In this subsection, we

establish uniform in δ and N bounds on the truncated density Fδ, k
2
,N,K defined by

Fδ, k
2
,N,K(u) = ηK

(
‖PNu‖2L2

)
exp

(
−Rδ, k

2
(PNu)

)
, (3.10)

where we fix K > 0 for the remaining of this section. Our main goal is to prove the following

result.



LIMITS OF STATISTICAL EQUILIBRIA FOR THE INTERMEDIATE LONG WAVE EQUATION 17

Proposition 3.2. Let 1 ≤ p <∞, k ∈ N, and K > 0. Then, for any 0 < δ ≤ ∞, we have

that

sup
N∈N
‖Fδ, k

2
,N,K(Xδ, k

2
)‖Lp(Ω) = sup

N∈N
‖Fδ, k

2
,N,K(u)‖Lp(dµ

δ, k2
) ≤ Cp,k,δ,K <∞. (3.11)

In addition, the following uniform bound holds for 2 ≤ δ ≤ ∞:

sup
N∈N

sup
2≤δ≤∞

‖Fδ, k
2
,N,K(Xδ, k

2
)‖Lp(Ω) = sup

N∈N
sup

2≤δ≤∞
‖Fδ, k

2
,N,K(u)‖Lp(dµ

δ, k2
) ≤ Cp,k,K (3.12)

for a finite constant Cp,k,K > 0.

To establish Proposition 3.2, we use a variational approach, introduced by Barashkov-

Gubinelli [4]; see also [44, 19, 45, 9, 46, 33] for other recent applications of this method. In

particular, we consider the following truncated density

Fδ, k
2
,N,K(u) = exp

(
−Rδ, k

2
(PNu)−A‖PNu‖2α(k)

L2

)
(3.13)

for A > 0 and α(k) ∈ N to be chosen later. Noting that

ηK(x) ≤ exp
(
−A|x|γ

)
exp(AKγ) (3.14)

for any K,A, γ > 0, we have that

Fδ, k
2
,N,K(u) ≤ CA,K · Fδ, k

2
,N,K(u).

Hence, Proposition 3.2 follows once we prove the following uniform bounds.

Proposition 3.3. There exist A0, γ > 0 such that

sup
N∈N
‖Fδ, k

2
,N,K(Xδ, k

2
)‖Lp(Ω) = sup

N∈N
‖Fδ, k

2
,N,K(u)‖Lp(dµ

δ, k2
) ≤ Cp,δ,k,K,A0 (3.15)

for any 0 < δ ≤ ∞, 1 ≤ p < ∞, K > 0, A ≥ A0, and a finite constant Cp,δ,k,K,A0 > 0. In

addition, the following uniform bound holds for 2 ≤ δ ≤ ∞:

sup
N∈N

sup
2≤δ≤∞

‖Fδ, k
2
,N,K(Xδ, k

2
)‖Lp(Ω) = sup

N∈N
sup

2≤δ≤∞
‖Fδ, k

2
,N,K(u)‖Lp(dµ

δ, k2
) ≤ Cp,k,K,A0 (3.16)

for any 1 ≤ p <∞, K > 0, A ≥ A0, and a finite constant Cp,k,K,A0 > 0.

Let us first introduce some notations. Let W (t) be a cylindrical Brownian motion in

L2
0(T) = P 6=0L

2(T) of mean-zero functions on T, where P 6=0 denotes the projection onto

non-zero frequencies. Namely, we have

W (t) =
1√
2π

∑
n∈Z∗

Bn(t)einx, (3.17)

where {Bn}n∈Z∗ is a sequence of mutually independent complex-valued1 Brownian motions

such that Bn = B−n, n ∈ Z∗. Then, we define a centered Gaussian process Yδ, k
2
(t) by

Yδ, k
2
(t) = (Tδ, k

2
)−

1
2W (t), (3.18)

where (Tδ, k
2
)−

1
2 is the Fourier multiplier operator with the multiplier (Tδ, k

2
(n))−

1
2 as

in (1.13). In view of (1.12), we have L(Yδ, k
2
(1)) = µδ, k

2
. Given N ∈ N, we set

Yδ, k
2
,N = PNYδ, k

2
. Let Ha denote the collection of drifts, which are progressively measurable

1By convention, we normalize Bn such that Var(Bn(t)) =
√

2πt.
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processes belonging to L2([0, 1];L2
0(T)), P-almost surely. We now state the Boué-Dupuis

variational formula [6, 57].

Lemma 3.4. Given 0 < δ ≤ ∞, let Yδ, k
2

be as in (3.18) and fix N ∈ N. Suppose that

F : C∞(T)→ R is measurable such that E
[
|F (Yδ, k

2
(1))|p

]
<∞ and E

[
|e
−F (Y

δ, k2
(1))
|q
]
<∞

for some 1 < p, q <∞ with 1
p + 1

q = 1. Then, we have

− logE
[
e
−F (Y

δ, k2
(1))
]

= inf
θ∈Ha

E
[
F (Yδ, k

2
(1) + Iδ, k

2
(θ)(1)) +

1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
, (3.19)

where Iδ, k
2
(θ) is defined by

Iδ, k
2
(θ)(t) =

∫ t

0
(Tδ, k

2
)−

1
2 θ(t′)dt′

and the expectation E = EP is taken with respect to the underlying probability measure P.

We first show a preliminary result on the pathwise regularity of Yδ, k
2
,N (1) and Iδ, k

2
(θ)(1).

Lemma 3.5. Let 0 < δ ≤ ∞ and k ∈ N. For any finite p ≥ 1 and σ < k−1
2 , we have that

sup
N∈N

E
[
‖Yδ, k

2
N (1)‖p

Wσ,∞
x

]
< Cp,δ <∞,

where Cp,δ is independent of δ if 2 ≤ δ ≤ ∞. Moreover, for any θ ∈ Ha, we have

‖Iδ, k
2
(θ)(1)‖2

H
k
2
x

≤ Cδ
∫ t

0
‖θ(t)‖2L2

x
dt

where the constant Cδ > 0 can be chosen independently of δ if 2 ≤ δ ≤ ∞.

Proof. For the first inequality, fix σ < k−1
2 and ε > 0 sufficiently small such that σ+ε < k−1

2 .

Then, for r � 1 with rε > 1, Sobolev embedding gives that

‖Yδ, k
2
,N (1)‖Wσ,∞

x
. ‖〈∇〉σ+εYδ, k

2
,N (1)‖Lrx .

Fix p ≥ r. Note that the result follows for 1 ≤ p < r from the embedding Lr(Ω) ⊂ Lp(Ω).

Then, by Minkowski’s inequality and the Wiener chaos estimate (Lemma 2.6), we have∥∥‖Yδ, k
2
,N (1)‖Wσ,∞

x

∥∥
Lp(Ω)

≤ Cp
1
2

∥∥‖〈∇〉σ+εYδ, k
2
,N (1)‖L2(Ω)

∥∥
Lrx

≤ Cp
∥∥∥∥E[ ∑

0<|n|,|m|≤N

〈n〉σ+ε〈m〉σ+ε gngm

(Tδ, k
2
(n)Tδ, k

2
(m))

1
2

ei(n−m)x

]∥∥∥∥
Lrx

≤ Cp,δ
∑

0<|n|≤N

1

|n|k−2(σ+ε)
< Cp,δ <∞

due to (3.7), for some constant Cp,δ > 0 independent of N ∈ N. Moreover, for 2 ≤ δ <∞,

Cp,δ can be chosen independently of δ. For the second estimate, from Minkowski and

Cauchy-Schwarz inequalities, and (3.7), we have that

‖Iδ, k
2
(θ)(1)‖2

H
k
2
x

≤ C
(∫ 1

0

[∑
n 6=0

|n|k

Tδ, k
2
(n)
|θ̂(t, n)|2

] 1
2

dt

)2

≤ Cδ
(∫ 1

0
‖θ(t)‖L2

x
dt

)2
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≤ Cδ
∫ 1

0
‖θ(t)‖2L2

x
dt,

where Cδ is independent of δ for 2 ≤ δ <∞. �

Note that (3.19) is equivalent to

logE
[
e
−F (Y

δ, k2
(1))
]

= sup
θ∈Ha

E
[
− F (Yδ, k

2
(1) + Iδ, k

2
(θ)(1))− 1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
.

Then, setting F (u) = p
[
Rδ, k

2
,K(PNu) + A‖PNu‖2α(k)

L2

]
, Proposition 3.3 follows from

Lemma 3.4 once we establish an upper bound on

Mδ, k
2
,N (v) = E

[
− pRδ, k

2
(Yδ, k

2
,N (1) + PNv)− pA‖Yδ, k

2
,N (1) + PNv‖2α(k)

L2 − 1

2
C‖v‖2

H
k
2
x

]
(3.20)

uniformly in N ∈ N and v ∈ H
k
2 (T). In the following, we will use drop the δ, k dependence

on Yδ, k
2
,N and use notation vN = PNv. From the definition of the remainder Rδ, k

2
in (3.2),

we can rewrite it as

Rδ, k
2
(YN + vN ) = A k

2
, k
2
(YN + vN ) +

k−1∑
`=1

1

δk−`
A k

2
, `
2
(YN + vN ).

The following lemma controls the lower order terms in the remainder.

Lemma 3.6. Let k ∈ N with k ≥ 2, 1 ≤ ` ≤ k − 1, 0 < δ ≤ ∞, u1 ∈ H
k−1
2
−(T), and

u2 ∈ H
k
2 (T). Then, for 0 < ε < 1, there exists C > 0 independent of δ such that

|A k
2
, `
2
(u1 + u2)| ≤ C

(
1 +

1

δ`−1

)[
1 + ‖u1‖q

H
k−1
2 −

+ ‖u2‖2α(k)
L2

]
+ ε‖u2‖2

H
k
2
,

for 1� q <∞ large enough and α(k) ∈ N sufficiently large.

Proof. Fix k ∈ N with k ≥ 2. Since the dependence on k in the definition of A k
2
, `
2

in

(3.3)-(3.4) is only seen in the constants, we will write A `
2

for simplicity. For ` = 1, since

A 1
2
(u) ∼

∫
u3 dx, using Sobolev’s inequality, (2.1), and Young’s inequality gives

|A 1
2
(u1 + u2)| . ‖u1‖3

H
1
6

+ ‖u2‖
1
k

H
k
2
‖u2‖

3k−1
k

L2

≤ Cε
(
‖u1‖3

H
k−1
2 −

+ ‖u2‖
2(3k−1)
2k−1

L2

)
+ ε‖u2‖2

H
k
2

(3.21)

for C,Cε > 0 and any 0 < ε� 1. Also, note that 2(2k−1)
2k−1 ≤ k + 1.

We now estimate A `
2

when k ≥ 3 and 2 ≤ ` ≤ k − 1. First, consider ` = 2m for

1 ≤ m ≤ k−1
2 . For the first terms in (3.3), it suffices to consider p(u) = u∂m−1

x u∂mx u, since

the same estimate follows for the remaining terms from the boundedness of the Hilbert

transform. Let 1
2 < θ < 3

4 , then it follows from Cauchy-Schwarz, (2.3), Sobolev inequality,

(2.1), and Young’s inequality that for 0 < ε < 1 there exists Cε > 0 such that∣∣∣∣ ∫ (u1 + u2)∂m−1
x (u1 + u2)∂mx (u1 + u2) dx

∣∣∣∣ (3.22)
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=

∣∣∣∣ ∫ ∂θx[(u1 + u2)∂m−1
x (u1 + u2)]∂m−θx (u1 + u2) dx

∣∣∣∣
. ‖u1 + u2‖2Hm−θ‖u1 + u2‖

H2θ− 1
2

. ‖u1‖3
H
k−1
2 −

+ ‖u1‖2
H
k−1
2 −
‖u2‖

H
k
2

+ ‖u2‖
2k−4m+1

k

L2 ‖u2‖
4m−1
k

H
k
2

+ ‖u1‖
H
k−1
2 −

(‖u2‖
2k−4m+4θ

k

L2 ‖u2‖
4m−4θ
k

H
k
2

+ ‖u2‖
2k−4m+4θ

k

L2 ‖u2‖
4m−4θ
k

H
k
2

)

≤ Cε
(
1 + ‖u1‖q

H
k−1
2 −

+ ‖u2‖2(k−1)
L2

)
+ ε‖u2‖2

H
k
2

(3.23)

since 2θ − 1
2 < 1 ≤ k−1

2 and m ≤ k−1
2 , for 1 � q < ∞ sufficiently large. For the second

contribution in (3.3), using (2.6), Young’s convolution inequality and Hölder’s inequality,

we estimate it by

2m+2∑
j=3

2m+2−j∑
i=0

∑
m−1≥α1≥...≥αj≥0,

α1···j=i

1

δ2m+2−j−i ‖u1 + u2‖Hα1‖u1 + u2‖Hα2

j∏
l=3

‖u1 + u2‖
Hαl+

1
2+

.
(

1 +
1

δ2m−1

)(
1 + ‖u1‖2m+2

H
k−1
2 −

+ ‖u1‖2m+1

H
k−1
2 −
‖u2‖

H
k
2

+ ‖u1‖2m
H
k−1
2 −
‖u2‖2Hm−1

+
2m+2∑
j=3

∑
m−1≥α1≥...≥αj≥0,
α1···j=2m+2−j

[
‖u1‖j−3

Hm−1‖u2‖Hα1‖u2‖Hα2‖u2‖
Hα3+

1
2+ + · · ·

+ ‖u2‖Hα1‖u2‖Hα2

j∏
l=3

‖u2‖
Hαl+

1
2+

])
.

For fixed j ∈ {3, . . . , 2m+2}, from (2.1) and Young’s inequality, we have that for 0 < ε < 1,

there exists Cε > 0 and 1 ≤ q <∞ such that

‖u1‖2m+1

H
k−1
2 −
‖u2‖

H
k
2

+ ‖u1‖2m
H
k−1
2 −
‖u2‖2Hm−1 ≤ Cε(1 + ‖u1‖q

H
k−1
2 −

+ ‖u2‖6L2) + ε‖u2‖2
H
k
2
,

while for 3 ≤ l ≤ j we have

‖u1‖j−l
H
k−1
2 −
‖u2‖Hα1‖u2‖Hα2

l∏
κ=3

‖u2‖
Hακ+

1
2+

. ‖u1‖j−l
H
k−1
2 −
‖u2‖

2α1···l+l−2

k

H
k
2

‖u2‖
lk−2α1···l−l+2

k

L2

≤ Cε
(

1 + ‖u1‖q
H
k−1
2 −

+ ‖u2‖
2
lk−2α1···l−l+2

2k−2α1···l+l−2
+

L2

)
+ ε‖u2‖2

H
k
2

for some 1 � q < ∞. Replacing this estimate above gives that for 0 < ε < 1 there exists

Cε > 0 and 1� q <∞ such that

· · · .
(

1 +
1

δ2m−1

)[
Cε

(
1 + ‖u1‖q

H
k−1
2 −

+ ‖u2‖2(k−1)
L2

)
+ ε‖u2‖2

H
k
2

]
. (3.24)
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Thus, for even k ≥ 3 and 2 ≤ ` ≤ k − 1 even, for 0 < ε� 1 sufficiently small, there exists

Cε > 0 such that

|A `
2
(u1 + u2)| ≤

(
1 +

1

δ`−1

)
Cε

(
1 + ‖u1‖q

H
k−1
2 −

+ ‖u2‖2(k−1)
L2

)
+ ε‖u2‖2

H
k
2
, (3.25)

for some 1� q <∞.

Now let k ≥ 3 and 2 ≤ ` ≤ k − 1 odd, i.e., ` = 2m+ 1 for 1 ≤ m ≤ k−2
2 . From (3.4), we

see that from (2.6) and Young’s convolution inequality, we have

|A 2m+1
2

(u1 + u2)|

.
2m+3∑
j=3

2m+3−j∑
i=0

∑
p(u)∈Pj(u)

|||p(u)|||=2m+3−j−i
p̃(u)=

∏j
κ=1 ∂

ακ
x u

m≥α1···j≥0

∣∣∣∣ ∫ p(u1 + u2) dx

∣∣∣∣

.

(
1 +

1

δ2m

) 2m+3∑
j=3

∑
α1···j=2m+3−j
m≥α1≥...≥αj≥0

‖u1 + u2‖Hα1‖u1 + u2‖Hα2

j∏
κ=3

‖u1 + u2‖
Hακ+

1
2+ .

For 3 ≤ l ≤ j, for 0 < ε < 1 there exists Cε > 0 such that

‖u1‖j−lHm‖u2‖Hα1‖u2‖Hα2

l∏
κ=3

‖u2‖
Hακ+

1
2+

≤ Cε
(

1 + ‖u1‖q
H
k−1
2 −

+ ‖u2‖
2
(k−2)j−2
2k−2m−1

L2

)
+ ε‖u2‖2

H
k
2

for 1 � q < ∞ sufficiently large. Then, we have that for 0 < ε < 1 there exists Cε > 0

such that

|A 2m+1
2

(u1 + u2)|

≤
(
1 +

1

δ2m

)(
1 + ‖u1‖q

H
k−1
2 −

+ ‖u2‖2(2k−1)(k−2)
L2

)
+ ε‖u2‖2

H
k
2

(3.26)

for 1 � q < ∞ sufficiently large. Thus, for odd 3 ≤ ` ≤ k − 1, for 0 < ε � 1 sufficiently

small, there exist Cε > 0 and 1� q <∞ such that

|A `
2
(u1 + u2)| ≤

(
1 +

1

δ`−1

)
Cε

[
1 + ‖u1‖q

H
k−1
2 −

+ ‖u2‖2(k−2)(2k−1)
L2

]
+ ε‖u2‖2

H
k
2
, . (3.27)

The estimate follows from combining (3.21), (3.25), and (3.27). �

The following lemma controls the leading contribution in the remainder.

Lemma 3.7. Let k ∈ N, 0 < δ ≤ ∞, and YN , vN as defined earlier. Then, for 0 < ε < 1,

there exists Cδ,ε > 0 independent of N ∈ N such that∣∣E[A k
2
, k
2
(YN + vN )

]∣∣ ≤ E
[
Cδ,ε

(
1 + ‖YN‖q

H
k−1
2 −

+ ‖vN‖2α(k)
L2

)
+ ε‖vN‖2

H
k
2

]
for 1� q <∞ and α(k) ∈ N sufficiently large enough depending on k. Moreover, Cδ,ε can

be chosen independently of 2 ≤ δ ≤ ∞.
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Proof. We first consider odd integers k ≥ 1. Let k = 2`+ 1 for ` ≥ 0. We can estimate the

last contribution in (3.4) as in (3.26) for ` ≥ 1 (since this contribution does not appear in

A 1
2
, 1
2
), to get that for ε > 0 there exist Cε > 0, 1� q <∞, and α(k) ∈ N such that

k+2∑
j=3

k+2−j∑
i=0

∑
p(u)∈Pj(u)

|||p(u)|||=k+2−j−i
p̃(u)=

∏j
κ=1 ∂

ακ
x u

α1···j=i
`−1≥α1≥...≥αj≥0

∣∣∣∣ ∫ p(YN + vN ) dx

∣∣∣∣

≤ C
(

1 +
1

δk−1

)[
1 + ‖YN‖q

H
k−1
2 −

+ ‖vN‖2α(k)
L2

]
+ ε‖vN‖2

H
k
2
.

For ` ≥ 0, to estimate the first term in (3.4), it suffices to estimate
∫
p(YN + vN ) dx where

p(u) = u∂`xu∂
`
xu:

E
[ ∫ (

YN (∂`xYn)2 + vN (∂`xYN )2 + (YN + vN )∂`x(YN + vN )∂`xvN

)
dx

]
.

The first contribution vanishes by Isserlis’ theorem. For the second contribution, using

Hölder’s and Young’s inequality, for 0 < ε < 1, there exist C > 0 such that∣∣∣∣ ∫ vN (∂`xYN )2 dx

∣∣∣∣ =

∣∣∣∣ ∫ 〈∂x〉`+ 1
2 (vN )〈∂x〉−`−

1
2 (∂`xYN )2

∣∣∣∣
. ‖vN‖

H`+1
2
‖P6=0(∂`xYN )2‖

H−`−
1
2

≤ ε‖vN‖2
H
k
2

+ C‖P 6=0(∂`xYN )2‖2
H−`−

1
2
,

E
[
‖(∂`xYN )2‖2

H−`−
1
2

]
= E

[∑
n6=0

1

〈n〉2`+1

∣∣∣∣ ∑
n=n1+n2
0<|nj |≤N

gn1gn2

(Tδ,`+ 1
2
(n1)Tδ,`+ 1

2
(n2))

1
2

(n1n2)`
∣∣∣∣2]

=
∑
n6=0

1

〈n〉2`+1

∑
n=n1+n2
0<|nj |≤N

|n1n2|2`

Tδ,`+ 1
2
(n1)Tδ,`+ 1

2
(n2)

∼δ
∑
n,n1

1

〈n〉〈n1〉〈n− n1〉
< Cδ,

by (3.7), for some Cδ > 0 independent of N ∈ N, which can be chosen independently of

2 ≤ δ ≤ ∞. For the last contribution, using Cauchy’s inequality, (2.3), Sobolev inequality,

(2.1), and Young’s inequality, we get that for 0 < ε < 1, there exists C > 0 such that∣∣∣∣ ∫ (YN + vN )∂`xvN∂
`
x(YN + vN ) dx

∣∣∣∣
=

∣∣∣∣ ∫ 〈∂x〉θ((YN + vN )∂`xvN )〈∂x〉−θ∂`x(YN + vN ) dx

∣∣∣∣
. ‖(YN + vN )∂`xvN‖Hθ‖YN + vN‖H`−θ

. ‖YN + vN‖H`−θ‖YN + vN‖
H

1
4
‖vN‖

H`+θ+1
4

. 1 + ‖YN‖4H`− + ‖YN‖H`−(‖vN‖
2(`+θ)+1

k

H
k
2

‖vN‖
2(k−`−θ)−1

k

L2 + ‖vN‖
8`+1
2k

H
k
2
‖vN‖

4(k−2`)−1
2k

L2 )
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+ ‖vN‖
4`+1
k

H
k
2
‖vN‖

3k−4`−1
k

L2

≤ C
(
1 + ‖YN‖q

H
k−1
2 −

+ ‖vN‖2(k+1)
L2

)
+ ε‖vN‖2

H
k
2

for ` = 1, 0 < θ < 1
4 , and 1 � q < ∞ sufficiently large. For ` = 0, it remains to estimate

the cubic contribution
∫
v3
N dx:∣∣∣∣ ∫ v3

N dx

∣∣∣∣ . ‖vN‖3H 1
6
. ‖vN‖2L2‖vN‖

H
1
2
≤ C‖vN‖4L2 + ε‖vN‖2

H
1
2
.

For the cubic terms of the form
∫
p(YN + vN ) dx where p̃(u) = ∂xu · ∂`−1

x u · ∂`xu, we need

only estimate ` ≥ 2, as for ` = 1 this is the same as the previous term. Then, proceeding

as before, for 0 < ε < 1, there exists C > 0 such that∣∣∣∣ ∫ ∂x(YN + vN )∂`−1
x (YN + vN )∂`x(YN + vN ) dx

∣∣∣∣
=

∣∣∣∣ ∫ 〈∂x〉θ(∂x(YN + vN )∂`−1
x (YN + vN ))〈∂x〉−θ∂`x(YN + vN ) dx

∣∣∣∣
. ‖∂x(YN + vN )∂`−1

x (YN + vN )‖Hθ‖YN + vN‖H`−θ

. ‖YN + vN‖H`−θ‖YN + vN‖
H

1
2+2θ‖vN‖H`−θ

. 1 + ‖YN‖4H`− + ‖YN‖H`−(‖vN‖
4(`−θ)
k

H
k
2
‖vN‖

2(k−2`+2θ)
k

L2 + ‖vN‖
2(`+θ)+1

k

H
k
2

‖vN‖
2(k−`−θ)−1

k

L2 )

+ ‖vN‖
4`+1
k

H
k
2
‖vN‖

3k−4`−1
k

L2

≤ C
(
1 + ‖YN‖q

H
k−1
2 −

+ ‖vN‖2(k+1)
L2

)
+ ε‖vN‖2

H
k
2

(3.28)

for 1
4 < θ < 3

4 and 1� q <∞ sufficiently large. The cubic terms with p̃(u) = u ·∂`−1
x u ·∂`xu

and |||p(u)||| = 1 are controlled by the term above multiplied by 1
δ . It only remains to

estimate the quartic terms with p̃(u) = u2dx`−1u∂`xu. Proceeding as before, for 0 < ε < 1,

there exists C > 0 such that∣∣∣∣ ∫ (YN + vN )2∂`−1
x (YN + vN )∂`x(YN + vN ) dx

∣∣∣∣ (3.29)

=

∣∣∣∣ ∫ 〈∂x〉θ[(YN + vN )2∂`−1
x (YN + vN )]〈∂x〉−θ[∂`x(YN + vN )] dx

∣∣∣∣
. ‖(YN + vN )2∂`−1

x (YN + vN )‖Hθ‖YN + vN‖H`−θ

. ‖YN + vN‖2Hθ‖YN + vN‖2H`−θ

. ‖YN‖4H`− + ‖YN‖3H`−‖vN‖H`−θ + ‖YN‖2H`−‖vN‖
4(`−θ)
k

H
k
2
‖vN‖

2(k−2`+2θ)
k

L2 (3.30)

+ ‖YN‖H`−‖vN‖
4`−2θ
k

H
k
2
‖vN‖

3k−4`+2θ
k

L2 + ‖vN‖
4`
k

H
k
2
‖vN‖

4(k−`)
k

L2

≤ C
(
1 + ‖YN‖q

H
k−1
2 −

+ ‖vN‖2(k+1)
L2

)
+ ε‖vN‖2

H
k
2
, (3.31)

for 1
4 < θ < 1

2 and 1� q <∞ sufficiently large.

Now, we consider even integers k ≥ 2, namely, k = 2` for ` ≥ 1. We can estimate the last

contribution in (3.3) as in (3.24) for k ≥ 4, while for k = 2, we have that these contributions
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are of the form
∫
pj(u) dx where pj(u) ∈ Pj(u), j = 3, 4, with p̃3(u) = u3, |||p3(u)||| = 1,

and p̃4(u) = u4 with |||p4(u)||| = 0, therefore controlled by

1

δ
‖YN + vN‖3L3 + ‖YN + vN‖4L4 ≤ Cε(1 +

1

δ
)(1 + ‖YN‖q

H
1
2−

+ ‖vN‖6L2) + ε‖vN‖2H1 ,

for 0 < ε � 1, Cε > 0, and some 1 � q < ∞. Thus, we get that the last contribution in

(3.3) for k = 2` ≥ 2 is controlled by

k+2∑
j=3

k+2−j∑
i=0

∑
p(u)∈Pj(u), j=3,...,k+2
‖p(u)‖+|||p(u)|||=k+2−j

|p(u)|≤`−1

∣∣∣∣ ∫ p(YN + vN ) dx

∣∣∣∣
≤ C

(
1 +

1

δk+1

)(
1 + ‖YN‖q

H
k−1
2 −

+ ‖vN‖2α(k)
L2

)
+ ε‖vN‖2

H
k
2
, (3.32)

for 0 < ε < 1, for some C > 0, 1 � q < ∞, and α(k) ∈ N sufficiently large. It remains to

estimate the leading order cubic terms in (3.3), for which it suffices to estimate the term

corresponding to p(u) = u∂`−1
x u∂`xu:

E
[ ∫ (

YN∂
`−1
x YN∂

`
xYN + (YN + vN )∂`−1

x (YN + vN )∂`xvN

+ (YN + vN )∂`−1
x vN∂

`
xYN + vN∂

`−1
x YN∂

`
xYN

)
dx

]
.

The first term vanishes by Isserlis’ theorem. For the second term, we use Cauchy-Schwarz

inequality, Sobolev inequality, (2.1), and Young’s inequality, to show that for 0 < ε < 1

there exists C > 0 such that∣∣∣∣ ∫ (YN + vN )∂`−1
x (YN + vN )∂`xvN dx

∣∣∣∣
. ‖YN + vN‖

H
1
4
‖YN + vN‖

H`− 3
4
‖vN‖H`

. ‖YN‖2
H`− 3

4
‖vN‖H` + ‖YN‖

H`− 3
4
‖vN‖H`‖vN‖

H`− 3
4

+ ‖vN‖H`‖vN‖
H`− 3

4
‖vN‖

H
1
4

. ‖YN‖2
H`− 3

4
‖vN‖H` + ‖YN‖

H`− 3
4
‖vN‖

4k−3
2k

H
k
2
‖vN‖

3
2k

L2 + ‖vN‖
2k−1
k

H
k
2
‖vN‖

k+1
k

L2

≤ C(1 + ‖YN‖q
H
k−1
2 −

+ ‖vN‖2(k+1)
L2 ) + ε‖vN‖2

H
k
2

(3.33)

since ` = k
2 and for 1 � q < ∞ large enough. The third contribution can be handled by

integration by parts and earlier estimates since∫
(YN + vN )∂`−1

x vN∂
`
xYN dx = −

∫
∂x(YN + vN )∂`−1

x vN∂
`−1
x YN dx

−
∫

(YN + vN )∂`xvN∂
`−1
x YN dx,

where the first term can be estimate as in (3.32) and the second term was estimated in

(3.33). Thus, it only remains to estimate the last term. Applying Cauchy-Schwarz and

Young’s inequality, we get that for 0 < ε < 1, there exists C > 0 such that∣∣∣∣E[ ∫ vN∂
`−1
x YN∂

`
xYN dx

]∣∣∣∣ =

∣∣∣∣E[ ∫ (〈∂x〉`vN )〈∂x〉−`(∂`−1
x YN∂

`−1
x YN ) dx

]∣∣∣∣
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.
∣∣E[‖vN‖H`‖P 6=0(∂`−1

x YN∂
`
xYN )‖H−`

]∣∣
≤
∣∣E[ε‖vN‖2

H
k
2

]
+
[
C‖P 6=0(∂`−1

x YN∂
`
xYN )‖2H−`

]∣∣.
Then, from Isserlis’ theorem and (3.7), we have

E
[
‖P6=0(∂`−1

x YN∂
`
xYN )‖2H−`

]
= E

[∑
n 6=0

1

〈n〉2`

∣∣∣∣ ∑
n=n1+n2
0<|nj |≤N

(in1)`−1(in2)`gn1gn2

(Tδ,k(n1)Tδ,k(n2))
1
2

∣∣∣∣2]

∼δ
∑
n6=0

1

〈n〉2`
∑

n=n1+n2
0<|nj |≤N

|n1|k−2|n2|k + |n1n2|k−1

|n1|k|n2|k

∼δ
∑
n

1

〈n〉2`
∑

0<|n1|≤N

(
1

|n1||n− n1|
+

1

|n1|2

)
<∞

uniformly in N ∈ N. The implicit constant can also be made independent of 2 ≤ δ ≤ ∞.

Combining all the estimates above, we get the intended result. �

We can now focus onMδ, k
2
,N defined in (3.20). Fix 1 ≤ p <∞. Applying Lemma 3.6 and

Lemma 3.7, for 0 < ε < 1 there exists Cδ > 0 independent of N ∈ N (and also independent

of 2 ≤ δ ≤ ∞) such that for any v ∈ H
k
2 (T), we have

Mδ, k
2
,N (v) ≤ E

[
pCδ

(
1 + ‖YN‖q

H
k−1
2 −

)
+ (pCδε− 1

2C)‖vN‖2
H
k
2

+ pCδ‖vN‖
2α(k)
L2

−A0‖YN + vN‖2α(k)
L2

]
for 1� q <∞ and α(k) ∈ N sufficiently large. By picking ε so that pCδε <

1
2C and using

Lemma 3.5, there exists a constant Cδ,p > 0 independent of N ∈ N (and independent of

2 ≤ δ ≤ ∞) such that

Mδ, k
2
,N (v) ≤ Cp,δ + E

[
pCδ‖vN‖

2α(k)
L2 −A0‖YN + vN‖2α(k)

L2

]
.

Note that by using Cauchy-Schwarz and Young’s inequality, we get that for 0 < ε < 1,

there exists C > 0 such that

−‖YN + vN‖2α(k)
L2 = −

(
‖YN‖2L2 + ‖vN‖2L2 + 2

∫
YNvN dx

)α(k)

= −
∑

`1+`2+`3=α(k)
`i≥0

(
α(k)

`1, `2, `3

)
‖YN‖2`1L2 ‖vN‖2`2L2

(
2

∫
YNvN dx

)`3

≤ −‖vN‖2α(k)
L2 +

∑
`1+`2+`3=α(k)
`1,`2≥0,`3≥1

(
α(k)

`1, `2, `3

)
‖YN‖2`1L2 ‖vN‖2`2L2

∣∣∣∣2∫ YNvN dx

∣∣∣∣`3

≤ −‖vN‖2α(k)
L2 +

∑
`1+`2+`3=α(k)
`1,`2≥0,`3≥1

(
α(k)

`1, `2, `3

)
2`3‖YN‖2`1+`3

L2 ‖vN‖2`2+`3
L2

≤ −(1− ε)‖vN‖2α(k)
L2 + C‖YN‖qL2 ,
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for 1 � q < ∞ sufficiently large, since 2`1 + `3 < 2α(k). Therefore, by choosing A0 > 0

large enough such that pCδ −A0(1− ε) ≤ 0, we get that

sup

v∈H
k
2

sup
N∈N
Mδ, k

2
,N (v) < Cp,δ

for some constant Cp,δ > 0, which can be chosen independently of 2 ≤ δ ≤ ∞. This

completes the proof of Proposition 3.2.

3.4. Construction of the measures ρδ, k
2

for 0 < δ ≤ ∞. Fix k ∈ N with k ≥ 2,

0 < δ ≤ ∞, and K > 0. Define the limiting density Fδ, k
2
,K(u) by

Fδ, k
2
,K(u) = ηK

(
‖u‖2L2

)
exp(−Rδ, k

2
(u)).

Proposition 3.8. Let k ∈ N, with k ≥ 2, and 0 < δ ≤ ∞. Given 1 ≤ p <∞, the sequences

{PNXδ, k
2
}N∈N and {Rδ, k

2
(PNXδ, k

2
)}N∈N are Cauchy in Lp(Ω;H

k−1
2
−(T)) and Lp(Ω), thus

converging to limits denoted by Xδ, k
2

and Rδ, k
2
(Xδ, k

2
), respectively. Moreover, given any

1 ≤ p <∞ and θ > 0, we have that

sup
N∈N

sup
2≤δ≤∞

∥∥‖PNXδ, k
2
‖
H
k−1
2 −θ

x

∥∥
Lp(Ω)

< Cp <∞, (3.34)

sup
2≤δ≤∞

∥∥‖PNXδ, k
2
−PMXδ, k

2
‖
H
k−1
2 −θ

x

∥∥
Lp(Ω)

≤ Cp

N θ
→ 0, (3.35)

for any M ≥ N tending to ∞. In particular, the rate of convergence is uniform in 2 ≤ δ ≤
∞. In addition, for 1 ≤ p <∞, there exists θ > 0 such that

sup
N∈N∪{∞}

sup
2≤δ≤∞

‖Rδ, k
2
(PNXδ, k

2
)‖Lp(Ω) <∞, (3.36)

‖Rδ, k
2
(PMXδ, k

2
)−Rδ, k

2
(PNXδ, k

2
)‖Lp(Ω) ≤

Cδ,kp
k+1

N θ
, (3.37)

for any M ≥ N ≥ 1. For 2 ≤ δ ≤ ∞, we can choose the constant Cδ,k independently of δ,

and hence the rate of convergence is uniform in 2 ≤ δ ≤ ∞.

Before proceeding to the proof of Proposition 3.8, we show Theorem 1.1(i).

Proof of Theorem 1.1(i). Theorem 1.1(i) follows from (i) the uniform in N ∈ N (and 2 ≤
δ < ∞) Lp(Ω)-bounds on the density Fδ, k

2
,N,K(Xδ, k

2
), (ii) the Lp(Ω) convergence of the

remainder Rδ, k
2
(PNXδ, k

2
) and of ‖PNXδ, k

2
‖L2 in Proposition 3.8, (iii) and the continuous

mapping theorem which allows us to conclude the convergence in probability of the density.

Lastly, we show the convergence of ρδ, k
2
,N,K to ρδ, k

2
,K in total variation as N → ∞,

uniformly in 2 ≤ δ ≤ ∞. From the Lp(Ω)-convergence of the density, we have the following

for the partition functions Zδ,N , Zδ of ρδ, k
2
,N,K , ρδ, k

2
,K , respectively:

Zδ,N = ‖Fδ, k
2
,N,K(Xδ, k

2
)‖L1(Ω) → ‖Fδ, k

2
,K(Xδ, k

2
)‖L1(Ω) = Zδ as N →∞,

where the convergence is uniform in 2 ≤ δ ≤ ∞. Let ε > 0 and B denote the family of

Borel sets of H
k−1
2
−ε(T). Then,

lim
N→∞

sup
A∈B

∣∣ρδ, k
2
,N,K(A)− ρδ, k

2
,K(A)

∣∣
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= Z−1
δ lim

N→∞
sup
A∈B

∣∣∣∣ ZδZδ,N

∫
A
Fδ, k

2
,N,K(u)dµδ, k

2
−
∫
A
Fδ, k

2
,K(u)dµδ, k

2

∣∣∣∣
≤ Z−1

δ

(
sup
A∈B

µδ, k
2
(A)
) 1

2

[
sup
N∈N
‖Fδ, k

2
,N,K(u)‖L2(dµ

δ, k2
) lim
N→∞

∣∣∣ Zδ
Zδ,N

− 1
∣∣∣

+ lim
N→∞

‖Fδ, k
2
,N,K(u)− Fδ, k

2
,K(u)‖Lp(dµ

δ, k2
)

]
= 0

from the uniform inN bounds on the density in Proposition 3.2, the convergence of partition

functions Zδ,N , and the convergence of the densities in Lp(Ω). �

Proof of Proposition 3.8. Fix k ∈ N with k ≥ 2, 2 ≤ p < ∞, and integers M ≥ N ≥ 1.

For simplicity, let XN = PNXδ, k
2
. The estimate in (3.34) follows from that in Lemma 3.5,

since XN and Yδ, k
2
,N (1) have the same law. For the difference, for θ > 0, by Minkowski’s

inequality, the Wiener chaos estimate (Lemma 2.6), and (3.7), we have that

‖XN −XM‖
LpωH

k−1
2 −θ

x

≤ p‖〈∂x〉
k−1
2
−θ(XN −XM )‖L2

xL
2
ω

∼ p
∥∥∥∥(E∣∣∣∣ ∑

N<|n|≤M

〈n〉
k−1
2
−θ gn

(Tδ, k
2
(n))

1
2

einx
∣∣∣∣2) 1

2
∥∥∥∥
L2
x

= p

∥∥∥∥(E[ ∑
N<|n|,|m|≤M

〈n〉
k−1
2
−θ〈m〉

k−1
2
−θ gngm

(Tδ, k
2
(n)Tδ, k

2
(m))

1
2

ei(n−m)x

]) 1
2
∥∥∥∥
L2
x

= p

( ∑
N<|n|≤M

〈n〉k−1−2θ

Tδ, k
2
(n)

) 1
2

∼δ p
( ∑
N<|n|≤M

1

|n|1+2θ

) 1
2

.δ
p

N θ
.

Note that the implicit constants can be chosen independently of 2 ≤ δ ≤ ∞.

We now prove (3.37), which suffices to conclude that {Rδ, k
2
(XN )}N∈N is Cauchy in Lp(Ω).

Let M ≥ N ≥ 1. We will show that for 2 ≤ p <∞, k ∈ N, and 1 ≤ ` ≤ k,

‖A k
2
, `
2
(XM )−A k

2
, `
2
(XN )‖Lp(Ω) ≤

Cδ,k,`p
`+2

N
1
3
−

, (3.38)

where Cδ,k,` can be chosen independently of 2 ≤ δ ≤ ∞.

We first prove (3.38) for ` = 1. Note that by Hölder’s inequality, Sobolev inequality,

(3.34), and (3.35),

‖A k
2
, 1
2
(XM )−A k

2
, 1
2
(XN )‖Lpω ∼`,k

∥∥∥∥∫ (XM −XN )(X2
M +XMXN +X2

N ) dx

∥∥∥∥
Lpω

. ‖XM −XN‖
L3p
ω H

1
6
x

‖XM‖2
L3p
ω H

1
6
x

.`,k,δ
p3

N
1
3
−
,
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since k−1
2 −

1
6 ≤

1
3 . Now consider odd ` = 2`′ + 1 and 1 ≤ `′ ≤ k−1

2 . By (3.4),

A k
2
, 2`
′+1
2

(XM )−A k
2
, 2`
′+1
2

(XN ) =
∑

p(u)∈P3(u)

p̃(u)=∂
α1
x u∂

(`′−1)+α2
x u∂`

′
x u

0≤α12≤1
|||p(u)|||=1−(α12)

[
p(XM )− p(XN )

]
dx

+
∑

p(u)∈P4(u)

p̃(u)=u2∂`
′−1
x u∂`

′
x u

|||p(u)|||=0

∫ [
p(XM )− p(XN )

]
dx

+

2`′+3∑
j=3

2`′+3−j∑
i=0

∑
p(u)∈Pj(u)
‖p(u)‖=i

|||p(u)|||=2`′+3−j−i
|p(u)|≤`−1

∫ [
p(XM )− p(XN )

]
dx

=: I + II + III.

For I , it suffices to estimate the term with p(u) = ∂α1
x u∂`

′−1+α2
x u∂`

′
x u, where α12 = 1. We

have that

‖ I‖2L2(Ω) .δ E
∣∣∣∣ ∑

0=n123

(10<|ni|≤M
i=1,2,3

− 10<|ni|≤N
i=1,2,3

)
gn1gn2gn3(in1)α1(in2)`

′−1+α2(in3)`
′

(Tδ, `
2
(n1)Tδ, `

2
(n2)Tδ, `

2
(n3))

1
2

∣∣∣∣2
.δ

∑
0=n1+n2+n3

1BN,M (n1,n2,n3)
1

|n1n2n3|2`′+1

(
|n1|2α1 |n2|2(`′−1+α2)|n3|2`

′

+ |n1|2α1 |n2n3|2`
′−1+α2 + |n1n2|`

′ |n3|2`
′
+ |n1|`

′ |n2|2`
′−1+α2 |n3|`

′+α1

+ |n1n3|`
′+α1 |n2|2(`′−1+α2)

)
by Isserlis’ theorem and (3.7), where

BN,M (n1, n2, n3) =
{

(n1, n2, n3) ∈ (Z∗)3 : 0 < |ni1 | ≤M,
N

2
< |ni2 |, |ni3 | ≤M,

for some {i1, i2, i3} = {1, 2, 3}
}
.

Then,

‖ I‖L2(Ω) .δ

( ∑
0<|nmin|≤M
N
2
<|nmed|≤M

1

|nmin|2`′+1|nmed|2

) 1
2

.δ
1

N
1
2

,

where the implicit constants are independent of N,M ∈ N and 2 ≤ δ ≤ ∞. For II, it suffices

to control the contribution with p(u) = u2∂`
′−1
x u∂`

′
x u and |||p(u)||| = 0. Note that writing

p(u1, . . . , u4) = u1u2∂
`′−1
x u3∂

`′
x u4, and proceeding as in (3.31), we get that for 0 < θ ≤ 1

3 ,∣∣∣∣ ∫ p(u1, u2, u3, u4) dx

∣∣∣∣ . ‖u4‖H`−θ

∑
θ1+θ2+θ3=θ
θi∈{0,θ}

‖u1‖
H

1
3+θ1
‖u2‖

H
1
3+θ2
‖u3‖

H`− 2
3+θ3
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from which, by Hölder’s inequality, (3.34) and (3.35), we have

‖II‖Lp(Ω) .δ ‖XN −XM‖
L4p
ω H

`−1
2 −θ

x

‖XM‖3
L4p
ω H

`−1
2 −

x

.δ p
4 1

N θ
,

where the implicit constants are independent of 2 ≤ δ ≤ ∞. For III, fix 3 ≤ j ≤ k + 2,

0 ≤ i ≤ `+ 2− j, α1···j = i with `′ − 1 ≥ α1 ≥ . . . ≥ αj ≥ 0, and p̃(u) =
∏j
κ=1 ∂

ακ
x u, then∣∣∣∣ ∫ [p(XM )− p(XN )] dx

∣∣∣∣ . 1

δ`+2−j−i ‖XM −XN‖Hα1‖XM‖Hα2

j∏
κ=3

‖XM‖
Hακ+

1
2+ ,

from which we get

‖III‖Lp(Ω) ≤ Cδ
`+2∑
j=3

‖XM −XN‖Ljpω H`′−1
x
‖XM‖j−1

Ljpω H
`−1
2 −

x

≤
Cδ,`p

`+2

N1−

from (3.34) and (3.35), where the constant Cδ,` can be chosen independently of 2 ≤ δ ≤ ∞.

Now, consider even ` = 2`′ with `′ ≥ 1. Then, from (3.3), we can write

A k
2
, `
2
(XM )−A k

2
, `
2
(XN ) =

∑
p(u)∈P3(u)

p̃(u)=u∂`
′−1
x u∂`

′
x u

|||p(u)|||=0

∫
[p(XM )− p(XN )] dx

+
k+2∑
j=3

k+2−j∑
i=0

∑
p(u)∈Pj(u)
‖p(u)‖=i

|||p(u)|||=k+2−j−i
|p(u)|≤`′−1

∫ [
p(XM )− p(XN )

]
dx =: I + II.

To estimate I , it suffices to control the contribution from p(u) = u∂`
′−1
x u∂`

′
x u and |||p(u)||| =

0. Proceeding as in the estimate of I in the odd case, we get that

‖ I‖2L2(Ω) .
∑

0=n1+n2+n3

1BN,M (n1,n2,n3)
1

|n1n2n3|2`′
(
|n2|2`

′−2|n3|2`
′
+ |n2n3|2`

′−1

+ |n1n2|`
′−1|n3|`

′
(|n2|`

′
+ |n3|`

′
) + |n1n3|`

′ |n2|`
′−1(|n2|`

′−1 + |n3|`
′−1)

)
.

∑
0<|nmin|≤M
N
2
<|nmed|≤M

1

|nmin|2`′ |nmed|2
.

1

N
,

where the implicit constants are independent of N,M, δ. For II, fix 3 ≤ j ≤ `+ 2, 0 ≤ i ≤
`+ 2− j, α1···j = i with `− 1 ≥ α1 ≥ . . . ≥ αj ≥ 0, and p̃(u) =

∏j
κ=1 ∂

ακ
x u, then∣∣∣∣ ∫ [p(XM )− p(XN )] dx

∣∣∣∣ . 1

δ`+2−j−i ‖XM −XN‖Hα1‖XM‖Hα2

j∏
κ=3

‖XM‖
Hακ+

1
2+ ,

from which we get

‖III‖Lp(Ω) ≤ Cδ
`+2∑
j=3

‖XM −XN‖Ljpω H`′−1
x
‖XM‖(j−1)

Ljpω H
`−1
2 −

x

≤
Cδ,kp

`+2

N1−

from (3.34) and (3.35), where the constant Cδ,k can be chosen independently of 2 ≤ δ ≤ ∞.
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From (3.38), we have that

‖Rδ, k
2
(XM )−Rδ, k

2
(XN )‖Lp(Ω) ≤

k∑
`=1

1

δk−`
‖A k

2
, `
2
(XM )−A k

2
, `
2
(XN )‖Lp(Ω) ≤

Cδ,kp
k+2

N
1
3
−

from which (3.37) follows. Therefore, the sequence {Rδ, k
2
(XN )}N∈N is Cauchy in Lp(Ω) and

it has a limit in Lp(Ω). The estimate in (3.36) follows by the same arguments above. �

3.5. Convergence of ρδ, k
2

as δ → ∞. In this subsection, we present the proof of Theo-

rem 1.1(ii). First, we establish the Lp(Ω)-convergence of the truncated densities.

Lemma 3.9. Given N ∈ N, we have that

lim
δ→∞

‖Fδ, k
2
,N,K(Xδ, k

2
)− F∞, k

2
,N,K(X∞, k

2
)‖Lp(Ω) = 0, (3.39)

lim
δ→∞

‖Fδ, k
2
,N,K(X∞, k

2
)− F∞, k

2
,N,K(X∞, k

2
)‖Lp(Ω) = 0. (3.40)

Moreover,

lim
δ→∞

‖Fδ, k
2
,K(Xδ, k

2
)− F∞, k

2
,K(X∞, k

2
)‖Lp(Ω) = 0, (3.41)

and the partition function Zδ of ρδ, k
2
,K converges to the partition function Z∞ for ρ∞, k

2
of

ρ∞, k
2
, as δ →∞.

Proof. For simplicity, we omit the K, k dependence in the proof and let Xδ,N = PNXδ, k
2

for 2 ≤ δ ≤ ∞. Fix N ∈ N and 2 ≤ δ ≤ ∞. For fixed x ∈ T and ω ∈ Ω, we have that

Xδ,N (x;ω) =
1√
2π

∑
0<|n|≤N

gn(ω)

Tδ, k
2
(n)

1
2

einx → 1√
2π

∑
0<|n|≤N

gn(ω)

|n|
k
2

einx = X∞,N (x;ω)

as δ →∞ from (3.7).

Now, we show that Rδ,N (Xδ(ω)) → R∞,N (X∞(ω)) as δ → ∞. First note that from

Lemma 3.6 with u2 ≡ 0 and u1 = Xδ,N , we get that∣∣∣∣ k−1∑
`=1

1

δk−`
A k

2
, `
2
(Xδ,N (ω))

∣∣∣∣ . 1

δ
(1 + ‖Xδ,N (ω)‖q

H
k−1
2 −

)

for some 1� q <∞ and 2 ≤ δ ≤ ∞. From (3.7)

‖Xδ,N (ω)‖2
H
k−1
2 −
∼

∑
0<|n|≤N

|gn(ω)|2

|n|1+
≤ CN,ω <∞, (3.42)

|Xδ,N (x;ω)| ∼
∑

0<|n|≤N

|gn(ω)|
|n|

k
2

≤ C̃N,ω <∞, (3.43)

where the constants are independent of δ. Thus, for fixed 2 ≤ δ ≤ ∞ and ω ∈ Ω,∣∣∣∣ k−1∑
`=1

1

δk−`
A k

2
, `
2
(Xδ,N (ω))

∣∣∣∣ . 1

δ
CN,ω → 0 as δ →∞. (3.44)
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To complete the convergence of the remainder, we must show that A k
2
, k
2
(Xδ,N (ω)) →

R∞(X∞,N ) as δ →∞. Let j = 3, . . . , k + 2 and pj(u) ∈ Pj(u) with p̃j(u) =
∏j
i=1 ∂

αi
x u and

α1···j ≤ k + 2− j. If |||pj(u)||| ≥ 1, then from (3.42)∣∣∣∣ ∫
T
pj(Xδ,N (x;ω)) dx

∣∣∣∣ . 1

δ
‖Xδ,N (ω)‖

Hα1+
1
2+‖Xδ,N (ω)‖

Hα2+
1
2+

j∏
i=3

‖Xδ,N (ω)‖
Hαi+

1
2+

≤ 1

δ
CN,ω → 0

as δ → ∞. The remaining contributions in A k
2
(Xδ,N (ω)) correspond to polynomials pj(u)

as above with |||pj(u)||| = 0, which are the terms that appear in R∞, k
2

and are therefore

independent of δ (see Lemma A.7 for details). Since Xδ,N (x;ω) → X∞,N (x;ω) for all

x ∈ T and ω ∈ Ω, and Xδ,N (x, ω) is uniformly bounded in x, δ per (3.43), by dominated

convergence theorem we obtain that for each polynomial pj(u) ∈ Pj(u) with |||pj(u)||| = 0,∫
pj(Xδ,N (x;ω)) dx→

∫
pj(X∞,N (x;ω)) dx as δ →∞.

Combining these results, we conclude that

Rδ,N (Xδ(ω))→ R∞,N (X∞(ω)) as δ →∞

for each fixed ω ∈ Ω. Since, ηK(‖Xδ,N (ω)‖2L2) → ηK(‖X∞,N (ω)‖2L2) as δ → ∞ for all

ω ∈ Ω, we conclude that Fδ,N (Xδ(ω))→ F∞,N (X∞(ω)) as δ →∞ and for fixed ω ∈ Ω. The

convergence in Lp(Ω) in (3.39) follows from the pointwise in ω convergence, the uniform in

N bounds in Proposition 3.2, and dominated convergence theorem. The same argument

above shows that Rδ,N (X∞(ω)) → R∞,N (X∞(ω)) as δ → ∞, for all ω ∈ Ω, and both

Fδ,N (X∞) and F∞,N (X∞) share the same cutoff function. Thus, the convergence in (3.40)

follows again by the ω-pointwise convergence and the dominated convergence theorem.

To show (3.41), note that

‖Fδ(Xδ)− F∞(X∞)‖Lp(Ω)

≤ ‖Fδ(Xδ)− Fδ,N (Xδ)‖Lp(Ω) + ‖Fδ,N (Xδ)− F∞,N (X∞)‖Lp(Ω)

+ ‖F∞,N (X∞)− F∞(X∞)‖Lp(Ω)

≤ 2 sup
2≤δ≤∞

‖Fδ(Xδ)− Fδ,N (Xδ)‖Lp(Ω) + ‖Fδ,N (Xδ)− F∞,N (X∞)‖Lp(Ω).

Taking a limit as δ →∞ followed by a limit as N →∞, from (3.39) and (1.18), we get the

intended convergence in (3.41). �

Lastly, we establish a uniform in 2 ≤ δ ≤ ∞ and ω ∈ Ω estimate on Fδ, k
2
,K,N (X∞, k

2
(ω)).

Lemma 3.10. For fixed N ∈ N, there exists Ck,K,N > 0 independent of 2 ≤ δ ≤ ∞ and

ω ∈ Ω, such that

sup
2≤δ≤∞
ω∈Ω

∣∣F k
2
,δ,N,K(X∞, k

2
(ω))

∣∣ ≤ Ck,K,N <∞. (3.45)

Proof. Fix N ∈ N, and let ω ∈ Ω and 2 ≤ δ ≤ ∞. For simplicity, let Fδ,N = Fδ, k
2
,N,K ,

Rδ = Rδ, k
2
, and X∞,N = PNX∞, k

2
. Recall that

Fδ,N (X∞(ω)) = ηK(‖X∞,N (ω)‖2L2) exp(−Rδ(X∞,N (ω))).
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Due to the cutoff, this quantity is 0 for all ω such that ‖X∞,N (ω)‖2L2 ≥ 2K. Therefore, it

suffices to consider ω ∈ Ω such that ‖X∞,N (ω)‖2L2 ≤ 2K. This means that

0 ≤ 1

2π

∑
0<|n|≤N

|gn(ω)|2

|n|k
≤ 2K. (3.46)

For Rδ(X∞,N (ω)), from the structure in (3.2), applying Young’s convolution inequality,

(2.2), and (3.46), we get

|Rδ(X∞,N (ω))| ≤
k−1∑
`=0

1

δ`
∣∣A k

2
, k−`

2
(X∞,N (ω))

∣∣
.

k−1∑
`=0

1

δ`

k−`+2∑
j=3

k−`+2−j∑
κ=0

∑
p(u)∈Pj(u),

‖p(u)‖=k−`+2−j−κ
|||p(u)|||=κ

∫
|p(X∞,N (ω))| dx

.
k−1∑
`=0

1

δ`

k−`+2∑
j=3

k−`+2−j∑
κ=0

∑
p(u)∈Pj(u),

‖p(u)‖=k−`+2−j−κ
|||p(u)|||=κ

N (k−`+2−j−κ)+j/2+ 1

δκ
‖X∞,N (ω)‖j

L2

≤ CkNk+1(1 + 1
δk−1 )

(
1 + ‖X∞,N (ω)‖k+2

L2

)
≤ CkNk+1(1 + 1

δk−1 )(1 + (2K)
k+2
2 ) = Ck,K,N <∞,

where Ck,K,N > 0 is independent of 2 ≤ δ ≤ ∞ and ω ∈ Ω. Therefore,

|Fδ,N (X∞(ω))| ≤ exp(Ck,K,N ) <∞,

as intended. �

Proof of Theorem 1.1(ii). Fix k ∈ N with k ≥ 2 and K > 0. For simplicity, we omit the

dependence on k,K in the proof, using the notation ρδ = ρδ, k
2
, µδ = µδ, k

2
, Fδ = Fδ, k

2
, for

0 < δ ≤ ∞.

For 0 < δ ≤ ∞, it follows from the construction of the measure ρδ that it is equivalent

to the base Gaussian measure µδ,. Moreover, Proposition 3.1(ii) says that the measures µδ
are equivalent for all 0 < δ ≤ ∞. Consequently, ρδ is equivalent to ρ∞.

Now, it remains to show the convergence ρδ → ρ∞ in total variation as δ → ∞.

From (3.41), we have convergence of the partition functions Zδ = ‖Fδ(Xδ, k
2
)‖L1(Ω) →

‖F∞(X∞, k
2
)‖L1(Ω) = Z∞ as δ →∞. For any N ∈ N, by triangle inequality, we have that

dTV(ρδ, ρ∞) ≤ dTV(ρδ, ρδ,N ) + dTV(ρδ,N , ρ∞,N ) + dTV(ρ∞,N , ρ∞)

≤ 2 sup
2≤δ≤∞

dTV(ρδ, ρδ,N ) + dTV(ρδ,N , ρ∞,N ).

From Theorem 1.1(i), we know that ρδ,N → ρδ as N → ∞ in total variation uniformly in

δ, thus the first contribution above converges to zero. Therefore, taking a limit as δ →∞
followed by a limit as N →∞, we get that

lim
δ→∞

dTV(ρδ, ρ∞) ≤ lim
N→∞

lim
δ→∞

dTV(ρδ,N , ρ∞,N ). (3.47)
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For the distance on the right hand-side, we have

dTV(ρδ,N , ρ∞,N ) = sup
A∈B
|ρδ,N (A)− ρ∞,N (A)|

= sup
A∈B

∣∣∣∣Z−1
δ,N

∫
1A(u)Fδ,N (u) dµδ(u)− Z−1

∞,N

∫
1A(u)F∞,N (u) dµ∞(u)

∣∣∣∣
≤ Z−1

∞,N
∣∣Z∞,N − Zδ,N ∣∣ sup

A∈B
ρδ(A)

+ Z−1
∞,N sup

A∈B

∣∣∣∣ ∫ 1A(u)Fδ,N (u) dµδ(u)−
∫

1A(u)F∞,N (u) dµ∞(u)

∣∣∣∣.
(3.48)

For the first contribution in (3.48), note that from (3.39) and the fact that ρδ is a probability

measure, we get that

Z−1
∞,N lim

δ→∞

∣∣Z∞,N − Zδ,N ∣∣ sup
A∈B

ρδ(A) = 0.

Focusing on the latter contribution in (3.48), we obtain∣∣∣∣ ∫ 1A(u)Fδ,N (u) dµδ(u)−
∫

1A(u)F∞,N (u) dµ∞(u)

∣∣∣∣
≤
∣∣∣∣ ∫ 1A(u)

[
Fδ,N (u)− F∞,N (u)

]
dµ∞(u)

∣∣∣∣+

∣∣∣∣ ∫ 1A(u)
[ dµδ
dµ∞

(u)− 1
]
Fδ,N (u) dµ∞(u)

∣∣∣∣
=: I + II.

Using (3.40), we have that for all N ∈ N

lim
δ→∞

Z−1
∞,N sup

A∈B
I ≤ sup

A∈B
µ∞(A)

1
2 lim
δ→∞

‖Fδ,N (X∞)− F∞,N (X∞)‖L2(Ω) = 0.

From Scheffé’s lemma, we have that

dTV(µδ, µ∞) =
1

2

∫
H
k−1
2 −ε

∣∣∣ dµδ
dµ∞

(u)− 1
∣∣∣ dµ∞(u).

Since from Proposition 3.1, we know that dTV(µδ, µ∞)→ 0 as δ →∞, we get

lim
δ→∞

sup
A∈B

II ≤
(

sup
2≤δ≤∞

sup
ω∈Ω
|Fδ,N (X∞(ω))|

)
lim
δ→∞

∫ ∣∣∣ dµδ
dµ∞

(u)− 1
∣∣∣ dµ∞(u)

≤ 2Ck,K,N lim
δ→∞

dTV(µδ, µ∞) = 0

using the uniform in δ, ω estimate in (3.45). Therefore, for each N ∈ N,

lim
δ→∞

dTV(ρδ,N , ρ∞,N ) = 0, and the intended limit follows from (3.47). �

4. Construction and convergence of measures in the shallow-water regime

In this section we prove Theorem 1.2 on construction of the weighted measures ρ̃δ, k
2
,K for

each fixed 0 < δ ≤ ∞ and k ≥ 2, and we prove the weak convergence of ρ̃δ, k−
1
2
,K and ρ̃δ, k

,
K

to ρ̃0,k,K . We first detail the structure of the conservation laws Ẽδ, k
2
(v) for sILW (1.4) in

Subsection 4.1. In Subsection 4.2, we establish the singularity of the Gaussian measures

µ̃δ,k− 1
2
, µ̃δ,k, and µ̃0,k, and the weak convergence of the former to the latter as δ → 0. In
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Subsection 4.3, we prove uniform in δ and N bounds on the truncated densities F̃δ, k
2
,N,K ,

and we complete the proof of Theorem 1.2 in Subsections 4.4-4.5.

4.1. Conservation laws in the shallow-water regime. In this subsection, we describe

the structure of the conserved quantities for sILW (1.4), focusing on the shallow-water

regime. Derivation of the conservation laws can be found in [50, 25, 16, 30]. However, the

format of these was not suitable for our construction. For completeness, we include the

derivation and some relevant results on the structure in Appendix B.

We first introduce some notations. Consider the following sets

P̃1(u) :=
{
G̃αδ ∂βxu : α, β ∈ N ∪ {0}

}
,

P̃2(u) :=
{[
G̃α1
δ ∂β1x u

][
G̃α2
δ ∂β2x u

]
: α1, α2, β1, β2 ∈ N ∪ {0}

}
,

P̃n(u) :=

{ k∏
`=1

G̃α`δ ∂
β`
x pj`(u) : α`, β` ∈ N ∪ {0}, j` ∈ N, j1···k = n,

k ∈ {2, . . . , n}, pj`(u) ∈ P̃j`(u)

}
.

We also define the map P̃n(u) 3 p(u) 7→ p̃(u) ∈ P̃n(u) which associates to every p(u) ∈
P̃n(u) the unique essential element p̃(u) ∈ P̃n(u) obtained by “dropping” the G̃δ operators.

Also, we defined the following quantities associated with p(u): let p̃(u) =
∏n
i=1 ∂

βi
x u, then

|p(u)| := sup
i=1,...,n

|βi|,

‖p(u)‖ := β1 + . . .+ βn,

|||p(u)||| := number of G̃δ terms in p(u).

Using these sets, we can now describe our conserved quantities Ẽδ, k
2
(u). For k ∈ N, we

have that

Ẽδ, 2k−1
2

(u) =
3

4k

2k−1∑
m=1
odd

(
2k

m

)
δm−1‖G̃

m
2
δ u‖

2

Ḣk− 1
2

+ R̃δ, 2k−1
2

(u),

Ẽδ, 2k
2

(u) =
1

2

2k∑
m=0
even

(
2k + 1

m

)
δm‖G̃

m
2
δ u‖

2
Ḣk + R̃δ, 2k

2
(u),

where the remainders R̃δ, k
2
(u) denote the remainder terms, which include contributions

which are cubic or higher in u. These can be written as follows

R̃δ, 2k−1
2

(u) =

2k−3∑
`=0

δ`
[ ∑

p(u)∈P̃3(u)
`+1≤‖p(u)‖≤2k−3
|p(u)|≤k−1
|||p(u)|||=`+1

c(p)

∫
p(u) dx+

∑
p(u)∈P̃4(u)

`+1≤‖p(u)‖≤2k−5
|p(u)|≤k−2
|||p(u)|||=`+1

c(p)

∫
p(u) dx
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+
2k−`∑
j=5

∑
p(u)∈P̃j(u)

`+1≤‖p(u)‖≤2k+1−j
|p(u)|≤k−1
|||p(u)|||=`+1

c(p)

∫
p(u) dx

]

+

2k−2∑
`=0

δ`
2k+1∑
j=3

∑
p(u)∈P̃j(u)

‖p(u)‖≤2k+1−j
|p(u)|≤k−1
|||p(u)|||≤`

c(p)

∫
p(u) dx

=: R̃
[<]

δ, 2k−1
2

(u) + R̃
[≥]

δ, 2k−1
2

(u),

R̃δ, 2k
2

(u) =

2k−1∑
`=0

δ`
2k+2∑
j=3

∑
p(u)∈P̃j(u)

‖p(u)‖≤2k+2−j
|p(u)|≤k
|||p(u)|||≤`

c(p)

∫
p(u) dx. (4.1)

4.2. Singularity and convergence of the base Gaussian measures. Let k ∈ N and

0 < δ <∞. We focus on the base Gaussian measures µ̃δ, k
2

in (1.21). For n ∈ Z∗, let T̃δ, k
2
(n)

denote the following multipliers

T̃δ, 2k−1
2

(n) =
3

2k

2k−1∑
m=1
odd

(
2k

m

)
δm−1Lδ(n)m|n|2k−1−m,

T̃δ, 2k
2

(n) =
2k∑
m=0
even

(
2k + 1

m

)
δmLδ(n)m|n|2k−m,

T̃0,k(n) = |n|2k,

(4.2)

and let µ̃δ, k
2

denote the induced probability measure induced under the map

ω ∈ Ω 7→ X̃δ, k
2
(x;ω) =

1√
2π

∑
n∈Z∗

gn(ω)

(T̃δ, k
2
(n))

1
2

einx, (4.3)

where {gn}n∈Z∗ is a sequence of independent standard complex-valued Gaussian random

variables satisfying g−n = gn. We also extend the definition (4.3) to δ = 0 then k = 2m for

m ∈ N, and use µ̃0,m to denote the associated measure.

We have the following results on convergence of the Gaussian measures µ̃δ, 2k−1
2
, µ̃δ, 2k

2

associated with sILW to µ̃0,k.

Lemma 4.1. Let k ∈ N. Then, the following results hold:

(i) Given any ε > 0 and 1 ≤ p < ∞, X̃δ,k− 1
2

converges to X̃0,k in Lp(Ω;Hk−1−ε(T)) and

almost surely in Hk−1−ε(T), as δ → 0, while X̃δ,k converges to X̃0,k in Lp(Ω;Hk− 1
2
−ε(T))

and almost surely in Hk− 1
2
−ε(T), as δ → 0. Moreover, the Gaussian measures µ̃δ,k− 1

2
, µ̃δ,k

converge weakly to the Gaussian measure µ̃0,k, as δ → 0.
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(ii) Given ε > 0 and 0 < δ < η < ∞, the Gaussian measures µ̃δ,k, µ̃η,k, and µ̃0,k are

singular.

Before proving Lemma 4.1, we need some auxiliary results on the multipliers T̃δ, k
2
.

Lemma 4.2. Let k ∈ N, 0 < δ <∞, and n ∈ Z∗ fixed. Then, we have that

lim
δ→0

T̃δ,k− 1
2
(n) = lim

δ→0
T̃δ,k(n) = T̃0,k(n) = |n|2k. (4.4)

Proof. From Lemma 2.3(i)-(ii), we have that∣∣T̃δ,k− 1
2
(n)− |n|2k

∣∣ =

∣∣∣∣3Lδ(n)|n|2k−2 − |n|2k +
2k−1∑
m=3
odd

(
2k

m

)
δm−1Lδ(n)m|n|2k−1−m

∣∣∣∣
≤ |n|2k−2|3Lδ(n)− |n|2|+

2k−1∑
m=3
odd

(
2k

m

)
δm−1

(1

δ
|n|
)m−2(

|n|2
)2|n|2k−1−m

. |n|2k−2
∣∣3Lδ(n)− |n|2

∣∣+ δ|n|2k+1 → 0 as δ → 0,∣∣T̃δ,2k+1(n)− |n|2k
∣∣ =

2k∑
m=2
even

(
2k + 1

m

)
δmLδ(n)m|n|2k−m

≤
2k∑
m=2
even

(
2k + 1

m

)
δm
(1

δ
|n|
)m−1(

|n|2
)
|n|2k−m

. δ|n|2k+1 → 0 as δ → 0.

as intended. �

We can now prove our results on the convergence of the Gaussian measures µ̃δ, k
2
.

Proof of Lemma 4.1. We start by proving (i). Let ε > 0. By the Wiener chaos estimate,

we have that for m = 2k − 1 or m = 2k,

‖X̃δ,m
2
− X̃0,k‖

LpωH
m−1

2 −ε
x

.p ‖〈∇〉m−
1
2
−ε(X̃δ,m

2
− X̃0,k)‖L2

xL
2
ω

∼
( ∑
n∈Z∗
〈n〉2(m− 1

2
−ε)
[

1

(T̃δ,m
2

(n))
1
2

− 1

|n|k

]2) 1
2

. (4.5)

First, from the definition of T̃δ,m
2

(4.2) and Lemma 2.3(iii), we have that

T̃δ,k(n) & |n|2k, T̃δ,k− 1
2
(n) &

{
1
δ |n|

2k−1, if δ|n| & 1,

|n|2k, if 0 < δ|n| � 1.

Consequently,

‖X̃δ,k− 1
2
− X̃0,k‖2LpωHk−1−ε

x
.

∑
0<δ|n|�1

〈n〉2(k−1−ε)

〈n〉2k
+
∑
δ|n|&1

〈n〉2(k−1−ε) δ〈n〉+ 1

〈n〉2k

.
∑
n∈Z∗

1

〈n〉1+2ε
<∞,
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‖X̃δ,k − X̃0,k‖2
LpωH

k− 1
2−ε

x

.
∑
n∈Z∗

〈n〉2(k− 1
2
−ε)

〈n〉2k
.
∑
n∈Z∗

1

〈n〉1+2ε
<∞.

From (4.4), we have that T̃δ,m
2

(n)
1
2 → |n|k for all n ∈ Z∗, for m = 2k − 1 and m = 2k,

which means that the summand on the RHS of (4.5) converges to 0 as δ → 0. The

intended convergence then follows from the dominated convergence theorem. The almost

sure convergence follows from a similar calculation, replacing the fact that E[|gn|2] = 1 with

supn〈n〉−ε|gn(ω)| < Cε,ω <∞.

Fix 0 < δ <∞. We first show the singularity of the measures µ̃δ,k− 1
2
, µ̃δ,k and µ̃0,k. We

can write

X̃δ,m
2

(x;ω) =
∑
n∈N

1

(T̃δ,m
2

(n))
1
2

√
2

π
[Re gn(ω) cos(nx)− Im gn(ω) sin(nx)],

X̃0,k(x;ω) =
∑
n∈N

1

|n|k

√
2

π
[Re gn cos(nx)− Im gn sin(nx)],

for m ∈ {2k − 1, 2k}. Then, for n ∈ N, define

Aδ,m
2
,n :=

√
2

π

Re gn

(T̃δ,m
2

(n))
1
2

, Aδ,m
2
,−n := −

√
2

π

Im gn

(T̃δ,m
2

(n))
1
2

,

Bn :=

√
2

π

Re gn
|n|k

, B−n := −
√

2

π

Im gn
|n|k

,

aδ,m
2
,±n := E[A2

δ,m
2
,±n] =

1

πT̃δ,m
2

(n)
, b±n := E[B2

±n] =
1

π|n|2k
.

Then, by Kakutani’s theorem, it suffices to show that

∑
n∈N

(
aδ,m

2
,n

bn
− 1

)2

=
∑
n∈N

(
T̃δ,m

2
(n)− |n|2k

|n|2k

)2

= +∞. (4.6)

For m = 2k − 1, from Lemma 2.3, we have that for δ|n| & 1, Lδ(n) ∼ |n|δ , which gives

T̃δ,k− 1
2
(n)− |n|2k

|n|2k
=

1

|n|2k

(
− |n|2kh(δ, n) +

3

2k

2k−1∑
m=3
odd

(
2k

m

)
δm−1Lδ(n)m|n|2k−1−m

)

∼ −h(δ, n) +
3

2k

2k−1∑
m=3
odd

(
2k

m

)
δm−1 |n|m

δm|n|m+1

∼ −h(δ, n) +
1

δ|n|
,

T̃δ,k(n)− |n|2k

|n|2k
=

2k∑
m=2
even

(
2k + 1

m

)
δm

Lδ(n)m

|n|m
& 1.



38 A. CHAPOUTO, G. LI, T. OH, AND G. ZHENG

Since from Lemma 2.3(iv), lim
n→∞

h(δ, n) = C 6= 0, we conclude that
T̃δ,m2

(n)−|n|2k

|n|2k 6→ 0.

Therefore, (
am

2 ,n

bn
− 1)2 is not summable and (4.6) holds, from which we conclude that

µ̃δ,k− 1
2

and µ̃0,k, and µ̃δ,k and µ̃0,k are singular.

It only remains to show that for 0 < η < δ <∞ the measures µ̃δ, k
2

and µ̃η, k
2

are singular,

which follows from Kakutani’s theorem once we show that∑
n∈N

(
aδ,m

2
,n

aη,m
2
,n
− 1

)2

=
∑
n∈N

(
T̃η,m

2
(n)− T̃δ,m

2
(n)

T̃δ,m
2

(n)

)2

= +∞. (4.7)

Note that

T̃δ,k− 1
2
(n)− T̃η,k− 1

2
(n)

=
3

2k

2k−1∑
m=1
odd

(
2k

m

)
|n|2k−1−m(δm−1Lδ(n)m − ηm−1 Lη(n)m)

=
3

2k

2k−1∑
m=3
odd

(
2k

m

)
|n|2k−1−mLδ(n)m(δm−1 − ηm−1)

+
3

2k

2k−1∑
m=3
odd

(
2k

m

)
|n|2k−1−mηm−1[Lδ(n)− Lη(n)]

m−1∑
j=0

Lδ(n)m−1−j Lη(n)j

T̃δ,k(n)− T̃η,k(n)

=
2k∑
m=2
even

(
2k + 1

m

)
|n|2k−mLδ(n)m(δm − ηm)

+
2k∑
m=2
even

(
2k + 1

m

)
|n|2k−mηm(Lδ(n)− Lη(n))

m−1∑
j=0

Lδ(n)m−1−j Lη(n)j .

Note that since 0 < η < δ <∞, for δ|n| ≥ η|n| & 1, from Lemma 2.3 we get

|T̃δ,k− 1
2
(n)− T̃η,k− 1

2
(n)|

&δ,η

2k−1∑
m=3
odd

|n|2k−1−m|Lδ(n)− Lη(n)||n|m−1 −
2k−1∑
m=3
odd

(δm−1 − ηm−1)|n|2k−1−m|n|m

&δ,η |n|2k|h(δ, n)− h(η, n)| − |n|2k−1

∼δ,η |n|2k
∑
`∈N

n2(δ2 − η2)

(`2π2 + δ2n2)(`2π2 + η2n2)
− |n|2k−1

&δ,η |n|2k,

|T̃δ,k(n)− T̃η,k(n)|

&δ,η |n|2k+1|h(δ, n)− h(η, n)| − |n|2k

&δ,η |n|2k+1.
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Consequently, we get that for δ|n| > η|n| & 1∣∣∣∣ T̃δ,m2 (n)− T̃η,m
2

(n)

T̃δ,m
2

(n)

∣∣∣∣ &δ,η |n|m+1 − |n|m

|n|m
& |n|

from which (4.7) follows. �

4.3. Uniform bounds on the density - shallow-water regime. In this section, we

establish the shallow-water counterpart of the results in Subsection 3.3

Given 0 < δ <∞, K > 0, and N ∈ N, we recall the definition of the truncated densities

F̃δ, k
2
,N,K(u) = ηK(‖PNu‖2L2) exp(−R̃δ, k

2
(PNu)), (4.8)

where η : R → [0, 1] denotes a smooth cutoff function with η(x) = 1 for x ∈ [−1, 1] and

suppχ ⊂ [−2, 2], ηK(x) = η(x/K), and R̃δ, k
2
(u) denotes the remainder in (4.1). Our main

goal is to prove the following result.

Proposition 4.3. Let 1 ≤ p <∞, k ∈ N, and K > 0. Then, for any 0 < δ <∞, we have

that

sup
N∈N
‖F̃δ, k

2
,N,K(X̃δ, k

2
)‖Lp(Ω) = sup

N∈N
‖F̃δ, k

2
,N,K(u)‖Lp(dµ̃

δ, k2
) ≤ Cp,k,δ,K . (4.9)

Moreover, for δ0 > 0 and 0 ≤ δ ≤ δ0, the constant Cp,k,δ,K above can be chosen indepen-

dently of δ.

As in the deep-water regime, we reduce the problem to estimating the following truncated

density:

F̃δ, k
2
,N,K(u) = exp

(
− R̃δ, k

2
(PNu)−A‖PNu‖2α(k)

L2

)
, (4.10)

for some A� 1 and α(k) ∈ N. In particular, it suffices to prove the following proposition.

Proposition 4.4. Let 1 ≤ p < ∞, 0 ≤ δ < ∞, k ∈ N, and K > 0. Then, there exist

sA0 > 0 such that for A ≥ A0

sup
N∈N
‖F̃δ, k

2
,N,K(X̃δ, k

2
)‖Lp(Ω) = sup

N∈N
‖F̃δ, k

2
,N,K(u)‖Lp(dµ̃

δ, k2
) ≤ Cp,δ,k,K,A0 <∞. (4.11)

In addition, for δ0 > 0, the following uniform bound holds for 0 ≤ δ ≤ δ0:

sup
N∈N

sup
0≤δ≤δ0

‖F̃δ, k
2
,N,K(X̃δ, k

2
)‖Lp(Ω) = sup

N∈N
sup

0≤δ≤δ0
‖F̃δ, k

2
,N,K(u)‖Lp(dµ̃

δ, k2
)

≤ Cp,k,K,A0 <∞.
(4.12)

Recalling W (t) in (3.17), we define a centered Gaussian process Ỹδ, k
2
(t) by

Ỹδ, k
2
(t) = (T̃δ, k

2
)−

1
2W (t), (4.13)

where (T̃δ, k
2
)−

1
2 is the Fourier multiplier operator with the multiplier (T̃δ, k

2
(n))−

1
2 as in (4.2).

In view of (4.3), we have L(Ỹδ, k
2
(1)) = µ̃δ, k

2
. Given N ∈ N, we set Ỹδ, k

2
,N = PN Ỹδ, k

2
. We

can now state the analogue of the Boué-Dupuis variational formula in this setting.
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Lemma 4.5. Given 0 ≤ δ < ∞, let Ỹδ, k
2

be as in (4.13) and fix N ∈ N. Suppose that

F : C∞(T)→ R is measurable such that E
[
|F (Ỹδ, k

2
(1))|p

]
<∞ and E

[
|e
−F (Ỹ

δ, k2
(1))
|q
]
<∞

for some 1 < p, q <∞ with 1
p + 1

q = 1. Then, we have

− logE
[
e
−F (Ỹ

δ, k2
(1))
]

= inf
θ∈Ha

E
[
F (Ỹδ, k

2
(1) + Ĩδ, k

2
(θ)(1)) +

1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
, (4.14)

where Ĩδ, k
2
(θ) is defined by

Ĩδ, k
2
(θ)(t) =

∫ t

0
(T̃δ, k

2
)−

1
2 θ(t′)dt′.

We first show a preliminary result on the pathwise regularity of Ỹδ, k
2
,N (1) and Ĩδ, k

2
(θ)(1).

Lemma 4.6. Let δ0 > 0 and k ∈ N. For any 1 ≤ p < ∞, 0 ≤ δ ≤ δ0, and σ < k−1
2 , we

have that

sup
N∈N

E
[
‖Ỹδ, k

2
,N (1)‖p

Wσ,∞
x

]
< Cp,δ0 <∞,

where Cp,δ0 is independent of δ. Moreover, for any θ ∈ Ha, we have

‖Ĩδ, k
2
(θ)(1)‖2

H
k
2
x

≤ Cδ0
∫ t

0
‖θ(t)‖2L2

x
dt

where the constant Cδ0 > 0 can be chosen independently of 0 ≤ δ ≤ δ0.

Proof. For the first inequality, fix σ < k−1
2 and ε > 0 sufficiently small such that 2(σ+ ε) <

k − 1. Then, for r � 1 with rε > 1, Sobolev embedding gives that

‖Ỹδ, k
2
,N (1)‖Wσ,∞

x
. ‖〈∇〉σ+εỸδ, k

2
,N (1)‖Lrx .

Fix p ≥ r. Note that the result follows for 1 ≤ p < r from the embedding Lr(Ω) ⊂ Lp(Ω).

Then, by Minkowski’s inequality and the Wiener chaos estimate (Lemma 2.6), we have∥∥‖Ỹδ, k
2
,N (1)‖Wσ,∞

x

∥∥
Lp(Ω)

≤ Cp
1
2

∥∥‖〈∇〉σ+εỸδ, k
2
,N (1)‖L2(Ω)

∥∥
Lrx

≤ Cp
∥∥∥∥E[ ∑

0<|n|,|m|≤N

〈n〉σ+ε〈m〉σ+ε gngm

(T̃δ, k
2
(n)T̃δ, k

2
(m))

1
2

ei(n−m)x

] 1
2
∥∥∥∥
Lrx

≤ Cp
( ∑

0<|n|≤N

〈n〉2σ+2ε

T̃δ, k
2
(n)

) 1
2

.

From (4.2) and Lemma 2.3, we have that for n ∈ Z∗, 0 < δ ≤ δ0, and m ∈ N,

T̃δ, 2m−1
2

(n) ≥ 3Lδ(n)|n|2m−2 ≥

{
1
δ |n|

2m−1, δ|n| � 1,

|n|2m, δ|n| . 1

&δ0 |n|2m−1

while T̃δ, 2m
2

(n) ≥ |n|2m. Therefore, for n ∈ Z∗ and 0 < δ ≤ δ0, we have that

T̃δ, k
2
(n) &δ0 |n|k, (4.15)
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from which we conclude that∥∥‖Ỹδ, k
2
,N (1)‖Wσ,∞

x

∥∥
Lp(Ω)

.p,δ0

( ∑
0<|n|≤N

〈n〉2σ+2ε

〈n〉k

) 1
2

< Cp,δ0 <∞.

For the second estimate, from Minkowski and Cauchy-Schwarz inequalities, and (4.15),

we have that

‖Ĩδ, k
2
(θ)(1)‖2

H
k
2
x

≤ C
(∫ 1

0

[∑
n6=0

|n|k

T̃δ, k
2
(n)
|θ̂(t, n)|2

] 1
2

dt

)2

≤ Cδ0
(∫ 1

0
‖θ(t)‖L2

x
dt

)2

≤ Cδ0
∫ 1

0
‖θ(t)‖2L2

x
dt,

for some constant Cδ0 > 0 which only depends on δ0. �

Note that (4.14) is equivalent to

logE
[
e
−F (Ỹ

δ, k2 ,N
(1))
]

= − inf
θ∈Ha

E
[
F (Ỹδ, k

2
,N (1) + Ĩδ, k

2
,N (θ)(1)) +

1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
= sup

θ∈Ha
E
[
− F (Ỹδ, k

2
,N (1) + Ĩδ, k

2
,N (θ)(1))− 1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
.

Fix L > 0. Then, setting FL = p
[

max(F̃δ, k
2
,N,K ,−L) +A‖PN · ‖2α(k)

L2

]
, we easily see that

E[|e
−FL(Ỹ

δ, k2
(1))
|q] ≤ E[e

−qmax(F̃
δ, k2 ,N,K

,−L)
] = E[e

qmin(−F̃
δ, k2 ,N,K

,L)
] ≤ eqL <∞,

E
[
FL(Ỹδ, k

2
(1) + Ĩδ, k

2
(θ)(1)) +

1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
= E

[
− FL(Ỹδ, k

2
(1) + Ĩδ, k

2
(θ)(1))− 1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
= E

[
−max(F̃δ, k

2
(Ỹδ,k(1) + Ĩδ, k

2
(θ)(1)),−L)− 1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
= E

[
min(−F̃δ, k

2
(Ỹδ, k

2
(1) + Ĩδ, k

2
(θ)(1)), L)− 1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
≤ E

[
− F̃δ, k

2
(Ỹδ, k

2
(1) + Ĩδ, k

2
(θ)(1))− 1

2

∫ 1

0
‖θ(t)‖2L2

x
dt

]
.

Therefore, Proposition 4.4 follows from Lemma 4.5 once we establish an upper bound on

M̃δ, k
2
,N (v) = E

[
− pR̃δ, k

2
(PN Ỹδ, k

2
(1) + PNv)− pA‖PN Ỹδ, k

2
(1) + PNv‖2α(k)

L2 − 1

2
C‖v‖2

H
k
2

]
(4.16)

uniformly in N ∈ N and v ∈ H
k
2 (T), and take a limit as L→∞. In the following, we will

use Ỹ k
2
,N = PN Ỹδ, k

2
(1), which has the same law as PNX̃δ, k

2
, and vN = PNv, for a fixed

v ∈ H
k
2 (T).
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Lemma 4.7. Let k ∈ N, δ0 > 0, 0 < δ ≤ δ0, and N ∈ N. Then, for 0 < ε < 1, there exist

Cδ0,ε > 0 independent of N and δ, and α(k) ∈ N such that

|E[R̃δ,k(Ỹk,N + vN )]| ≤ E[Cδ0,ε(1 + ‖Ỹk,N‖q
Hk− 1

2−
+ ‖vN‖2α(k)

L2 ) + ε‖vN‖2Hk ],

for 1� q <∞ sufficiently large.

Proof. For 0 ≤ ` ≤ 2k− 1 in (4.1), we see that each term to be estimated has number of G̃δ
operators at most `. Thus, from (2.7), since the Fourier multiplier |δ̂G̃δ(n)| = |Ĝδ(n)| ≤ 1 is

bounded, it suffices to estimate the contributions
∫
p(u) dx where |||p(u)||| = 0. Moreover,

any additional positive powers of δ can be controlled by δ0. Then, it suffices to consider two

cases: (i) p(u) = u∂k−1
x u∂kxu, and (ii) j = 3, . . . , 2k+2, p(u) ∈ P̃j(u) with ‖p(u)‖ ≤ 2k+2−j

and |p(u)| ≤ k − 1.

Case (i): p(u) = u∂k−1
x u∂kxu

Using multilinearity of p, we have that

p(Ỹk,N + vN , Ỹk,N + vN , Ỹk,N + vN ) = p(Ỹk,N , Ỹk,N , Ỹk,N )

+ p(Ỹk,N + vN , Ỹk,N + vN , vN ) + p(vN , Ỹk,N , Ỹk,N ) + p(Ỹk,N + vN , vN , Ỹk,N ).

By Isserlis’ theorem, the first contribution E[p(Ỹk,N , Ỹk,N , Ỹk,N )] = 0. For the second contri-

bution, Young’s convolution inequality, Hölder’s inequality, (2.1), and Young’s inequality,

give∣∣∣∣ ∫ p(u1, u1, u2) dx

∣∣∣∣ . ‖û1(n)‖
`
4
3
n

‖〈n〉k−1û1(n)‖
`
4
3
n

‖u2‖Hk . ‖u1‖
H

1
4+‖u1‖

Hk− 3
4+‖u2‖Hk ,∣∣∣∣ ∫ p(Ỹk,N + vN , Ỹk,N + vN , vN ) dx

∣∣∣∣
. ‖vN‖Hk‖Ỹk,N + vN‖

Hk− 3
4+‖Ỹk,N + vN‖

H
1
4+

. ‖vN‖Hk(‖Ỹk,N‖2
Hk− 1

2−
+ ‖vN‖

Hk− 3
4+‖Ỹk,N‖Hk− 1

2−
+ ‖vN‖

Hk− 3
4+‖vN‖H 1

4+)

. ‖vN‖Hk‖Ỹk,N‖2
Hk− 1

2−
+ ‖vN‖

2− 3
4k

+

Hk ‖vN‖
3
4k
−

L2 ‖Ỹk,N‖
Hk− 1

2−
+ ‖vN‖

2− 1
2k

Hk ‖vN‖
1+ 1

2k

L2

. ε‖vN‖2Hk + Cε
(
‖Ỹk,N‖q

Hk− 1
2−

+ ‖v‖2α(k)
L2

)
for 1� q <∞ and α(k) ∈ N large enough. For the third contribution, by Cauchy-Schwarz

inequality, we get∣∣∣∣ ∫ p(vN , Ỹk,N , Ỹk,N ) dx

∣∣∣∣
=

∣∣∣∣ ∑
0<|n1|≤N

(in1)kv̂N (n1)
∑

−n1=n23

(in2)k−1(in3)k

(in1)k
̂̃
Y k,N (n2)

̂̃
Y k,N (n3)

∣∣∣∣
. ‖vN‖Hk

( ∑
0<|n|≤N

∣∣∣∣ ∑
n=n23

(in2)k−1(in3)k

(in1)k
̂̃
Y k,N (n2)

̂̃
Y k,N (n3)

∣∣∣∣2) 1
2

. ε‖vN‖2Hk + Cε
∑

0<|n|≤N

∣∣∣∣ ∑
n=n23

(in2)k−1(in3)k

(in)k
̂̃
Y k,N (n2)

̂̃
Y k,N (n3)

∣∣∣∣2.
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Moreover, by Isserlis’ theorem, since n 6= 0, and (4.15), we have

E
[ ∑

0<|n|≤N

∣∣∣∣ ∑
n=n23

(in2)k−1(in3)k

(in)k
̂̃
Y k,N (n2)

̂̃
Y k,N (n3)

∣∣∣∣2]

≤
∑

0<|n|≤N

1

〈n〉2k
∑
n=n23
n=m23

0<|nj |,|mj |≤N

|n2m2|k−1|n3m3|k

(T̃δ,k(n2)T̃δ,k(n3)T̃δ,k(m2)T̃δ,k(m3))
1
2

|E[gn2gn3gm2gm3 ]|

.
∑

0<|n|≤N

1

〈n〉2k
∑
n=n23

0<|nj |≤N

|n2|2k−2|n3|2k + |n2n3|2k−1

|n2n3|2k

.
∑

0<|n|≤N

1

〈n〉2k
∑
n=n23

0<|nj |≤N

(
1

|n2|2
+

1

|n2n3|

)
≤ C <∞

for some constant C > 0 independent of N and δ. For the last contribution, by integration

by parts we get

p(Ỹk,N + vN , vN , Ỹk,N )

=

∫
(Ỹk,N + vN )(∂k−1

x vN )(∂kx Ỹk,N ) dx

= −
∫

(Ỹk,N + vN )(∂kxvN )(∂k−1
x Ỹk,N ) dx−

∫
∂x(Ỹk,N + vN )(∂k−1

x vN )(∂k−1
x Ỹk,N ) dx

where we see that the first term is of the form p(Ỹk,N + vN , Ỹk,N , vN ) while the second

for k = 1 is of the form p(Ỹk,N , vN , Ỹk,N + vN ), both estimated above. For the second

contribution when k ≥ 2, each factor has at most k − 1 derivatives, so this contribution is

handled in Case (ii).

Case (ii): p(u) with |p(u)| ≤ k − 1

Fix 3 ≤ j ≤ 2k + 2 and consider the terms in (4.1) arising from p(u) ∈ P̃j(u) of the form

p(u) =
∏j
`=1 ∂

αj
x u where 0 ≤ αj ≤ · · · ≤ α1 ≤ k − 1 and α1···j ≤ 2k + 2− j. Using Young’s

convolution inequality and Hölder’s inequality, we have∣∣∣∣ ∫ p(u) dx

∣∣∣∣ ≤ ∑
0=n1···j

j∏
`=1

〈n`〉α` |û(n`)| .
j∏
`=1

‖〈n〉α` û(n`)‖
`
j
j−1
n

.
j∏
`=1

‖u‖
H
α`+

1
2−

1
j+
. (4.17)

Then, by (2.1) and Young’s inequality, we have that∣∣∣∣ ∫ p(Ỹk,N + vN ) dx

∣∣∣∣
.

j∏
`=1

‖Ỹk,N + vN‖
H
α`+

1
2−

1
j+

.
j∑
`=0

‖Ỹk,N‖`
Hk− 1

2−
‖vN‖

1
k

(α1···(j−`)+(j−`)( 1
2
− 1
j

))+

Hk ‖vN‖
1
k

((j−`)(k− 1
2

+ 1
j

)−α1···(j−`))−
L2

≤ ε‖vN‖2Hk + Cε(1 + ‖ỸN‖q
Hk− 1

2−
+ ‖vN‖2α(k)

L2 ),
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for 1� q <∞ and α(k) ∈ N sufficiently large. �

Remark 4.8. Note that the all the terms in Case (ii) are estimated in a deterministic

manner, and the estimate extends to
∫
p(u1 + u2) dx for any u1 ∈ Hk− 1

2
− and u2 ∈ Hk.

The random nature of Ỹk,N only comes into play in Case (i), more specifically for the terms

of the form

δα123

∫
G̃α1
δ (vN + Ỹk,N )(G̃α2

δ ∂k−1
x Ỹk,N )(G̃α3

δ ∂kx Ỹk,N ) dx.

Lemma 4.9. Let k ∈ N, δ0 > 0, 0 < δ ≤ δ0, 0 < δ ≤ δ0, and N ∈ N. Then, for 0 < ε < 1,

there exists Cδ0,ε > 0 independent of N and δ, and α(k) ∈ N such that

|E[R̃δ,k− 1
2
(Ỹk− 1

2
,N + vN )]| ≤ E[Cδ0,ε(1 + ‖Ỹk− 1

2
,N‖

q
Hk−1− + ‖vN‖2α(k)

L2 ) + ε‖vN‖2
Hk− 1

2
],

for 1� q <∞ sufficiently large.

Proof. We first focus on estimating R̃
[<]

δ,k− 1
2

(u) in (4.1), which only appears when k ≥ 2.

For ` = 0, . . . , 2k − 3, since all contributions have one extra operator G̃δ compared to the

number of powers of δ, we use the boundedness of the multiplier of δG̃δ in (2.7) for ` of

these operators. The last G̃δ operator leads to a loss of derivative, since Lemma 2.3 shows

that |̂̃Gδ(n)| ≤ |n| for all n ∈ Z∗ uniformly in δ. Consequently, it suffices to consider

terms coming from p1(u) = u∂k−1
x u∂k−1

x u or from p2(u) =
∏j
`=1 ∂

α`
x u with j = 3, . . . , 2k,

0 ≤ αj ≤ · · · ≤ α1 ≤ k − 1, (α1, α2) 6= (k − 1, k − 1), and α1···j ≤ 2k + 2− j. In the above,

note the increase in the number of derivatives compared to the polynomials appearing in

R̃
[<]

δ,k− 1
2

(u), which are a consequence of the derivative loss coming from the extra G̃δ operator.

Case (i): p1(u) = u∂k−1
x u∂k−1

x u

Using multilinearity, we can write p1(u1, u2, u3) = u1∂
k−1
x u2∂

k−1
x u3 and

p1(Ỹk− 1
2
,N + vN ) = p1(Ỹk− 1

2
,N , Ỹk− 1

2
,N , Ỹk− 1

2
,N ) + 2p1(Ỹk− 1

2
,N + vN , Ỹk− 1

2
,N + vN , vN )

+ p1(vN , Ỹk− 1
2
,N , Ỹk− 1

2
,N ).

From Isserlis’ theorem, E[p1(Ỹk− 1
2
,N , Ỹk− 1

2
,N , Ỹk− 1

2
,N )] = 0. For the second contribution,

from Young’s convolution inequality, Hölder’s inequality, (2.1), and Young’s inequality, we

have that∣∣∣∣ ∫ p1(u1, u2, u3) dx

∣∣∣∣
.

∑
0=n123
n` 6=0

|n2|k−1−θ|n3|k−1|n13|θ|û1(n1)û2(n2)û3(n3)| . ‖u1‖
H

1
2+θ+‖u2‖Hk−1−θ‖u3‖Hk−1+θ ,

∣∣∣∣ ∫ p1(Ỹk− 1
2
,N + vN , Ỹk− 1

2
,N + vN , vN ) dx

∣∣∣∣
. ‖Ỹk− 1

2
,N + vN‖

H
1
2+‖Ỹk− 1

2
,N + vN‖Hk−1−‖vN‖Hk−1+

. ‖Ỹk− 1
2
,N‖

2
Hk−1−‖vN‖

Hk− 1
2

+ (‖Ỹk− 1
2
,N‖Hk−1− + ‖vN‖

H
1
2+)‖vN‖2Hk−1+

. ‖Ỹk− 1
2
,N‖

2
Hk−1−‖vN‖

Hk− 1
2

+ ‖Ỹk− 1
2
,N‖Hk−1−‖vN‖

2− 2
2k−1

+

Hk− 1
2
‖vN‖

2
2k−1

−
L2 + ‖vN‖

2− 1
2k−1

+

Hk− 1
2
‖vN‖

1
2k−1

−
L2
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≤ Cε(‖Ỹk− 1
2
,N‖

q
Hk−1− + ‖vN‖2α(k)

L2 ) + ε‖vN‖2
Hk− 1

2
,

for 0 < θ � 1, for some Cε > 0 independent of N, δ and some α(k) ∈ N. For the

third contribution, by Cauchy-Schwarz inequality, Young’s inequality, Isserlis’ theorem,

and (4.15), we have∣∣∣∣ ∫ p1(vN , Ỹk− 1
2
,N , Ỹk− 1

2
,N ) dx

∣∣∣∣
=

∣∣∣∣ ∑
0=n123

0<|n`|≤N

(−n2n3)k−1

|n1|k−
1
2

|n1|k−
1
2 v̂N (n1)

̂̃
Y k− 1

2
(n2)

̂̃
Y k− 1

2
(n3)

∣∣∣∣
≤ ‖vN‖

Hk− 1
2

( ∑
0<|n|≤N

1

|n|2k−1

∣∣∣∣ ∑
n=n23

(−n2n3)k−1 ̂̃Y k− 1
2
(n2)

̂̃
Y k− 1

2
(n3)

∣∣∣∣2) 1
2

≤ ε‖vN‖2
Hk− 1

2
+ Cε

∑
0<|n|≤N

1

|n|2k−1

∣∣∣∣ ∑
n=n23

(−n2n3)k−1 ̂̃Y k− 1
2
(n2)

̂̃
Y k− 1

2
(n3)

∣∣∣∣2,
E
[ ∑

0<|n|≤N

1

|n|2k−1

∣∣∣∣ ∑
n=n23

(−n2n3)k−1 ̂̃Y k− 1
2
(n2)

̂̃
Y k− 1

2
(n3)

∣∣∣∣2]

=
∑

0<|n|≤N

1

|n|2k−1

∑
n=n23=m23

0<|n`|,|m`|≤N

|n2n3m2m3|k−1

(T̃δ, 2k−1
2

(n2)T̃δ, 2k−1
2

(n3)T̃δ, 2k−1
2

(m2)T̃δ, 2k−1
2

(m2))
1
2

|E[gn2gn3gm2gm3 ]|

.
∑

0<|n|≤N

1

|n|2k−1

∑
n=n23

0<|n`|≤N

|n2n2|2k−2

|n2n3|2k−1

.δ0
∑

0<|n|≤N

1

|n|2k−1

∑
n=n23

0<|n|≤N

1

|n2n3|
< Cδ0 <∞

for some constant Cδ0 > 0 only depending on δ0, recalling that k ≥ 2.

Case (ii): remaining contributions in R̃
[>]

δ,k− 1
2

(u)

Let k ∈ N and 3 ≤ j ≤ 2k + 1. Consider p(u) ∈ P̃j(u) with

p(u) =

j∏
`=1

∂α`x u, 0 ≤ αj ≤ · · · ≤ α1 ≤ k − 1, (α1, α2) 6= (k − 1, k − 1),

α1···j ≤


2k − 2, j = 3,

2k − 4, j = 4,

2k + 2− j, j ≥ 5.

From Young’s convolution inequality and Hölder’s inequality, for 0 < θ � 1 such that

α1 − θ < k − 1, we have∣∣∣∣ ∫ p(u) dx

∣∣∣∣ . ‖u‖Hα1−θ

j∏
`=2

‖〈n〉α`+θû(n)‖
`
2j−2
2j−3
n

. ‖u‖Hα1−θ

j∏
`=2

‖u‖
H
α`+

1
2−

1
2(j−1)

+θ . (4.18)
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Then, using (2.1), and Young’s inequality, we have we obtain∣∣∣∣ ∫ p(Ỹk− 1
2
,N + vN ) dx

∣∣∣∣
. ‖Ỹk− 1

2
,N‖

j
Hk−1− +

j∏
κ=1

‖Ỹk− 1
2
,N‖

j−κ
Hk−1−‖vN‖Hk−1

κ∏
`=2

‖vN‖
H
α`+

1
2−

1
2(j−1)

+

. ‖Ỹk− 1
2
,N‖

j
Hk−1− +

j∏
κ=1

‖Ỹk− 1
2
,N‖

j−κ
Hk−1−‖vN‖

2
α1···κ+(κ−1)( 12−

1
2(j−1)

)

2k−1

Hk− 1
2

‖vN‖
2
2k+1+α1···κ+(κ−1)(2k− j

2(j−1)
)

2k−1

L2

≤ Cε(‖Ỹk− 1
2
,N‖

q
Hk−1− + ‖vN‖2α(k)

L2 ) + ε‖vN‖2
Hk− 1

2
,

for 1 ≤ q <∞ and α(k) ∈ N sufficiently large, since

2
α1···κ + (κ− 1)(1

2 −
1

2(j−1))

2k − 1
≤ 2

2k − 2 + 21
4

2k − 1
=

4k − 3

2k − 1
< 2, for j = 3,

2
α1···κ + (κ− 1)(1

2 −
1

2(j−1))

2k − 1
≤ 2

2k − 4 + 1

2k − 1
= 2

2k − 3

2k − 1
< 2, for j = 4,

2
α1···κ + (κ− 1)(1

2 −
1

2(j−1))

2k − 1
≤ 2

2k + 2− j + j−1
2 −

1
2

2k − 1

≤ 4k + 2− j
2k − 1

≤ 4k − 3

2k − 1
< 2, for j ≥ 5.

This completes the estimate for R̃
[<]

δ,k− 1
2

(u). It remains to estimate the terms in R̃
[≥]

δ,k− 1
2

(u).

Note that all the contributions here have at least as many powers of δ as G̃δ operators,

thus we can use the boundedness of the Fourier multiplier of δG̃δ in (2.7) and focus on

contributions with no G̃δ operators. All such contributions were estimated in Case (ii)

above, which completes our proof. �

Remark 4.10. As in Lemma 4.7, in Lemma 4.9 most terms in R̃δ,k− 1
2
(u) can be handled

deterministically. The problematic contributions which require an orthogonality argument

are of the form

δα123−1

∫
(G̃α1
δ u1)(G̃α2

δ ∂k−1
x u2)(G̃α3

δ ∂k−1
x u3) dx,

in particular, when (u1, u2, u3) = (vN , Ỹk− 1
2
,N , Ỹk− 1

2
,N ) or (u1, u2, u3) =

(Ỹk− 1
2
,N , Ỹk− 1

2
,N , Ỹk− 1

2
,N ).

We can now complete the proof of Proposition 4.4 by showing the upper bound on

Mδ, k
2
,N defined in (3.20). Fix 1 ≤ p < ∞, N ∈ N, and δ0 > 0. Then, for 0 < δ ≤ δ0 and

0 < ε < 1, Lemma 4.7 and Lemma 4.9 guarantee that there exists Cε,δ0 > 0 independent

of N and δ, 1� q <∞, and α(k) ∈ N such that for any v ∈ H
k
2 (T), we have

Mδ, k
2
,N (v) ≤ E

[
pCε,δ0(1 + ‖Ỹ k

2
,N‖

q

H
k−1
2 −

) + (pε− 1
2C)‖vN‖2

H
k
2

+ pCε,δ0‖vN‖
2α(k)
L2

−A0‖Ỹ k
2
,N + vN‖2α(k)

L2

]
.
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By picking 0 < ε < 1 so that pε < 1
2C and using Lemma 4.6, there exists a constant

Cδ0,p > 0 independent of N ∈ N and δ such that

Mδ, k
2
,N (v) ≤ E

[
Cp,δ0 + pCε,δ0‖vN‖

2α(k)
L2 −A0‖Ỹ k

2
,N + vN‖2α(k)

L2

]
.

Note that by using Cauchy-Schwarz and Young’s inequality, we get that for 0 < η < 1,

there exists C > 0 such that

− ‖Ỹ k
2
,N + vN‖2α(k)

L2

= −
(
‖Ỹ k

2
,N‖

2
L2 + ‖vN‖2L2 + 2

∫
Ỹ k

2
,NvN dx

)α(k)

= −
∑

`1+`2+`3=α(k)
`i≥0

(
α(k)

`1, `2, `3

)
‖Ỹ k

2
,N‖

2`1
L2 ‖vN‖2`2L2

(
2

∫
Ỹ k

2
,NvN dx

)`3

≤ −‖vN‖2α(k)
L2 +

∑
`1+`2+`3=α(k)
`1,`2≥0,`3≥1

(
α(k)

`1, `2, `3

)
‖Ỹ k

2
,N‖

2`1
L2 ‖vN‖2`2L2

∣∣∣∣2 ∫ Ỹ k
2
,NvN dx

∣∣∣∣`3

≤ −‖vN‖2α(k)
L2 +

∑
`1+`2+`3=α(k)
`1,`2≥0,`3≥1

(
α(k)

`1, `2, `3

)
2`3‖Ỹ k

2
,N‖

2`1+`3
L2 ‖vN‖2`2+`3

L2

≤ −(1− η)‖vN‖2α(k)
L2 + C‖Ỹ k

2
,N‖

q
L2 ,

for 1 � q < ∞ sufficiently large, since 2`1 + `3 = `2 − `1 + α(k) ≤ `2 + α(k) ≤ 2α(k).

Therefore, by choosing A0 > 0 large enough such that pCε,δ0 −A0(1− η) ≤ 0, we get that

sup

v∈H
k
2

sup
N∈N
Mδ, k

2
,N (v) < Cp,δ0 <∞

for some constant Cp,δ0 > 0, which can be chosen independently of 0 < δ ≤ δ0.

4.4. Construction of the measures ρ̃δ, k
2

for 0 ≤ δ <∞. Fix k ∈ N, δ0 > 0, 0 < δ ≤ δ0,

and K > 0. Define the limiting density F̃δ, k
2
,K(u) by

F̃δ, k
2
,K(u) = ηK

(
‖u‖2L2

)
exp(−R̃δ, k

2
(u)),

where R̃δ, k
2

denotes the remainder in (4.1).

Proposition 4.11. Let k ∈ N, δ0 > 0, and 0 < δ ≤ δ0. Given 1 ≤ p < ∞, the sequences

{PNX̃δ, k
2
}N∈N and {R̃δ, k

2
(PNX̃δ, k

2
)}N∈N are Cauchy in Lp(Ω;H

k−1
2
−(T)) and Lp(Ω), thus

converging to limits denoted by X̃δ, k
2

and R̃δ, k
2
(X̃δ, k

2
), respectively. Moreover, given any

1 ≤ p <∞ and θ > 0, we have that

sup
N∈N

sup
0<δ≤δ0

∥∥‖PNX̃δ, k
2
‖
H
k−1
2 −

x

∥∥
Lp(Ω)

< Cp <∞, (4.19)

sup
0<δ≤δ0

∥∥‖PNX̃δ, k
2
−PMX̃δ, k

2
‖
H
k−1
2 −θ

x

∥∥
Lp(Ω)

≤ Cp

N θ
→ 0, (4.20)
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for any M ≥ N tending to ∞. In particular, the rate of convergence is uniform in 0 < δ ≤
δ0. In addition, for 1 ≤ p <∞, there exists θ > 0 such that

sup
N∈N

sup
0<δ≤δ0

‖R̃δ, k
2
(PNX̃δ, k

2
)‖Lp(Ω) <∞, (4.21)

‖R̃δ, k
2
(PMX̃δ, k

2
)− R̃δ, k

2
(PNX̃δ, k

2
)‖Lp(Ω) ≤

Ck,δ0p
k+1

N θ
, (4.22)

for any M ≥ N ≥ 1 where Ck,δ0 independently of δ. Hence, the rate of convergence of

R̃δ, k
2
(PNu) to R̃δ, k

2
(u) is uniform in 0 < δ ≤ δ0.

Once we have Proposition 4.11, then the proof of Theorem 1.2(i) follows from the same

approach as in Theorem 1.1(i), where instead we use the convergence of the random vari-

ables PNX̃δ, k
2

and R̃δ, k
2
(PNX̃δ, k

2
) in Proposition 4.11 and the uniform bounds on the density

in Proposition 4.3. Therefore, we omit the details, and proceed to the proof of Proposi-

tion 4.11.

Proof of Proposition 4.11. For simplicity, letXN = PNX̃δ, k
2
. The estimate in (4.19) follows

from that in Lemma 4.6, since XN and Yδ, k
2
,N (1) have the same law. For the difference, we

proceed as in the proof of Proposition 3.8, using (4.15), and omit details here.

We now prove (4.22), which suffices to conclude that {R̃δ, k
2
(PNXN )}N∈N is Cauchy in

Lp(Ω). Let M ≥ N ≥ 1. The estimate in (4.21) follows by analogous arguments.

Case 1: R̃δ,k All the cubic in u terms in R̃δ,k(u) (4.1) are of the form∫
p1(u) dx = δα123+γ

∫
[(δG̃δ)α1∂β1x u][(δG̃δ)α2∂β2x u][(δG̃δ)α3∂β3x u] dx,

where γ, α`, β` ≥ 0, k ≥ β1 ≥ β2 ≥ β3, and β123 ≤ 2k−1. Using the Wiener chaos estimate,

Lemma 2.7, Isserlis’ theorem, and (4.15), we have that

‖p1(XN )− p1(XM )‖2Lp(Ω)

≤ p3‖p1(XN )− p1(XM )‖2L2(Ω)

.δ0 p
3E
[∣∣∣∣ ∑

0=n123

(10<|ni|<M − 10<|ni|<N )(in1)β1(in2)β2(in3)β3
3∏
`=1

δ
̂̃Gδ(n`)gn`
Tδ,k(n`)

1
2

∣∣∣∣2]
.δ0 p

3
∑

0=n123

1BN,M (n1,n2,n3)

|n1n2n3|2k
[
|n1|2β1 |n2|2β2 |n3|2β3 + |n1|2β1 |n2n3|β23

+ |n1n2|β12 |n3|2β3 + |n1|β12 |n2|β23 |n3|β13 + |n1n3|β13 |n2|2β2 + |n1|β13 |n2|β12 |n3|β23
]

since the restriction |n`|, |m`| > 0 does not allow for any pairings ni+nj = 0 or mi+mj = 0,

and BN,M is defined as follows

BN,M (n1, n2, n3) =
{

(n1, n2, n3) ∈ (Z∗)3 : 0 < |ni1 | ≤M,
N

2
< |ni2 | ≤M,N < |ni3 | ≤M,

for some {i1, i2, i3} = {1, 2, 3}
}
.
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Since β123 ≤ 2k − 1 and 2βi ≤ 2k for i ∈ {1, 2, 3}, we have the following bound

‖p1(XN )− p1(XM )‖2Lp(Ω) .δ0 p
3

∑
0<|nmin|≤M
N
2
<|nmed|≤M

1

|nmin|2k|nmed|2
. p3 1

N
.

The remaining terms in (4.1) have j ∈ {4, . . . , 2k + 2} copies of u and can be written as

(omitting the δG̃δ operators)

p2(u) = δγ
∫ j∏

`=1

∂β`x u dx

for γ, β` ≥ 0, β1···j ≤ 2k+2− j ≤ 2k−2, and β` ≤ k−1, possibly after doing integration by

parts. Since δG̃δ has a bounded Fourier multiplier due to (2.7), we omit them for simplicity.

Proceeding as in (4.17), since β` + 1
2 −

1
j ≤ k −

1
2 −

1
2k+2 , and using Lemma 4.6, we get

‖p2(XN )− p2(XM )‖Lp(Ω) .δ0
∥∥‖XN −XM‖

H
k− 1

2−
1

2k+2
+‖XM‖j−1

Hk− 1
2−

∥∥
Lp(Ω)

.δ0
1

N
1

2k+2
−
‖XM‖j

Lpj(Ω)H
k− 1

2−
x

.δ0,k p
k+1 1

N
1

2k+2
−
.

Combining the estimates above, we get that

‖R̃δ,k(XM )− R̃δ,k(XN )‖Lp(Ω) ≤ Cδ0,kpk+1 1

N
1

2k+2
−

(4.23)

from which we conclude that the sequence {R̃δ,2k+1(XN )}N∈N is Cauchy in Lp(Ω) and

therefore has a limit in Lp(Ω).

Case 2: R̃δ,k− 1
2

The cubic in u terms in R̃
[<]

δ,k− 1
2

(u) in (4.1) are of the form

p3(u) = δα123−1

∫
[(δG̃δ)α1∂β1x u][(δG̃δ)α2∂β2x u][(δG̃δ)α3∂β3x u] dx,

where α`, β` ≥ 0, k − 1 ≥ β1 ≥ β2 ≥ β3, and β123 ≤ 2k − 3. Using Lemma 2.7 and

Lemma 2.3, we have that |δ̂G̃δ(n)| ≤ 1 and |̂̃Gδ(n)| ≤ |n|, so it suffices to ignore all the δ, G̃δ
terms and impose β123 ≤ 2k − 2.

Proceeding as before, using the Wiener chaos estimate (Lemma 2.6), Isserlis’ theorem,

and (4.15), we obtain∥∥∥∥∫ [p3(XN )− p3(XM )] dx

∥∥∥∥2

Lp(Ω)

. p3E
[∣∣∣∣ ∑

0=n123

(10<|ni|<M − 10<|ni|<N )(in1)β1(in2)β2(in3)β3
3∏
`=1

δ
̂̃Gδ(n`)gn`

Tδ,k− 1
2
(n`)

1
2

∣∣∣∣2]
.δ0 p

3
∑

0=n123

1BN,M (n1,n2,n3)
1

|n1n2n3|2k−1

[
|n1|2β1 |n2|2β2 |n3|2β3 + |n1|2β1 |n2n3|β23

+ |n1n2|β12 |n3|2β3 + |n1|β12 |n2|β23 |n3|β13 + |n1n3|β13 |n2|2β2 + |n1|β13 |n2|β12 |n3|β23
]
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.δ0 p
3
∑

0=n123

1BN,M (n1, n2, n3)
1

|n1n2n3|

.δ0 p
3

∑
0<|nmin|≤M
N
2
<|nmed|≤M

1

|nmin|1+θ|nmed|2−θ

.δ0 p
3 1

N1−θ .

Note that the same estimate above holds for the cubic terms in R̃
[≥]

δ,k− 1
2

(u).

To estimate the remaining contributions in R̃δ,k− 1
2
(u), it suffices to control the terms

p4(u) = δγ
∫ j∏

`=1

∂α`x u dx,

j = 4, . . . , 2k + 1, γ ≥ 0, 0 ≤ α` ≤ k − 1, α1···j ≤ 2k + 2− j,
as the same estimate holds for all other terms, using Lemma 2.7 and Lemma 2.3 to handle

the G̃δ operators. Then, for fixed j = 4, . . . , 2k + 1, proceeding as in (4.18) and using

Lemma 4.6, we have that

‖p4(XN )− p4(XM )‖Lp(Ω) .δ0
∥∥‖XN −XM‖Hk−1−2θ‖XM‖j−1

Hk−1−

∥∥
Lp(Ω)

(4.24)

.δ0
1

N θ
‖‖XM‖Hk−1−

x
‖j
Lpj(Ω)

(4.25)

.δ0,k p
k+ 1

2
1

N θ
(4.26)

for 0 < θ � 1 sufficiently small.

Combining this estimate with the earlier one for the cubic contributions, we get that

‖R̃δ,k− 1
2
(XM )− R̃δ,k− 1

2
(XN )‖Lp(Ω) ≤ Cδ0,kpk+ 1

2
1

N θ
(4.27)

for some 0 < θ < 1, from which we conclude that the sequence {R̃δ,k− 1
2
(XN )}N∈N is Cauchy

in Lp(Ω) and therefore has a limit in Lp(Ω). �

Remark 4.12. All of the results on X̃δ,k, R̃δ,k, Fδ,k,K,N , and ρ̃δ,k,K can be extended to the

KdV setting δ = 0. In Proposition B.7, we established that for k ∈ N, the k-th conserved

quantity for KdV satisfies

Ẽ0,k(u) = Ẽ
[0]
δ,k(u), (4.28)

where the latter, defined in (B.18), collects the terms in Ẽδ,k(u) which have no G̃δ operators

and no powers of δ. Consequently, we can write

Ẽ0,k(u) =
1

2
‖u‖2

Ḣk + R̃0,k(u)

and, from (4.28), we have that all the terms in R̃0,k(u) appear in R̃δ,k(u). Consequently,

all the results established in Subsections 4.3 and 4.4 for even-indexed quantities extends

to δ = 0. We briefly mention the relevant results below.

Given k ∈ N, K > 0, and N ∈ N, we recall the definition of the truncated densities

F̃0,k,N,K(u) = ηK(‖PNu‖2L2) exp(−R̃0,k(PNu)), (4.29)
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which are uniformly bounded in N (proceeding as in Subsection 4.3): for any 1 ≤ p <∞,

sup
N∈N
‖F̃0,k,N,K(X̃0,k)‖Lp(Ω) = sup

N∈N
‖F̃0,k,N,K(u)‖Lp(dµ̃0,k) ≤ Cp,k,K <∞. (4.30)

The variables {PNX̃0,k}N∈N and {R̃0,k(PNX̃0,k)}N∈N are Cauchy in Lp(Ω;Hk− 1
2
−(T)) and

Lp(Ω), respectively, for any 1 ≤ p < ∞, and they converge to limits X̃0,k and R̃0,k(X̃0,k).

Consequently, we can rigorously construct the weighted Gaussian measures ρ̃0,k,K for KdV:

(i) For all 1 ≤ p <∞, we have lim
N→∞

F̃0,k,N,K(u) = F̃0,k,K(u) in Lp(dµ̃0,k), where

F̃0,k,K(u) = ηK(‖u‖2L2) exp(−R̃0,k)(u).

(ii) The truncated measure ρ̃0,k,N,K converges in total variation to ρ̃0,k,K given by

ρ̃0,k,K(du) = Z−1
0,k F̃0,K(u)dµ̃0,k(u).

Moreover, the limiting measure above is equivalent to the base Gaussian measure

ηK(‖u‖2L2)dµ̃0,k(u).

4.5. Convergence of ρ̃δ, k
2

as δ → 0. In this section, we show Theorem 1.2(ii). The main

ingredient to establish the weak convergence of the measures ρ̃δ,k− 1
2
,K , ρ̃δ,k,K to ρ̃0,k,K is

the following Lp(Ω)-convergence of the truncated densities.

Lemma 4.13. Let k,N ∈ N. Then, for all 1 ≤ p <∞, we have

lim
δ→0
‖F̃δ,k− 1

2
,K,N (X̃δ,k− 1

2
)− F̃0,k,K,N (X̃0,k)‖Lp(Ω) = 0, (4.31)

lim
δ→0
‖F̃δ,k,K,N (X̃δ,k)− F̃0,k,K,N (X̃0,k)‖Lp(Ω) = 0. (4.32)

Assuming Lemma 4.13, we can now proceed to the proof the theorem.

Proof of Theorem 1.2(ii). Fix K, δ0 > 0 and k ∈ N. By construction, the measures ρ̃δ, k
2
,K

are equivalent for all 0 < δ ≤ δ0 and they are also equivalent to the base Gaussian measure

with cutoff µ̃δ, k
2
,K . The same is true for ρ̃0,k,K and the base Gaussian µ̃0,k,K (see Re-

mark 4.12). From Lemma 4.1, we have that µ̃δ,k− 1
2
,K , µ̃0,k,K and µ̃δ,k,K , µ̃0,k,K are singular.

Consequently, we conclude that ρ̃δ,k− 1
2
,K , ρ̃KdV,2k,K and ρ̃δ,k,K , ρ̃KdV,2k,K are also singular

for all 0 < δ ≤ δ0. It remains to show the weak convergence of ρ̃δ,k− 1
2
,K and ρ̃δ,k,K to ρ̃0,k,K

as δ → 0.

In the following, for simplicity, we omit the K dependence and only show the convergence

for ρ̃δ,k,K , as the same ideas apply to ρ̃δ,k− 1
2
,K . Let ε > 0 and A be any Borel subset of

Hk− 1
2
−ε(T) with ρ̃0,k(∂A) = 0, where ∂A denotes the boundary of the set A. By the

portmanteau lemma, the weak convergence of ρ̃δ,k to ρ̃0,k follows once we show that

lim
δ→0

[
ρ̃0,k(A)− ρ̃δ,k(A)

]
= 0. (4.33)

By triangle inequality, we have that∣∣ρ̃0,k(A)− ρ̃δ,k(A)
∣∣

≤
∣∣ρ̃0,k(A)− ρ̃0,k,N (A)

∣∣+
∣∣ρ̃δ,k(A)− ρ̃δ,k,N (A)

∣∣+
∣∣ρ̃0,k(A)− ρ̃δ,k,N (A)

∣∣
≤
∣∣ρ̃0,k(A)− ρ̃0,k,N (A)

∣∣+ sup
0<δ≤δ0

∣∣ρ̃δ,k(A)− ρ̃δ,k,N (A)
∣∣+
∣∣ρ̃0,k,N (A)− ρ̃δ,k,N (A)

∣∣. (4.34)
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From Remark 4.12, we know that ρ̃0,k,N converges in total variation to ρ̃0,k, thus

lim
N→∞

∣∣ρ̃0,k(A)− ρ̃0,k,N (A)
∣∣ = 0.

Moreover, Theorem 1.2(i) guarantees that

lim
N→∞

sup
0<δ≤δ0

∣∣ρ̃δ,k(A)− ρ̃δ,k,N (A)
∣∣ = 0.

Therefore, if we show that for N � 1,

lim
δ→0

∣∣ρ̃0,k,N (A)− ρ̃δ,k,N (A)
∣∣ = 0, (4.35)

then (4.33) follows from taking a limit as δ → 0 followed by a limit as N → ∞ in (4.34)

and the three convergence results above.

We first note that∣∣ρ̃0,k,N (A)− ρ̃δ,k,N (A)
∣∣

=

∣∣∣∣Z−1
0,k,NE

[
F̃0,k,N (X̃0,k)1A(X̃0,k)

]
− Z−1

δ,k,NE
[
F̃δ,k,N (X̃δ,k)1A(X̃δ,k)

]∣∣∣∣
≤ |Z−1

0,k,N − Z
−1
δ,k,N |E[F̃0,k,N (X̃0,k)1A(X̃0,k)]

+ Z−1
δ,k,N

∣∣E[F̃0,k,N (X̃0,k)1A(X̃0,k)
]
− E

[
F̃δ,k,N (X̃δ,k)1A(X̃δ,k)

]∣∣
where Z0,k,N = E[F̃0,k,N (X̃0,k)] and Zδ,k,N = E[F̃δ,k,N (X̃δ,k)]. The first contribution con-

verges to 0 by (4.32) and boundedness of the density F̃0,k,N in (4.30). Since Zδ,k,N is

uniformly bounded in δ,N by (4.9), it remains to show that

lim
δ→0

∣∣E[F̃0,k,N (X̃0,k)1A(X̃0,k)
]
− E

[
F̃δ,k,N (X̃δ,k)1A(X̃δ,k)

]∣∣ = 0. (4.36)

Again, by triangle inequality,∣∣E[F̃0,k,N (X̃0,k)1A(X̃0,k)
]
− E

[
F̃δ,k,N (X̃δ,k)1A(X̃δ,k)

]∣∣
≤
∥∥F̃0,k,N (X̃0,k)− F̃δ,k,N (X̃δ,k)

∥∥
L1(Ω)

+ E
[
F̃0,k,N (X̃0,k)|1A(X̃0,k)− 1A(X̃δ,k)|

]
,

where the first term converges to 0 as δ → 0 by (4.32). For the second term, from Cauchy-

Schwarz inequality, we get

E
[
F̃0,k,N (X̃0,k)|1A(X̃0,k) − 1A(X̃δ,k)|

]
. ‖F̃0,k,N (X̃0,k)‖L2(Ω)E

[
|1A(X̃0,k) − 1A(X̃δ,k)|

]
,

where the first factor on the RHS is uniformly bounded in N from (4.30), thus it suffices

to show that

lim
δ→0

E
[
|1A(X̃0,k)− 1A(X̃δ,k)|

]
= 0. (4.37)

Since µ̃0,k(∂A) = 0, we have

E
[
|1A(X̃0,k)− 1A(X̃δ,k)|

]
= E

[
1intA(X̃0,k)|1A(X̃0,k)− 1A(X̃δ,k)|

]
+ E

[
1intAc(X̃0,k)|1A(X̃0,k)− 1A(X̃δ,k)|

]
.

Note that intA, intAc are open sets, the quantities inside the expected values above are

always bounded by 1, and limδ→0 X̃δ,k = X̃0,k a.s. from Lemma 4.1, then 1A(X̃δ,k) −
1A(X̃0,k)→ 0 a.s. as δ → 0. Then, by the dominated convergence theorem, (4.37) follows,

completing the proof of weak convergence. �
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It only remains to prove the convergence in δ for the truncated densities in Lemma 4.13.

Proof of Lemma 4.13. For simplicity, we omit the K dependence in the proof. Fix N ∈ N
and let X̃δ, k

2
,N = PNX̃δ, k

2
for 0 ≤ δ <∞. For fixed x ∈ T and ω ∈ Ω, from (4.4), we get

lim
δ→0

X̃δ,k− 1
2
,N (x;ω) = lim

δ→0
X̃δ,k,N (x;ω) = X̃0,k(x;ω).

Also, from (4.15), we have for ω ∈ Ω fixed that for 0 < δ ≤ δ0

‖X̃δ,k− 1
2
,N (x;ω)‖2Hk , ‖X̃δ,k,N (x;ω)‖2Hk .δ0

∑
0<|n|≤N

|gn(ω)|2 ≤ Cω,δ0,N <∞, (4.38)

where Cω,δ0,N depends on ω, δ0, N . For fixed ω ∈ Ω, from (4.38) and the proof of Proposi-

tion B.7, we have the following convergence

lim
δ→0

R̃δ,k− 1
2
,N (X̃δ,k− 1

2
(ω)) = lim

δ→0
R̃δ,k,N (X̃δ,k(ω)) = R̃0,k,N (X̃0,k(ω)). (4.39)

Fixing ω ∈ Ω and using (4.4), we have that for m = 2k − 1 and m = 2k∣∣‖X̃δ,m
2
,N (ω)‖2L2 − ‖X̃0,k,N (ω)‖2L2

∣∣ =
1

2π

∑
0<|n|≤N

|gn(ω)|2
∣∣∣∣ 1

T̃δ,m
2

(n)
− 1

|n|2k

∣∣∣∣→ 0,

as δ → 0, we conclude that lim
δ→0
‖X̃δ,,m

2
,N (ω)‖L2 → ‖X̃0,k,N (ω)‖L2 . Moreover,

lim
δ→0

ηK(‖X̃δ,k− 1
2
,N (ω)‖2L2) = lim

δ→0
ηK(‖X̃δ,k,N (ω)‖2L2) = ηK(‖X̃0,k,N (ω)‖2L2), (4.40)

by continuity of the cutoff function ηK . Lastly, combining (4.39) and (4.40), we conclude

that for all ω ∈ Ω,

lim
δ→0

F̃δ,k− 1
2
,N (X̃δ,k− 1

2
(ω)) = lim

δ→0
F̃δ,k,N (X̃δ,k(ω)) = F̃0,k,N (X̃0,k(ω)).

From the pointwise in ω ∈ Ω convergence above, the uniform in 0 < δ ≤ δ0 bounds

in (4.9) and (4.30), and the dominated convergence theorem, we get the intended Lp(Ω)

convergence of the truncated densities (4.31) and (4.32). �

5. Almost almost-sure conservation for truncated dynamics

In this section we prove the main ingredient needed for the proof of invariance of the

measures ρδ, k
2

and ρ̃δ, k
2

for k ≥ 3. To this end, we consider suitably truncated dynamics

which approximate (1.1) and (1.4) for which it is easier to establish invariance. However,

as in the analysis for Benjamin-Ono in [54, 55, 56], these dynamics no longer have Eδ, k
2

and

Ẽδ, k
2

as conserved quantities for k ∈ N. We discuss this difficulty below.

In the deep-water regime, we fix 2 ≤ δ ≤ ∞ for simplicity and let N ∈ N. Consider the

following truncated ILW equation:{
∂tuN − Gδ∂2

xuN = 2PN

(
(PNuN )∂x(PNuN )

)
,

uN (0) = u0.
(5.1)

For u0 ∈ L2(T), one can easily see that (5.1) has a unique global solution uN ∈ C(R;L2(T)).

Recalling that P>N denotes the projection onto Fourier modes {|n| > N}, we can write

uN = PNuN + P>NuN . Then, one can see that the dynamics of (5.1) decouple, where the

high frequency piece P>NuN solves the linear ILW equation with initial data P>Nu0, while
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the low frequency part PNuN solves a finite-dimensional system of ODEs which preserves

the L2-norm and the Hamiltonian Eδ, 1
2
:

1

2

d

dt

∫
(PNuN (t))2 dx =

∫ [
2(PNuN )PN

(
PNuN∂xPNuN ) + (PNuN )Gδ∂2

xuN
]
dx

=

∫ [
2
3∂x(PNuN )3 + (PNuN )Gδ∂2

x(PNuN )
]
dx = 0,

d

dt
Eδ, 1

2
(PNuN ) =

∫
(∂tPNuN )[Gδ∂xPNuN + (PNuN )2] dx

=

∫ [
(Gδ∂xPNuN )(Gδ∂2

xPNuN )

+ (PNuN )2Gδ∂2
xPNuN + ∂x(PNuN )2Gδ∂xPNuN

+ PN (PNuN )2PN∂x(PNuN )2
]
dx = 0.

Unfortunately, the higher order conserved quantities Eδ, k
2
(PNuN ) for k ≥ 2 are no longer

conserved. This is analogous to the phenomenon observed for the BO and KdV equations

in [54, 55, 56, ?]. As a replacement for conservation, the main ingredient to show invariance

of ρδ, k
2

is the following almost almost-sure conservation for the truncated dynamics.

Proposition 5.1. Let 2 ≤ δ ≤ ∞, k ≥ 2, N ∈ N, and let ΦN
t denote the data-to-solution

map of the truncated ILW (5.1). Then, for all 1 ≤ q <∞, we have that

lim
N→∞

∥∥∥ d
dt
Eδ, k

2
(PNΦN

t (u0))
∣∣∣
t=0

∥∥∥
Lq(µ

δ, k2
)

= 0.

We postpone the proof of Proposition 5.1 to Subsection 5.1.

A similar phenomenon is observed for the scaled ILW equation (1.4) and its corresponding

truncated dynamics:{
∂tũN − G̃δ∂2

xũN = 2PN

(
(PN ũN )∂x(PN ũN )

)
,

ũN (0) = u0.
(5.2)

As before, (5.2) has a global-in-time solution ũN and its dynamics decouple, with the low

frequency part PN ũN satisfying conservation of the L2-norm and Ẽδ, 1
2
, but Ẽδ, k

2
is not

conserved for k ≥ 2. As in the deep-water regime, we instead prove the following result.

Proposition 5.2. Let δ0 > 0, 0 < δ ≤ δ0, k ≥ 2, N ∈ N, and Φ̃N
t denote the data-to-

solution map of the truncated sILW (5.2). Then, for all 1 ≤ q <∞, we have

lim
N→∞

∥∥∥ d
dt
Ẽδ, k

2
(PN Φ̃N

t (u0))
∣∣∣
t=0

∥∥∥
Lq(dµ̃

δ, k2
)

= 0. (5.3)

We postpone the proof of Proposition 5.2 to Subsection ??

Before proceeding, we recall some relevant results and notations. Following [54], we

introduce some useful notations. Consider any polynomial p(u) ∈ Pj(u) for some integer

j ≥ 2, with Pj(u) as defined in Section 3. Recall that p(u) has an associated fundamental
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polynomial p̃(u) of the form

p̃(u) =

j∏
`=1

∂γ`x u

for suitable γ` ∈ N∪{0}. For N ∈ N and ` ∈ {1, . . . , j}, we now define the new polynomials

p∗`,N (u) as follows

p∗`,N (u) = p(u)|∂γ`x u=∂
γ`
x (P>N (u∂xu)), (5.4)

i.e., the polynomial obtained from p(u) by replacing the ∂γ`x u term by ∂γ`x (P>N (u∂xu)).

Moreover, we define p∗N (u) as

p∗N (u) =

j∑
`=1

p∗`,N (u). (5.5)

Note that the above transformation increases the degree of the original polynomial in u by

1 as well as its total number of derivatives. This definition will become useful in writing
d
dtEδ, k

2
(PNu). The same definition is extended to polynomials p(u) ∈ P̃j(u) used to describe

the shallow-water conserved quantities.

We also recall the following estimate on truncated sums; see Lemma 3.2 in [56] for the

proof.

Lemma 5.3. Let j ≥ 2. Then, the following estimate holds as N →∞∑
|n1+···+nj |>N

0<|n1|,...,|nj |≤N

1

|n1||n2 · · ·nj |2
= O

( lnN

N

)
. (5.6)

Lastly, we will require the following property of Gaussian random variables. For all

1 ≤ q <∞ and ` ∈ N, it follows from the Wiener chaos (Lemma 2.6) estimate and Isserlis’s

theorem that there exists C = C(k, q) > 0 such that

sup
n1,...,n`∈Z∗

‖gn1 · · · gn`‖Lq(Ω) ≤ Ck,q <∞. (5.7)

5.1. Proof of Proposition 5.1. Fix k ≥ 2, N ∈ N, and let uN denote the solution to (5.1)

with data u0 ∈ L2(T). Then, the low frequency part PNuN solves the following equation

∂tPNuN − Gδ∂2
xPNuN = (PNuN )∂x(PNuN )−P>N

(
(PNuN )∂x(PNuN )

)
. (5.8)

Consequently, when calculating the time derivative of E k
2
(PNuN ), we can replace the

∂t(PNuN ) terms with[
Gδ∂2

xPNuN + (PNuN )∂x(PNuN )
]
−P>N

(
(PNuN )∂x(PNuN )

)
. (5.9)

Since the terms obtained by replacing the first contribution above are those we would expect

from a solution to the full ILW equation (1.1), these terms collectively vanish. Therefore,

the potentially nonzero contributions arise from the −P>N

(
(PNu)∂x(PNu)

)
substitutions.

Moreover, note that all the leftover terms are cubic or higher order in uN , since the quadratic
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terms vanish. In more detail, note that the high frequency remainder obtained by replacing

∂tPNuN with the second contribution in (5.9) is

k∑
`=0
` even

a`

∫
PN (∂

`
2
x uN ) ·P>N

[
∂
`
2
x (Gδ∂x)k−`(PNuN∂xPNuN )

]
dx = 0

as all the integrals vanish due to the orthogonality of the frequency supports of the two

terms being integrated.

Recalling the structure of the conserved quantities in (3.1) and (3.2) and following the

observation above, we get

d

dt
Eδ, k

2
(PNuN ) =

k−1∑
`=0

1

δ`
A∗k

2
, k−`

2
,N

(PNuN (t)),

where A∗k
2
, k
2
,N

(·) is defined by replacing each polynomial p(·) in (3.3) and (3.4) by p∗N (·).
In the following, we detail how to establish that for 2 ≤ δ ≤ ∞, k ≥ 2, and 1 ≤ q <∞,

lim
N→∞

∥∥∥A∗k
2
, k
2
,N

(PNu)
∥∥∥
Lq(dµ

δ, k2
)

= 0, (5.10)

lim
N→∞

∥∥∥A∗k
2
, 1
2
,N

(PNu)
∥∥∥
Lq(dµ

δ, k2
)

= 0. (5.11)

The convergence of the contributions A∗k
2
, k−`

2
,N

(PN ·) for 1 ≤ ` ≤ k − 2 follow the same

approach, thus we omit the details.

Before proving (5.10) and (5.11), we recall a useful result in [56] on the leading order

cubic terms in A k
2
, 2m+1

2
. See Lemma 7.1 in [56] for a proof.

Lemma 5.4. [56, Lemma 7.1] Let m ∈ N, N ∈ N, and uN = PNu. Then, for α = 0, 1∫
[uN ][Hα∂mx uN ]P>NHα∂mx [uN∂xuN ] dx

=
m∑
j=1

cj

∫
[uN ][Hα∂mx uN ]P>NHα[∂jxuN · ∂m+1−j

x uN ] dx,∫
P>N [HuN · H∂mx uN ]P>N∂

m
x [uN∂xuN ] dx

+

∫
P>N [HuN · ∂mx uN ]P>N∂

m
x H[uN∂xuN ] dx = 0.

Proof of (5.11). Since the only contribution in A k
2
, 1
2
(u) arises from the polynomial p(u) =

u3, using Wiener chaos estimate (Lemma 2.6), it suffices to estimate

‖A∗k
2
, 1
2
,N

(PNu)‖L2(dµ
δ, k2

) ∼
∥∥∥∥∫ (PNu)2P>N (PNu∂xPNu) dx

∥∥∥∥
L2(dµ

δ, k2
)

.

From (3.7), we get

· · · .
∑

n1···4=0
0<|nj |≤N
|n34|>N

∑
m1···4=0

0<|mj |≤N
|m34|>N

|n4m4|
|n1m1 · · ·n4m4|

k
2

|E[gn1 · · · gn4gm1 · · · gm4 ]|. (5.12)
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From Isserlis’s theorem, the only possibly nonzero contributions arise from having ni1 +

nj1 = mi2 + mj2 = 0 for pairs i1, i2, j1, j2 ∈ {1, . . . , 4} or {n1, . . . , n4} = {m1, . . . ,m4}.
Since |n34| = |n12| > N , we can only have ni1 + nj1 = 0 for i1 ∈ {1, 2}, j1 ∈ {3, 4}. The

same is true for the other family of frequencies. Then, by symmetry and using (5.6), we

have

· · · .
∑

0<|n1|,|n2|≤N
0<|m1|,|m2|≤N
|n12|,|m12|>N

|n1m1|
|n1n2m1m2|k

+
∑

0=n1···4
0<|n`|≤N
|n12|>N

|n4|(|n1|+ |n3|+ |n4|)
|n1 · · ·n4|k

.
∑

0<|n1|,|n2|≤N
0<|m1|,|m2|≤N
|n12|,|m12|>N

1

|n1m1||n2m2|2
+

∑
0<|n1|,|n2|,|n3|≤N

|n12|>N

[
1

|n1n2|2|n3|
+

1

|n1||n2n3|2

]

. O(N−1 logN),

for all k ≥ 2. �

To prove (5.10), we first focus on the leading order cubic terms appearing in (3.5). If k

is even, say k = 2m for some m ∈ N, then the leading order cubic terms are of the form∫
p(u) dx where

p(u) = u(H∂m−1
x u)(∂mx u).

While if k is odd, say k = 2m+ 1 for m ∈ N then the relevant contributions are of the form∫
pj(u) dx, j = 1, 2, 3, where

p1(u) =

∫
u[∂mx u]2 dx,

p2(u) =

∫
u[H∂mx u]2 dx,

p3(u) =

∫
[Hu][H∂mx u][∂mx u] dx.

(5.13)

Lemma 5.5 establishes the decay of the contributions in A∗2m
2
, 2m

2
,N

and A∗2m+1
2

, 2m+1
2

,N
in

(5.10) arising from cubic in u terms in the remainder. The remaining terms are handled in

Lemma 5.6.

Lemma 5.5. Let m ∈ N, p(u) = u(H∂m−1
x u)(∂mx u) and pj(u), j = 1, 2, 3 as given in

(5.13). Then, for 1 ≤ q <∞, we have that for j = 1, 2, 3

lim
N→∞

(∥∥∥∥∫ p∗N (PNu) dx

∥∥∥∥
Lq(dµδ,m)

+

∥∥∥∥∫ p∗j,N (PNu) dx

∥∥∥∥
Lq(dµ

δ,m+1
2

)

)
= 0.

Proof. Let m ∈ N and uN = PNu.

We first prove the result for p(u). For m = 1, p(u) = u2H∂xu and we see that the

intended contribution vanishes, using the fact that Hu = −i(u+ − u−) where u± is the

projection of u onto positive/negative frequencies,∫
p∗N (uN ) dx
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= 2

∫
P>N [uN∂xuN ]P>N [uNH∂xuN ] dx+

∫
P>N [H∂x(u∂xu)]P>N [u2] dx

= −2i

∫
P>N [uN∂xuN ]P>N [u+

N∂xu
+
N − u

−
N∂xu

−
N ] dx− 2

∫
P>NH[u∂xu]P>N [u∂xu] dx

= −2i

∫
P>N [u−N∂xu

−
N ]P>N [u+

N∂xu
+
N ] dx+ 2i

∫
P>N [u+

N∂xu
+
N ]P>N [u−N∂xu

−
N ] dx

= 0

where we used the fact that P>N (PNf
+ ·PNg

−) = 0.

Now let m ≥ 2. From the definition (5.4), we see that∫
p∗1,N (u) dx =

∫ [
P>N (u∂xu)

][
H∂m−1

x u
][
∂mx u

]
dx+

∫
u
[
P>N∂

m−1
x H(u∂xu)

][
∂mx u

]
dx

+

∫
u
[
H∂m−1

x u
][

P>N∂
m
x (u∂xu)

]
dx

=

∫
[H∂m−1

x u∂mx u]P>N [u∂xu] dx

+

m−1∑
j=1

∫
[c1,jH(u∂mx u) + c2,j∂xuH∂m−1

x u+ c3,juH∂mx u]P>N [∂jxu∂
m−j
x u] dx

+

∫
[c1,0H(u∂mx u) + c2,0∂xuH∂mx u+ c3,0uH∂mx u]P>N [u∂mx u] dx

=: IN (u) + IIN (u) + IIIN (u),

for some constants ci,j ∈ R. For the first contribution, using Minkowski’s inequality, (5.7),

(3.7), and (5.6), we get that

‖ IN (PNu)‖Lq(dµδ,m) .
∑

0<|nj |≤N
n1···4=0
|n12|>N

|n2||n3|m−1|n4|m∏4
j=1 |nj |m

‖gn1(ω)gn2(ω)gn3(ω)gn4(ω)‖Lq(Ω)

.
∑

0<|nj |≤N
n1···4=0
|n12|>N

1

|n1|m|n2|m−1|n3|

≤
∑

0<|n3|≤N

1

|n3|
∑

0<|n1|,|n2|≤N
|n12|>N

1

|n1|2|n2|
= O

( log2N

N

)
.

For the second contribution, by Minkowski’s inequality, (5.7), and (3.7), we get that

‖IIN (PNu)‖Lq(dµδ,m) .
m−1∑
j=1

∑
0<|nj |≤N
n1···4=0
|n12|>N

|n2|m−1(|n1|+ |n2|)|n3|j |n4|m−j

|n1 · · ·n4|m

.
m−1∑
j=1

∑
0<|nj |≤N
n1···4=0
|n12|>N

1

min(|n1|, |n2|)m|n3|m−j |n4|j
.
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For simplicity, assume that |n3| ≤ |n4|. If |n1| ∼ |n2|, using the fact that |n34| > N implies

that |n4| ≥ N
2 , then

· · · . N−1
∑

0<|n1|,|n2|,|n3|≤N

1

|n1n2n3|
= O(N−1 log3N).

If instead max(|n1|, |n2|) � min(|n1|, |n2|), then from n1···4 = 0 we have that

max(|n1|, |n2|) ∼ |n12| . |n4| and by using (5.6) we get

. . . .
∑

0<|n1|,|n2|,|n3|≤N
|n12|>N

1

min(|n1|, |n2|)2 max(|n1|, |n2|)|n3|
= O(N−1 log2N).

For IIIN (PNu), note that the first contribution vanishes since H is anti-self-adjoint, and

the third one vanishes since:∫
P>N [uNH∂mx uN ]P>N [uN∂

m
x uN ]

= −i
∫

P>N [u+
N∂

m
x u

+
N − u

−
N∂

m
x u
−
N ]P>N [uN∂

m
x uN ] dx

= −i
∫

P>N [u+
N∂

m
x u

+
N ]P>N [u−N∂

m
x u
−
N ] dx+ i

∫
P>N [u−N∂

m
x u
−
N ]P>N [u+

N∂
m
x u

+
N ] dx = 0.

(5.14)

Lastly, the second contribution can be handled as the terms in IIN with j = 1. This

completes the proof of the first estimate on p∗N .

In the remaining of the proof, we focus on the p∗j,N contributions from (5.13), for j =

1, 2, 3. For m = 1, we have pj(u) ∈ {u[∂xu]2, u[H∂xu]2, [Hu][H∂xu][∂xu]}. Moreover, by

doing integration by parts, we can write∫
p3(u) dx =

1

2

∫
[p1(u)− p2(u)] dx,

so it suffices to estimate the contributions coming from p1, p2. Note that∫
p∗1,N (u) =

∫
P>N [u∂xu]P>N [∂xu]2 dx,∫

p∗2,N (u) =

∫ (
P>N [u∂xu]P>N [H∂xu]2 dx,

since ∫
P>N [uH∂xu]P>NH∂x[u∂xu] dx

=

∫
P>N [u+∂xu

+ − u−∂xu−]P>N∂x[u+∂xu
+ − u−∂xu−] dx

=

∫ (
P>N [u+∂xu

+]P>N∂x[u−∂xu
−] + P>N [u−∂xu

−]P>N∂x[u+∂xu
+]
)
dx = 0.

We use an orthogonality argument to handle these two contributions. By the Wiener chaos

estimate (Lemma 2.6), it suffices to estimate the L2-norm, for which we have∥∥∥∥∫ P>N [uNHα∂xuN ]P>NHα∂x[uN∂xuN ] dx

∥∥∥∥2

L2(dµ
δ, 32

)



60 A. CHAPOUTO, G. LI, T. OH, AND G. ZHENG

.
∑

n1···4=0
m1···4=0

0<|n`|,|m`|≤N
|n12|,|m12|>N

|n2n3n4m2m3m4|
|n1m1 · · ·n4m4|

3
2

|E[gn1 · · · gn4gm1 · · · gm4 ]|

.

( ∑
0<|n1|,|n2|≤N
|n12|>N

|n1||n2|2

|n1n2|3

)2

+
∑

n1···4=0
0<|n`|≤N
|n12|>N

|n2n3n4|2 + |n1n3||n2n4|2

|n1 · · ·n4|3

.

( ∑
0<|n1|,|n2|≤N
|n12|>N

1

|n1|2|n2|

)2

+
∑

n1···4=0
0<|n`|≤N
|n12|>N

(
1

|n1|3|n2n3n4|
+

1

|n1n3|2|n2n4|

)

. O(N−2 log2N),

where α = 0, 1, using (3.7), Isserlis’ theorem, symmetry, and (5.6).

For m ≥ 2, by Lemma 5.4, we have∫
p∗1,N (uN ) dx =

∫
P>N [uN∂xuN ]P>N [∂mx uN ]2 dx

+

m∑
j=1

c1,j

∫
P>N [uN∂

m
x uN ]P>N [∂jxuN∂

m+1−j
x uN ] dx

=: I 1,N (uN ) + II1,N (uN ),∫
p∗2,N (uN ) dx =

∫
P>N [uN∂xuN ]P>N [H∂mx uN ]2 dx

+
m∑
j=1

c2,j

∫
P>N [uNH∂mx uN ]P>NH[∂jxuN∂

m+1−j
x uN ] dx

=: I 2,N (uN ) + II2,N (uN ),∫
p∗3,N (uN ) dx =

∫
P>NH[uN∂xuN ]P>N [∂mx uNH∂mx uN ] dx =: I 3,N (uN ),

for some constants c1,j , c2,j ∈ R. For I 1,N , using Minkowski’s inequality, (5.7), (3.7), and

(5.6), we get that

‖ I 1,N (PNu)‖Lq(dµ
δ,m+1

2
) .

∑
n1···4=0

0<|n`|≤N
|n12|>N

|n2||n3n4|m

|n1 · · ·n4|m+ 1
2

.
∑

n1···4=0
0<|n`|≤N
|n12|>N

1

|n1|2|n2|min(|n3|, |n4|)

. O(N−1 log2N).

Note that the same approach works for I 2,N . For II1,N , following the same ideas, we have

‖II1,N‖Lq(dµ
δ,m+1

2
) .

m∑
j=1

∑
n1···4=0

0<|n`|≤N
|n12|>N

|n2|m|n3|j |n4|m+1−j

|n1 · · ·n4|m+ 1
2
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.
m∑
j=1

∑
n1···4=0

0<|n`|≤N
|n12|>N

1

|n1|m+ 1
2 |n2|

1
2 |n3|m+ 1

2
−j |n4|j−

1
2

.
∑

n1···4=0
0<|n`|≤N
|n12|>N

1

|n1|2|n2|min(|n3|, |n4|)
3
2

= O(N−1 logN)

since |n2| = |n134| and m + 1
2 − j, j −

1
2 ≥

1
2 . The same argument applies to II2,N . Lastly,

for I 3,N ,

‖ I 3,N‖Lq(dµ
δ,m+1

2
)‖ .

∑
n1···4=0

0<|n`|≤N
|n12|>N

|n2||n3n4|m

|n1 · · ·n4|m+ 1
2

.
∑

n1···4=0
0<|n`|≤N
|n12|>N

1

|n1|2|n2|min(|n3|, |n4|)

= O(N−1 log2N).

This completes the proof. �

Lemma 5.6. Let m ∈ N, j ∈ {3, . . . , 2m + 2}, ` ∈ {3, . . . , 2m + 3}, with p1(u) ∈ Pj(u),

p2(u) ∈ P`(u) satisfying

‖p1(u)‖+ |||p1(u)||| = 2m+ 2− j, |pj(u)| ≤ m− 1,

‖p2(u)‖+ |||p2(u)||| = 2m+ 3− `, |p2(u)| ≤ m, p̃3(u) 6= u∂mx u∂
m
x u.

Then, we get that

lim
N→∞

[∥∥∫ p∗1,N (PNu) dx
∥∥
Lq(dµδ,m)

+
∥∥∫ p∗2,N (PNu) dx

∥∥
Lq(dµ

δ,m+1
2

)

]
= 0.

Proof. For m = 1, we have that p1(u) ∈ {u2Qδu, u4}. If p1(u) = u4, then by Wiener chaos

estimate, it suffices to control the L2(dµδ,1)-norm, and by using (3.7), we have∥∥∥∥∫ p∗1,N (PNu) dx

∥∥∥∥2

L2(dµδ,1)

.
∑

0<|nj |,|mj |≤N
n1···5=0
m1···5=0

|n45|,|m45|>N

|n5m5|
|n1m1 · · ·n5m5|

|E[gn1 · · · gn5gm1 · · · gm5 ]|.

Since |n45|, |m45| > N , we cannot have that n45 = 0 or m45 = 0. Also, since |n123 >

N, |m123 > N , and all frequencies are nonzero, we cannot have nij = 0 or mij = 0 for

distinct i, j ∈ {1, 2, 3}. So we can only have nij = 0 or mij = 0 if i ∈ {1, 2, 3}, j ∈ {4, 5}.
Moreover, there can only be one such pairing among the n’s and m’s, since all frequencies

are nonzero. Then, we have by (5.6)

· · · .
∑

0<|n`|,|m1|≤N
`=1,2,3
|n123|>N

1

|n1m1||n2n3|2
+

∑
n1···5=0

0<|n`|≤N
|n123|>N

1

|n1n4||n2n3|2
= O(N−1 logN).

Following the same method for p1(u) = u2Qδu with (2.6), we get that∥∥∥∥∫ p∗1,N (PNu) dx

∥∥∥∥2

L2(dµδ,1)

∼
∥∥∥∥∫ [2uNQδuN +Qδ(u2

N )]P>N [uN∂xuN ] dx

∥∥∥∥2

L2(dµδ,1)
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.δ
∑

0<|nj |,|mj |≤N
n1···4=0
m1···4=0

|n34|,|m34|>N

|n4m4|
|n1 · · ·n4m1 · · ·m4|

|E[gn1 · · · gn4gm1 · · · gm4 ]|.

In applying Isserlis’ theorem, we note that since n12, n34,m12,m34 6= 0, the only possible

pairings within families of frequencies are of the form ni1j1 = mi2j2 = 0 when i1, i2 ∈
{1, 2}, j1, j2 ∈ {3, 4}. We can also have nik = mjk for k = 1, . . . , 4, where {i1, . . . , i4} =

{j1, . . . , j4} = {1, . . . , 4}. Then, we have

· · · .
∑

0<|n`|,|m`|≤N,
`=1,2

|n12|,|m12|>N

[
1

|n1m1|2|n2m2|
+

1

|n1m2||m1n2|2

]
+

∑
n1...4=0

0<|n`|≤N
|n12|>N

1

|n1n3||n2|2
= O

( log2N

N

)
.

For m ≥ 2, fix j ∈ {3, . . . , 2m+ 2} and p1(u) ∈ Pj(u) satisfying the assumptions. Then,

we have

p̃1(u) =

j∏
k=1

∂
αj
x u

with α1···j ≤ 2m+2− j and 0 ≤ αk ≤ m−1. Thus, p∗1,N (u) has terms of the form (ignoring

operators H and Qδ)

p∗1,N (u) =

j∑
i=1

P>N

[ j−1∏
k=1
k 6=i

∂αkx u

]
P>N∂

αi
x [u∂xu].

Due to symmetry we can set i = j above, and using (5.7), (3.7), Lemma 2.6 and the fact

that δ ≥ 2, we have that∥∥∥∥∫ p∗1,N (u) dx

∥∥∥∥
Lq(dµm)

.
∑

n1...(j+1)=0

0<|n`|≤N
|n1···(j−1)|>N

|nj(j+1)|αj |nj+1|
∏j−1
k=1 |nk|

αk

|n1 · · ·nj+1|m

.
∑

n1...(j+1)=0

0<|n`|≤N
|n1···(j−1)|>N

|nj(j+1)|αj

|nj |m|nj+1|m−1|n1 · · ·nj−1|
.

If α1 ≤ m− 2, then using (5.6), we have

· · · .
∑

n1...(j+1)=0

0<|n`|≤N
|nj(j+1)|>N

1

|nj |2|nj+1||n1 · · ·nj−1|
= O(N−1 logj−1N).
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If α1 = m − 1, then |nj(j+1)| = |n1···(j−1)| . max(|n1|, . . . , |nj−1|), which we let to be |n1|
for simplicity, to obtain

· · · .
∑

n1...(j+1)=0

0<|n`|≤N
|n1···(j−1)|>N

max(|nj |, |nj+1|)m−2|n1|
min(|nj |, |nj+1|)m min(|nj |, |nj+1|)m−1|n1 · · ·nj−1|

= O(N−1 logj−1N).

We now consider the contributions coming from p2(u). For m ≥ 2 and p2(u) as in the

statement, we can write p∗2,N (u) (ignoring the H and Qδ operators) as

p∗2,N (u) =

j∑
i=1

P>N

[ j−1∏
k=1
k 6=i

∂αkx u

]
P>N∂

αi
x [u∂xu].

with 3 ≤ ` ≤ 2m + 3, α1···j ≤ 2m + 3 − `, and if max
k=1,...,j

αk = m, then the remaining

αk ≤ m− 1.

By symmetry, we abuse notation and only consider the contribution with i = 1 and call

it IN (u). Using (5.7), (3.7), and Lemma (2.6), we have

‖ IN (PNu)‖Lq(dµ
δ,m+1

2
) .δ

∑
0<|n`|≤N
n1···(j+1)=0

|n12|>N

|n12|α1 |n2|
∏j+1
`=3 |n`|

α`

|n1···(j+1)|m+ 1
2

.
∑

0<|n`|≤N
n1···(j+1)=0

|n1+n2|>N

|n12|α1

min
`=1,2

|n`|m+ 1
2 max
`=1,2

|n`|m−
1
2
∏j+1
`=3 |n`|

m+ 1
2
−α`

.

For simplicity, assume that |n3| ≥ · · · ≥ |nj+1| and |n1| ≥ |n2|. If α1 ≤ m− 1, then

· · · .
∑

0<|n`|≤N
n1···(j+1)=0

|n1+n2|>N

|n1|m−
3
2 |n3|

1
2

|n2|m+ 1
2 |n1|m−

1
2
∏j+1
`=3 |n`|

m+ 1
2
−α`

.
∑

0<|n`|≤N
n1···(j+1)=0

|n1+n2|>N

1

|n1||n2|2|n3|m−α3
∏j+1
`=4 |n`|

m+ 1
2
−α`

= O(N−1 logj N)

by using (5.6), and noting that there is at most one α` = m, which allows us to do the sum

in the remaining frequencies. If α1 = m, then by (5.6)

· · · .
∑

0<|n`|≤N
n1···(j+1)=0

|n1+n2|>N

|n1|m−
3
2 |n3|

3
2

|n1|m−
1
2 |n2|m+ 1

2 |n3 · · ·nj+1|
3
2

= O(N−1 logN),

since for ` = 3, . . . , j + 1, α` ≤ m− 1 and thus m+ 1
2 − α` ≥

3
2 .
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It only remains to consider m = 1. Let j = 3, 4, 5 and p(u) ∈ Pj(u) with ‖p(u)‖ = 0.

Then, proceeding as before, we have that∥∥∥∥∫ p∗N (u) dx

∥∥∥∥
Lq(dµ

δ,m+1
2

)

.
∑

n1···(j+1)=0

0<|n`|≤N
|n12|>N

|n1|
|n1 · · ·nj+1|

3
2

. N−
1
2

∑
n1···(j+1)=0

0<|n`|≤N
|n12|>N

1

min(|n1|, |n2|)
3
2 |n3 · · ·nj+1|

3
2

. N−
1
2 ,

since max(|n1|, |n2|) ≥ N/2. It remains to consider the contributions with 3 and 4 factors

and exactly one derivative. Let pj(u) ∈ Pj(u) for j = 3, 4, and p̃3(u) = u2∂xu, p̃4(u) =

u3∂xu. By the Wiener chaos estimate, it suffices to estimate the L2(dµm+ 1
2
)-norm of∫

p∗j,N (u) dx, so we have∥∥∥∥∫ p∗j,N (u) dx

∥∥∥∥2

L2(dµ
m+1

2
)

.
∑

n1···(j+1)=0
m1···(j+1)=0

0<|n`|,|m`|≤N
|n12|,|m12|>N

|n1m1nj+1mj+1|
|n1m1 · · ·nj+1mj+1|

3
2

|E[gn1 · · · gnj+1gm1 · · · gmj+1 ]|.

Next we want to apply Isserlis’ theorem and consider the possible pairings nik = 0 and

ni = mk. If j = 3, then we can only have pairings ni1 +ni2 = ni3 +ni4 = 0 where {i1, i3} =

{1, 3}, {i2, i4} = {2, 4} and similar for m` frequencies, or nik = mik for k = 1, . . . , 4 and

{i1, . . . , i4} = {j1, . . . , j4} = {1, . . . , 4}. Then, by (5.6), we have∥∥∥∥∫ p∗3,N (u) dx

∥∥∥∥2

L2(dµ
m+1

2
)

.

( ∑
0<|n1|,|n2|≤N
|n12|>N

1

|n1||n2|2

)2

+
∑

n1···4=0
0<|n`|≤N
|n12|>N

1

|n1||n2|2|n3|2

= O(N−1 logN).

If j = 4, then we can have (1) ni1i2 = 0,mj1j2 = 0 for i1, j1 ∈ {1, 2}, i2, j2 ∈ {3, 4, 5},
and nik = mjk for k = 3, 4, 5 where {i3, . . . , i5} = {1, . . . , 5} \ {i1, i2} and {j3, . . . , j5} =

{1, . . . , 5} \ {j1, j2}; or (2) nik = mjk , k = 1, . . . , 5, {i1, . . . , i5} = {j1, . . . , j5} = {1, . . . , 5}.
Consequently, we get by (5.6)∥∥∥∥∫ p∗4,N (u) dx

∥∥∥∥2

L2(dµ
m+1

2
)

.
∑

n1···5=0
m1···5=0

0<|n`|,|m`|≤N
|n12|,|m12|>N

|E[gn1 · · · gn5gm1 · · · gm5 ]|
|n1m1n3m3 · · ·n5m5|

1
2 |n2m2|2

.
∑

0<|n`|,|m1|≤N
`=1,2,3
|n12|>N

1

|n1m1n3n4||n2|2
+

∑
n1···5=0

0<|n`|≤N
|n12|>N

1

|n1n3n4n5||n2|2

= O(N−1 log4N),

which completes the proof. �
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5.2. Proof of Proposition 5.2. This follows essentially as in the deep-water regime.

Below we describe how to adapt the proof to the shallow-water setting. Fix k ∈ N with

k ≥ 2, N ∈ N, and let ũN denote the solution to (5.2) with data u0 ∈ L2(T). Then, as

before, from (4.1), we have that

d

dt
Ẽδ, k

2
(PN ũN ) = R̃∗

δ, k
2
,N

(PN ũN )

where R̃∗
δ, k

2
,N

(·) denotes R̃δ, k
2
(·) as defined in (4.1) with every polynomial p(·) replaced by

p∗N (·) as defined in (5.5). Therefore, the proof of Proposition 5.2 reduces to showing that

for δ0 > 0, 0 < δ ≤ δ0, and 1 ≤ q <∞, we have

lim
N→∞

∥∥∥R̃∗
δ, k

2
,N

(PN ũ)
∥∥∥
Lq(dµ̃

δ, k2
)

= 0. (5.15)

Since δ is fixed and we do not require uniform in δ bounds here, we can see from (4.1),

that all the contributions in R̃δ, k
2
(u) are of the form∫

pj(u) dx, pj(u) ∈ P̃j(u), j = 3, . . . , k + 2,

‖pj(u)‖ ≤ k + 2− j, |pj(u)| ≤ k

2
.

Note that the difficulty in the R̃
[<]

δ, 2k−1
2

(u) contributions in controlling the G̃δ operator due

to insufficient powers of δ, which lead to a derivative loss to get the uniform in δ bounds

in (4.3), is no longer an issue here.

By using the lower bound (4.15) and (2.7), proceeding as in the proof of Lemma 5.6 gives

lim
N→∞

[∥∥∥∥ ∫ p∗1,N (PNu) dx

∥∥∥∥
Lq(dµ̃δ,m)

+

∥∥∥∥∫ p∗2,N (PNu) dx

∥∥∥∥
Lq(dµ̃

δ,m+1
2

)

]
= 0 (5.16)

where m ∈ N

j = 3, . . . , 2m+ 2, p1(u) ∈ P̃j(u), ‖p1(u)‖ ≤ 2m+ 2− j, |p1(u)| ≤ m− 1

` = 3, . . . , 2m+ 3, p2(u) ∈ P̃`(u), ‖p2(u)‖ ≤ 2m+ 3− j, |p2(u)| ≤ m

and p̃`(u) 6= u∂mx u∂
m
x u. Consequently, (5.15) follows once we show this decay for the terms

coming from

p̃3(u) = u∂m−1
x u∂mx u, for k = 2m,

p̃4(u) = u∂mx u∂
m
x u, for k = 2m+ 1.

Following the approach in the deep-water regime, if p3(u), p4(u) above have G̃δ operators,

these can always be associated with ∂x and replace by

1

δ
H∂x +

1

δ
(Gδ −H)∂x =:

1

δ
H∂x + Q̃δ

where by (2.6), |̂̃Qδ(n)| ≤ 1
δ2

for all n ∈ Z∗. Consequently, we can further split the contribu-

tions coming from p3(u), p4(u) into those with 1
δH∂x operators and the same fundamental
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polynomials p̃3(u), p̃4(u), and the contributions with Q̃δ which have less derivatives and

can therefore be has (5.16). Consequently, the only terms left to consider are

p3(u) = [Hα1u][Hα2∂m−1
x u][Hα3∂mx u], p4(u) = [Hα1u][Hα2∂mx u][Hα3∂mx u],

for α1, α2, α3 ∈ {0, 1}. By Lemma A.9 and Lemma A.10, it suffices to consider the terms in

(3.5) as in the deep-water setting, which were already estimated in Lemma 5.5. The only

difference in the proof comes is in using (4.15) instead of (3.7).

6. Dynamical problem

In this section we study qualitative properties of solutions to ILW (1.1) and sILW (1.4).

Since the argument is analogous for both regimes, we include only the proof in the deep-

water regime. For the remaining of this section, we fix 0 < δ < ∞ and omit dependence

on δ when clear from context. Recall the truncated dynamics in (5.1) and its unique

global-in-time solutions by uN (t, ·) = ΦN
t (u0), for u0 ∈ L2(T).

The following lemma collects relevant results on well-posedness and deterministic bounds

on the solutions to ILW. For proofs see Theorem 1.9 and Corollary 1.10 in [41], as well as

Proposition 3.1 in [34].

Lemma 6.1 ([41, 34]). (i) The ILW equation (1.1) is globally well-posed in Hs(T) for

s ≥ 1
2 .

(ii) Let s > 1
2 . For R > 0 and u0 ∈ Bs(R), there exists T = T (R) > 0 such that

‖Φt(u0)‖L∞([0,T ];Hs) . ‖u0‖Hs , ‖ΦN
t (u0)‖L∞([0,T ];Hs) . ‖u0‖Hs . (6.1)

Remark 6.2. Although not explicitly stated in Remark 1.1.(2) in [41], Hypothesis 1 needed

for the global well-posedness result also holds when L2 = Gδ∂2
x, not only for L2 = Tδ∂2

x.

Thus, the result applies to our version of the ILW equation (1.1) and also sILW (1.4).

Moreover, although Lemma 6.1(ii) is not explicitly stated for the truncated dynamics, the

same approach applies.

6.1. Approximation by the truncated flow. The main goal of this subsection is to

establish the following approximation result between the ILW and truncated ILW flows, Φt

and ΦN
t , respectively. A key ingredient of the proof follows from adapting the difference

estimate [41, Proposition 3.5] to allow for the difference between the truncated and full

flows of ILW.

Proposition 6.3. Let k ≥ 3, ε > 0, 1
2 < s < σ, and R > 0. Then, there exists T =

T (R) > 0 such that for every R0 > 0 there exists N0(R0) with the property

ΦN
t (A) ⊂ Φt(A) +Bs(R0), ∀N > N0, ∀t ∈ (−T, T ), ∀A ⊂ Bσ(R),

where Bs(R0) denotes the ball on Hs(T) of radius R0 centered on the origin.

Before proceeding to the proof, we require some notation and auxiliary results from [41].

For s, b ∈ R we define the Fourier restriction space Xs,b(T) through the norm

‖u‖Xs,b :=
∥∥〈n〉s〈τ − pδ(n)〉bFt,xu(τ, n)

∥∥
L2
τ `

2
n
,
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where pδ(n) = n(n coth(δn) − 1
δ ) in the deep-water regime, or pδ(n) = n

δ (n coth(δn) − 1
δ )

in the shallow-water regime. We also define the time-restricted version of this space Xs,b
T

defined via the norm

‖u‖
Xs,b
T

:= inf
{
‖ũ‖Xs,b : ũ|[−T,T ] = u

}
.

Moreover, we introduce the function spaces M s
T := L∞T H

s
x ∩ X

s−1,1
T , endowed with the

natural norm

‖u‖Ms
T

= ‖u‖L∞T Hs + ‖u‖
Xs−1,1
T

.

Lemma 6.4 (Lemma 3.1 [41]). Let 0 < T < 2, s > 1/2 and u ∈ L∞T Hs be a solution to

(1.1). Then, u ∈M s
T and it holds

‖u‖Ms
T
. ‖u‖L∞T Hs + ‖u‖L∞T Hs‖u‖

L∞T H
1
2+ .

Moreover, for any uN ∈ L∞T Hs of solutions to (5.1), the same statement holds.

Proof of Proposition 6.3. Let u0 ∈ Bσ(R). Then, from Lemma 6.1, there exist global-in-

time solutions u(t) = Φt(u0) and uN (t) = ΦN
t (u0) to (1.1) and (5.1), respectively, and

T = T (R) > 0 such that (6.1) holds.

From (2.2), we have that

‖u(t)− uN (t)‖Hs . ‖u(t)− uN (t)‖θHs−1‖u(t)− uN (t)‖1−θHσ

where θ = σ−s
1+σ−s ∈ (0, 1). From (6.1), the second factor above is uniformly bounded in N

and u0 ∈ Bσ(R), thus the intended approximation follows once we show that

lim
N→∞

(
sup

t∈[−T,T ]
u0∈Bσ(R)

‖Φt(u0)− ΦN
t (u0)‖Hs−1

)
= 0 . (6.2)

We show this by adapting the proof of [41, Proposition 3.5] to the difference between the

full and the truncated flows for ILW. We see that wN = u− uN solves{
∂twN − Gδ∂2

xwN = ∂x(u2 − (PNuN )2) + P>N∂x(PNuN )2,

wN |t=0 = 0.
(6.3)

With the notation yN = u−PNuN and zN = u+ PNuN , we can write

∂twN − Gδ∂2
xwN = ∂x(zNyN ) + P>N∂x(PNuN )2. (6.4)

Let K be a dyadic number and PK denote the Littlewood-Paley projector with multiplier

φK satisfying suppφK ⊂ [1
2K, 2K]. Applying the operator PK to (6.4), taking the Hs−1

scalar product with PKwN , and integrating in time, we obtain

‖PKwN‖2L∞T Hs−1
x
. sup
|t|≤T
〈K〉2(s−1)

∣∣∣∣ ∫ t

0

∫
T
PK(zNyN )PK∂xwN dx dt

′
∣∣∣∣

+ sup
|t|≤T
〈K〉2(s−1)

∣∣∣∣ ∫ t

0

∫
T
PKP>N (PNuN )2PK∂xwN dx dt

′
∣∣∣∣. (6.5)

For J1 defined as follows

J1 :=
∑
K>0

〈K〉2(s−1) sup
|t|≤T

∣∣∣ ∫ t

0

∫
T
PK(zNyN )PK∂xwN dx dt

′
∣∣∣, (6.6)
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proceeding as in the proof of Proposition 3.5 in [41], in particular, in estimating J defined

in (3-25) by (3-31), we obtain the following estimate for J1:

J1 . ‖zN‖Ms
T
‖yN‖Ms−1

T
‖wN‖L∞T Hs−1 . (6.7)

We now estimate the norms for zN , yN on the RHS of (6.7). Applying Lemma 6.4 and

(6.1), we get

‖zN‖Ms
T

= ‖u+ PNuN‖Ms
T
. ‖u0‖Hs(1 + ‖u0‖Hs),

‖yN‖Ms−1
T
≤ ‖u− uN‖Ms−1

T
+ ‖P>NuN‖Ms−1

T

. ‖u− uN‖L∞T Hs−1
x

+ ‖u− uN‖Xs−2,1
T

+N−1‖u0‖Hs ,

‖u− uN‖Xs−2,1
T

. ‖u2 −PN (PNuN )2‖L2
TH

s−1
x

. T
1
2
[
‖(u−PNuN )(u+ PNuN )‖L∞T Hs−1

x
+N−1‖(PNuN )2‖L∞T Hs

x

]
. T

1
2
[
‖u− PNuN‖L∞T Hs−1

x
‖u+ PNuN‖

L∞T H
1
2+
x

+N−1‖uN‖2L∞T Hs
x

]
. T

1
2
[
‖u0‖Hs

x
‖u− uN‖L∞T Hs−1

x
+N−1‖u0‖2Hs

x

]
,

where we used the fact that P>NuN is the linear solution to ILW with initial data P>Nu0,

the Duhamel formulation for u− uN , and Sobolev product inequalities in [18, Lemma 3.4].

From (6.7) and Young’s inequality, we get

J1 . ‖u− uN‖2L∞T Hs−1
x
‖u0‖Hs(1 + ‖u0‖Hs)2 + ‖u− uN‖L∞T Hs−1

x
‖u0‖2Hs(1 + ‖u0‖Hs)N−1

. ‖u− uN‖2L∞T Hs−1
x
‖u0‖Hs(1 + ‖u0‖Hs)2 +N−2‖u0‖2Hs . (6.8)

We now estimate the contribution coming from the second contribution on the RHS of

(6.5). Let J2 be given by

J2 :=
∑
K>0

〈K〉2(s−1) sup
|t|≤T

∣∣∣ ∫ t

0

∫
T
PK(P>N (PNuN )2))∂xPKwN

∣∣∣
=

∑
N
2
≤K≤4N

〈K〉2(s−1) sup
|t|≤T

∣∣∣ ∫ t

0

∫
T
PKP>N (PNuN )2∂xPKwN

∣∣∣, (6.9)

since (PNuN )2 has Fourier support contained in {|n| ≤ 2N}, which only intersects with

the support of φK with K ≤ 4N , and PKP>N is only nonzero if K ≥ N
2 .

Proceeding as in the proof of [41, Proposition 3.5] and [41, (3-14)], (3-26) becomes

PK(PNuN )2 = PK(v2)

= PK(v�Kv) + PK(v∼Kv.K) +
∑

N
2
≤K�K1

PK(v∼K1v∼K1)

= v�KPKv +K−1Πχ(∂xv�K , v) + PK(v∼Kv.K) +
∑

N
2
≤K�K1

PK(v∼K1v∼K1),

where have used v = PNuN for simplicity, v∼K , v.K , v�K to denote the restrictions of v via

Litlewood-Paley decomposition to regions where the frequencies are ∼ K, . K, or � K,

respectively. Using we can also write

PK(v�Kv) = v�KPKv +K−1Πχ(∂xv�K , v).



LIMITS OF STATISTICAL EQUILIBRIA FOR THE INTERMEDIATE LONG WAVE EQUATION 69

Proceeding as in [41, (3-27)], we get

J2 .
∑

N
2
≤K≤4K

∑
K1&K

K〈K1〉2(s−1) sup
|t|≤T

|It(vK , v∼K1 , wN,K1)|

+
∑

N
2
≤K≤4K

∑
K1&K

K1〈K1〉2(s−1) sup
|t|≤T

|It(v∼K1 , vK , wN,K1)|

+
∑

N
2
≤K≤4K

∑
K1&K

K〈K〉2(s−1) sup
|t|≤T

|It(vK1 , vK1 , wN,K)|

(6.10)

From [41, (2-2)], we get that

J2 . N
−θ‖PNuN‖2Ms

T
‖wN‖Ms−1

T
, (6.11)

for some θ > 0, due to the localization K ∼ N in the outer sum. Consequently, by (6.1)

and Young’s inequality, we get

J2 ≤ ε‖u− uN‖2Ms−1
T

+ CεN
−θ‖u0‖2Hs ,

for any 0 < ε < 1 and some Cε > 0.

Combining, (6.5), (6.8), and (6.11), we get

‖u− uN‖2L∞T Hs−1
x
≤ ‖u− uN‖2L∞T Hs−1

x

[
ε+ C‖u0‖Hs(1 + ‖u0‖Hs)2

]
+N−θCε‖u0‖2Hs .

(6.12)

Using scaling to reduce the problem to small initial data, picking small ε, and undoing the

scaling (see Remark 6.5 for details), we get that

‖u− uN‖2L∞T Hs−1
x
≤ CεN−θ‖u0‖2Hs

from which it follows that

sup
|t|≤T

u0∈Bσ(R)

‖Φt(u0)− ΦN
t (u0)‖Hs−1

x
≤ CεR2K−θ,

proving (6.2), as intended. �

Remark 6.5. The proof of Proposition 6.3, as written, holds under a small data assump-

tion, but this can be extended to general data via a scaling argument as in [41]. We detail

the needed modifications to assure that the result holds for all R > 0 and u0 ∈ Bσ(R).

Given λ ≥ 1, consider the scaling transformation Sλ defined by

Sλ(u)(t, x) := δ−1u(λ−2t, λ−1x).

Then, u is a solution to ILW (1.1) on T with initial data u0 ∈ Bσ(R) if and only if

uλ := Sλ(u) is a solution to the following ILW equation on Tλ = R/(2πλZ) with scaled λδ

depth-parameter

∂tuλ − Gλδ∂2
xuλ = ∂x(u2

λ),

with initial u0,λ(x) := λ−1u0(λ−1x). The same observation extends to solutions uN to the

truncated system (5.1). Note that the scaled initial data satisfies

‖u0,λ‖Hs(Tλ) = λ−
1
2
−s‖u0‖Hs

λ(T) ≤ λ−
1
2 ‖u0‖Hs(T),

where ‖f‖Hs
λ(T) := ‖〈n〉sλf̂(n)‖`2n with 〈n〉λ = (λ2 + n2)

1
2 .
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We can proceed in the proof of Proposition 6.3 for Sλ(u), Sλ(uN ), where (6.12) becomes

‖Sλ(u−uN )‖2
L∞
λ2T

Hs−1
x (Tλ)

≤ ‖Sλ(u−uN )‖2
L∞
δ2T

Hs−1
x (Tλ)

[
ε+C‖u0,λ‖Hs(Tλ)(1+‖u0,λ‖Hs

Tλ
)2
]

+ CεN
−θ‖u0,λ‖2Hs(Tλ).

For u0 ∈ Bσ(R), by choosing ε > 0 small and λ ≥ 1 sufficiently large depending on R, such

that

ε+ C‖u0,λ‖2Hs(Tλ)(1 + ‖u0,λ‖Hs(Tλ))
2 ≤ ε+ λ−1CR2(1 + λ−

1
2R) ≤ 1

2
,

we get that

‖Sλ(u− uN )‖2
L∞
λ2T

Hs−1
x (Tλ)

≤ (2Cελ
−1R2)N−θ,

which gives the intended decay for the small data scaled solutions. To recover this result

for the original solutions, note that

‖u− uN‖L∞T Hs−1
x (T) ≤

1

min(λs−1, 1)
‖u− uN‖L∞T Hs−1

x,λ (T)

=
λ

1
2

+(s−1)

min(λs−1, 1)
‖Sλ(u− uN )‖L∞

λ2T
Hs−1
x (Tλ)

≤ λs−1
√

2CεR

min(λs−1, 1)
N−

θ
2 ,

from which we get the needed decay in (6.2) for solutions with large data.

6.2. Proof of Theorem 1.5. The argument in the deep-water and shallow-water regime

are analogous, thus we focus our discussion in this section in the deep-water regime. The

truncated system (5.1) is still Hamiltonian and it was shown in [33] that the truncated Gibbs

measure ρδ, 1
2
,N associated with this system is still invariant. However, due to the lack of

conservation of higher order quantities in Section 5, we do not expect the corresponding

truncated measures ρδ, k
2
,N,K for k ≥ 3 to be invariant. To bypass this issue, we proceed as

in [55, 56]. We fix 0 < δ <∞, k ≥ 3, and K > 0, and let 1
2 < s < σ < (k − 1)/2. We also

use B(Hσ) for the Borel sets in Hσ(T).

Recall that the dynamics of (5.1) decouple as follows

ΦN
t (u0) = PNΦN

t (u0) + P>NΦN
t (u0) =: ulow

N (t) + uhigh
N (t), (6.13)

where P>N = Id−PN , where uhigh
N (t) = S(t)P>Nu0 is the linear ILW evolution of the high

frequency part of the initial data, while ulow
N solves

∂tu
low
N − Gδ∂2

xu
low
N = ∂xPN (ulow

N )2, (6.14)

with initial data ulow
N |t=0 = PNu0. As mentioned in Section 5, the truncated system (5.1)

is globally well-posed in L2(T).

We now consider the relevant measures associated with the truncated system. We recall

that the measure ρδ, k
2
,N,K in (1.15) given by

ρδ, k
2
,N,K(du) := Z−1

δ, k
2
,N
Fδ, k

2
,N,K(u)dµδ, k

2
(u).
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Note that we can write the Gaussian measure µδ, k
2

in (1.11) as product measure on EN⊗E⊥N ,

where EN be the real vector space spanned by {cos(nx), sin(nx)}1≤n≤N and E⊥N is the

orthogonal complement of EN in Hσ(T). In particular, we have µδ, k
2

= µlow
N ⊗ µhigh

N where

µlow
N = (PN )∗µδ, k

2
and µhigh

N = (P>N )∗µδ, k
2

are the push-forward images of the Gaussian

measure µδ, k
2
. Using the notation

PNu(x) =
1√
2π

∑
0<|n|≤N

ûne
inx,

we can write µlow
N as

µlow
N (du) = Z−1

N exp

(
− 1

2

k∑
`=0
even

a`‖G
k−`
2

δ PNu‖2
Ḣ
k
2

) ∏
0<|n|≤N

dûn,

where
∏

0<|n|≤N dûn denotes the Lebesgue measure on EN .

The main ingredient for the invariance argument is the following “change of variables”

result, which allows us to use the decay estimates in Section 5 to control the time derivative

of ΦN
t (A) for a measurable set A.

Proposition 6.6. For any A ∈ B(Hσ), we have the following identity

Z−1

δ, k
2
,N

∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµ(u)

=

∫
A
ηK(‖PNΦN

t (u)‖2L2) exp
(
− Eδ, k

2
(PN (ΦN

t (u))
) ∏

0<|n|≤N

dûn ⊗ dµhigh
N (P>Nu).

(6.15)

To establish this result, we need some auxiliary results on the Lebesgue measure on EN
and the Gaussian measure µhigh

N .

Lemma 6.7. The following results hold:

(i) The map ΦN
t PN is measure preserving on EN equipped with the Lebesgue measure∏

0<|n|≤N dûn.

(ii) The map S(t) = e−tG̃δ∂
2
x is measures preserving on E⊥N equipped with the Gaussian

measure µhigh
N .

Proof. The result in (i) follows from Liouville’s theorem once we establish that the spa-

tial Fourier coefficients of ulow
N evolve according to a Hamiltonian system of ODEs with a

divergence free vector field. Let v = ulow
N and v̂(n) = an + ibn for |n| ≤ N . Then,

∂tv̂(n) = in(n coth(δn)− 1
δ )v̂(n) +

∑
n=n1+n2
|nj |≤N

inv̂(n1)v̂(n2)

⇐⇒


∂tan = −n(coth(δn)− 1

δ )bn −
∑

n=n1+n2
|nj |≤N

n(an1bn2 + an2bn1)

∂tbn = n(n coth(δn)− 1
δ )an +

∑
n=n1+n2
|nj |≤N

n(an1an2 − bn1bn2)

⇐⇒ ∂t(an, bn) = (Fan(a, b), Fbn(a, b)).
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Note that

−∂Fan
∂bn

=
∂Fbn
∂an

= n(coth(δn)− 1
δ ),

from which we conclude that
∑N

n=1

(
∂Fan
∂bn

+
∂Fbn
∂an

)
= 0, showing that the vector field F is

divergence free.

For (ii), the same proof as that of [55, Lemma 5.3] applies, as S(t) also induces a phase

rotation on the Fourier side by tn(n coth(δn) − 1
δ ), analogous to the effect of the linear

propagator for BO. In particular, by using that inĜδ(n) = Kδ(n), we get

S(t)(cos(nx)) = eitnKδ(n) cos(nx) = cos(tnKδ(n) + nx)

= cos(tnKδ(n)) cos(nx)− sin(tnKδ(n)) sin(nx),

where e−itnKδ(n) acts like rotation and has effect of shifting the phase of the (positive)

frequency components by −nKδ(n). Similarly, we have

S(t)(sin(nx)) = sin(tnKδ(n) + nx)

= sin(tnKδ(n)) cos(nx) + cos(tnKδ(n)) sin(nx).

Therefore for fixed t and n the map S(t) acts as a rotation on the two dimensional real

vector space spanned by cos(nx) and sin(nx). Hence by the invariance of the Lebesgue

measure and the diagonal quadratic forms by rotations, any centered Gaussian measure on

the two dimensional space span{cos(nx), sin(nx)} is invariant by S(t). The remaining of

the proof is identical, thus we omit details. �

Proof of Proposition 6.6. By definition we have the identities

PNΦN
δ,t = ΦN

δ,tPN , P>NΦN
δ,t = S(t)P>N , (6.16)

and we introduce the notation dLN =
∏

0<|n|≤N dûn. Then, we can write

Z−1

δ, k
2
,N

∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµδ, k

2
(6.17)

=

∫
ΦNt (A)

ηK(‖PNu‖2L2) exp(−Eδ, k
2
(PNu)) dLN ⊗ dµhigh

N (6.18)

=

∫
EN⊗E⊥N

1ΦNt (A)(u)ηK(‖PNu‖2L2) exp(−Eδ, k
2
(PNu)) dLN ⊗ dµhigh

N . (6.19)

Using Fubini’s theorem and Lemma 6.7(ii), we get

Z−1

δ, k
2
,N

∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµ

=

∫
EN

ηK(‖PNu‖2L2)e
−E

δ, k2
(PNu)

(∫
E⊥N

1ΦNt (A)(PNu, S(t)P>Nu)dµhigh
N

)
dLN

=

∫
E⊥N

(∫
EN

ηK(‖PNu‖2L2)e
−E

δ, k2
(PNu)

1ΦNt (A)(PNu, S(t)P>Nu)dLN

)
dµhigh

N .

Now, Lemma 6.7(i) gives

Z−1

δ, k
2
,N

∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµ =

∫
E⊥N

(∫
EN

ηK(‖ΦN
t (PNu)‖2L2)e

−E
δ, k2

(ΦNt (PNu))
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× 1ΦNt (A)(Φ
N
t u)dLN

)
dµhigh

N . (6.20)

Since the solution map ΦN
t is a bijection on Hσ(T), we have that 1ΦNt (A)(Φ

N
t (u)) = 1A(u),

from which it follows that

Z−1

δ, k
2
,N

∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµ =

∫
A
ηK(‖ΦN

t PNu‖2L2)e
−E

δ, k2
(ΦNt PNu)

dLN ⊗ dµhigh
N

and the result follows from (6.16). �

The following proposition establishes the almost invariance of the measure ρδ, k
2
,N,K .

Proposition 6.8. Let σ ≥ 0 and T > 0. We have the following:

lim
N→∞

sup
t∈[0,T ]
A∈B(Hσ)

∣∣∣ d
dt

∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµδ, k

2

∣∣∣ = 0.

Proof. We proceed as in [55, Proposition 5.4].

Step 1: t = 0.

We first show that

lim
N→∞

sup
A∈B(Hσ)

∣∣∣ d
dt

(∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµδ, k

2

)
t=0

∣∣∣ = 0. (6.21)

Using Proposition 6.6 and the conservation of L2-norm for (5.1), we obtain

d

dt

(∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµδ, k

2

)
t=0

= −
∫
A

d

dt

(
Eδ, k

2
(ΦN

t PNu)
)
t=0

Fδ, k
2
,N,K(u)dµδ, k

2
.

By Hölder’s inequality, Proposition 3.2, and Proposition 5.1, we obtain the uniform con-

vergence to zero.

Step 2: t′ ∈ (0, T ].

We first use the definition of derivative to obtain

d

dt

(∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµδ, k

2

)
t=t′

= lim
h→0

h−1
(∫

ΦN
t′+h(A)

Fδ, k
2
,N,K(u)dµδ, k

2
−
∫

ΦN
t′ (A)

Fδ, k
2
,N,K(u)dµδ, k

2

)
.

Then, using the fact that ΦN
t′+h(A) = ΦN

h ◦ ΦN
t′ (A) we obtain that

d

dt

(∫
ΦNt (A)

Fδ, k
2
,N,K(u)dµδ, k

2

)
t=t′

=
d

dt

(∫
ΦNt (Ã)

Fδ, k
2
,N,K(u)dµδ, k

2

)
t=0

where Ã = ΦN
t′ (A). Therefore, the result follows from Step 1 (since the limit holds uniformly

in the integration set). �

From Proposition 6.8 and the Fundamental Theorem of Calculus, we can conclude that

for all σ ≥ 0, T ∈ R, A ∈ B(Hσ), and t ∈ [0, T ], we have

lim
N→∞

(∫
A
Fδ, k

2
,N,K(u)dµδ, k

2
−
∫

ΦNt (A)
Fδ, k

2
,N,K(u)dµδ, k

2

)
= 0. (6.22)
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We can now establish the following short-time result on the measure ρδ, k
2
,K transported

by the full flow Φt of ILW (1.1), on compact sets.

Lemma 6.9. Let k ≥ 3, 1
2 < σ < k−1

2 , and R > 0. Then, there exists T = T (R) > 0 such

that for every compact set K ∈ B(Hσ) with K ⊂ Bσ(R), we have∫
K
Fδ, k

2
,K(u)dµδ, k

2
≤
∫

Φt(K)
F (u)dµδ, k

2
, ∀t ∈ (−T, T ).

Proof. By (6.22) and (1.18), we get that

lim
N→∞

∫
ΦNt (K)

Fδ, k
2
,N,K(u)dµδ, k

2

= lim
N→∞

(∫
ΦNt (K)

Fδ, k
2
,N,K(u)dµδ, k

2
−
∫
K
Fδ, k

2
,N,K(u)dµδ, k

2

)
+ lim
N→∞

∫
K
Fδ, k

2
,N,K(u)dµδ, k

2

=

∫
K
Fδ, k

2
,K(u) dµδ, k

2
. (6.23)

By Proposition 6.3, for 1
2 < s < σ, there exists T = T (R) > 0 such that for every ε > 0,

there exists a suitable N0(ε) such that ΦN
t (K) ⊂ Φt(K) + Bs(ε) for all N ≥ N0 and

t ∈ (−T, T ). Therefore,∫
ΦNt (K)

Fδ, k
2
,N,K(u)dµδ, k

2
≤
∫

Φt(K)+Bs(ε)
Fδ, k

2
,N,K(u)dµδ, k

2
(6.24)

for all t ∈ (−T, T ) and N ≥ N0. From the L1(dµδ, k
2
) convergence of the density in (1.18),

taking limits as N →∞ in (6.24) and using (6.23), we get∫
K
Fδ, k

2
,K(u) dµδ, k

2
= lim

N→∞

∫
ΦNt (K)

Fδ, k
2
,N,K(u) dµδ, k

2
≤
∫

Φt(K)+Bs(ε)
Fδ, k

2
,K(u) dµδ, k

2

(6.25)

for all t ∈ (−T, T ). Since K is compact, then it is closed in Hσ(T). Moreover, since Φt is

a diffeomorphism on Hσ(T), we have that Φt(K) is closed in Hσ(T). As a consequence we

deduce that ⋂
ε>0

(Φt(K) +Bs(ε)) = Φt(K),

and by Lebesgue’s theorem

lim
ε→0

∫
Φt(K)+Bs(ε)

Fδ, k
2
,K(u)dµδ, k

2
=

∫
Φt(K)

Fδ, k
2
,K(u)dµδ, k

2
. (6.26)

Lastly, the result follows from taking a limit as ε→ 0 in (6.25) and (6.26). �

To extend Lemma 6.9 globally-in-time, we need global-in-time control over the flow Φt

on compact sets. From Lemma 6.1, we have that for all σ ≥ 1
2 , T > 0 and K ⊂ Hσ(T)

compact, then there exists R > 0 such that

{Φt(K) : 0 ≤ t ≤ T} ⊂ Bσ(R). (6.27)

Lemma 6.10. Let k ≥ 3, 1
2 < σ < k−1

2 , t ∈ R and K ⊂ Hσ(T) be a compact set. Then,∫
K
Fδ, k

2
,K(u)dµδ, k

2
≤
∫

Φt(K)
Fδ, k

2
,K(u)dµδ, k

2
.
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Proof. We prove the result for any t0 ∈ R positive, since the analysis for negative t0 is

analogous. By (6.27), there exists R > 0 such that

{Φt(K) : 0 ≤ t ≤ t0} ⊂ Bσ(R). (6.28)

Let T = T (R) ∈ (0, t0] be the one given in Lemma 6.9, and choose t1 such that

t1 ∈ (0, T ] and t0/t1 ∈ N.

Then, ∫
K
Fδ, k

2
,K(u)dµδ, k

2
≤
∫

Φt1 (K)
Fδ, k

2
,K(u)dµδ, k

2
.

From (6.28), we have that Φt1(K) ⊂ Bσ(R), hence Lemma 6.9 can be iterated and we

obtain∫
Φt1 (K)

Fδ, k
2
,K(u)dµδ, k

2
≤
∫

Φt1 (Φt1 (K))
Fδ, k

2
,K(u)dµδ, k

2
=

∫
Φ2t1 (K)

Fδ, k
2
,K(u)dµδ, k

2
.

By repeating this argument N0 times such that t0 = N0t1, we cover the whole time interval

[0, t0], from which we get∫
K
Fδ, k

2
,K(u)dµδ, k

2
≤
∫

Φt0 (K)
Fδ, k

2
,K(u)dµδ, k

2
.

This completes the proof of Lemma 6.10. �

Using the reversibility of the flow, we now obtain the statement.

Lemma 6.11. Let k ≥ 3, 1
2 < σ < k−1

2 , and t ∈ R. Then, for every compact K ⊂ Hσ we

have ∫
K
Fδ, k

2
,K(u)dµδ, k

2
=

∫
Φt(K)

Fδ, k
2
,K(u)dµδ, k

2
.

Proof. Using Lemma 6.10, for every compact K̃ ⊂ Hσ(T), we can write∫
K̃
Fδ, k

2
,K(u)dµδ, k

2
≤
∫

Φ−t(K̃)
Fδ, k

2
(u)dµδ, k

2
.

By choosing K̃ = Φt(K), and the fact that the flow Φt is a diffeomorphism, we get∫
Φt(K)

Fδ, k
2
,K(u)dµδ, k

2
≤
∫
K
Fδ, k

2
,K(u)dµδ, k

2
.

Combining this inequality with Lemma 6.10 completes the proof. �

Let us now complete the proof of Theorem 1.5. Let A be an arbitrary Borel set in Hσ(T).

It is well–known that there exists a sequence of compact sets Kn ⊂ A such that

lim
n→∞

∫
Kn

Fδ, k
2
,K(u)dµδ, k

2
=

∫
A
Fδ, k

2
,K(u)dµδ, k

2
.

On the other hand, by Lemma 6.11 we have∫
Kn

Fδ, k
2
,K(u)dµδ, k

2
=

∫
Φt(Kn)

Fδ, k
2
,K(u)dµδ, k

2
≤
∫

Φt(A)
Fδ, k

2
,K(u)dµδ, k

2



76 A. CHAPOUTO, G. LI, T. OH, AND G. ZHENG

since Φt(Kn) ⊂ Φt(A) and Fδ, k
2
,K(u) ≥ 0. As a consequence, we get∫

A
Fδ, k

2
,K(u)dµδ, k

2
≤
∫

Φt(A)
Fδ, k

2
,K(u)dµδ, k

2
.

The opposite inequality follows from the time reversibility of the flow. This completes the

proof of Theorem 1.5.

Appendix A. Structure of the conserved quantities for ILW

A.1. Deriving the conserved quantities for ILW and BO. We follow the derivation

of the conserved quantities for ILW in [50]. See also [25, 31, 39] for alternative derivations.

Consider the following equations for u and V

2u = µ(eV − 1) + GδVx + δ−1V − iVx, (A.1)

Vt = µ(eV − 1)Vx + GδVxx + VxGδVx + δ−1V Vx, (A.2)

where we are interested in u as a solution to ILW (1.1). The following lemma shows that

if, for a given u, we can find V = V (u) satisfying (A.1), then (A.2) holds.

Lemma A.1. Let u : R2 → R and V : R2 → C satisfying (A.1), with V =
∑
n≥1

µ−nχn, for

functions χn independent of µ. Then, u solves ILW (1.1) if and only if V solves (A.2).

Proof. Using (A.1), we have that

2(∂tu− Gδ∂2
xu− u∂xu)

= (µeV + δ−1 + Gδ∂x − i∂x)[Vt − µ(eV − 1)Vx − GδVxx − VxGδVx − δ−1V Vx].
(A.3)

If V solves (A.2), from (A.3) we see that u solves ILW (1.1).

For the forward implication, since the expression in brackets on the RHS of (A.3) is of

the form f =
∑
n≥1

µ−nfn, it suffices to show that the only such solution to Lf = 0, where

L = µeV + δ−1 + Gδ∂x − i∂x, is f ≡ 0. Let L0 := δ−1 + Gδ∂x − i∂x and f as above. Then,

0 = 〈Lf,L0f〉 =

∫
LfL0f dx = −µ2

∫
|eV f |2 dx+

∫
|L0f |2 dx.

Expanding V and f through its series representation, we have that

eV f =

(
1 +

∑
`≥1

1

`!
V `

)(∑
n≥1

µ−nfn

)

=

(
1 +

∑
n≥1

µ−n
n∑
`=1

1

`!

∑
n1···`=n

χn1 · · ·χn`
)(∑

n≥1

µ−nfn

)

= µ−1f1 +
∑
n≥2

µ−n
(
fn +

∑
n12=n

fn1 Ṽn2

)
=:
∑
n≥1

µ−nAn,

where

Ṽn =
n∑
`=1

1

`!

∑
n1···`=n

χn1 · · ·χn` ,
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A1 = f1,

An = fn +
∑
n12=n

fn1 Ṽn2 , n ≥ 2.

Then,

0 = −
∑
n≥2

µ−n+2
∑
n12=n

∫
An1An2 dx+

∑
n≥2

µ−n
∑
n12=n

∫
L0fn1L0fn2 dx

= −
∫
|A1|2 dx− µ−1

∫
[A1A2 +A2A1] dx

+
∑
n≥2

µ−n
[
−

∑
n12=n+2

∫
An1An2 dx+

∑
n12=n

∫
L0fn1L0fn2 dx

]
.

From the above, the coefficients of the powers of µ must be zero. For the coefficient of µ0,

we get

0 = −
∫
|A1|2 dx = −

∫
|f1|2 dx =⇒ A1 = f1 ≡ 0.

For the coefficient of µ−1 we get

0 = −
∫

[A1A2 +A2A1] dx

which is satisfied since A1 ≡ 0. For the coefficient of µ−2, we get

0 = −
∫

[A1A3 + |A2|2 +A3A1] dx+

∫
|L0f0|2 dx = −

∫
|A2|2 dx

=⇒ A2 ≡ 0 =⇒ f2 + f1Ṽ1 ≡ 0 =⇒ f2 ≡ 0.

For µ−3,

0 = −
∫

[A1A4 +A2A3 +A3A2] dx+

∫
[L0f1L0f2 + L0f2L0f1] dx

which holds since A1 ≡ A2 ≡ f1 ≡ f2 ≡ 0.

To establish that fn ≡ 0 for all n ∈ N, we proceed by induction. Assume that fk ≡ 0

for 1 ≤ k ≤ n − 1, from which it follows that Ak ≡ 0 for 1 ≤ k ≤ n − 1. Considering the

coefficients of µ−2n+2 and µ−2n+1, respectively, we get that

0 = −
∑

n12=2n

∫
An1An2 dx+

∑
n12=2n−2

∫
L0fn1L0fn2 dx = −

∫
|An|2 dx,

0 = −
∑

n12=2n+1

∫
An1An2 dx+

∑
n12=2n−1

∫
L0fn1L0fn2 dx,

where we conclude from the first equality that

An ≡ 0 =⇒ fn +
∑
n12=n

fn1 Ṽn2 = 0 =⇒ fn ≡ 0,

while the second equality holds trivially from the assumptions and the conclusion that

fn ≡ 0. Combining all the results above, we conclude that the only solution f =
∑
n≥1

µ−nfn

to Lf = 0 is f ≡ 0. Consequently, the bracket on the RHS of (A.3) must be equal to 0. �
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To derive the conserved quantities for ILW (1.1), let µ > 0 and V =
∑
n≥1

µ−nχn. Replacing

V in (A.1), we obtain the following recurrence for χn

χ1 = 2u, (A.4)

χn = −
n∑
j=2

1

j!

∑
n1···j=n

χn1 · · ·χnj − (−i+ Gδ)∂xχn−1 −
1

δ
χn−1, n ≥ 2. (A.5)

From Lemma A.1, we know that since V satisfies (A.1), it also satisfies (A.2). Since the

RHS of (A.2) has mean zero, V is a conserved quantity. To see that χn, for n ∈ N, are

conserved quantities, note that we can rewrite (A.2) as

Vt = 2∂xux − (δ−1 + µ)Vx + iVxx + VxGδVx + δ−1V Vx

which implies that∑
n≥1

µ−n∂tχn = ∂xχ1 +
∑
n≥1

µ−n(−δ + i∂x)∂xχn −
∑
n≥0

µ−n∂xχn+1

+
∑
n≥2

µ−n
∑
n12=n

∂xχn1(Gδ∂x + δ−1)χn2 .

Collecting powers of µ, we get that

µ0 : 0 = ∂xχ1 − ∂xχ1,

µ−1 : ∂tχ1 = (−δ + i∂x)∂xχ1 − ∂xχ2,

µ−n : ∂tχn = (−δ + i∂x)∂xχn − ∂xχn+1 +
∑
n12=n

∂xχn1(Gδ∂x + δ−1)χn2 ,

for n ≥ 2. From the second equation above, we see that
∫
χ1 dx is a conserved quantity,

since the RHS is a full derivative. For n ≥ 2, from the third equation, we get

∂tχ2m = ∂x
[
(−δ + i∂x)χ2m − χ2m+1

]
+
m−1∑
j=1

[∂xχj(Gδ∂xχ2m−j) + (Gδ∂xχj)∂xχ2m−j ]

+ ∂xχm(Gδ∂xχm) + δ−1
m−1∑
j=1

∂x(χjχ2m−j) + (2δ)−1∂x(χ2
m),

∂tχ2m+1 = ∂x
[
(−δ + i∂x)χ2m+1 − χ2m+2

]
+

m∑
j=1

[∂xχj(Gδ∂xχ2m+1−j) + (Gδ∂xχj)∂xχ2m+1−j + ∂x(χjχ2m−j)],

when n = 2m and n = 2m + 1, respectively. Since Gδ is anti-symmetric, the above allows

us to conclude that
∫
χn dx is a conserved quantity for ILW (1.1) for all n ∈ N. In fact, for

all n ∈ N, we have that

d

dt

∫
χn dx =

d

dt

∫
Reχn dx =

d

dt

∫
Imχn dx = 0,

under the ILW dynamics2.

2We believe that
∫

Imχn dx = 0 for all n ∈ N, but establishing such a result would deviate from our

focus. Instead, we will later define our conserved quantities only depending on
∫

Reχn dx.
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Note that since Gδ → H as δ →∞, then (A.1)-(A.2) converge to

2u = µ(eV − 1) +HVx − iVx, (A.6)

Vt = µ(eV − 1)Vx +HVxx + VxHVx, (A.7)

and an analogue of Lemma A.1 follows for (A.6)-(A.7), i.e., if u and V solve (A.6) and it

can be written as a formal series V =
∑
n≥1

µ−nχBO
n , then u solves BO (1.2) if and only if V

solves (A.7). This is a consequence of the following identity for u and V satisfying (A.6):

2(∂tu−H∂2
xu− 2u∂xu)

= (µeV +H∂x − i∂x)
[
Vt − µ(eV − 1)Vx −HVxx − VxHVx

]
,

and the fact that the only solution f =
∑

n≥1 µ
−nfn to (µeV +H∂x − i∂x)f = 0 is f ≡ 0.

One can also derive recurrence formulas from (A.6) for the BO conserved quantities χBO
n :

χBO
1 = 2u,

χBO
n = −

n∑
j=2

1

j!

∑
n1···j=n

χBO
n1
· · ·χBO

nj − (−i+H)∂xχ
BO
n−1, n ≥ 2.

(A.8)

A.2. Some useful properties of conserved quantities for ILW. The following lemma

describes the order of the contributions in Reχn and Imχn in terms of the number of u,

∂x and δ−1.

Lemma A.2. For all n ≥ 2, Reχn and Imχn can be written as polynomials in u and its

derivatives with order n, where the order is defined as the sum of the number of u terms,

the number of ∂x operators, and the powers of δ−1:

n = #u+ #∂x + #1
δ .

Proof. We prove this result by induction on n. For n = 2, we have

χ2 = −1
2χ

2
1 + (i− Gδ)∂xχ1 − δ−1χ1 = [−2u2 − 2δ−1u− 2Gδ∂xu] + iux

where we see that all terms have order 2. Now let n ≥ 3 and assume that the claim holds

for χm with 2 ≤ m ≤ n− 1. Therefore, all the terms in χm have order m, and from (A.5)

we see that the contributions from the first sums have order m1···j = n for j = 2, . . . , n,

and the latter contributions have order 1 + (n− 1) = n, therefore satisfying the claim. �

To construct the base Gaussian measures ρδ, k
2
, we require a better description of the

quadratic terms in the conserved quantities Re
∫
χn dx. In particular, we find the correct

linear combination of χk, 1 ≤ k ≤ n, which guarantees that all quadratic in u terms have

positive coefficients and exactly n− 2 derivatives.

We first obtain a formula for the linear terms in u appearing in χn, which we call Ln.

Lemma A.3. Let n ∈ N, then

Ln = (i∂x − Gδ∂x − δ−1)n−1L1.

Proof. Since for all n ∈ N, χn is at least linear in u, equation (A.5) shows that all the linear

in u contributions to χn come from the second term in (A.5):

Ln = (i∂x − Gδ∂x − δ−1)Ln−1,
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and the intended result follows from iterating the above expression. �

The following lemma gives a description of the quadratic in u terms in χn, which we

denote by Qn. We recall the following known results needed in the proof: for nonnegative

integers q, l,m, n satisfying n ≥ q ≥ 0, we have that

l∑
k=0

(
l − k
m

)(
q + k

n

)
=

(
l + q + 1

m+ n+ 1

)
, (A.9)

l∑
k=0

(
k

m

)
=

(
l + 1

m+ 1

)
. (A.10)

Lemma A.4. We have that Q1 = 0 and for n ≥ 2

Re

∫
Qn dx = 2(−1)n+1

n−2∑
m=0

1

δn−2−m

(
n− 1

m+ 1

) m∑
`=0
even

(
m+ 1

`+ 1

)
‖G

m−`
2

δ u‖2
Ḣ
m
2
− 1

δ
Re

∫
Qn−1 dx

(A.11)

= (−1)n+1
n−2∑
m=0

1

δn−2−m

m∑
`=0
` even

2

(
m+ 1

`+ 1

)(
n

m+ 2

)
‖G

m−`
2

δ u‖2
Ḣ
m
2
. (A.12)

Proof. From (A.5), we see that

Qn = −1

2

∑
n12=n

Ln1Ln2 − (−i∂x + Gδ∂x + δ−1)Qn−1. (A.13)

We start by focusing on the first contribution above. Integrating in x and doing integration

be parts gives

− 1

2

∫ ∑
n12=n

Ln1Ln2 dx

= −1

2

∑
n12=n

(−1)n12−2

∫
[(−i∂x + Gδ∂x + 1

δ )n1−12u][(−i∂x + Gδ∂x + 1
δ )n2−12u] dx

= 2(−1)n+1
∑
n12=n

∫
u(i∂x + Gδ∂x + 1

δ )n1−1(−i∂x + Gδ∂x + 1
δ )n2−1u dx

= 2(−1)n+1
∑
n12=n

n1−1∑
m1=0

n2−1∑
m2=0

1

δn12−2−m12

(
n1 − 1

m1

)(
n2 − 1

m2

)
×
∫
u(i∂x + Gδ∂x)m1(−i∂x + Gδ∂x)m2u dx

= 2(−1)n+1
n−2∑
m=0

1

δn−2−m

∑
n12=n

∑
0≤m1≤n1−1
0≤m2≤n2−1
m=m12

(
n1 − 1

m1

)(
n2 − 1

m2

)

×
∫
u(i∂x + Gδ∂x)m1(−i∂x + Gδ∂x)m2u dx.
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Focusing on the inner sums, for fixed 0 ≤ m ≤ n− 2, we have∑
n12=n

∑
0≤m1≤n1−1
0≤m2≤n2−1
m=m12

(
n1 − 1

m1

)(
n2 − 1

m2

)∫
u(i∂x + Gδ∂x)m1(−i∂x + Gδ∂x)m2u dx

=
∑
n12=n

∑
0≤m1≤n1−1
0≤m2≤n2−1
m=m12

∑
0≤`1≤m1
0≤`2≤m2

(
n1 − 1

m1

)(
n2 − 1

m2

)(
m1

`1

)(
m2

`2

)
(−1)`2(i)`12

∫
uGm−`12δ ∂mx u dx.

Since we care only about ReQn, we can restrict the sum above to `12 even:

Re · · ·

=
∑
n12=n

∑
0≤`≤m

even

∑
0≤m1≤n1−1
0≤m2≤n2−1
m=m12

∑
0≤`1≤m1
0≤`2≤m2
`12=`

(
n1 − 1

m1

)(
n2 − 1

m2

)(
m1

`1

)(
m2

`2

)
(−1)`2(−1)`/2

∫
uGm−`δ ∂mx u dx

=
∑

0≤`≤m
even

(−1)`/2
∫
uGm−`δ ∂mx u dx

[ ∑
n12=n

∑
0≤m1≤n1−1
0≤m2≤n2−1
m=m12

∑
0≤`1≤m1
0≤`2≤m2
`12=`

(
n1 − 1

m1

)(
n2 − 1

m2

)(
m1

`1

)(
m2

`2

)
(−1)`2

]
.

We focus on simplifying the coefficient above. Note that∑
n12=n

∑
0≤m1≤n1−1
0≤m2≤n2−1
m=m12

∑
0≤`1≤m1
0≤`2≤m2
`12=`

(
n1 − 1

m1

)(
n2 − 1

m2

)(
m1

`1

)(
m2

`2

)
(−1)`2

=
∑

0≤m1≤m

∑
0≤`1≤m1

0≤`−`1≤m−m1

n−1+m1−m∑
n1=m1+1

(
n1 − 1

m1

)(
n− n1 − 1

m−m1

)(
m1

`1

)(
m−m1

`− `1

)
(−1)`−`1

=
∑

0≤m1≤m

∑
0≤`1≤m1

0≤`−`1≤m−m1

(
m1

`1

)(
m−m1

`− `1

)
(−1)`−`1

n−2∑
n1=0

(
n1

m1

)(
n− 2− n1

m−m1

)

= (−1)`
(
n− 1

m+ 1

) ∑̀
`1=0

m−(`−`1)∑
m1=`1

(
m1

`1

)(
m−m1

`− `1

)
(−1)`1

= (−1)`
(
n− 1

m+ 1

)(
m+ 1

`+ 1

) ∑̀
`1=0

(−1)`1

=

(
n− 1

m+ 1

)(
m+ 1

`+ 1

)
where we used (A.9) for the sum in n1 (with q = 0, ` = n− 2, m = m−m1, and n = m1)

and in m1 (with q = 0, ` = m, n = `1, and m = `− `1), and the fact that ` is even for the

last equality. Consequently,

Re · · · =
m∑
`=0
even

(−1)
`
2

∫
u(Gδ∂x)m−`∂`xu dx

(
n− 1

m+ 1

)(
m+ 1

`+ 1

)
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=

(
n− 1

m+ 1

) m∑
`=0
even

(
m+ 1

`+ 1

)
‖G

m−`
2

δ u‖2
Ḣ
m
2

by integration by parts, using the fact that Gδ∂x is self-adjoint and ` is even.

Lastly, we conclude that

Re

∫
Qn dx = 2(−1)n+1

n−2∑
m=0

1

δn−2−m

(
n− 1

m+ 1

) m∑
`=0
even

(
m+ 1

`+ 1

)
‖G

m−`
2

δ u‖2
Ḣ
m
2
− 1

δ
Re

∫
Qn−1 dx

=: An −
1

δ
Re

∫
Qn−1 dx,

proving (A.11). Let an,m,` = 2
(
n−1
m+1

)(
m+1
`+1

)
. To see (A.12), note that

Re

∫
Qn dx =

n−2∑
j=0

(−1)j

δj
An−j

=
n−2∑
j=0

(−1)n−j+1+j
n−j−2∑
m=0

1

δn−j−2−m+j

m∑
`=0
even

an−j,m,`‖G
m−`
2

δ u‖2
Ḣ
m
2

= (−1)n+1
n−2∑
m=0

1

δn−2−m

m∑
`=0
even

( n−2−m∑
j=0

an−j,m,`

)
‖G

m−`
2

δ u‖2
Ḣ
m
2

= 2(−1)n+1
n−2∑
m=0

1

δn−2−m

m∑
`=0
even

(
m+ 1

`+ 1

)(
n

m+ 2

)
‖G

m−`
2

δ u‖2
Ḣ
m
2
,

since by (A.10), we have that

n−2−m∑
j=0

an−j,m,` = 2

(
m+ 1

`+ 1

) n−2−m∑
j=0

(
n− 1− j
m+ 1

)

= 2

(
m+ 1

`+ 1

) n−1∑
j=m+1

(
j

m+ 1

)

= 2

(
m+ 1

`+ 1

)(
n

m+ 2

)
. �

We further want to rewrite the quadratic terms in (A.12) as the leading order term (when

m = n− 2) and a linear combination of Re
∫
Qj dx for j = 2, . . . , n− 1.

Lemma A.5. For n ≥ 2 there exist real numbers bn,j, j = 2, . . . , n− 1, such that∫
ReQn dx = Bn + 1n≥3

n−1∑
m=2

1

δn−m

(
n

m

)
(−1)n+mBm,

Bn = (−1)n+1
n−2∑
`=0
even

2

(
n− 1

`+ 1

)
‖G

n−2−`
2

δ u‖2
Ḣ
n−2
2
.

(A.14)
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Proof. For n = 2, from (A.12),

Re

∫
Q2 dx = B2 = −2‖u‖2L2 .

For n = 3, from (A.12), we have that∫
ReQ3 dx = B3 +

3

δ
2‖u‖2L2 = B3 −

3

δ
B2.

For n ≥ 4, from (A.12), note that

Re

∫
Qn dx = Bn + (−1)n+1

n−3∑
m=0

1

δn−2−m

(
n

m+ 2

) m∑
`=0
even

2

(
m+ 1

`+ 1

)
‖G

m−`
2

δ u‖2
Ḣ
m
2

= Bn + (−1)n+1
n−1∑
m=2

1

δn−m

(
n

m

)m−2∑
`=0
even

2

(
m− 1

`+ 1

)
‖G

m−2−`
2

δ u‖2
Ḣ
m−2

2

= Bn + (−1)n+1
n−1∑
m=2

1

δn−m

(
n

m

)
(−1)m+1Bm

= Bn +

n−1∑
m=2

1

δn−m

(
n

m

)
(−1)n+mBm,

as intended. �

We can finally define the final version of our conserved quantities.

Proposition A.6. Let k ∈ N∪{0}. We define the k-th conserved quantity for ILW, E k
2
(u)

as follows

E0(u) :=
1

2
‖u‖2L2 ,

E k
2
(u) := (−1)k+1

(
4

k∑
`=0
` even

(
k + 1

`+ 1

))−1[ ∫
Reχk+2 dx−

k+1∑
j=2

1

δk+2−j

(
k + 2

j

)
(−1)j+k

∫
Reχj dx

]
,

These conserved quantities satisfy the structure in Lemma A.2, i.e., their terms are poly-

nomials in u and its derivatives with order k + 2, and have the following leading order

quadratic terms (
2

k∑
`=0
` even

(
k + 1

`+ 1

))−1[ k∑
`=0
` even

(
k + 1

`+ 1

)
‖G

k−`
2

δ u‖2
Ḣ
k
2

]
. (A.15)

Proof. By definition of E k
2
(u), since these are linear combinations of the conserved quanti-

ties Re
∫
χj dx, j = 2, . . . , k + 2, then they are also conserved quantities of ILW.

From Lemma A.2, we know that
∫

Reχk+2 dx has order k+2, while δ−(k+2−j) ∫ Reχj dx

has order j + k + 2 − j = k + 2, for 2 ≤ j ≤ k + 1, from which we conclude that all the

terms in E k
2
(u) have order k + 2.
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Lastly, from Lemma A.5, we see that the quadratic in u terms of E k
2
(u) are given by

(−1)k+1

(
4

k∑
`=0
` even

(
k + 1

`+ 1

))−1[ ∫
ReQk+2 dx−

k+1∑
j=2

1

δk+2−j

(
k + 2

j

)
(−1)j+k

∫
ReQj dx

]

= (−1)k+1

(
4

k∑
`=0
` even

(
k + 1

`+ 1

))−1

Bk+2

= (−1)k+1

(
4

k∑
`=0
` even

(
k + 1

`+ 1

))−1

(−1)k+1
k∑
`=0
even

2

(
k + 1

`+ 1

)
‖G

k−`
2

δ u‖2
Ḣ
k
2

=

(
2

k∑
`=0
` even

(
k + 1

`+ 1

))−1[ k∑
`=0
even

(
k + 1

`+ 1

)
‖G

k−`
2

δ u‖2
Ḣ
k
2

]

as intended. �

The following lemma establishes the convergence of the ILW conserved quantities to the

BO ones.

Lemma A.7. Let k ∈ N ∪ {0} and consider the k-th conserved quantity for BO given by

EBO
0 (u) :=

1

2
‖u‖2L2 ,

EBO
k
2

(u) := (−1)k+1

(
4

k∑
`=0
` even

(
k + 1

`+ 1

))−1 ∫
ReχBO

k+2 dx,

where χBO
n satisfies the recurrence (A.8). Moreover, we have that for u ∈ H

k
2 (T),

Eδ, k
2
(u) = EBO

k
2

(u) + Lδ, k
2
(u) and lim

δ→∞
Eδ, k

2
(u) = EBO

k
2

(u),

where Lδ, k
2
(u) is defined implicitly from the expression above, and it contains all the terms

in Eδ, k
2
(u) with explicit powers of δ and those with no δ but Gδ∂x replaced by Qδ.

Proof. For k ∈ N, by explicitly calculating the quadratic in u terms (or alternatively,

replacing Gδ by H in (A.15)) in EBO
k
2

(u), we see that these are given by

1

2
‖H

α
2 u‖2

Ḣ
k
2
, α = 1k odd.

To establish the last result, note that we can rewrite (A.5) as follows

χ1 = 2u,

χn = −
n∑
j=2

1

j!

∑
n1···j=n

χn1 · · ·χnj − (−i+H)∂xχn−1 − (1
δ +Qδ)χn−1, n ≥ 2,

and we see that the terms with no dependence on δ, which we call χn,0, satisfy the relation

χ1,0 = 2u,
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χn,0 = −
n∑
j=2

1

j!

∑
n1···j=n

χn1,0 · · ·χnj ,0 − (−i+H)∂xχn−1,0, n ≥ 2,

from which we see that χn,0 = χBO
n . Then, the δ free and Qδ free terms in Eδ, k

2
(after

replacing Gδ∂x by H∂x +Qδ) are given by

E
[0]

δ, k
2

(u) = (−1)k+1

(
4

k∑
`=0
` even

(
k + 1

`+ 1

))−1[ ∫
Reχk+2,0 dx

]
= EBO

k
2

(u).

The remaining terms in Eδ, k
2
(u) are as described in the lemma, and they all have at least

one power of 1
δ or a Qδ operator, which we call Lδ, k

2
(u). It only remains to establish the

convergence

lim
δ→∞

Lδ, k
2
(u) = 0, ∀u ∈ H

k
2 (T).

From Lemma A.2, all the contributions in Lδ, k
2
(u) satisfy

#u+ #∂x + #Qδ + #
1

δ
= k + 2,

and they can be written as 1
δα

∫
p(u) dx where p(u) ∈ Pj(u) for some 0 ≤ α ≤ k and

j ∈ {2, . . . , k + 2− α}:

Lδ, k
2
(u) =

k∑
m=1

[ k+2−m∑
j=2

k+2−m−j∑
i=0

∑
p(u)∈Pj(u)
||p(u)||=i

|||p(u)|||=k−2−m−j−i
|p(u)|≤d k−1

2
e

1

δm

∫
p(u) dx

+

k+2∑
j=2

k+2−j∑
i=0

∑
p(u)∈Pj(u)
‖p(u)‖=i

1≤|||p(u)|||=k−2−j−i
|p(u)|≤d k−1

2
e

∫
p(u) dx

]
.

From the definition above, we can see that from Young’s convolution inequality and (2.6),

we have that for δ ≥ 1,

|Lδ, k
2
(u)| .

k∑
m=1

k+2−m∑
j=2

k+2−m−j∑
i=0

∑
p(u)∈Pj(u)
||p(u)||=i

|||p(u)|||=k−2−m−j−i
|p(u)|≤d k−1

2
e

1

δk−2−j−i ‖u‖
j

H
k
2

+

k+2∑
j=2

k+2−j∑
i=0

∑
p(u)∈Pj(u)
‖p(u)‖=i

1≤|||p(u)|||=k−2−j−i
|p(u)|≤d k−1

2
e

1

δk−2−j−i ‖u‖
j

H
k
2

.
1

δ
(1 + ‖u‖

H
k
2
)k+2 → 0 as δ →∞. �
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In the remaining of this subsection, we establish some useful results on the leading order

cubic terms of E k
2
(u) and its general structure.

Lemma A.8. For k ∈ N, the cubic in u terms in E k
2
(u) are a linear combination of terms

of the form

1

δσ

∫ 3∏
j=1

(Qαjδ (H∂x)βj∂
γj
x u) dx

where σ +
∑3

j=1(αj + βj + γj) = k − 1 and σ, αj , βj , γj ≥ 0, αj + βj ≤ γj.

Proof. From Proposition A.6, we know that the terms in E k
2
(u) are of the form

1

δk+2−j

∫
Reχj dx

for j = 2, . . . , k + 2, and by Lemma A.2, the terms above which are cubic in u, have

#1
δ + #∂x = (k + 2− j) + j − 3 = k − 1. Thus, it suffices to consider the structure of the

cubic in u terms in
∫

Reχj dx for j ≥ 2.

By (possibly) doing integration by parts, all such terms can be written as

1

δσ

∫ 3∏
j=1

[(Gδ∂x)αj∂
βj
x u] dx

where σ +
∑3

j=1(αj + βj) = k − 1. Replacing Gδ∂x by Qδ + H∂x, we obtain that all the

terms are of the form

1

δσ

∫ 3∏
j=1

[Qα̃jδ (H∂x)α̃
′
j∂
βj
x u] dx,

where α̃j + α̃′j = αj , and thus σ +
∑3

j=1(α̃j + α̃′j + βj) = k − 1 as intended. �

Using integration by parts, we can rewrite the cubic terms in E k
2
(u) to guarantee that the

cubic contributions have at most m derivatives on each term, when k = 2m or k = 2m+ 1,

m ∈ N. Most contributions will have at most m − 1 derivatives on each factor, while the

remaining ones will be of the following form

B 2m
2

(u) =
∑

p(u)∈P3(u)

p̃(u)=u∂m−1
x u∂mx u

|||p(u)|||=0

cm(p)

∫
p(u) dx,

B 2m+1
2

(u) =
∑

p(u)∈P3(u)
p̃(u)=u∂mx u∂

m
x u

|||p(u)|||=0

cm(p)

∫
p(u) dx,

when k = 2m or k = 2m+ 1, respectively. Then, the following holds.

Lemma A.9. Let m ∈ N. Then, there exist constants c1, cm(p) such that

B 2m
2

(u) = c1

∫
u(H∂m−1

x u)(∂mx u) dx+
∑

p(u)∈P3(u)
|p(u)|≤m−1
|||p(u)|||=0

cm(p)

∫
p(u) dx.
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Proof. Fix m ∈ N and let p(u) ∈ P3(u) with p̃(u) = u∂m−1
x u∂mx u and |||p(u)||| = 0. Then,

p(u) = (Hα1u)(Hα2∂m−1
x u)(Hα3∂mx u)

for α1, α2, α3 ∈ {0, 1}. The following equalities hold:∫
u(∂m−1

x u)(∂mx u) dx = −1

2

∫
(∂xu)(∂m−1

x u)2 dx,∫
(Hu)(∂m−1

x u)(∂mx u) dx = −1

2

∫
(H∂xu)(∂m−1

x u)2 dx∫
u(∂m−1

x u)(H∂mx u) dx = −
∫

(∂xu)(∂m−1
x u)(H∂m−1

x u) dx−
∫
u(H∂m−1

x u)(∂mx u) dx∫
(Hu)(H∂m−1

x u)(H∂mx u) dx = −1

2

∫
(H∂xu)(H∂m−1

x u)2 dx∫
(Hu1)(Hu2)u3 dx = −

∫
u1H((Hu2)u3) dx

= −
∫
u1

[
(Hu2)u3 +H(−u2u3 + (Hu2)(Hu3))

]
dx

= −
∫
u1(Hu2)u3 + (Hu1)u2u3 − (Hu1)(Hu2)(Hu3) dx

using the identity H(uHv + vHu) = H(uv) − uv. From the above identities, we conclude

that all terms
∫
p(u) dx can be written as intended. �

A similar description holds for B 2m+1
2

(u).

Lemma A.10. Let m ∈ N. Then, there exist constants c1, cm(p) such that

B 2m+1
2

(u) = c1

∫
u(∂mx u)2 dx+ c2

∫
[Hu][H∂mx u][∂mx u] dx+ c3

∫
u[H∂mx u]2 dx

for some constants c1, c2, c3.

Proof. From Lemma A.8, we know that the terms in B 2m+1
2

(u) are of the form
∫
p(u) dx

where

p(u) = [Hα1u][Hα2∂mx u][Hα3∂mx u]

and 0 ≤ α` ≤ 1. The terms with (α1, α2, α3) ∈ {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} are

already considered, thus we focus on the remaining choices, namely (1, 0, 0), (0, 1, 0), (1, 1, 1):∫
[Hu][∂mx u]2 dx = −

∫
uH[∂mx u]2 dx = −

∫
u[(∂mx u)2 + 2H(∂mx uH∂mx u)] dx

= −
∫
u(∂mx u)2 dx+ 2

∫
[Hu][H∂mx u][∂mx u] dx,∫

u∂mx uH∂mx u dx = −
∫
H[u∂mx u]∂mx u dx = −

∫
[u∂mx u+H(uH∂mx u+ ∂mx uHu)]∂mx u dx

= −
∫
u(∂mx u)2 dx+

∫
u[H∂mx u]2 dx+

∫
[Hu][H∂mx u][∂mx u] dx,∫

[Hu][H∂mx u]2 dx = −
∫
uH[H∂mx u]2 dx = −

∫
u[(H∂mx u)2 − 2∂mx uH∂mx u] dx

= −
∫
u[H∂mx u]2 dx+ 2

∫
u∂mx uH∂mx u dx
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=

∫
u[H∂mx u]2 dx− 2

∫
u(∂mx u)2 dx+ 2

∫
[Hu][H∂mx u][∂mx u] dx,

using the identity H(uHv + vHu) = H(uv)− uv. �

For completeness, we also include the proof of Lemma 5.4. See also [56].

Proof of Lemma 5.4. Let α1, α2, α3 ∈ {0, 1}, then∫
[Hα1u][Hα2∂mx u]P>NHα3∂mx [u∂xu] dx

=
m∑
j=1

cj

∫
[Hα1u][Hα2∂mx u]P>NHα3 [∂jxu · ∂m+1−j

x u] dx

+

∫
[Hα1u][Hα2∂mx u]P>NHα3 [u · ∂m+1

x u] dx

=

m∑
j=1

cj

∫
[Hα1u][Hα2∂mx u]P>NHα3 [∂jxu · ∂m+1−j

x u] dx

−
∫

[Hα1u][Hα2∂mx u]P>NHα3 [∂xu · ∂mx u] dx

+

∫
[Hα1u][Hα2∂mx u]P>NHα3∂x[u · ∂mx u] dx (A.16)

for constants cj ∈ R. We focus on the last contribution and denote it by I (u).

If α1 = α2 = α3 = 0, then

I (u) =

∫
P>N [u∂mx u]P>N∂x[u∂mx u] dx = 0.

If α1 = 1, α2 = α3 = 0, then using the fact that H = −i(P+ − P−) and P>N (P+PNf ·
P−PNg) = 0, we get that

I (uN ) =

∫
P>N [HuN · ∂mx uN ]P>N∂x[uN∂

m
x uN ] dx

= −i
∫

P>N [(u+
N − u

−
N )∂mx uN ]P>N∂x[(u+

N + u−N )∂mx uN ] dx

= −i
∫

P>N [u+
N∂

m
x u

+
N − u

−
N∂

m
x u
−
N ]P>N∂x[u+

N∂
m
x u

+
N + u−N∂

m
x u
−
N ] dx

= −i
∫

P>N [u+
N∂

m
x u

+
N ]P>N∂x[u−N∂

m
x u
−
N ] dx+ i

∫
P>N [u−N∂

m
x u
−
N ]P>N∂x[u+

N∂
m
x u

+
N ] dx

= −2i

∫
P>N [u+

N∂
m
x u

+
N ]P>N∂x[u−N∂

m
x u
−
N ] dx.

If α1 = 0, α2 = α3 = 1, then

I (uN ) =

∫
P>N [uN · H∂mx uN ]P>N∂xH[uN∂

m
x uN ] dx

= −
∫

P>N [uN∂
m
x u

+
N − uN∂

m
x u
−
N ]P>N∂x(P+ −P−)[uN∂

m
x uN ] dx

= −
∫

P>NP−[−u−N∂
m
x u
−
N ]P>N∂xP+[u+

N∂
m
x u

+
N ] dx
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−
∫

P>NP+[u+
N∂

m
x u

+
N ]P>N∂xP−[u−N∂

m
x u
−
N ] dx = 0.

Lastly, if α1 = α2 = α3 = 1, then

IN (uN ) =

∫
P>N [HuN · H∂mx uN ]P>N∂xH[uN∂

m
x uN ] dx

= −
∫

P>N [u+
N∂

m
x u

+
N + u−N∂

m
x u
−
N − u

+
N∂

m
x u
−
N − u

−
N∂

m
x u

+
N ]P>N∂xH[uN∂

m
x uN ] dx

= i

∫
P>N [u+

N∂
m
x u

+
N + u−N∂

m
x u
−
N ]P>N∂x(P+ −P−)[uN∂

m
x uN ] dx

= i

∫
P>NP−[u−N∂

m
x u
−
N ]P>N∂xP+[u+

N∂
m
x u

+
N ] dx

+ i

∫
P>NP+[u+

N∂
m
x u

+
N ]P>N∂xP−[−u−N∂

m
x u
−
N ] dx

= −2i

∫
P>NP+[u+

N∂
m
x u

+
N ]P>N∂xP−[u−N∂

m
x u
−
N ] dx.

The first result follows by replacing these identities in (A.16).

For the second result, note that if α1 = α3 = 0, α2 = 1, then∫
P>N [uN · H∂mx uN ]P>N∂x[uN∂

m
x uN ] dx+

∫
P>N [uN∂

m
x uN ]P>N∂xH[uN∂

m
x uN ] dx

=

∫
P>N [uN∂

m
x uN ]P>N∂x[H(uN∂

m
x uN )− uNH∂mx uN ] dx

and proceeding as before, we have that

P>N [H(uN∂
m
x uN )− uNH∂mx uN ]

= −iP>N [(P+ −P−)(uN∂
m
x uN )− uN∂mx (u+

N − u
−
N )]

= −iP>N [P+(uN∂
m
x uN − uN∂mx u+

N + uN∂
m
x u
−
N ) + P−(−uN∂mx uN − uN∂mx u+

N + uN∂
m
x u
−
N )]

= −2iP>N [P+(u−N∂
m
x u
−
N )−P−(u+

N∂
m
x u

+
N )] = 0

from which we conclude that the earlier contribution is also 0. If α1 = α2 = 0, α3 = 1, the

contribution is the same as above, and therefore 0. If α1 = α2 = 1, α3 = 0, then∫
P>N [HuN · H∂mx uN ]P>N∂x[uN∂

m
x uN ] dx+

∫
P>N [HuN∂mx uN ]P>N∂xH[uN∂

m
x uN ] dx

=

∫
P>N∂x[uN∂

m
x uN ]P>N∂x[HuNH∂mx uN −H(HuN · ∂mx uN )] dx.

Moreover,

P>N [HuNH∂mx uN −H(HuN · ∂mx uN )]

= −P>N [(u+
N − u

−
N )∂mx (u+

N − u
−
N )− (P+ −P−)(u+

N · ∂
m
x uN − u−N · ∂

m
x uN )]

= −P>N [P+(u+
N∂

m
x u

+
N − u

+
N∂

m
x u

+
N ) + P−(u−N∂

m
x u
−
N − u

−
N∂

m
x u
−
N )] = 0

from which we conclude that the earlier contribution is also 0. If α1 = α3 = 1, α2 = 0, the

quantity is the same as above and therefore 0. �
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Appendix B. Conserved quantities for sILW

We follow the derivation of the conserved quantities for sILW in [16, 30]. See also

[50, 10, 11] for alternative approaches.

Consider the following equations for u, q:

u =
1

2δ2

[
2iδεq − (1− iδ

ε )(e2iδεq − 1)
]

+ ε∂xq + iδεG̃δ∂xq, (B.1)

∂tq =
1

δ2
∂xq
[
2iδεq − (1− iδ

ε )(e2iδεq − 1)
]

+ G̃δ∂2
xq + 2iδε(∂xq)(G̃δ∂xq). (B.2)

Then, we can show that for q =
∑
n≥0

εnhn and u satisfying (B.1), then u solves sILW (1.4)

if and only q solves (B.2). This follows from the fact that for u, q as above, we can write

∂tu− G̃δ∂2
xu− 2u∂xu

= L
{
∂tq −

1

δ2
∂xq
[
2iδεq − (1− iδ

ε )(e2iδεq − 1)
]
− G̃δ∂2

xq − 2iδε(∂xq)(G̃δ∂xq)
}

where the operator L is given by

L := (i− ε
δ )e2iδεq + ε(δ−1 − i∂x + δG̃δ∂x)

and we can show that if f =
∑
n≥0

εnfn and Lf = 0, then f ≡ 0, from which the equivalence

above follows.

From (B.2), we see that
∫
q dx is conserved under (1.4), thus replacing q =

∑
n≥0 ε

nhn
and replacing in (B.1) shows that hn is conserved for all n ≥ 0 and we derive the following

recurrence relation for n ≥ 2:

h0 = −u,

h1 = −iδu2 − (1 + iδG̃δ)∂xu,

hn = − 1

2δ2

n∑
k=2

(2iδ)k

k!

∑
n1···k=n−k

hn1 · · ·hnk +
i

2δ

n+1∑
k=2

(2iδ)k

k!

∑
n1···k=n+1−k

hn1 · · ·hnk

+ (1 + iδG̃δ)∂xhn−1.

(B.3)

As written, half of the conserved quantities, namely
∫
h2n+1 dx, have trivial limits as

δ → 0. To avoid this, we instead consider other quantities which can be written as a linear

combination of the hn ones, but which all have non-trivial limits as δ → 0. In particular,

for n ∈ N, we define h̃n as

h̃n :=
(1n odd

iδ
+

1n even

δ2

)(
hn +

1

iδ
hn−1 + · · ·+ 1

(iδ)n−1
h1

)
(B.4)

=
(1n odd

iδ
+

1n even

δ2

) n∑
j=1

1

(iδ)n−j
hj (B.5)

The following lemma gives a simplified expression for h̃n and further information on their

quadratic in u terms which we denote by Q̃n. We will need the following version of the

Rothe-Hagen identity for the proof: let x, y ∈ C and z ∈ N, then
z∑

k=0

(
x− 1 + k

k

)(
y + z − 1− k

z − k

)
=

(
x+ y + z − 1

z

)
. (B.6)
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Lemma B.1. For n ∈ N, we have that(
1n oddiδ + 1n evenδ

2
)
h̃n =

i

2δ

n+1∑
k=2

(2iδ)k

k!

∑
n1···k=n+1−k

hn1 · · ·hnk +
n∑
j=1

1

(iδ)n−j
(1 + iδG̃δ)∂xhj−1.

(B.7)

Proof. From the (B.5) and (B.3), we have that(
1n oddiδ + 1n evenδ

2
)
h̃n

=

n∑
j=2

1

2(iδ)n−j+2

j∑
k=2

(2iδ)k

k!

∑
n1···k=j−k

hn1 · · ·hnk

−
n∑
j=1

1

2(iδ)n−j+1

j+1∑
k=2

(2iδ)k

k!

∑
n1···k=j+1−k

hn1 · · ·hnk +
n∑
j=1

1

(iδ)n−j
(1 + iδG̃δ)∂xhj−1

=
i

2δ

n+1∑
k=2

(2iδ)k

k!

∑
n1···k=n+1−k

hn1 · · ·hnk +
n∑
j=1

1

(iδ)n−j
(1 + iδG̃δ)∂xhj−1,

as intended.

�

B.1. Structure of the sILW conserved quantities. We first show that
∫
h̃n dx only

has non-negative powers of δ, which guarantees that there are no divergent terms in δ as

δ → 0.

Lemma B.2. For n ≥ 0, hn has only non-negative powers of δ. Therefore, for n ∈ N,∫
h̃2n−1 dx,

∫
h̃2n dx can be written as polynomials in δ with only non-negative powers of δ.

Proof. Since h0 = −u and from (B.3), it follows that hn for n ≥ 0 only has non-negative

powers of δ. Similarly, from the definition (B.7), we have∫
h̃2n−1 dx =

1

2δ2

2n∑
k=2

(2iδ)k

k!

∑
n1···k=2n−k

∫
hn1 · · ·hnk dx,

∫
h̃2n dx =

i

2δ3

2n+1∑
k=2

(2iδ)k

k!

∑
n1···k=2n+1−k

∫
hn1 · · ·hnk dx,

where the result follows for the odd-indexed quantities from the result on hj . For the even-

indexed quantities, the contributions from 3 ≤ k ≤ 2n + 1 have only non-negative powers

of δ, so we focus on k = 2:

i

2δ3

(2iδ)2

2

∑
n12=2n−1

∫
hn1hn2 dx = − i

δ

∑
n12=2n−1

∫
hn1hn2 dx.

We can write hj =
∑j

k=0 δ
khj,k, and the only problematic terms above come from the δ0

coefficients of hn1 , hn2 , namely

− i
δ

∑
n12=2n−1

∫
hn1,0hn2,0 dx.
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From Lemma B.4, we can see that hn,0 satisfies the same recurrence relation as the KdV

conserved quantities, and from (B.16) and Lemma B.6(i), we can see that the above cor-

responds to − i
δ

∫
hKdV

2n+1 dx which is zero. Consequently, all the contributions have non-

negative powers of δ. �

In the shallow-water setting, we must change our definition of degree for the conserved

quantities, since the scaling by δ breaks the previous result that all terms have the same

degree #u+ #∂x + #1
δ . In this case, we can only establish an upper bound for the number

of powers of u and operators ∂x, ignoring the powers of 1
δ .

Lemma B.3. For n ≥ 0, all the terms in hn satisfy

#u+ #(G̃δ∂x) + #∂x ≤ n+ 1,

and there are at least as many powers of δ as operators G̃δ in each term. Moreover, the

terms in
∫
h̃n dx have order at most n+ 1.

Proof. Since h0 = −u and h1 = −iδ(u2 + G̃δux) − ux, we see that h0 has degree 1, while

all the terms in h1 have degree 2. Now, let n ∈ N and assume that the result holds for hk
with 0 ≤ k ≤ n− 1. Then, recall (B.3):

hn = − 1

2δ2

n∑
k=2

(2iδ)k

k!

∑
n1···k=n−k

hn1 · · ·hnk +
i

2δ

n+1∑
k=2

(2iδ)k

k!

∑
n1···k=n+1−k

hn1 · · ·hnk

+ (1 + iδG̃δ)∂xhn−1.

The first terms above have order at most (n1 + 1) + · · · + (nk + 1) = n − k + k = n, by

assumption. Similarly, the second terms have order at most (n1 + 1) + · · · + (nk + 1) =

n + 1 − k + k = n + 1. Lastly, the terms arising from the last contribution have order at

most 1 + (n− 1 + 1) = n+ 1, since hn−1 has terms with order at most n and ∂x and iδG̃δ∂x
increase the order by 1.

For the second result regarding the number of G̃δ operators and powers of δ, note that

h0 and h1 both satisfy the claim. As before, let n ∈ N and assume that the claim holds for

hk with 0 ≤ k ≤ n − 1. Then, from (B.3), we see that the number of G̃δ operators stays

the same from the hj contributions while there could be an increase in the power of δ in

the first and second group of contributions. The only term with an extra G̃δ operator is

the last one, which also comes with an extra power of δ, thus the result follows from the

inductive hypothesis.

For the result on
∫
h̃n, from (B.7), we note that

(1n oddiδ + 1n evenδ
2)

∫
h̃n =

i

2δ

n+1∑
k=2

(2iδ)k

k!

∑
n1···k=n+1−k

∫
hn1 · · ·hnk

and from the result on hj , we see that all the contributions have order at most (n1 + 1) +

· · ·+ (nk + 1) = n+ 1− k + k = n+ 1, as intended. �
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We need a more explicit description of the coefficients of δ0 and δ1 in hn,
∫
h̃n, namely

hn,0, hn,1,
∫
h̃n,0,

∫
h̃n,1 as in

hn =
n∑
k=0

δkhn,k,

∫
h̃n dx =

n∑
k=0

δk
∫
h̃n,k dx.

Then, we have the following recurrence for the coefficients of δ0 and δ.

Lemma B.4. The following holds for hn =
n∑
k=0

δkhn,k

h0,0 = −u, h1,0 = −ux, h2,0 = u2 − uxx,

h0,1 = 0, h1,1 = −iu2 − iG̃δux, h2,1 = 2iu3 + 2iuG̃δux − 6iuux − 2iG̃δuxx,

hn,0 =
∑

n1+n2=n−2

hn1,0hn2,0 + ∂xhn−1,0, (B.8)

hn,1 = 2
∑

n12=n−2

hn1,0hn2,1 + i
2

3

∑
n123=n−3

hn1,0hn2,0hn3,0 (B.9)

− i
∑

n12=n−1

hn1,0hn2,0 + ∂xhn−1,1 + iG̃δ∂xhn−1,0. (B.10)

Moreover, the degree (#u,#∂x,#G̃δ) of all the terms is of the form{
(n+ 1− j, 2j, 0), for h2n,0,

(n+ 1− j, 2j + 1, 0), for h2n+1,0,
(B.11)

for 0 ≤ j ≤ n and n ≥ 0.

Proof. The recurrences for hn,0, hn,1 follow from (B.3). For the first few elements hn,0,

(# u,#∂x) is of the following type

(1− j, 2j), 0 ≤ j ≤ 0 for h0,0,

(1− j, 2j + 1), 0 ≤ j ≤ 0 for h1,0,

(2− j, 2j), 0 ≤ j ≤ 1 for h2,0,

(2− j, 2j + 1), 0 ≤ j ≤ 1 for h3,0,

where the latter is true since

h3,0 = 2h0,0h1,0 + ∂xh2,0 = 2uux + 2uux − uxxx = 4uux − uxxx.

Assume that the result holds for 0 ≤ k ≤ n. By the recurrence, we have

h2n+2,0 =
∑

n12=2n

hn1,0hn2,0 + ∂xh2n+1,0,

h2n+3,0 =
∑

n12=2n+1

hn1,0hn2,0 + ∂xh2n+2,0.

For h2n+2,0, we have

(#u,#∂x) ∈
⋃

2n12=2n

⋃
0≤ji≤ni

{(n1 + 1− j1, 2j1) + (n2 + 1− j2, 2j2)}
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∪
⋃

2n12+2=2n

⋃
0≤ji≤ni

{(n1 + 1− j1, 2j1 + 1) + (n2 + 1− j2, 2j2 + 1)}

∪
⋃

0≤j≤n
{(n+ 1− j, 2j + 2)}

=
⋃

0≤j≤n
{(n+ 2− j, 2j)} ∪

⋃
0≤j≤n−1

{(n− 1 + 2− j, 2j + 2)}

∪
⋃

0≤j≤n
{(n+ 1− j, 2j + 2)}

=
⋃

0≤j≤n+1

{n+ 2− j, 2j}

as intended. Similarly, for h2n+3,0, we have that

(#u,#∂x) ∈
⋃

2n12+1=2n+1

⋃
0≤ji≤ni

{(n1 + 1− j1, 2j1) + (n2 + 1− j2, 2j2 + 1)}

∪
⋃

0≤j≤n+1

{(n+ 2− j, 2j + 1)}

=
⋃

0≤j≤n
{n+ 2− j, 2j + 1} ∪

⋃
0≤j≤n+1

{n+ 2− j, 2j + 1}

=
⋃

0≤j≤n+1

{n+ 2− j, 2j + 1},

which shows (B.11). �

In the following, we present more explicit descriptions of the quadratic, cubic, and quartic

in u terms, as in the following lemmas.

Lemma B.5. For n ∈ N we have that the quadratic terms of
∫
h̃n dx can be written as(

1n oddiδ + 1n evenδ
2
)∫

Q̃n dx = (−1)
n+2
2 δ

n−1∑
m=0

m≡(n−1) mod 2

δm
(
n

m

)
‖G̃

m
2
δ u‖

2

Ḣ
n−1
2
. (B.12)

Proof. We first need a description of the linear in u contributions Ln of hn: L0 = −u,

Q̃0 = 0 and for n ∈ N

Ln = (1 + iδG̃δ)∂xLn−1 = (1 + iδG̃δ)n∂nx (−u),(
1n oddiδ + 1n evenδ

2
)
Q̃n =

i

2δ

(2iδ)2

2

∑
n12=n−1

Ln1Ln2 +
n∑
j=1

1

(iδ)n−j
(1 + iδG̃δ)∂xQj−1,

where Qj denotes the quadratic terms in hj . Note that we are only left with the first terms

when we consider
∫
Q̃n dx, since the last contributions are full derivatives,(

1n oddiδ + 1n evenδ
2
)∫

Q̃n dx

= −iδ
n−1∑
`=0

∫
(1 + iδG̃δ)n−1−`∂n−1−`

x u(1 + iδG̃δ)`∂`xu dx
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= −iδ
n−1∑
`=0

n−1−`∑
`1=0

∑̀
`2=0

(
n− 1− `

`1

)(
`

`2

)
(iδ)`1+`2

∫
(G̃`1δ ∂

n−1−`
x u)(G̃`2δ ∂

`
xu) dx

= −iδ
n−1∑
`=0

n−1−`∑
`1=0

∑̀
`2=0

(
n− 1− `

`1

)(
`

`2

)
(iδ)`1+`2(−1)`1+n−1−`

∫
uG̃`1+`2

δ ∂n−1
x u dx,

using integration by parts. Note that the integrals above are zero when `1 + `2 + n − 1

is odd. We now consider two cases depending on the parity of n to simplify the above

expression.

Case 1: n even

If n is even, then

δ2

∫
Q̃n dx

= −iδ
n−1∑
m=1
m odd

(iδ)m(−1)
(m−1)+(n−2)

2
+n−1

∑
0≤`≤n−1

0≤`1≤n−1−`
0≤m−`1≤`

(
n− 1− `

`1

)(
`

m− `1

)
(−1)`1−`‖G̃

m
2
δ u‖

2

Ḣ
n−1
2

= iδ(−1)
n−2
2

n−1∑
m=1
m odd

δmi2m−1‖G̃
m
2
δ u‖

2

Ḣ
n−1
2

∑
0≤`≤n−1

m≤`+`1≤n−1

(
n− 1− `

`1

)(
`

m− `1

)
(−1)`1−`

= (−1)
n
2

n−1∑
m=1
m odd

δm+1‖G̃
m
2
δ u‖

2

Ḣ
n−1
2

n−1∑
k=m

n−1∑
`=0

(−1)k−2`

(
n− 1− `
k − `

)(
`

m− k + `

)

= (−1)
n
2

n−1∑
m=1
m odd

δm+1‖G̃
m
2
δ u‖

2

Ḣ
n−1
2

n−1∑
k=m

(−1)k
(
n

m

)

= (−1)
n
2

+1
n−1∑
m=1
m odd

δm+1

(
n

m

)
‖G̃

m
2
δ u‖

2

Ḣ
n−1
2

where we used the Rothe-Hagen identity (B.6) and the fact that m and n− 1 are odd.

Case 2: n odd

If n is odd, then

iδ

∫
Q̃n dx

= −iδ
n−1∑
m=0
even

(iδ)m(−1)
m
2

+n−1+n−1
2

∑
0≤`≤n−1

0≤`1≤n−1−`
0≤m−`1≤`

(
n− 1− `

`1

)(
`

m− `1

)
(−1)`1−`‖G̃

m
2
δ u‖

2

Ḣ
n−1
2

= −iδ(−1)
n−1
2

n−1∑
m=0
even

δmi2m‖G̃
m
2
δ u‖

2

Ḣ
n−1
2

∑
0≤`≤n−1

0≤`1≤n−1−`
0≤m−`1≤`

(
n− 1− `

`1

)(
`

m− `1

)
(−1)`1−`
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= −iδ(−1)
n−1
2

n−1∑
m=0
even

δm‖G̃
m
2
δ u‖

2

Ḣ
n−1
2

n−1∑
k=m

n−1∑
`=0

(−1)k−2`

(
n− 1− `
k − `

)(
`

m− k + `

)

= iδ(−1)
n+1
2

n−1∑
m=0
even

δm
(
n

m

)
‖G̃

m
2
δ u‖

2

Ḣ
n−1
2

by proceeding as before, using the Rothe-Hagen identity (B.6) and the fact that m and

n− 1 are even. The result follows from combining the two cases. �

B.2. Convergence of sILW conserved quantities. By taking a formal limit as δ → 0

of (B.1)-(B.2) we obtain the following

u = −q + ε∂xq + ε2q2,

∂tq = −2(∂xq)(q − ε2q2)− 1

3
∂3
xq,

(B.13)

from which, proceeding as before, we can obtain the conserved quantities for the KdV

equation

∂tu+
1

3
∂3
xu = 2u∂xu.

We can see that for q =
∑
n≥0

εnhKdV
n , then hKdV

n are conserved quantities of KdV for n ≥ 0

which satisfy

u = −
∑
n≥0

εnhKdV
n +

∑
n≥1

εn∂xh
KdV
n−1 +

∑
n≥2

εn
∑

n12=n−2

hKdV
n1

hKdV
n2

.

We can then obtain the following recurrence relation

hKdV
0 = −u, (B.14)

hKdV
1 = −∂xu, (B.15)

hKdV
n = ∂xh

KdV
n−1 +

n−2∑
`=0

hKdV
n−2−`h

KdV
` . (B.16)

In the following lemma, we focus on the quadratic in u terms of hKdV
2n , denoted by QKdV

2n ,

and recall that the odd-indexed conserved quantities are trivial.

Lemma B.6. (i) For n ≥ 0,
∫
hKdV

2n+1 dx = 0.

(ii) For n ≥ 1, the quadratic in u terms in hKdV
2n satisfy the following∫

QKdV
2n dx = (−1)n−1‖u‖2

Ḣn−1 .

Proof. Part (i) was proven in Proposition 2.9 in [30]. For (ii), note that∫
QKdV

2n dx =

2n−2∑
`=0

∫
LKdV

2n−2−`L
KdV
` dx,

where LKdV
j denotes the linear in u terms in hKdV

j , which satisfy

LKdV
0 = −u, LKdV

1 = −∂xu, LKdV
n = ∂xL

KdV
n−1 = ∂nxL

KdV
0 = −∂nxu.
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Replacing the above in the expression for the quadratic terms gives∫
QKdV

2n dx =
2n−2∑
`=0

∫
∂2n−2−`
x u∂`xu dx =

2n−2∑
`=0

(−1)2n−2−`
∫
u∂2n−2

x u dx

=

2n−2∑
`=0

(−1)−`+n−1‖u‖2
Ḣn−1 = (−1)n−1‖u‖2

Ḣn−1 ,

as intended. �

Let us introduce some notation. Let Ẽδ, k
2
(u) and EKdV,k(u) denote the sILW and KdV

conserved quantities, respectively, which we define as follows:

Ẽδ, 2k−1
2

(u) := (−1)k+1 3

4k

∫
h̃2k(u) dx,

Ẽδ, 2k
2

(u) := (−1)k+1 1

2

∫
h̃2k+1(u) dx,

EKdV,k(u) := (−1)k
1

2

∫
hKdV

2k+2(u) dx.

(B.17)

Moreover, we also introduce the δ-free contributions in Ẽδ, 2k−1
2
, Ẽδ, 2k

2
denoted by

Ẽ
[0]

δ, 2k−1
2

, Ẽ
[0]

δ, 2k
2

, respectively, and defined as follows

Ẽ
[0]

δ, 2k−1
2

(u) := (−1)k+1 3

4k

∫
h̃∗2k(u) dx,

Ẽ
[0]

δ, 2k
2

(u) := (−1)k+1 1

2

∫
h̃2k+1,0(u) dx

(B.18)

where h̃2k+1,0 denotes the coefficient of δ0 in h̃2k+1 and h̃∗2k,0 can be obtained from h̃2k,0 by

replacing Gδ by −1
3∂x. Then, note that

Ẽδ, 2k−1
2

(u) = Ẽ
[0]

δ, 2k−1
2

(u) + L̃δ, 2k−1
2

(u),

Ẽδ, 2k
2

(u) = Ẽ
[0]

δ, 2k
2

(u) + L̃δ, 2k
2

(u),
(B.19)

where L̃δ,k is implicitly defined by the relations above.

Our main goal is to establish the following proposition on the convergence of the sILW

conserved quantities Ẽδ, 2k−1
2

(u), Ẽδ, 2k
2

(u) to the KdV conserved quantity EKdV,k(u) as

δ → 0.

Proposition B.7. Let k ≥ 1. Then, for u ∈ Hk(T), we have that

lim
δ→0

Ẽδ, 2k−1
2

(u) = lim
δ→0

Ẽδ, 2k
2

(u) = EKdV,k(u).

Proof.

Part 1: convergence of Ẽδ, 2k
2

(u)

From (B.18), (B.7), (B.8), (B.16), and (B.17), note that

Ẽ
[0]

δ, 2k
2

(u) = (−1)k+1 1

2

∫
h̃2k+1,0 dx
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= (−1)k
1

2

∑
n12=2k

∫
hn1,0hn2,0 dx

= (−1)k
1

2

∑
n12=2k

∫
hKdV
n1

hKdV
n2

dx

= (−1)k
1

2

∫
hKdV

2k+2 dx

= EKdV,k(u)

since hj,0 = hKdV
j for j ≥ 0. Consequently, by (B.19), establishing the convergence of

Ẽδ, 2k
2

(u) reduces to showing that

lim
δ→0

L̃δ, 2k
2

(u) = 0 (B.20)

for u ∈ Hk(T).

From Lemma B.3 and (B.7), we can easily see that all the terms in L̃δ, 2k
2

(u) satisfy that

#u+ # ∂x ≤ 2k + 2, #δ ≥ 1, #δ ≥ #G̃δ,

since we removed the terms in Ẽ0, 2k
2

(u) which have no powers of δ. We consider two types

of terms: #δ ≥ #G̃δ + 1 and #δ = #G̃δ.
Case 1: #δ ≥ #G̃δ + 1 The terms in L̃δ, 2k

2
(u) can be written as δβ

∫
p(u) dx where p(u) ∈

Pj(u) for some j ∈ {2, . . . , 2k + 2} and

p̃(u) =

j∏
`=1

∂α`x u

for α1···j ≤ 2k + 2 − j ≤ 2k, and with β ≥ |||p(u)||| + 1. Moreover, by using IBP, we can

guarantee that we only see polynomials p(u) as the above with the added restriction that

0 ≤ α` ≤ k for ` = 1, . . . , j. Using Lemma 2.7, we have that |δ̂G̃δ(n)| ≤ 1 for all n ∈ Z∗,
and by Cauchy-Schwarz inequality we can estimate these terms as follows for 0 < δ ≤ δ0

δβ
∣∣∣∣ ∫ p(u) dx

∣∣∣∣ .δ0 δ ∑
n1···j=0

j∏
`=1

|n`|α` |û(n`)|

.δ0 δ

( ∑
n1···j=0

|n1|2k|û(n1)∏j
`=1 |n`|2(k−α`)

) 1
2

‖u‖j−1
Hk

.δ0 δ‖u‖
j
Hk

where the finiteness of the sum follows from the assumptions on α`.

Case 2: #δ = #G̃δ These contributions can be written as δβ
∫
p(u) dx with p(u) defined as

in Case 1 but with β = |||p(u)|||. For j ≥ 3, note that α1···j ≤ 2k+ 2− j ≤ 2k− 1 and from

Lemma 2.3 we have that |̂̃Gδ(n)| ≤ min(1
3 |n|,

1
δ ). For all operators G̃δ apart from one, we

use upper bound by 1
δ , while for one of the terms we use the upper bound by 1

3 |n|. This

means that these terms can be estimated analogously to δβ
∫
p(u) dx where p(u) ∈ P̃j(u)

for j ∈ {3, . . . , 2k + 2} with 1 ≥ β = |||p(u)|||+ 1, α1···j ≤ 2k + 3− j, and 0 ≤ α` ≤ k. All
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these terms can be estimated as in Case 1. It only remains to show the estimate for the

quadratic terms. The remaining terms are quadratic in u and, by (B.12), can be written as

1

2

2k∑
m=2
even

(
2k + 1

m

)
δm‖G̃

m
2
δ u‖

2
Ḣk .

Note that

δm‖G̃
m
2
δ u‖

2
Ḣk =

∑
n 6=0

|û(n)|2|n|2kδm(
̂̃Gδ(n))m =

∑
n6=0

|û(n)|2|n|2k−mδmLδ(n)m.

From Lemma 2.3(i), we know that for any η > 0 and n ∈ Z∗,

δ|n| ≤ η =⇒ (δLδ(n))m ≤ ηm|n|2m ≤ ηm|n|m,

δ|n| > η =⇒ (δLδ(n))m ≤ δm 1

δm
|n|m = |n|m,

consequently

δm‖G̃
m
2
δ u‖

2
Ḣk ≤ ηm

∑
δ|n|≤η

|û(n)|2|ξ|2k−m+m +
∑
δ|n|≥η

|û(n)|2|n|2k−m+m

≤ ηm‖u‖2
Ḣk +

∑
|n|≥η/δ

|û(n)|2|n|2k.

By picking η =
√
δ, for u ∈ Ḣn, we get that

1

2

2k∑
m=2
even

(
2k + 1

m

)
δm‖G̃

m
2
δ u‖

2
Ḣk .δ0 δ‖u‖2Hk + ‖P

>δ−
1
2
u‖2Hk .

Combining the results from both cases, we get that for 0 < δ < δ0

|L̃δ, 2k
2

(u)| .δ0 δ(1 + ‖u‖Hk)2k+2 + ‖P
>δ−

1
2
u‖2Hk → 0

as δ → 0 for u ∈ Hk, from which (B.20) follows.

Part 2: convergence of Ẽδ, 2k−1
2

(u)

From (B.18) and (B.19), we see that Ẽ
[0]

δ, 2k−1
2

(u) is independent of δ, so we must show

that for u ∈ Hk(T)

Ẽ
[0]

δ, 2k−1
2

(u) = EKdV,k(u) and lim
δ→0

L̃δ, 2k−1
2

(u) = 0.

We first focus on the convergence of the leftover terms in L̃δ, 2k−1
2

(u). From (B.17), (B.7),

and Lemma B.3, we see that all the terms in Ẽδ, 2k−1
2

(u) can be written as δβ
∫
p(u) dx

where p(u) ∈ P̃j(u) for some j ∈ {2, . . . , 2k + 1} with

p̃(u) =

j∏
`=1

∂α`x u,

α1···j ≤ 2k+1−j, and with one of the three conditions on β and the number of G̃δ operators

|||p(u)|||:
(i) β ≥ |||p(u)|||+ 1 (ii) β = |||p(u)||| ≥ 1 (iii) β = 0, |||p(u)||| = 1.
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We consider different cases depending on the choices for β, |||p(u)||| above.

Case (i): #δ ≥ #G̃δ + 1 In this case, we have that #∂x ≤ 2k + 1 − j ≤ 2k − 1, so we can

always use IBP to consider polynomials with 0 ≤ α` ≤ k. We can then proceed as in Case

1 in Part 1, to obtain the estimate

· · · .δ0 δ‖u‖
j
Hk .

Case (ii): #δ = #G̃δ ≥ 1 Here, we proceed as in Case 2 in Part 1. For all G̃δ operators

apart from 1, we use the fact that |δĜδ(n)| ≤ 1 for all n ∈ Z∗. For the remaining one we

use |̂̃Gδ(n)| ≤ |n|, which amounts to the loss of one derivative, while keeping one power

of δ. These terms can be estimated in a similar way to terms written as δ
∫
p(u) dx where

p(u) ∈ P̃j(u) for j ∈ {2, . . . , 2k + 1}, p̃(u) =
∏j
`=1 ∂

α`
x u with α1···j ≤ 2k + 2 − j ≤ 2k and

0 ≤ α` ≤ k. In particular, they can be controlled by

· · · . δ‖u‖j
Hk .

Case (iii): #δ = 0,#G̃δ = 1 From the definition of Ẽ
[0]

δ, 2k−2
2

(u), these terms which appear in

L̃δ, 2k−1
2

(u) are obtained from those in
∫
h̃2k,0 dx with one G̃δ operator replaced by (G̃δ +

1
3∂x). From Lemma 2.3, we know that for fixed n ∈ Z∗, |Fx(G̃δ + 1

3∂x)(n)| ≤ |n| and

limδ→0 |Fx(G̃δ + 1
3∂x)(n)| = 0. By IBP, we can assume that k ≥ α1 ≥ · · · ≥ α` ≥ 0,

α1···j ≤ 2k + 1 − j ≤ 2k − 1, and that the G̃δ is acting on the factor with α2 derivatives

(analogous in all other cases)∣∣∣∣ ∫ p(u) dx

∣∣∣∣ . ∑
n1···j=0

|n2||h(δ, n2)|
j∏
`=1

|n`|α` |û(n`)|

.

( ∑
n1···j=0

|n2|2∏j
`=1 |n`|2(k−α`)

|n1|2k|û(n1)|2
) 1

2

‖u‖j−2
Hk ‖h(δ, n)|n|kû(n)‖`2n

. ‖|n|kh(δ, n)û(n)‖`2n‖u‖
j−1
Hk

where h is given in Lemma 2.3, which converges to 0 pointwise in n as δ → 0. Also, since

|h(δ, n)| ≤ 1 uniformly, we see that the above quantity is bounded by ‖u‖j
Hk .

Combining the estimates from all the terms above, we have that for 0 < δ ≤ δ0

|L̃δ, 2k−1
2

(u)| .δ0 δ(1 + ‖u‖Hk)2k+1 + ‖h(δ, n)|n|kû(n)‖`2n(1 + ‖u‖Hk)2k → 0 (B.21)

as δ → 0 from the decay in δ → 0 of the first term, the pointwise convergence

limδ→0 h(δ, n)→ 0, and the dominated convergence theorem.

The above establishes that for u ∈ Hk(T)

lim
δ→0

Ẽδ, 2k−1
2

(u) = Ẽ
[0]

δ, 2k−1
2

(u),

thus it remains to show that this limit agrees with EKdV,k(u). It is known that all polyno-

mial conserved quantities of KdV with quadratic terms of order Hk(T) can be written as a

linear combination of EKdV,k(u); see Theorem 2.16 in [30], for example. From Lemma B.6,

(B.12), and (B.17), we see that the quadratic in u terms in Ẽ
[0]

δ, 2k−1
2

(u) agree with those in
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EKdV,k(u). Thus, if we show that Ẽ
[0]

δ, 2k−1
2

(u) is conserved for KdV, then we must have that

Ẽ
[0]

δ, 2k−1
2

(u) = EKdV,k(u) for all u ∈ Hk(T).

Fix u0 ∈ Hk(T), δ > 0, and let 0 < δ < δ0. From Lemma ??, there exists T > 0

independent of δ, such that there exist unique solutions uδ, uKdV ∈ C([0, T ];Hk(T)) of

sILW and KdV, respectively, with initial data u0, satisfying

lim
δ→0
‖uδ − uKdV‖C([0,T ];Hk) = 0. (B.22)

Then, using the fact that Ẽδ, 2k−1
2

is conserved for sILW and (B.19), we get that

Ẽ
[0]

δ, 2k−1
2

(uKdV
t )− Ẽ[0]

δ, 2k−1
2

(u0)

=
[
Ẽ

[0]

δ, 2k−1
2

(uKdV
t )− Ẽδ, 2k−1

2
(uδt )

]
+
[
Ẽδ, 2k−1

2
(u0)− Ẽ[0]

δ, 2k−1
2

(u0)
]

=
[
Ẽ

[0]

δ, 2k−1
2

(uKdV
t )− Ẽ[0]

δ, 2k−1
2

(uδt )
]
− L̃δ, 2k−1

2
(uδt ) + L̃δ, 2k−1

2
(u0)

where uKdV
t , uδt denote the solutions evaluated at time t. From (B.22), there exists δ0 > 0

such that for 0 < δ ≤ δ0 we have

‖uδ‖L∞T Hk ≤ ‖uKdV‖L∞T Hk + 1.

Using the multilinearity of Ẽ
[0]

δ, 2k−1
2

and using the fact that all the terms here can be written

as
∫
p(u) dx where p(u) ∈ P̃j(u) for j ∈ {2, . . . , 2k + 1} with ‖p(u)‖ ≤ 2k + 2 − j ≤ 2k,

|||p(u)||| = 0, and at most k derivatives on each term, from Hölder’s inequality and Sobolev’s

inequality, we get that∣∣Ẽ[0]

δ, 2k−1
2

(uKdV
t )− Ẽ[0]

δ, 2k−1
2

(uδt )
∣∣ . (1 + ‖uδ‖L∞T Hk + ‖uKdV‖L∞T Hk)2k‖uδ − uKdV‖L∞T Hk

. (1 + ‖uKdV‖L∞T Hk)‖uδ − uKdV‖L∞T Hk → 0

as δ → 0 from the convergence in (B.22). Moreover, from (B.21), we have that

|L̃δ, 2k−1
2

(uδt )| .δ0 (1 + ‖uδ‖L∞T Hk)2k+1
(
δ + ‖h(δ, n)|n|kûδt (n)‖L∞T `2n

)
.δ0 (1 + ‖uKdV‖L∞T Hk)2k+1

(
δ + ‖h(δ, n)|n|kûδt (n)‖L∞T `2n

)
.δ0 (1 + ‖uKdV‖L∞T Hk)2k+1

(
δ + ‖uKdV‖L∞T `2n

)
,

|L̃δ, 2k−1
2

(u0)| .δ0 (1 + ‖u0‖Hk)2k+1
(
δ + ‖h(δ, n)|n|kû0(n)‖`2n

)
,

from which we see that both contributions vanish as δ → 0, from the decay in δ, the point-

wise convergence limδ→0 h(δ, n) = 0, and the dominated convergence theorem. Therefore,

we have that

Ẽ
[0]

δ, 2k−1
2

(uKdV
t ) = Ẽ

[0]

δ, 2k−1
2

(u0),

i.e., Ẽ
[0]

δ, 2k−1
2

is a conserved quantity under the KdV dynamics, which completes our proof

of convergence. �
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B.3. Structure of remainder R̃δ, k
2
(u) of conserved quantities Ẽδ, k

2
(u). The following

lemma provides a more detailed description of the cubic and quartic in u terms in Ẽδ,k− 1
2
(u),

i.e., the even indexed remainders.

Lemma B.8. Let k ∈ N. The cubic in u contributions in Ẽδ,k− 1
2
(u) are of one of the

following type:

(i) #δ ≥ #G̃δ and #∂x ≤ 2k − 2

(ii) #δ − 1 = #G̃δ and the terms are of the form,

1

δ

∫
[(−1 + iδG̃δ)α(1 + iδG̃δ)n1∂α+n1

x u][(1 + iδG̃δ)m1∂m1
x u][(1 + iδG̃δ)m2∂m2

x u] dx

where Lj denote the linear in u terms in hj and

n1 +m1 +m2 = n1 + n2 − 2− α,
n1 + n2 = 2k − 1,

α ≥ 0,

(iii) #δ = #G̃δ and the terms are of the form∫
[(1 + iδG̃δ)n1∂n1

x u](1 + iδG̃δ)n2−1∂n2−1
x (u2) dx

where n1 + n2 = 2k − 1.

Moreover, Ẽδ,2(u) has no quartic in u terms, while for k ≥ 2, these terms in Ẽδ,2k(u), are

of the form:

(i) #δ ≥ #G̃δ and #∂x ≤ 2k − 3;

(ii) #δ − 1 ≥ #G̃δ and #∂x ≤ 2k − 5 for k ≥ 3.

In particular, for k = 2, all the quartic terms are of type (i).

Also, we have that the cubic in u terms of Ẽδ,2k(u) are of one of the form
∫
p(u) dx, where

the polynomial p(u) ∈ P̃3(u) is of one of the following types:

(i) ‖p(u)‖ ≤ 2k − 2, |p(u)| ≤ k − 1, and p̃(u) 6= u∂k−1
x u∂k−1

x u

(ii) ‖p(u)‖ = 2k − 2 and

p(u) = δm12

∫
u(G̃m1

δ ∂k−1
x u)(G̃m2

δ ∂k−1
x u) dx or

p(u) = δm
∫

[G̃mδ ∂α1
x u][∂α2

x u][∂α3
x u] dx,

where 0 ≤ m12,m ≤ 2n− 2 even, and {α1, α2, α3} = {0, k − 1} with α123 = 2k − 2.

Proof. From (B.7), we see

Ẽδ,2n(u) ∼ i

2δ3

2n+1∑
k=2

(2iδ)k

k!

∑
n1···k=2n+1−k

∫
hn1 · · ·hnk dx (B.23)

and Lemma B.3 guarantees that all hnj terms have #δ ≥ #G̃δ and the cubic terms have

#∂x ≤ 2n + 1 − 3 = 2n − 2. Therefore, the cubic terms arising from k ≥ 3 in the above

sum are of type (i).
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The cubic terms of type (ii) and (iii) come from contributions with k = 2 in (B.23). We

can see that the cubic terms coming from k = 2 are of the following form

I :=
i

2δ3

(2iδ)2

2

∑
n12=2n−1

∫
Ln1Qn2 dx,

where Lj , Qj denote the linear and quadratic in u terms in hj , respectively. Note that from

(B.3), we have

L0 = −u, Q0 = 0,

L1 = −(1 + iδG̃δ)∂xu, Q1 = −iδu2,

Ln = −(1 + iδG̃δ)n∂nxu, Qn =
∑

n12=n−2

Ln1Ln2 − iδ
∑

n12=n−1

Ln1Ln2 + (1 + iδG̃δ)∂xQn−1.

(B.24)

Replacing these expressions above, we obtain that

I =− i

δ

∑
n12=2n−1

∫
[(1 + iδG̃δ)n1∂n1

x u]
∑

m12=n2−2

Lm1Lm2 dx

−
∑

n12=2n−1

∫
[(1 + iδG̃δ)n1∂n1

x u]
∑

m12=n2−1

Lm1Lm2 dx

− i

δ

∑
n12=2n−1

∫
[(1 + iδG̃δ)n1∂n1

x u](1 + iδG̃δ)∂xQn2−1 dx

=: I 1 + I 2 + I 3.

(B.25)

The contributions in I 1 are of type (ii) with α = 0, while those in II2 are of type (i) since

#δ = #G̃δ and #∂x = n1 + m1 + m2 = n1 + n2 − 1 = 2n − 1 − 1 = 2n − 2. To decide on

the type of the terms in I 3, we must further replace the expression for Qn2−1.

If n2−1 = 1, then I 3 = 0. If n2−1 = 2, then I 3 is of type (iii) because Q2 = −iδu2, thus

this extra power of δ combined with 1
δ at the front guarantee that #δ = #G̃δ. If n2−1 ≥ 3,

then we replace Qn2−1 by its expression to get

I 3 =
1

δ

∑
n12=2n−1

∫
[(1 + iδG̃δ)n1∂n1

x u](1 + iδG̃δ)∂x
∑

n12=n2−3

Lm1Lm2 dx

− i
∑

n12=2n−1

∫
[(1 + iδG̃δ)n1∂n1

x u](1 + iδG̃δ)∂x
∑

m12=n2−2

Lm1Lm2 dx

+
1

δ

∑
n12=2n−1

∫
[(1 + iδG̃δ)n1∂n1

x u](1 + iδG̃δ)2∂2
xQn2−2 dx

=: I 3,1 + I 3,2 + I 3,3.

As before, we see that terms in I 3,1 are of type (ii) with α = 1 (after integration by parts)

and those in I 3,2 are of type (i). As before, if n2 − 2 = 2, then this term is of type (iii),

otherwise we iterate the above process and note that the contributions coming from the

first term in the recurrence of Qn2−j always give rise to type (ii) terms, those coming from

the second terms are of type (i), and the process terminates when n2 − j = 2 when we

obtain a term of type (iii).
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Proceeding as for the cubic in u terms, we know that the terms arising from k ≥ 3 in

(B.23), have at most 2n + 1 − 4 = 2n− 3 derivatives and they have #δ ≥ #G̃δ, thus they

are of type (i). Note that the quartic terms arising from k = 2 are of the form

II :=
i

2δ3

(2iδ)2

2

∑
n12=2n−1

(Ln1Cn2 +Qn1Qn2),

where Cn denotes the cubic in u terms in hn, which satisfy the following

C0 = 0,

C1 = 0,

C2 =
4

3
δ2u3,

Cn =
∑

n12=n−2

Ln1Qn2 + i
2

3
δ

∑
n123=n−3

Ln1Ln2Ln3 − iδ
∑

n12=n−1

Ln1Qn2

+
2

3
δ2

∑
n123=n−2

Ln1Ln2Ln3 + (1 + iδG̃δ)∂xCn−1.

From before, we know that

• Ln has no extra powers of δ and #∂x = n,

• Qn has terms with (1) no extra powers of δ and #∂x = n− 2; (ii) one extra power

of δ and #∂x = n− 1.

Consequently, the terms in Cn for n ≥ 3 are of the form∑
n12=n−2

Ln1Qn2 ∼ 1n≥4[δ0 + ∂n−4
x ] + [δ1 + ∂n−3

x ],

i
2

3
δ

∑
n123=n−3

Ln1Ln2Ln3 ∼ [δ1 + ∂n−3
x ],

−iδ
∑

n12=n−1

Ln1Qn2 ∼ [δ1 + ∂n−2
x ],

2

3
δ2

∑
n123=n−2

Ln1Ln2Ln3 ∼ [δ1 + ∂n−2
x ],

from which we see that the terms excluding the last one in the expression for Cn are of the

form

∼ [δ0 + ∂n−4
x ]1n≥4 + [δ1 + ∂n−2

x ].

Note that if n−1 = 2, then, the term (1+iδG̃δ)∂xCn−1 is of the form [δ1 +∂1
x] = [δ1 +∂n−2

x ].

Otherwise, n− 1 ≥ 3 and we can replace the expression to obtain more terms of the form

∼ [δ0 + ∂n−4
x ]1n≥4 + [δ1 + ∂n−2

x ]. Iterating this process, until we reach the contribution

(1 + iδG̃δ)n−2∂n−2
x C2,

we conclude that all of the contributions in Cn are of this given form.

Now, looking back at II, we have that

II = −1

δ

∑
n12=2n−1

(Ln1Cn2 +Qn1Qn2)
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∼
∑

n12=2n−1

δ−1[δ0 + ∂n1
x ]
{

[δ0 + ∂n2−4
x ]1n2≥4 + [δ1 + ∂n2−2

x ]
}

+
∑

n12=2n−1

δ−1
2∏
j=1

{
[δ0 + ∂

nj−2
x ] + [δ1 + ∂

nj−1
x ]

}
∼

∑
n12=2n−1

{
[δ−1 + ∂n12−4

x ] + [δ0 + ∂n12−2
x ] + [δ1 + ∂n12−3

x ]
}

∼ [δ−1 + ∂2n−5
x ]1n≥3 + [δ0 + ∂2n−3

x ]1n≥2.

Note that n = 1 has no quartic terms. For n = 2, all of the terms are of type (i). For

n ≥ 3, II also contributes with terms of type (ii) which satisfy that #δ − 1 ≥ #G̃δ and

#∂x = 2n− 5.

The cubic in u contributions of Ẽδ,2n(u) are the following

i

2δ3

(2iδ)2

2

∑
n12=2n−1

∫
Ln1Qn2 dx+

i

2δ3

(2iδ)3

3!

∑
n123=2n−2

∫
Ln1Ln2Ln3 dx. (B.26)

For the second group of terms above, we have that

2

3

∑
n123=2n−2

∫ 3∏
j=1

(1 + iδG̃δ)nj∂
nj
x u dx

and all the terms can be written as one of type (i) (possibly after integration by parts) as

long as n1, n2, n3 ≥ 1. The remaining terms have that nj = 0 for some j ∈ {1, 2, 3}, and

we assume j = 3 by symmetry. Then, these can be written as∑
0≤m12≤2n−2

∫
(iδ)m12(G̃m1

δ ∂k−1
x u)(G̃m2

δ ∂k−1
x u)u dx,

and the above must vanish when m12 is odd, since they would be purely imaginary. There-

fore, we are only left with terms of type (ii) as intended. We now consider the first con-

tribution in (B.26), which can be written as in (B.25). Then, I 1 has terms with 2n − 3

derivatives, which are therefore of type (i), while the terms in I 2 are as the second ones in

(B.26) discussed above. It only remains to consider I 3. If n2 ≥ 2 in I 3, then we use (B.24)

to get

I 3 =
i

δ

∑
n12=2n−1

∫
Ln1(1 + iδG̃δ)∂xQn2−1 dx

=
i

δ

∑
m123=2n−4

∫
(−1 + iδG̃δ)∂xLm1Lm2Lm3 dx

+
∑

m123=2n−3

∫
(−1 + iδG̃δ)∂xLm1Lm2Lm3 dx

+
i

δ

∑
n12=2n−1

∫
Ln1(1 + iδG̃δ)2∂2

xQn2−2 dx

where the first contribution is as I 1 and the second as in II2. We can continue to iterate

as above, adding terms like I 1, II2 which are of the intended type, until we reach the terms
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of the form
i

δ

∑
n12=2n−1

∫
Ln1(1 + iδG̃δ)n2−1∂n2−1

x Q1 dx

= −
∑

n12=2n−1

∫
[(1 + iδG̃δ)n1∂n1

x u][(1 + iδG̃δ)n2−1∂n2−1
x (u2)] dx

= −
∑

n12=2n−2

n2∑
`=0

c`

∫
[(1 + iδG̃δ)n1∂n1

x u][(1 + iδG̃δ)n2(∂`xu · ∂n2−`
x u)] dx.

By doing integration by parts, the terms above are of type (i) if n1, `, n2−` ≥ 1. Otherwise,

we have at least one of them equal to 0, where all the terms can be written as one of the

following: ∫
[(1 + iδG̃δ)n1(1− iδG̃δ)n2u][∂n−1

x u]2 dx

=

n1∑
m1=0

n2∑
m2=0

(−1)m2(iδ)m12 [G̃m12
δ u][∂n−1

x u]2 dx,∫
[(1 + iδG̃δ)n1(1− iδG̃δ)n2∂n−1

x u][u∂n−1
x u] dx

=

n1∑
m1=0

n2∑
m2=0

(−1)m2(iδ)m12 [G̃m12
δ ∂n−1

x u][u∂n−1
x u] dx,

where we can further restrict the sums above to m12 even, from which we see that these

terms are of type (ii). �

The following lemma will be relevant when establishing invariance.

Lemma B.9. Let k ∈ N. The cubic in u terms in Ẽδ,2k+1(u) are of the form
∫
p(u) dx

where the polynomial p(u) ∈ P̃3(u) is of one of the following types:

(i) ‖p(u)‖ ≤ 2k − 1 and |p(u)| ≤ k − 1;

(ii) ‖p(u)‖ = 2k − 1 and

p(u) = δm12+1u(G̃m2
δ ∂k−1

x u)(G̃m3
δ ∂kxu) or p(u) = δm3+1(G̃m3

δ u)(∂k−1
x u)(∂kxu)

where 0 ≤ m12 ≤ 2k − 1, 0 ≤ m3 ≤ 2k − 1 odd.

Proof. For k = 1, the only cubic in u contributions in Ẽδ,3(u) are of the form

p(u) = u3 and p(u) = δ2u2G̃δux,
which are of type (i) and (ii), respectively.

From (B.7) and (B.24), we see that the only cubic contributions in
∫
h̃2k+1 are

−
∑

n12=2k

∫
Ln1Qn2 dx− i

2

3
δ

∑
n123=2k−1

∫
Ln1Ln2Ln3 dx

= −
∑

n12=2k

∫
Ln11n2≥1

{ ∑
m12=n2−2

Lm1Lm2 − iδ
∑

m12=n2−1

Lm1Lm2

+ (1 + iδG̃δ)∂xQn2−1

}
dx− i2

3
δ

∑
n123=2k−1

∫
Ln1Ln2Ln3 dx
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= −1k≥2

∑
m123=2k−2

∫
Lm1Lm2Lm3 dx+

iδ

3

∑
m123=2k−1

∫
Lm1Lm2Lm3 dx

−
∑

m12=2k−1

∫
Lm1(1 + iδG̃δ)∂xQm2 dx. (B.27)

Since Lj has j derivatives, the first contribution has m123 = 2k − 2 derivatives and by

integration by parts can be written as the integral of a polynomial of type (i). For the

second contribution, there are 2k− 1 derivatives, and these contributions can be written as

type (i) if m1,m2,m3 ≤ k− 1 or mj1 ≥ k while mj2 ,mj3 ≤ k− 2, for {j1, j2, j3} = {1, 2, 3}.
Thus, the only terms left to consider have {m1,m2,m3} = {0, k − 1, k}, after integration

by parts. We can assume m1 = 0,m2 = k − 1,m3 = k by symmetry, to get

− iδ

3

k−1∑
`1=0

k∑
`2=0

(iδ)`12
∫
u(G̃`1δ ∂

k−1
x u)(G̃`2δ ∂

k
xu) dx

= − iδ
3

∑
0≤`1≤k−1

0≤`2≤k
`12 odd

(iδ)`12
∫
u(G̃`1δ ∂

k−1
x u)(G̃`2δ ∂

k
xu) dx,

since if `12 is even, the contributions would be purely imaginary and they must vanish since

the conserved quantities are real, where we also see that 0 ≤ `12 ≤ 2k − 1, so these terms

are of type (ii). Lastly, for the third contribution,

−
∑

m12=2k−1

∫
Lm1(1 + iδG̃δ)∂xQm2 dx,

if m2 ≥ 2, then we replace (B.24) to obtain

−
∑

m12=2k−1

∫
Lm1(1 + iδG̃δ)

{ ∑
n12=m2−2

Ln1Ln2 − iδ
∑

n12=m2−1

Ln1Ln2 + (1 + iδG̃δ)∂xQm2−1

}
dx

= −
∑

n123=2k−3

∫
[(−1 + iδG̃δ)∂xLn1 ]Ln2Ln3 dx+ iδ

∑
n123=2k−2

∫
[(−1 + iδG̃δ)∂xLn1 ]Ln2Ln3 dx

−
∑

n12=2k−2

∫
Ln1(1 + iδG̃δ)2∂2

xQn2 dx,

where again we see that the first contribution is of type (i), the second contribution has

only terms of type (i) and (ii) by the same argument as for the second contribution in

(B.27). We repeat this process until we reach the contribution∑
n12=2k

∫
Ln1(1 + iδG̃δ)n2−1∂n2−1

x Q1 dx

=
∑

n12=2k

∫
Ln1(1 + iδG̃δ)n2−1∂n2−1

x (−iδu2) dx

= iδ
∑

n12=2k

∫
[(1 + iδG̃δ)n1∂n1

x u][(1 + iδG̃δ)n2−1∂n2−1
x (u2)] dx
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= −iδ
∑

n12=2k−1

n2∑
`=0

c`

∫
Ln1(1 + iδG̃δ)n2(∂`xu∂

n2−`
x u) dx

for some constants c`. The terms above are of type (i) (possibly after integration by parts) if

n1, `, n2−` ≤ k−1 or max(n1, `, n2−`) ≥ k and min(n1, `, n2−`),med(n1, `, n2−`) ≤ k−2.

The remaining terms have that max(n1, `, n2 − `) ≥ k and med(n1, `, n2`) ≥ k − 1, which

implies equality since the sum of three indices is 2k− 1, i.e., we must have {n1, `, n2− `} =

{0, k − 1, k}. These terms can be written as

− iδc0

∫
L0(1 + iδG̃δ)2k−1(∂k−1

x u∂kxu) dx− iδck
∫
Lk(1 + iδG̃δ)k−1(u∂k−1

x u) dx

− iδck−1

∫
Lk−1(1 + iδG̃δ)k(u∂kxu) dx

= iδc0

2k−1∑
m1=0

∫
(−1)2k−1−m1(iδ)m1(G̃m1

δ u)(∂k−1
x u)(∂kxu) dx

+ iδck
∑

0≤m1≤k
0≤m2≤k−1

∫
(−1)k−m1(iδ)m12u(∂k−1

x u)(G̃m12
δ ∂kxu) dx

+ iδck−1

∑
0≤m1≤k−1

0≤m2≤k

∫
(−1)k−1−m1(iδ)m12u(∂kxu)(G̃m12

δ ∂k−1
x u) dx

= iδc0

∑
0≤m1≤2k−1

odd

∫
(iδ)m1(G̃m1

δ u)(∂k−1
x u)(∂kxu) dx

+ iδck
∑

0≤m1≤k
0≤m2≤k−1
m12 odd

(−1)k−m1(iδ)m12u(∂k−1
x u)(G̃m12

δ ∂kxu) dx

+ iδck−1

∑
0≤m1≤k−1

0≤m2≤k
m12 odd

∫
(−1)k−1−m1(iδ)m12u(∂kxu)(G̃m12

δ ∂k−1
x u) dx

where we see that all the terms are of type (ii), as intended. This completes the proof. �
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