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ABSTRACT. We extend B. Hassett’s theory of weighted stable pointed curves
([Has03]) to weighted stable maps. The space of stability conditions is described
explicitly, and the wall-crossing phenomenon studied. This can be considered as
a non-linear analog of the theory of stability conditions in abelian and triangulated
categories (cf. [GKR04], [Bri07], [Joy06, Joy07a, Joy07b, Joy08]).

We introduce virtual fundamental classes and thus obtain weighted Gromov-
Witten invariants. We show that by including gravitational descendants, one obtains
an L-algebra as introduced in [LM04] as a generalization of a cohomological field
theory.

§0. Introduction: Hassett’s stability conditions

0.1. Pointed curves. A nodal curve C over an algebraically closed field k is a proper
nodal reduced one-dimensional scheme of finite type over this field whose only singu-
larities are nodes. The genus of C is g := dim H1(C,OC).

Let S be a finite set. A nodal S-pointed curve C is a system (C, si | i ∈ S) where
{si} is a family of closed non-singular k-points of C, not necessarily pairwise distinct.
The element i is called the label of si.

The normalization C̃ of C is a disjoint union of smooth proper curves. Each ir-
reducible component of C̃ carries inverse images of some labeled points si and of
singular points of C. Taken together, these points are called special ones. Instead of
passing to the normalization, we may consider branches (local irreducible germs) of C
passing through labeled or singular points. They are in a natural bijection with special
points.

A nodal connected S-pointed curve (C, si) is called stable if si 6= sj for i 6= j and
any of the following three equivalent conditions hold:

(i) The automorphism group of (C, si) is finite.
(ii) Each irreducible component of C̃ of genus 0 (resp. 1) supports ≥ 3 (resp. ≥ 1)

distinct special points.
(iii) The line bundle ωC

(∑
i∈S si

)
is ample.

This definition has a straightforward extension to families of stable S-pointed curves
(cf. below). The basic result states that families of stable S-pointed curves of genus g
form (schematic points of) a connected smooth proper over Z Deligne-Mumford stack
Mg,S . It contains an open dense substack Mg,S parametrizing irreducible smooth
curves, and is its compactification.
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0.2. Weighted stability. Generalizing condition (iii), B. Hassett enriched the theory
by additional parameters generating a whole new family of stability conditions, which
lead to new moduli stacks, representing different compactifications ofMg,S .

Namely, the weight data on S is a function A : S → Q, 0 < A(i) ≤ 1. S together
with a weight data will be called a weighted set.

0.2.1. Definition ([Has03]). A connected S-pointed curve (C, si | i ∈ S) is called
weighted stable (with respect to A) if the following conditions are satisfied:

(i) KC +
∑

iA(i)si is an ample divisor, where KC is the canonical class of C.
(ii) For any subset I ⊂ S such that si pairwise coincide for i ∈ I , we have∑
i∈I A(i) ≤ 1.

Clearly, (i) implies that 2g − 2 +
∑

iA(i) > 0.
The usual stability notion corresponds to the case A(i) = 1 for all i ∈ S. Inde-

pendently of Hassett’s work, A. Losev and Yu. Manin considered in [LM00], [LM04]
some non-standard moduli spaces which turned out to correspond to special Hassett’s
stability conditions: see [Has03, section 6.4] and [Man04].

Definition 0.2.1 admits a straightforward extension to families:
Let U be a scheme, S a finite set, g ≥ 0. An S-pointed nodal curve (or family of

curves) of genus g over U consists of the data

(π : C → U ; si : U → C, i ∈ S)

where π is a flat proper morphism whose geometric fibres Ct are nodal S-pointed
curves of genus g.

This family is called A-stable iff
(i) Kπ +

∑
iA(i)si is π-relatively ample.

(ii) For any I ⊂ S such that ∩i∈Isi 6= ∅, we have
∑

i∈I A(i) ≤ 1.

0.3. Stacks of weighted stable curves Mg,A. The first main result of [Has03] is a
proof of the following fact. Fix a weighted set of labels S and a value of genus g.
Then families of weighted stable S-pointed curves of genus g form (schematic points
of) a connected smooth proper over Z Deligne-Mumford stackMg,A. The respective
coarse moduli scheme is projective over Z.

0.4. Walls and wall-crossing. The further results of Hassett on which we focus in
this introduction concern the geometry of the space of stability conditions governing
the varying geometry of boundaries ofMg,A ([Has03], sec. 5).

Put
Dg,S := {A ∈ RS | 0 < A(i) ≤ 1,

∑
s

A(i) > 2− 2g}.

Walls are non-empty intersections ofDg,n with certain hyperplanes indexed by subsets
I ⊂ S:

wI := {A ∈ Dg,S |
∑
i∈I
A(i) = 1 }.

Coarse chambers are defined as connected components of

Dg,S −
⋃

2<|I|≤n−3δg,0

wI .
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Fine chambers are connected components of

Dg,S −
⋃

2≤|I|≤n−2δg,0

wI .

B. Hassett proves the following result:

0.4.1. Proposition. (i) The moduli stack Mg,A is constant on each coarse chamber,
and differs from one coarse chamber to another.

(ii) The universal curve Cg,A is constant on each fine chamber, and differs from one
fine chamber to another.

Finally, for any point A′ belonging to a wall, there exists a point A inside a neigh-
boring coarse (resp. fine) chamber at which Mg,A (resp. Cg,A) is the same as at
A′.
0.5. Plan of this paper. Let V be a smooth projective manifold. M. Kontsevich has
defined stacks Mg,S(V ) of S-pointed stable maps (C → V ; si). The stacks Mg,S

correspond to the case V = a point. In this paper we generalize Hassett’s stability
conditions toMg,S(V ) and study the resulting stacks.

In §1, we define the precise moduli problem and construct its moduli space as a
proper Deligne-Mumford stack. We show the existence of birational contraction mor-
phism for any reduction of the weights; in particular, all moduli spaces of weighted
stable maps are birational contractions of the Kontsevich moduli space.

We establish the existence of all basic morphisms (gluing, changing the target, for-
getting sections etc.) between them in §2. Section §3 describes the chamber decom-
positions of the set of admissible weights. and exhibits the reduction morphisms for a
wall-crossing as an explicit blow-up.

In §4, we postulate a list of basic properties for virtual fundamental classes, and
discuss consequences for the weighted Gromov-Witten invariants. After introducing
the language of weighted graphs in §5, we prove a more complete graph-level list of
properties of the virtual fundamental classes in §6.

One motivation of this study was the work by Losev and Manin on painted stable
curves [LM00, LM04, Man04], which constitute a special case of weighted stable
curves. The authors introduced the notion of an L-algebra as an extension of the
notion of a cohomological field theory of [KM94].

The construction of virtual fundamental classes in the extended context of new sta-
bility conditions allows us to produce Gromov-Witten invariants based on weighted
stable maps. Including gravitational descendants, we obtain L-algebras in the sense of
[LM04]. While weighted Gromov-Witten invariants without gravitational descendants
yield nothing new (see proposition 4.2.1), the coupling to gravity in the weighted case
exhibits a new structure on quantum cohomology.

In [MM08], the authors already constructed moduli spaces of weighted stable maps
as an aide in computing the Chow ring of non-weighted stable maps with target Pn.
Independently of the present paper, Alexeev and Guy studied the behaviour of gravi-
tational descendants for changes of weights in [AG08], assuming the same definition
of virtual fundamental classes that we study in sections §4 and §6.

Another motivation is spelled down below.

0.6. Stability conditions in abelian and triangulated categories. Stability condi-
tions have been generally designed to choose a preferred compactification of various
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moduli spaces, typically of vector bundles, or more general coherent sheaves on pro-
jective manifolds. It was only recently that the attention of algebraic geometers shifted
to the families of variable stability conditions and their geometry: see [GKR04],
[Bri07], [Joy06, Joy07a, Joy07b, Joy08], and the references therein. An influential
recent paper by T. Bridgeland [Bri07] was very much stimulated by physics work on
mirror symmetry, in particular, M. Douglas’s notion of Π-stability.

In this subsection we will sketch a purely geometric context in which various no-
tions of stability in derived categories of coherent sheaves might be quite useful (see
[Ina02], [Bri02], for a version of background notions).

Namely, consider the problem treated in several papers by A. Bondal, D. Orlov
and others: what can be said about a (smooth projective) manifold V if we know its
bounded derived category of coherent sheaves D(V )?

In an important paper [BO01] it was shown that if the canonical sheaf ΩV of V or
its inverse is ample, then V can be reconstructed up to an isomorphism from D(V ).
The strategy of proof is this: the authors show how to detect (up to a shift) classes of
structure sheaves of closed points of V inD(V ), then classes of invertible sheaves, and
finally to reconstruct the canonical (or anticanonical) homogeneous coordinate ring.

This result can become dramatically wrong, when Ω±1
V is not ample, for example,

when it is trivial. In the proper Calabi-Yau case various birational models may lead to
equivalent derived categories. The complete picture in this case is far from being clear.
The proof that worked in the Fano/anti-Fano cases breaks down at the first step: the
classes of structure sheaves of closed points of V become unrecognizable.

However, the general strategy of the proof could be saved without additional as-
sumptions on ΩV if one could do the following:

a) Devise a family of appropriate stability conditions C (this is probably already
done in [Bri07]).

b) Prove that various V ’s with “the same” D(V ) could be reconstructed as moduli
spaces VC of appropriately defined C-stable point-like complexes in D(V ). The de-
formation theory of objects in derived categories is not yet a mature subject, but see
[LO06] for some recent developments.

c) obtain a sufficiently detailed description of chamber decomposition and wall-
crossing in the space of C’s.

A tentative picture of this type can be glimpsed from the Aspinwall’s sketch
[Asp03]. Locally, the wall-crossing phenomenon has been studied in [Tod08].

Notice however that it is not clear a priori what would be the net outcome of such a
reasoning. In fact, according to the recent preprint [Căl07], two Calabi-Yau threefolds
can have equivalent derived categories without being birationally equivalent.

On the positive side, however, they must have isomorphic motives: cf. [Orl05].
From this perspective, Hassett’s theory and its generalization, discussed in this pa-

per, can be perceived as a toy model for the more sophisticated case of the triangulated
categories. Moreover, various notions of stability for maps of curves into nontrivial tar-
get spaces could conceivably be combined with similar stability notions for complexes
of sheaves on the target space leading to a richer structure of quantum cohomology.

0.7. Acknowledgements. The first author would like to thank Andrew Kresch for
useful remarks on virtual fundamental classes.
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§1. Geometry of moduli spaces of weighted stable maps

1.1. The moduli problem. Let k be a field of any characteristic, V/k a projective
variety, and β ∈ CH1(V ) an effective one-dimensional class in the Chow ring. Let S
be a finite set with weights A : S → Q ∩ [0, 1], and let g ≥ 0 be any genus.

1.1.1. Definition. A nodal curve of genus g over a scheme T/k is a proper, flat mor-
phism π : C → T of finite type such that for every geometric point Spec η of T , the
fibre over Spec η is a connected curve of genus g with only nodes as singularities.

Given (g, S,A, β) as above, a prestable map of type (g,A, β) over T is a tuple
(C, π, s, f) where π : C → T is a nodal curve of genus g, s = (si)i∈S is an S-tuple of
sections si : T → C, and f is a map f : C → V with f∗([C]) = β, such that

(1) the image of any section si with positive weight A(i) > 0 lies in the smooth
locus of C/T ,

(2) for any subset I ⊂ S such that the intersection
⋂
i∈I si(T ) of the correspond-

ing sections is non-empty, we have
∑

i∈I A(i) ≤ 1.

1.1.2. Definition. A stable map of type (g,A, β) over T is a prestable map (C, π, s, f)
of the same type such thatKπ+

∑
i∈S A(i)si+3f∗(M) is π-relatively ample for some

ample divisor M on V .

We will often call such a curve (g,A)-stable when the homology class β is irrele-
vant.

1.1.3. Remark. Assume that (C, π, s, f) is a (g,A)-prestable map over T . Then it is
(g,A)-stable if and only if it is (g,A)-stable over geometric points of T .

Over an algebraically closed field, ampleness of Kπ +
∑

i∈S A(i)si + 3f∗(M)
can only fail on irreducible components C that are of genus 0 and get mapped to a
point by f . Precisely, if nC is the number of inverse images of nodal points in the
normalization, then ampleness is equivalent to nC +

∑
i : si∈C A(i) > 2.

In particular, stability can be checked with an arbitrary ample divisor M ; if all
sections have weight 1 (we will write this as A = 1S), weighted stability agrees with
the definition of a stable map by Kontsevich.

We call the data g, S,A, β admissible, if β 6= 0 or 2g − 2 +
∑

i∈S A(i) > 0, and if
β is bounded by the characteristic (cf. [BM96, Theorem 3.14]: this means that k has
characteristic zero, or that β · L < char k for some very ample line bundle L on V ).

1.1.4. Theorem. Given admissible data g, S,A, β, letMg,A(V, β) be the category of
stable maps of type (g,A, β) and their isomorphisms, with the standard structure as a
groupoid over schemes over Spec k.

This category is a proper algebraic Deligne-Mumford stack of finite type.

The property of being a stack follows from standard arguments. The geometric
properties are proven in section 1.3. Some of their proofs are simplified by the use of
the contraction morphism from the Kontsevich moduli spaceMg,S(V, β) to the space
of weighted stable maps as discussed in the next section; hence their existence will be
proved first.

1.2. Reduction morphisms for weight changes. If β 6= 0, consider the open and
dense substack

Cg,S(V, β) ⊂Mg,A(V, β)
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of maps that do not contract any irreducible component of genus zero, and for which
all marked sections are distinct. By some abuse of language we will call Cg,S(V, β)
the “configuration space”. Since any such map is stable regardless of the choice of
weights, Cg,S(V, β) does not depend onA. EveryMg,A(V, β) is a compactification of
Cg,S(V, β), and thus all the moduli stacks for differentA are birational. The following
proposition gives actual morphisms, provided that the weights are comparable. They
will be analyzed in more detail in §3.

Consider two weights A,B : S → Q ∩ [0, 1] such that A(i) ≥ B(i) for all i ∈ S;
we will just write A ≥ B from now on. Any (g,A)-stable map is obviously (g,B)-
prestable, but it may not be (g,B)-stable. However, we can stabilize the curve with
respect to B:

1.2.1. Proposition. If g, S, β,A ≥ B are as above, there is a natural reduction mor-
phism

ρB,A : Mg,A(V, β)→Mg,B(V, β).
It is surjective and birational.1 Over an algebraically closed field η, it is given by ad-
justing the weights and then successively contracting all (g,B)-unstable components.

Given three weight dataA ≥ B ≥ C, the reduction morphisms respect composition:
ρC,A = ρC,B ◦ ρB,A.

In particular, every moduli spaceMg,A(V, β) is a birational contraction of the Kont-
sevich moduli spaceMg,S(V, β) =Mg,1S (V, β).

1.3. Proofs of the geometric properties. As in the case of (g,A)-stable curves, the
following vanishing result is essential to ensure that all constructions are compatible
with base change:

1.3.1. Proposition. [Has03, Proposition 3.3] Let C be a connected nodal curve of
genus g over an algebraically closed field, D an effective divisor supported in the
smooth locus of C, and L an invertible sheaf with L ∼= ωkC(D) for k > 0.

1. If L is nef, and L 6= ωC , then L has vanishing higher cohomology.
2. If L is nef and has positive degree, then LN is basepoint free for N ≥ 2.
3. If L is ample, then LN is very ample when N ≥ 3.
4. Assume L is nef and has positive degree, and let C ′ denote the image of C

under LN with N ≥ 3. Then C ′ is a nodal curve with the same arithmetic genus as
C, obtained by collapsing the irreducible components of C on which L has degree
zero. Components on which L has positive degree are mapped birationally onto their
images.

1.3.2. Stability and geometric points. We will first show how remark 1.1.3 follows
from this proposition: Consider the line bundle

L = ωkC(k
∑
i∈S
A(i)si)⊗ f∗(O(M))3k,

where k is such that all numbers kA(i) are integral. Then by the proposition and the
base change theorems, formation of P := Proj(π∗(LN )) commutes with base change.
By definition, L is relatively ample iff the induced morphism p : C → P is defined
everywhere and an open immersion. By [SGA1, exposé I, Théorème 5.1], this is the

1an isomorphism over a scheme-theoretically dense subset
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case if and only if p is everywhere defined, radical, flat and unramified. All these
conditions can be checked on geometric fibers (for flatness, this follows from [EGA,
IV, Théorème 11.3.10], for unramifiedness from the conormal sequence).

1.3.3. Reduction morphisms. By Grothendieck’s descent theory, Mg,A(V, β) is a
stack in the étale topology, i. e. the Isom functors are sheaves and any étale descent
datum is effective. We first show the existence of the natural reduction morphisms
ρB,A as maps between these abstract stacks. This will enable us to use the results of
[BM96] onMg,S(V, β) to shorten our proofs.

Using the vanishing result 1.3.1, the proof of proposition 1.2.1 is completely anal-
ogous to that of theorem 4.1 in [Has03]: Let Bλ = λA + (1 − λ)B, and let
1 = λ0 > λ1 > · · · > λN = 0 be a finite set such that for all λ 6∈ {λ0, . . . , λN}, the
following condition holds:

• There is no subset I ⊂ S such that
∑

i∈I Bλ(i) = 1 and
∑

i∈I B1(i) 6= 1. (*)
We will construct ρB,A as the composition ρB,A = ρB(λN ),B(λN−1) ◦ · · · ◦

ρB(λ1),B(λ0). This means we can assume that the condition (*) holds for all 0 < λ < 1.
Fix an ample divisor M on V , and fix a natural number k so that kB(i) is an integer

for all i. Let L be the invertible sheaf L := ωkC(k
∑

i∈S B(i)si) ⊗ f∗(M)3 for any
(g,A)-stable map f : C → V over T . Due to condition (*), it is nef; also it has positive
degree. Let C ′ be the image of C under the map induced by LN for some N ≥ 3, i.e.
C ′ = Proj R where R is the graded sheaf of rings on T given by Rl = π∗((LN )l).
Let t : C → C ′ be the natural map, and let s′i = t ◦ si. By the same arguments as in
the non-weighted case, C ′ is a nodal curve of genus g, and s′i lie in the smooth locus
whenever B(i) > 0. By proposition 1.3.1, L has vanishing higher cohomology; so the
formation of π∗((LN )l) and hence that of C ′ commutes with base change. Over an
algebraically closed field, this morphism agrees with the description via contraction of
unstable components. In particular, C ′ is (b,B)-prestable.

The original f factors via the induced morphism f ′ : C ′ → V . Let L′ be the line
bundle L′ := ωkC′(k

∑
i∈S B(i)si) ⊗ f ′∗(M)3. Then t∗L = L′; hence L′ is ample

and (C ′, π′, s′, f ′) is a (g,B)-stable map. The induced morphism T → Mg,B(V, β)
commutes with base change and thus yields the map ρB,A between stacks as claimed.

To prove surjectivity, it is sufficient to show that every (g,B)-stable map (C, s, f)
over an algebraically closed fieldK is the image of some (g,A)-stable map (C ′, s′, f ′)
over K. It is obvious how to construct C ′: If I ⊂ S is a subset of the labels such that
condition (2) of definition 1.1.1 is violated for the weight data A, i.e. the marked
points si, i ∈ I coincide and

∑
i∈I A(i) > 1, we can attach a copy of P1(K) at this

point, move the marked points to arbitrary but different points on P1, and extend the
map constantly along P1.

Birationality (for β 6= 0) follows from the fact that ρB,A is an isomorphism over the
configuration space Cg,S(V, β), which is a dense and open subset. The compatibility
with composition follows immediately once we have shown the the moduli spaces are
separate: the two morphisms ρC,A and ρC,B ◦ ρB,A agree on the configuration space.

1.3.4. Proposition. The diagonal ∆: Mg,A(V, β) → Mg,A(V, β) ×Mg,A(V, β) is
representable, separated and finite.

Let (C1, π1, s1, f1) and (C2, π2, s2, f2) be two families of (g,A)-stable maps to
V over a scheme T . We have to show that Isom((C1, π1, s1, f1), (C2, π2, s2, f2)) is
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represented by a scheme finite and separated over T . Since V is projective and β is
bounded by the characteristic, we can use exactly the same argument as in the proof
of [BM96, Lemma 4.2]: one shows that étale locally on T , one can extend the set
of labels to S ∪ S′ and find additional S′-tuples of sections (s1)′ and (s2)′, such that
(C1, π1, s1 ∪ s′1) and (C2, π2, s2 ∪ s′2) are (g,A∪ 1S′)-stable curves, and that there is
a natural closed immersion

Isom((C1, π1, s1, f1), (C2, π2, s2, f2))→ Isom((C1, π1, (s1, s
′
1)), (C2, π2, (s2, s

′
2))).

SineMg,A∪1S′ has a representable, separated and finite diagonal by [Has03], the claim
of the proposition follows.

1.3.5. Existence as Deligne-Mumford stacks. In particular, the diagonal is proper
and thus the moduli stack separated. AsMg,1S (V, β) is proper and the reduction mor-
phism ρA,1S : Mg,S(V, β)→Mg,A(V, β) is surjective,Mg,A(V, β) is also proper.

Finally, the existence of a flat covering of finite type follows with almost the same
argument as the one in [BM96], following Proposition 4.7 there. However, some
changes are required, so we spell it out in detail: We write An = A ∪ 1{1,...,n} for
the weight data obtained from A by adding n weights of 1. LetMo

g,An(V, β) be the
open substack ofMg,An(V, β) where the additional sections of weight one lie in the
smooth locus of Cg,A(V, β) and away from the existing sections (in other words, the
open substack where the map is already (g,A)-stable after forgetting the additional
sections). The obvious forgetful map

φ0
A,An : Mo

g,An(V, β)→Mg,A(V, β)

is smooth and in particular flat. Let U0
g,An(V, β) be the open substack ofMo

g,An(V, β)
where the curve is already (g,An)-stable as a curve. Then for high enough n,
the restriction φoA,An |U0

g,An (V,β) to this substack is surjective. On the other hand,

U0
g,An(V, β) is an open substack of the relative morphism space MorMg,An

(V, β)
(parametrizing maps T → Mg,An together with a map of the pull-back of the uni-
versal curve Cg,An to V ). So a flat presentation of the morphism space induces one for
Mg,A(V, β).

§2. Elementary morphisms

2.1. Gluing morphisms. As in the non-weighted case, we can glue curves at marked
points, but to guarantee that the resulting curves are prestable, we have to assume that
both labels have weight 1:

Let g1, S1,A1, β1 and g2, S2,A2, β2 be weight data, such that the extensions gi, Si∪
{0},Ai ∪ {0 7→ 1}, βi by an additional label of weight 1 are admissible. Denote by
ev0 be the evaluation morphisms ev0 : Mgi,Ai∪{1}(V, βi) → V given by evaluating
the additional section: ev0 = f ◦ s0. Similarly, let g, S,A, β be weight data such that
g, S ∪ {0, 1},A∪ {1, 1}, β is admissible, and let ev0, ev1 be the additional evaluation
morphisms.

2.1.1. Proposition. There are natural gluing morphisms(
Mg1,A1∪{1}(V, β1)×Mg2,A2∪{1}(V, β2)

)
×V×V V →Mg1+g2,A1∪A2(V, β1 + β2)
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and

Mg,A∪{1,1}(V, β)×V×V V →Mg+1,A(V, β).

The product over V × V is taken via the morphism (ev0, ev0) respectively (ev0, ev1)
on the left, and the diagonal ∆: V → V × V on the right.

There is nothing new to prove here, except to note that the weight of 1 guarantees
that the marked sections (of positive weight) do not meet the additional node on the
glued curve.

2.2. Proposition. Let µ : V →W be a morphism, and (g, S,A, β) be admissible data
for V , such that (g, S,A, µ∗(β)) is also admissible. Then there is a natural push-
forward

Mg,A(V, β)→Mg,A(W,µ∗(β))
that is obtained by composing the maps with µ, followed by stabilization.

One could adapt the proof of [BM96] to the weighted case; instead, we give a proof
analogous to the one in section 1.3.3.

Let f : C → V be the universal map over Mg,A(V, β), let f ′ = µ ◦ f be the
induced map to W , and let M ′ be an ample divisor on V ′. By the assumptions, the
divisorD′ = Kπ+

∑
i∈S A(i)si+3f ′∗M ′ has positive degree; however, it need not be

nef. Hence we considerD = Kπ+
∑

i∈S A(i)si+3f∗M andD(λ) = λD+(1−λ)D′

for 0 ≤ λ ≤ 1. Let {λ1, . . . , λN} be the set of λ for which the degree of D(λ) is zero
on any irreducible component of C, and let kr, r = 1 . . . N be an integer such that
krλr and krA(i), i ∈ S is integer.

Then L1 = ωk1(k1
∑

i∈S A(i)si + k1(3f∗Mλ1 + (1 − λ1)3f ′∗M ′)) is a nef
invertible sheaf on C for which proposition 1.3.1 applies. Hence C1 defined by
C1 := Proj R1 and (R1)l = π∗(L3l

1 ) is again a flat nodal curve of genus g, contract-
ing all components of C on which L1 fails to be ample, and f ′ factors via a unique
morphism f1 : C1 → W . We proceed inductively to obtain fN : CN → W on which
D′ is ample; this induces the map of moduli stacks. Note that C → CN → W is the
universal factorization of f ′ such that fN : CN →W is a (g,A)-stable map.

2.3. Proposition. Given admissible weight data (g, S,A, β), let (g, S∪{∗},A∪{a} =
A
∐
{∗ 7→ a}, β) be the weight data obtained by adding a label {∗} of arbitrary

weight a ∈ Q ∩ [0, 1]. There is a natural forgetful map

φA,A∪{a} : Mg,A∪{a}(V, β)→Mg,A(V, β)

obtained by forgetting the additional section and stabilization. If a = 0, then φA,A∪{0}
is the universal curve overMg,A(V, β).

We can construct this map as the composition

φA,A∪{0} ◦ ρA∪{0},A∪{a} : Mg,A∪{a}(V, β)→Mg,A∪{0}(V, β)→Mg,A(V, β).

The second morphism φA,A∪{0} is the naive forgetful morphism, as a map is (g,A ∪
{0})-stable if and only if it is (g,A)-stable.

2.4. Proposition. Let S′
∐
S′′ = S be a partition of the set of labels such that

A(S′′) =
∑

i∈S′′ A(i) ≤ 1. Then there is a natural map

Mg,A|S′∪{A(S′′)}(V, β)→Mg,A(V, β).
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It is given by setting si = s∗ for all i ∈ S′. It identifiesMg,A|S′∪{∗7→A(S′′)}(V, β)
with the locus ofMg,A(V, β) where all si, i ∈ S′′ agree.

2.5. Weighted marked graphs. A graph was defined in [BM96] as a quadruple τ =
(Vτ , Fτ , ∂τ , jτ ) of a set of vertices Vτ , a set of flags Fτ , a morphism ∂τ : Fτ → Vτ and
an involution jτ : Fτ → Fτ . We think of a graph in terms of its geometric realization:
it is obtained by identifying in the disjoint union

∐
f∈Fτ [0, 1] the points 0 for all flags

f attached to the same vertex via v = ∂τ (f), and the points 1 for all orbits of jτ . A
flag f with jτ (f) = f is called a tail of the vertex ∂τ (f), whereas a pair {f, jτ (f)} for
f 6= jτ (f) is called an edge, connecting the (not necessarily distinct) vertices ∂τ (f)
and ∂τ (jτ (f)).

Given a projective variety V , a weighted modular V -graph is a graph τ together with
a genus g : Vτ → Z≥0, a weight data A : Fτ → Q ∩ [0, 1] such that A(f) = 1 for all
flags that are part of an edge, and a marking β : Vτ → H+

2 (V ). To any weighted stable
map we can associate its dual graph: a vertex for every irreducible component, an edge
for every node, and a tail for every marked section. Conversely, to every weighted
modular graph we can associate the moduli space of tuples of weighted stable maps
fv : Cv → V of type (g(v), Sv = {f ∈ Fτ : ∂(f) = v},A|Sv , β(v)), such that for
every edge {f, f ′ = jτ (f)} connecting the vertices v = ∂τ (f) and v′ = ∂τ (f), the
corresponding evaluation morphisms are identical: fv ◦ sf = fv′ ◦ sf ′ . Via gluing, this
gives a single weighted stable map f : C → V ; if all Cv are smooth, its dual graph
will give back τ .

The moduli space Mg,A(V, β) corresponds to the one-vertex graphs with the set
S of tails. The morphisms constructed in this section correspond to elementary mor-
phisms between graphs with one and two vertices. Extending this set of morphisms to
higher codimension boundary strata, indexed by graphs with more vertices, naturally
leads to a category of weighted stable marked graphs. We will adopt this viewpoint in
§5, and show that we get a functorM from the graph category to Deligne-Mumford
stacks over k.

§3. Birational behaviour under weight changes

For this section, we will fix g, S, V, β, and analyze more systematically the reduc-
tion morphisms ρA,B of proposition 1.2.1 for varying weight data A,B. Assume that
g, V, β are such thatMg,A(V, β) is not empty.

3.1. Exceptional locus and reduction morphism as blow-up.

3.1.1. Proposition. [Has03, Proposition 4.5] Assume we have weight dataA ≥ B > 0.
The reduction morphism ρB,A contracts the boundary divisorsDI,J given as the image
of the gluing morphism

M0,A|I∪{1}(V, 0)×V Mg,A|J∪{1}(V, β)→Mg,A(V, β)

for all partitions I
∐
J = S of S with∑
i∈I
A(i) > 1 and bI :=

∑
i∈I
B(i) ≤ 1.

There is a factorization of ρB,A|DI,J via

M0,A|I∪1(V, 0)×V Mg,A|J∪1(V, β)→Mg,A|J∪{1}(V, β)→Mg,A|J∪{bI}(V, β).
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We may assume that there is just one such I and that bI = 1. The stabilization
contracts components on which ωkC(k

∑
i∈S B(i)si)⊗f∗(M)3 has degree zero. Such a

component can only be a smooth irreducible component of genuse zero that is mapped
to a point, meets the other components in a single node and contains exactly those
marked sections si with i ∈ I .

In particular, the exceptional locus of ρB,A is given by allDI,J for partitions I∩J =
S as above with the additional condition |I| > 2. When all sets I ⊂ S such that∑

i∈I A(i) > 1 and
∑

i∈I B(i) ≤ 1 satisfy |I| = 2, then ρB,A is an isomorphism.

3.1.2. Remark. Assume that forA > B > 0, there is exactly one partition I
∐
J = S

of S as in the proposition. Then ρB,A is the blow-up ofMg,B(V, β) along the substack
CIJ ∼=Mg,B|J∪{bI}(V, β) of weighted stable curves where all section si for i ∈ I are
identical.

We first show that there is a natural map fromMg,A(V, β) to the blow-up: The divi-
sorDI,J is the scheme-theoretic inverse image ofCIJ . Further, it is a Cartier divisor: if
C is the universal curve overMg,A(V, β), and C ′ the pull-back of the universal curve
overMg,B(V, β), then DI,J is the zero locus of the natural map s∗i0ΩC → s∗i0ΩC′ of
the pull-backs of the relative cotangent sheaves for some i0 ∈ I . By the universal prop-
erty of blow-ups, this shows that ρB,A factors via the blow-up ρ′ : M →Mg,B(V, β)
ofMg,B(V, β) at CIJ .

We now construct the inverse map. Let C ′ be the pull-back of the universal curve
along ρ′, letE be the exceptional divisor of ρ′, and write ρ′−1si : M → C ′ for the pull-
back of the sections si overMg,B(V, β). Let C0 be the common image (ρ′−1si)(E)
of the exceptional divisor for any i ∈ I , and let C be blow-up of C ′ at C0. The center
C0 ⊂ C ′ is a codimension two regular embedding, and embeds as a Cartier divisor in
both (ρ′−1si)(M) for any i ∈ I , and in the restriction of C ′ to E. Thus the fibers of C
over E are obtained from that of the universal curve overMg,B(V, β) by attaching a
projective line at the marked point given by any si for i ∈ I , and every section ρ′−1si
lifts to a section si : M → C via the proper transform of (ρ′−1si)(M).

Over E, the image is contained in the attached projective line, away from the node,
as si(M) and the fibre over E meet transversely in C ′. Also, since the images of
si, i ∈ I intersect transversely in the universal curve over Mg,B(V, β), any tangent
vector at a point of C0 tangent to all the images of (ρ′−1si)(M), i ∈ I is already
tangent to C0; thus the sections si : M → C cannot all be mapped to the same point
of the projective line.

Hence, with the induced map to V , we have constructed a (g,A)-stable map, and
so a map M → Mg,A(V, β); it is an inverse to the map in the opposite direction
constructed above, as this is true over Cg,S(V, β) and both stacks are separated.

3.1.3. Proposition. Let A,B as in proposition 3.1.1, except we allow some weights of
B to be zero. Let i ∈ S be a label with A(i) > B(i) = 0. Then ρA,B additionally
contracts the boundary components C(g1,0,g2),(I1,I0,I2),(β1,0,β2) which are defined as
the image of the gluing morphisms

Mg1,A|I1∪{1}(V, β1)×V M0,AI0∪{i}∪{1,1}
(V, 0)×V Mg2,A|I2∪{1}(V, β2)

→Mg,A(V, β)
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for all g1 + g2 = g, β1 + β2 = β and disjoint partitions I1 ∪ I0 ∪ {i} ∪ I2 = S such
that A(j) = 0 for j ∈ I0.

The restriction ρB,A factors via the projection of the second component to a point.

In other words, this is the boundary component of singular curves such that the
section si is contained in a node after stabilization.

3.2. Chamber decomposition. We now assume β 6= 0, and consider the set of pos-
itive weights Dn = (0, 1]S ⊂ RS . The walls Wc and Wf of the coarse and fine
chamber decomposition, respectively, are given by:2

Wc =
{∑

i∈I
A(i) = 1

∣∣∣ I ⊂ S, 2 < |I|}
Wf =

{∑
i∈I
A(i) = 1

∣∣∣ I ⊂ S, 2 ≤ |I|}
Coarse and fine chambers are connected component of the complements Dn \Wc and
Dn \Wf , respectively.

3.2.1. Proposition. (cf. [Has03, Proposition 5.1]) The coarse chamber decomposi-
tion is the coarsest decomposition such thatMg,A(V, β) is constant in each chamber.
The fine chamber decomposition is the coarsest decomposition such that the universal
curve Cg,A(V, β) is constant in each chamber.

3.2.2. Corollary. Let A be positive weight data in the interior of a fine open chamber.
Then for small ε > 0, the forgetful morphism φA,A∪{ε} identifiesMg,A∪{ε}(V, β) with
the universal curve Cg,A(V, β)→Mg,A(V, β).

This holds by definition for ε = 0, and it follows easily from the earlier propositions
that ρA∪{0},A∪{ε} is an isomorphism.

§4. Virtual fundamental classes and Gromov-Witten invariants

From now on, we assume addtionally that the target V is smooth.

4.1. Expected properties. The crucial step in the construction of Gromov-Witten in-
variants is the construction of virtual fundamental classes of expected dimension:

[Mg,A(V, β)]virt ∈ A(1−g)(dimV−3)−KV ·β+|S|Mg,A(V, β)

We will provide now a basic list of properties that such a construction should satisfy,
and proceed to draw some conclusions about Gromov-Witten invariants in the remain-
der of the section.

(1) Mapping to a point. If β = 0, then

[Mg,A(V, 0)]virt = cg dimV (R1π∗f
∗TV )

(2) Forgetting a tail. Assume A and ε are as in corollary 3.2.2, so that φA,A∪ε is
the universal curve overMg,A(V, β). In particular, this implies that φA,A∪{ε}
is flat, and thus defines a pull-back in intersection theory. We require

φA,A∪ε(V, β)∗[Mg,A(V, β)]virt = [Mg,A∪ε(V, β)]virt.

2The conditions |S| < n − 2 and |S| ≤ n − 2 for the coarse and fine chamber decompositions,
respectively, in [Has03, section 5] are correct only when g = 0 and don’t apply in our case as we
assumed β 6= 0.
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(3) Combining tails. Assume we are in the situation of proposition 2.4. Since all
sections lie in the smooth locus of the curve, µS/S′ is a regular embedding,
and we require that

µ!
S/S′ [Mg,A(V, β)]virt = [Mg,A|S′∪{A(S′′)}(V, β)]virt.

(4) Gluing. We fix g1, S1,A1, g2, S2,A2 and some β ∈ H+
2 (V ). Set g = g1 + g2

and A = A1 ∪ A2. Consider the gluing morphisms

µβ1,β2 : Mg1,A1∪{1}(V, β1)×Mg2,A2∪{1}(V, β2)×V×V V

→Mg,A(V, β)
of proposition 2.1.1 for all β1, β2 with β1 +β2 = β. The union of their images
is the boundary component inMg,A(V, β) given as the pull-back

M(g1,A1)|(g2,A2)(V, β) //

��

Mg,A(V, β)

��
Mg1,A1∪{1} ×Mg2,A2∪{1}

µ //Mg,A

Since the moduli spaces of weighted stable curves are smooth, µ is a l.c.i.
morphism and defines a pull-back µ![Mg,A(V, β)]virt. On the other hand, via
the diagonal ∆: V → V × V , we can pull-back the virtual fundamental class
on the productMg1,A1∪{1}(V, β1) ×Mg2,A2∪{1}(V, β2) to the fibre product
that is the source of µβ1,β2 . We require∑

β1+β2=β

µβ1,β1∗∆
!
(
[Mg1,A1∪{1}(V, β1)]virt × [Mg2,A2∪{1}(V, β2)]virt

)
= µ![Mg,A(V, β)]virt.

(5) Kontsevich-stable maps. If all weights are 1, then [Mg,A(V, β)]virt agrees
with the definition of virtual fundamental classes of [BF97, Beh97].

(6) Reducing weights. Given two set of weights A > B, we require compatibility
with the reduction morphism ρB,A:

ρB,A∗[Mg,A(V, β)]virt = [Mg,A(V, β)]virt

Evidently, properties (1), (2) and (4) are direct generalizations of properties satisfied
by the virtual fundamental classes of the non-weighted moduli spaces, while (3) and
(6) are new.

4.1.1. Theorem. There is a system of virtual fundamental classes satisfying all of the
above properties.

While the Behrend-Fantechi construction can be applied to our situation and pro-
vides virtual fundamental classes, we instead use (5) and (6) as a definition, and prove
that these classes automatically satisfy the desired properties.

We postpone the proof of the above properties to §6, after having generalized them
to a bigger class of morphisms labelled by a category of weighted stable graphs. In
the remainder of the section we will instead proceed to give some consequences of
theorem 4.1.1.
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4.2. Gromov-Witten invariants. As in the non-weighted case, one defines the n-
point Gromov-Witten invariants of V depending on weightsA : {1, . . . , n} → [0, 1]∩
Q via

〈 〉g,A,β : H∗(V )⊗n → C

〈γ1 ⊗ · · · ⊗ γn〉g,A,β =
∫

[Mg,A(V,β)]virt

ev∗1(γ1) ∪ · · · ∪ ev∗n(γn)

and Gromov-Witten invariants including gravitational descendants via

〈τk1
1 γ1 · · · τknn γn〉g,A,β =

∫
[Mg,A(V,β)]virt

ψk1
1 ev∗1(γ1) ∪ · · · ∪ ψknn ev∗n(γn)

where ψi is the tautological class associated to the section si: ψi = c1(s∗iΩC) where
ΩC is the relative cotangent bundle of the universal curve C overMg,A(V, β).

4.2.1. Proposition. Gromov-Witten invariants without gravitational descendants do
not depend on the choice of weights A.

It is enough to prove this for two weights A > B. The evaluation morphisms
evi : Mg,A(V, β) → V factor via the reduction morphism ρB,A. Hence the claim
follows from property (6) and the projection formula.

4.3. Extended modular operad. Let Am,n be the weight data consisting of m
weights of one, and n weights of ε ≤ 1

n . The moduli spaces Mg,Am,n were called
Lg,m,n in [LM04] and studied more closely in [Man04]. Markings with weight one
and ε are white and black points in the language of [LM04], respectively: white points
may not coincide with any other point, whereas any number of black points are al-
lowed to coincide. Similarly, we write Lg,m,n(V, β) for the moduli spaces of weighted
stable maps Lg,m,n(V, β) =Mg,Am,n(V, β).

In [LM04], the notion of an L-algebra was introduced by a combinatorial descrip-
tion. It is an extension of the graph-level description of the genus zero-part of a coho-
mological field theory in the sense of [KM94]. By the results of [Man04], the ”econ-
omy class description“ of [LM04, section 4.2.2] can be translated into the following
geometric description:

Let (T ;F, (, )) be a triple consisting of two Z2-graded Q-vector spaces T, F , where
the latter is equipped with a (super)symmetric non-degenerate scalar product (, ). An
L-algebra on (T ;F, (, )) over a Q-algebra R can be given as a collection of maps

I0;m,n : T⊗n ⊗ F⊗m → H∗(L0;m,n)⊗Q R

being compatible with gluing of black points and the trace on F .
We obtain the L-algebra of quantum cohomology of V including gravitational de-

scendants as follows: Let F = H∗(V,Q), equipped with the Poincaré pairing, and let
T =

⊕
k≥0 z

kF . We denote by evW1 , . . . , evWm and evB1 , . . . , evBn the evaluation maps
L0;m,n(V, β) → V induced by the marked sections of weight one and ε, respectively,
and by π : L0;m,n(V, β) → L0;m,n the forgetful map. Let ψi, i = 1 . . . n be the tauto-
logical classes associated to the section sBi of weight ε. Let Q[[q]] be the Novikov ring
of V , i.e. the formal completion of the polynomial ring over the semigroup of effective
classes in H2(V )/torsion.
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Then we define I0;m,n as

I0;m,n

(
zk1γ1 ⊗ · · · ⊗ zknγn ⊗ δ1 ⊗ · · · ⊗ δm

)
=

∑
β∈H+

2 (V )

qβP

(
π∗

(
n∏
i=1

(evBi )∗γiψkii

n∏
i=1

(evWi )∗δi ∩ [L0,m,n(V, β)]virt

))

where π : L0;m,n(V, β) → L0;m,n is the forgetful map, and P(s) ∈ H∗L0;m,n is the
Poincaré dual of s ∈ H∗L0;m,n.

4.3.1. Theorem. The above definition of I0;m,n yields a cyclic L-algebra (in the sense
of the economy class description in [LM04, section 4.2.2]).

The only thing to check is the compatibility with gluing, in the formal sense of
[LM04, diagram (4.8)]. This holds due to property (4) of section 4.1.

4.4. Comments. In [LM04], it was shown that the datum of an L-algebra is equiva-
lent to a geometric structure, a solution of the so-called commutativity equation. How-
ever, the structure of an L-algebra does not capture the complete structure we have
available:

(1) By property (6), the inclusion F = z0F ⊂ T is compatible with the reduction
morphisms L0,m,n → L0,m−1,n+1 in the obvious sense.

(2) Relating the gravitational descendants to intersection numbers in L0;m,n by an
analysis analogous to the one in [KM98] will, of course, lead to many more
relations among the correlators.

One might hope that these can be integrated in the geometric picture of [LM04].
As a side remark, it is worth pointing out that the tautological classes ψi, i =

1 . . . n in L0;m,n(V, β) are compatible with pull-back along the forgetful morphism
L0;m,n+1(V, β); this is not true in the non-weighted case.

§5. Graph-language

5.1. Weighted marked graphs. The elementary morphisms described in §2 generate
a larger system of morphisms. They are best modelled over a category of weighted
marked graphs; this category generalizes the category of marked graphs introduced in
[BM96] by introducing weights of tails. We follow [BM96, section 1] closely.

We recall from section 2.5 the definition of a graph:

5.1.1. Definition. [BM96, Definition 1.1] A graph τ is a quadruple (Fτ , Vτ , jτ , ∂τ )
of a finite set Vτ of vertices, a finite set Fτ of flags, an involution jτ : Fτ → Fτ
and a map ∂τ : Fτ → Vτ . We call Sτ = {f ∈ Fτ |jτf = f} the set of tails, and
Eτ = {{f, jτf}|f ∈ Fτ and jτf 6= f} the set of edges.

5.1.2. Definition. A weighted modular graph is a graph τ = (Fτ , Vτ , jτ , ∂τ ) endowed
with two maps gτ : Vτ → Z≥0 and Aτ : Fτ → Q ∩ (0, 1] such that Aτ (f) = 1 for all
flags f that are part of an edge, i.e. for which jτ (f) 6= f .

The number gτ (v) is called the genus of a vertex, and Aτ (f) the weight of a flag.
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5.1.3. Definition. Given a semigroup A with indecomposable zero, a weighted A-
graph (τ, α) is a weighted modular graph τ with a map α : Vτ → A. A weighted
marked graph is a pair (A, (τ, α)) where A is a semigroup with indecomposable zero,
and (τ, α) is an A-graph.

We will often omit α from the notation and call τ an A-graph.
Morphisms in the category of weighted marked graphs are generated by two dif-

ferent types, combinatorial morphisms and contractions. More precisely, since the
associated geometric morphisms are contravariant with respect to the combinatorial
morphisms, and covariant with respect to contractions, the morphisms will be gener-
ated by contractions and formal inverses of the combinatorial morphisms.

Only condition (2) of the definition of a combinatorial morphism of modular graphs
([BM96, Definition 1.7]) needs to be adapted to our situation:

5.1.4. Definition. Let (σ, α) and (τ, β) be weighted A-graphs. A combinatorial mor-
phism a : (σ, α)→ (τ, β) is a pair of maps aF : Fσ → Fτ and aV : Vσ → Vτ , satisfy-
ing the following conditions:

(1) The morphisms commute with ∂, i.e. we have aV ◦∂σ = ∂τ ◦aF . In particular,
for any v ∈ Vσ and w = aV (v) ∈ Vτ , we get an induced map aV,v : Fσ(v)→
Fτ (w).

(2) Consider the above map aV,v. Then for any f ∈ Fτ (w), the inequality∑
f ′∈Fσ(v) : aV,v(f ′)=f

Aσ(f ′) ≤ Aτ (f)

is satisfied.
(3) Let {f, f̄} be an edge of σ, i.e. f ∈ Fσ, f̄ = jσ(f) 6= f . Then there exist n ≥

1 and n edges {f1, f̄1}, . . . , {fn, f̄n} of τ such that vi := ∂τ (f̄i) = ∂τ (fi+1)
and β(vi) = 0 for all 1 ≤ i < n.

(4) For every v ∈ Vσ we have α(v) = β(aV (v)).
(5) For every v ∈ Vσ we have g(v) = g(aV (v)).

A combinatorial morphism of weighted marked graphs (B, σ, β) → (A, τ, α) is a
pair (ξ, a) where ξ : A → B is a homomorphism of semigroups, and a : (σ, β) →
(τ, ξ ◦ α) is a combinatorial morphism of B-graphs.

Note that we do not require that jσ and jτ commute with aF and aV ; in particular, σ
could be obtained from τ by cutting an edge into two tails. Other examples of combina-
torial morphisms are morphisms adding tails or adding connected components. There
are essentially two new types of morphisms compared to the non-weighted case:

(1) (Combining tails.) Consider a subset {t1, . . . , tn} ∈ Fσ(v) of tails attached to
a vertex v, and assume that its sum of weights satisfies

∑
iAσ(ti) ≤ 1. Then

we can form a new graph τ by replacing the tails {t1, . . . , tn} with a single tail
t̄ of weight Aτ (t̄) :=

∑
iAσ(ti).

(2) (Increasing the weights.) This means that (τ, β) are identical to (σ, α) as mod-
ular graphs, but the weight data Aτ satisfies Aτ ≥ Aσ.

We refer to [BM96, Definition 1.3] for the definition of a contraction φ : τ → σ of
graphs. It is obtained by collapsing a subgraph consisting entirely of edges (and the
adjoining vertices) to one vertex for every connected component of the subgraph. It is
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given by an injective map φF : Fσ → Fτ (which is bijective on tails) and a surjective
map φV : Vτ → Vσ.

5.1.5. Definition. A contraction of weighted marked graphs φ : (τ, β) → (σ, α) is a
contraction φ : τ → σ of graphs such that

(1) α(v) =
∑

w∈φ−1
V (v) α(w) for all v ∈ Vσ,

(2) g(v) =
∑

w∈φ−1
V (v) α(w)+H1(|τv|) for all v ∈ Vσ and τv being the subgraph

of τ being collapsed onto v, and
(3) Aτ (φF (f)) = Aσ(f) for all tails f ∈ Sσ.

5.1.6. Definition. A vertex v of a weighted modular A-graph (τ, α) is called stable
if α(v) 6= 0 or 2g(v) − 2 +

∑
f∈Fτ : ∂τ (f)=vAτ (f) > 0. A graph is stable if all its

vertices are stable.

5.1.7. Remark. Let (τ, α) be a weighted A-graph. There is a unique weighted sta-
ble A-graph (τ s, αs) and a combinatorial morphism (τ s, αs) → (τ, α), such that
every combinatorial morphism (σ, β) → (τ, α) from a stable A-graph (σ, β) factors
uniquely through (τ s, αs).

The graph (τ s, αs) is called the stabilization of (τ, α). Similarly, there is a stabi-
lization of weighted modular graphs. The stabilization τ s of the underlying modular
graph τ of an A-graph (τ, α) is also called the absolute stabilization.

The stabilization (τ s, αs) can be constructed via a sequence of steps as below, fol-
lowing [BM96, Proposition 1.13]:

(1) If there is a connected component of τ that has only one vertex, and this vertex
is unstable, we remove this connected component from τ .

(2) If there is an unstable vertex v attached to one edge {f0, f̄0 = jτ (f0)} with
∂τ (f0) = v, ∂τ (f̄0) 6= v and n ≥ 0 tails f1, . . . , fn, we remove the vertex v
and the flags f0, . . . , fn from the graph and modify j such that j(f̄0) = f̄0, i.e.
the edge becomes a tail at the vertex ∂τ (f̄0) with weight one.

(3) If there is an unstable vertex v attached to two edges {f1, f̄1 = jτ (f1)} and
{f2, f̄2 = jτ (f2)} with ∂τ (fi) = v and ∂τ (f̄i) 6= v, we remove v and the tails
fi from the graph, and modify j such that j(f̄1) = f̄2. In other words, we
combine the tails f̄1, f̄2 to form a new edge.

At every step, any combinatorial morphism (σ, β) → (τ, α), where (σ, β) is a stable
V -graph, factors uniquely through the new graph, and the claim of the remark follows
by induction on the number of unstable vertices.

5.1.8. Definition. Let (A, τ) and (B, σ) be weighted stable marked graphs. A mor-
phism (A, τ)→ (B, σ) is quadruple (ξ, a, τ ′, φ) where ξ : A→ B is a homomorphism
of semigroups, τ ′ is a weighted stable B-graph, a : τ ′ → τ makes (ξ, a) into a com-
binatorial morphism of weighted marked graphs, and φ : τ ′ → σ is a contraction of
B-graphs.

B τ ′
φ //

a

��

σ

A

ξ

OO

τ
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We think of this morphism as the composition of φ with the inverse of (ξ, a), except
that (ξ, a) itself is not a morphism in the category of weighted stable marked graphs.
As explained earlier, this construction is motivated by the fact that the geometric mor-
phisms are covariant with respect to contractions, but contravariant with respect to
combinatorial morphisms.

To define compositions, we need the definition of stable pullback; the construc-
tion of [BM96] applies with minor changes. Given a combinatorial morphism of
weighted marked graphs (a, ξ) : (B, ρ) → (A, τ) and a contraction of weighted A-
graphs φ : σ → τ , it canonically constructs a weighted stable B-graph π, together
with a contraction of B-graphs ψ : π → ρ and a combinatorial morphism of weighted
marked graphs b : π → σ:

B π
ψ //

b

��

ρ

a

��
A

ξ

OO

σ
φ // τ

We call π the stable pullback of ρ under φ. We will describe how to obtain π from ρ,
assuming that φ is an elementary contraction (i.e. it contracts a single edge).

If φ contracts a loop adjacent to a vertex v ∈ Vτ , we simply reattach a loop at every
preimage v′ ∈ a−1

V (v) (and decrease its genus by one). If φ contracts an edge {f, f̄}
connecting the vertices v1 = ∂σ(f), v2 = ∂σ(f̄), let v = φV (v1) = φV (v2) their
common image in τ , and let v′ ∈ a−1

V be any vertex in the preimage of v in ρ. There
can be two cases:

(1) Replace v′ by two vertices v′1, v
′
2 connected by an edge {f ′, f̄ ′}; their class and

genus are determined by the corresponding vertex in σ: απ(v′i) = ξ(ασ(vi))
and gπ(v′i) = gσ(vi). A flag f1 of v is moved to v′1 or v′2 according to its
position in σ, i.e. according to whether φF (aF (f1)) is attached to v1 or v2; its
weight remains unchanged. Now if either v′1 or v′2 is unstable, we undo this
construction and skip to case (2). Otherwise, it remains to define the maps:
ψ is the map contracting {f ′, f̄ ′}; the combinatorial morphism b is given by
sending v′i to vi, and by sending a flag f1 6= f ′ of v′i to

(
φF ◦ a ◦ (ψF )−1

)
(f1).

Other than that, b agrees with a.
(2) Assume in the above construction, the vertex v′2 was unstable. We leave ρ

unchanged, and let bV send v′ to v1. Let f1 be a flag of v′; we set bF (f1) =
φF (aV (f1)) if that is a flag attached to v1, otherwise bF (f1) = f , where f
defined above is part of the edge connection v1 and v2.

The same construction is iteratively applied to every such vertex v to obtain π.
Geometrically, the contractions φ corresponds to the inclusion of a boundary com-

ponent M(σ) of the moduli space M(τ) associated to τ , and the stable pull-back
constructs the boundary component of M(ρ) upon which the boundary component
M(σ) is naturally mapped by morphismM(τ)→M(ρ) associated to a.

5.1.9. Proposition and Definition. Let (ξ, a, τ ′, φ) : (A, τ) → (B, σ) and
(η, b, σ′, ψ) : (B, σ) → (C, ρ) be morphisms of weighted stable marked graphs.
Then we define the composition (η, b, σ′, ψ) ◦ (ξ, a, τ ′, φ) : (A, τ) → (C, ρ) to be
(ηξ, ac, τ ′′, ψξ) where (c, τ ′′, ξ) is the stable pullback of σ′ under φ.
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This composition is associative, defining the category of weighted stable marked
graphs.

C τ ′′
ξ //

c

��

σ′

b

��

ψ // ρ

B

η

OO

τ ′
φ //

a

��

σ

A

ξ

OO

τ

We denote by Gw
s the category of weighted stable marked graphs, and by A the cate-

gory of semigroups with indecomposable zeros.

5.2. Weighted stable maps indexed by graphs. As in [BM96, section 3], let V be
the category of smooth projective varieties over a field k. Consider the fibered product
VGw

s of categories

VGw
s

//

��

Gw
s

��
V

H+
2 // A

where H+
2 is the functor that associates to V the semigroup of effective classes in

CH1(V ). Objects of VGw
s are pairs (V, τ) where V is a smooth projective variety

over k and τ is a weighted stable H+
2 (V )-graph.

For any weighted graph τ and any vertex v ∈ Vτ , let Fv = {f ∈ Fτ |∂τ (f) = v} be
the set of flags attached to v, and Av = A|Fv be their weight data.

5.2.1. Definition. A stable map of type (V, τ) for an object (V, τ) in VGw
w is a collec-

tion of stable maps (Cv, xv, fv) to V of type (g(v),Av, α(v)) for every v ∈ Vτ , such
that f∂τ (i)(xi) = f∂τ (jτ (i))(xjτ (i)) for all flags i.

For a scheme T and (V, τ) ∈ VGw
s , letM(T )(V, τ) be the groupoid of families of

weighted stable maps of type (V, τ) over T , and letM(T ) be the groupoid of arbitrary
weighted stable maps.

5.2.2. Theorem. For a fixed scheme T ,M(T ) defines a 2-functor

M(T )( ) : VGw
s →M(T ).

For every base change u : T ′ → T , the pullback u∗ : M(T ) → M(T ′) commutes
with the functorsM(T )( ) andM(T ′)( ).

Finally, for fixed (V, τ, α), the category of weighted stable maps of type (V, τ, α) is
a proper algebraic Deligne-Mumford stackM(V, τ, α) of finite type.

Of course, the compatibility with base change in particular implies that thatM(Φ)
for some morphism Φ in VGw

s induces a morphisms between the stacks associated
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byM to the source and target; i.e. M is a 2-functor from VG2
s to the 2-category of

Deligne-Mumford stacks.3

The last claim of the theorem immediately follows from theorem 1.1.4 and the fact
that by definition it is a closed substack of

∏
v∈VτMg(v),A(v)(V, α(v)).

To prove the first and second claim of the theorem, we need to prove the
existence of a functorial push-forward in M(T ) associated to every morphism
(ξ, a, τ ′, φ) : (V, τ) → (W,σ) in VGw

s , and show that they are compatible with base
change. Every morphism in VGw

s can be written as a composition of elementary mor-
phisms of one of the following types: changing the target (I), increasing the weights
(II), forgetting a tail (III), combining tails (IV), complete combinatorial morphisms
(V), contracting an edge (VI) and contracting a loop (VII). For complete combina-
torial morphisms this is immediate (and there is nothing to add to the discussion in
[BM96, section 3, case IV]). All other cases have already been treated in §2 in the case
where the target is a one-vertex graph; the general case follows immediately from this.

What is left to prove is that the associated morphism are compatible with composi-
tion in the category of weighted stable marked graphs, i.e. that it does not depend on
the way we break up a morphism into a composition of elementary morphisms.

For compositions of contractions with contractions, respectively of the (inverses of)
combinatorial morphisms with combinatorial morphisms this is immediate, and the
only interesting case to prove is the case of the composition (ξ, a)−1 ◦φ of (the formal
inverse of) a combinatorial morphism (ξ, a) : (B, ρ) → (A, τ) and a contraction of
A-graphs φ : σ → τ . In fact, the formation of stable pull-back exactly makes sure that
this compatibility holds, and the claim follows easily by following every step of the
stable pull-back construction.

§6. Graph-level description of virtual fundamental classes.

To define Gromov-Witten invariants based on weighted stable maps, we need to
define virtual fundamental classes in the Chow ring A∗

(
M(V, τ, α)

)
of the moduli

spaces. To formulate the required behaviour with respect to restriction to boundary
components of the moduli space, we need to introduce the notion of isogenies of
weighted stable graphs and their cartesian isogeny diagrams. (We won’t introduce
the complete cartesian extended isogeny category as in [BM96].)

6.1. Isogenies of graphs. For our purposes, we need to refine the definition of an
isogeny as given in [BM96, Definition 5.4].

6.1.1. Definition. We say that the one-vertex V -graph σ is a contraction of small tails
of the one-vertex V -graph τ if it is obtained from τ by a sequence of steps, each
forgetting a single tail, such that in every step we are in the situation of corollary
3.2.2 (the weight data of τ is contained in a fine open chamber, and the weight of the
additional tail in σ is small enough that changing it to zero would not cross a wall of
the fine chamber decomposition).

This implies that the associated mapM(τ) → M(σ) is flat, as it is a sequence of
projection maps of the universal curve.

3Implicitly, we passed from the description of a stack as a category fibered in groupoids to the de-
scription as a 2-functor to the 2-category of groupoids. See e.g. [Man99, Chapter V] for a discussion of
both viewpoints.
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6.1.2. Definition. An isogeny Φ: τ → σ of weighted stable A-graphs is given by an
injective map ΦF : Fσ → Fτ of flags and a surjective map ΦV : Vτ → Vσ of vertices
such that the following conditions hold:

(1) ΦF commutes with the boundary maps ∂τ , ∂σ, i. e. for any flag f ∈ Fσ, we
have ΦV (∂τ (ΦF (f))) = ∂σ(f).

(2) For any vertex v ∈ Vσ, let τv be the subgraph of τ that consists of all vertices
send to v by ΦV , and all edges joining them. We require that
(a) g(v) =

∑
w∈Vτv g(w) + dimH1(|τv|) and

(b) α(v) =
∑

w∈Vτv α(w)
(3) ΦF respects the weights, i.e. Aτ ◦ ΦF = Aσ.
(4) For any v ∈ Vτ , let τv be the one-vertex graph obtained from τ by removing

all other vertices, and cutting off the edges starting from v into a tail of weight
1; let σv be the graph obtained from τv by removing all tails not in the image
of ΦF . The condition is that σv is is a contraction of small tails of τv.

In the geometric realizations of the graphs, an isogeny is given by collapsing a set
of disjoint closed connected subgraphs |τv| ⊂ |τ | consisting of edges and small tails to
a single vertex v ∈ Vσ. It can be written as the composition of a morphism contracting
small tails, and a contraction as in definition 5.1.5.

6.2. Cartesian isogeny diagrams. Consider a stable V -graph σ and its absolute sta-
bilization a : σs → σ, as well as an isogeny of weighted modular graphs Φ: τ s → σs.
In [BM96, section 5] the pull-back τ = (τi)i∈I of σ along Φ is constructed. For each
i ∈ I , the stable V -graph τi comes with a stabilization morphism ai : τ s → τi and an
isogeny Φi : τi → σ such that the diagram

τi
Φi // σ

τ s
Φ //

ai

OO

σs

b

OO

commutes.
Its construction is as follows:4 To every edge {f, f̄} of σs there is a long edge in

σ consisting of edges {f1, f̄1}, . . . , {fn, f̄n} and vertices vi = ∂σ(f̄i) = ∂σ(fi+1)
such that bF (f) = f1, bF (f̄) = f̄n and the vertices vi are of genus 0 and have
no further flags. We replace the edge {ΦF (f),ΦF (f̄)} of τ s by the same long
edge {f1, f̄1}, . . . , {fn, f̄n}. Similary, to every tail f ∈ Sσs there is a long tail
{f1, f̄1}, . . . , {fn, f̄n} of edges as above and some number k ≥ 0 of additional tails
fn+1, . . . , fn+k. The addtional tails are attached to the last vertex vn of the tail,
∂σ(fn+i) = vn = ∂σ(f̄n) for 1 ≤ i ≤ k, and the sum of weights is bounded as∑

1≤i≤kA(fn+i) ≤ 1. Again we replace the tail ΦF (f) ∈ Sσs with the same long
tail, preserving the weights.

We thus obtain a weighted graph τ ′ with a combinatorial morphism a : τ s → τ ′ and
an isogeny of graphs Φ′ : τ ′ → σ. Now let I be the set of V -structures on τ ′ such that
Φ′ is an isogeny of weighted V -graphs. We get a set (τi)i∈I of V -graphs such that
the induced morphism ai : τ s → τi is an absolute stabilization, and Φi : τi → σ is an
isogeny of V -graphs.

4Unlike [BM96, section 5], we omit the orbit map as well as the notion of an extended isogeny.
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The same construction can be made for a tuple (σj)j∈J of V -graphs with abso-
lute stabilization morphisms bj : σ → σj . The formation of pull-back then becomes
compatible with composition.

6.3. Expected properties.

6.3.1. Definition. Let τ be a weighted stable V -graph, where V is of pure dimension
dimV , and has canonical class ωV . We define the class β(τ), the Euler characteristic
χ(τ), the genus g(τ) and the dimension dim(τ) of τ as

β(τ) =
∑
v∈Vτ

β(v)

χ(τ) = χ(|τ |)−
∑
v∈Vτ

g(v)

g(τ) = 1− χ(τ)

dim(τ) = χ(τ)(dimV − 3)− β(τ) · ωV + |Sτ | − |Eτ |

We now fix V . An orientation will be a system of virtual fundamental classes
J(V, τ) ⊂ Adim(V,τ)(M(V, τ)) for all stable V -graphs τ bounded by the characteris-
tic, satisfying the list of properties given below.

(1) (Mapping to a point). If τ is a graph of class zero, and |τ | is nonempty and
connected, then

J(V, τ) = cg(τ) dimV

(
R1π∗f

∗TV
)
.

(2) (Forgetting tails). Let Φ: σ → τ be a morphism of stable V -graphs given by
forgetting a small tail of σ, i.e. such that τ is obtained from σ by a contraction
of a small tail. Then M(Φ) is flat, and we require

J(V, σ) =M(Φ)∗J(V, τ).

(3) (Combining tails.). Let Φ: σ → τ be a morphism splitting up a tail into several
of them, i. e. one that is induced by a combinatorial morphism a : τ → σ
combining several tails f1, . . . , fk ∈ Sτ to a single tail f ∈ Sσ with weight
Aσ(f) =

∑k
i=1Aτ (fi). ThenM(Φ) is a regular closed embedding, and the

required condition is

J(V, σ) =M(Φ)!J(V, τ).

(4a) (Products). For any two stable V -graphs σ, τ , let σ × τ be the disjoint union
of the graphs of σ and τ with the obvious structure as a stable V -graph. Then

J(V, σ × τ) = J(V, σ)× J(V, τ).

(4b) (Cutting edges). Let Φ: σ → τ be a morphism obtained by cutting an edge
{f, f̄} of σ into two tails. By abuse of notation, we identify the flags f, f̄ ⊂ Fσ
with the corresponding tails f, f̄ ⊂ Sτ . We obtain a cartesian square

M(V, σ)

evf=evf̄

��

M(Φ) //M(V, τ)

evf×evf̄

��
V

∆ // V × V
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and require that
J(V, σ) = ∆!J(V, τ).

(4c) (Isogenies). Let (σj)j∈J be a tuple of V -graphs with absolute stabilization σs

and τ s → σs an isogeny. Let (τi)i∈I be the tuple of V -graphs completing this
to a cartesian isogeny diagram. We obtain an induced commutative, but not
cartesian diagram∐

i∈IM(τi) //

��

∐
j∈JM(σj)

��
M(τ s)

M(Φ) //M(σs)

and thus an induced map

h :
∐
i∈I
M(τi)→M(τ s)×M(σs)

∐
j∈J
M(σj).

We require that

h∗

(∑
i∈I

J(V, τi)

)
=
∑
j∈J
M(Φ)!J(V, σj).

(5) Kontsevich-stable maps. Assume that all weights satisfy A(s) = 1. Then
J(V, τ) agrees with the definition of the virtual fundamental class J(V, τ̃) for
the underlying stable V -graphs τ̃ according to [Beh97, BF97].

(6) Reducing weights. Let Φ: σ → τ be a morphism of weighted stable V -graphs
obtained by reducing weights, i. e. such that Φ is induced by a combinatorial
morphism τ → σ that is the identity on the modular graph structure, but such
that Aσ(f) ≥ Aτ (f) for all flags f ∈ Fτ = Fσ. ThenM(Φ) is a reduction
morphism, and we require that

M(Φ)∗ (J(V, σ)) = (J(V, τ)) .

6.3.2. Theorem. There is a system of virtual fundamental classes satisfying all prop-
erties listed in the previous section.

Note that (4a), (4b) and (4c) imply condition (4) of theorem 4.1.1, whereas the
other conditions for one-vertex graphs are identical to the corresponding condition in
[BM96].

Of course, (1), (2) and (4a-c) are direct generalizations of properties of the virtual
fundamental classes in the non-weighted setting. The only caveat is that for morphisms
contracting or forgetting a tail, we always have to assume the situation of corollary
3.2.2. This is to be expected: if we forget a tail of bigger weight, the forgetful map
factorizes via a non-trivial reduction morphism ρ. However, there is no reason to
assume that the virtual fundamental class is a pull-back of a class via ρ.

As we already explained, we use (5) and (6) as the definition:

6.3.3. Definition and Remark. For any weighted stable V -graph τ , let τ1 be the
weighted stable V -graph obtained by setting all weights to 1, let w(τ) : τ → τ1 be the
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combinatorial morphism increasing the weights, andW (τ) : τ1 → τ the induced mor-
phism in the category of weighted marked graphs. Then any combinatorial morphism
τ → σ to a V -graph σ with all weights equal to 1 factors uniquely via w(τ).

By abuse of notation, we write W (τ) : M(V, τ1) →M(V, τ) also for the induced
map on moduli spaces, and define J(V, τ) as

J(V, τ) := W (τ)∗J(V, τ1)

where the latter is as defined in [Beh97, BF97].
We will now show how to obtain these properties from those listed in Definition

7.1 in [BM96], which have been verified for the Behrend-Fantechi construction of the
virtual fundamental class in [Beh97]. As a preparation, we need the following lemma:

6.3.4. Lemma. Let Φ: σ → τ be an isogeny of V -graphs, and let Φ1 : σ1 → τ1 be
the same morphism for the graphs with weight 1. Consider the commutative (but not
necessarily cartesian) square

M(V, σ1)

M(W (σ))
��

M(Φ1)//M(V, τ1)

M(W (τ))
��

M(V, σ)
M(Φ)

//M(V, τ)

and the induced morphism h : M(V, σ1) → M(V, σ) ×M(V,τ) M(V, τ1). Then
M(Φ)! and h∗ ◦M(Φ1)! yield the same orientation to the projection

M(V, σ)×M(V,τ)M(V, τ1)→M(V, τ1).

(By definition, an orientation of a morphism f : X → Y is an element of the bivari-
ant intersection theory A∗(Y → X), i.e. in particular a morphism A∗(X ′)→ A∗(Y ′)
for every pull-back f ′ : X ′ → Y ′ of f .)

We may assume that Φ is an elementary isogeny, so we have one of the following
two cases:

• Contraction of an edge. It is sufficient to consider the case where τ has only
one vertex, so bothM(Φ) andM(Φ1) are a gluing morphism as in proposition
2.1.1. Consider the first case, where Φ contracts a non-looping edge (the other
case follows similarly). An object in the product consists of a pair of weighted
stable maps ((C1, f1), (C2, f2)) of type σ and τ1, respectively, together with
an isomorphism the reduction ofC2 to type τ with the curve obtained by gluing
the two components of C1. Since the sections cannot meet the node, this is
only possible if C2 already consists of two components, which together form a
weighted stable maps of type σ1. The induced map toM(V, σ1) is an inverse
to h, i.e. the above diagram is a cartesian square.

Both M(Φ) and M(Φ1) are a codimension one regular embedding with
compatible normal bundle, and the claim follows by standard intersection the-
ory.
• Contraction of a small tail. In this case, bothM(Φ) andM(Φ1) are flat. The

orientation given byM(Φ) is the same as that of the projection to the second
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factor of the product. Since h is a blow-up at a regularly embedded substack,
we have h∗ ◦ h∗ = id, and the assertion follows.

We proceed with the proof of theorem 6.3.2.

(1) This follows from the same property [BM96, Definition 7.1, (1)] in the non-
weighted case and projection formula.

(2) Consider the diagram of lemma 6.3.4:

M(Φ)!J(V, τ) =M(Φ)!M(W (τ))∗J(V, τ1) (by definition)

= p1∗M(Φ)!J(V, τ1) (push-forward)

= p1∗h∗M(Φ1)!J(V, τ1) (by lemma 6.3.4)

=M(W (σ))∗J(V, σ1) (*)

= J(V, σ) (by definition)

Here (*) holds by [BM96, Definition 7.1, (4)].
(4a) This is obvious from the same property for non-weighted graphs [BM96, Def-

inition 7.1, (2)].
(4b) The natural map M(V, σ1) → M(V, τ1) fits as an additional row on top of

diagram given in condition (4b), so that all squares are cartesian. Thus the
claim follows from property [BM96, Definition 7.1, (3)] and push-forward.

(4c) We may assume that |J | = 1, so we are just dealing with a single V -graph σ
and its absolute stabilization σs.

Consider σ1 and its absolute stabilization (σ1)s. By the universal property
of stabilization, the composition of the combinatorial morphisms of weighted
graphs σs → σ → σ1 factors uniquely via (σ1)s. Similarly, for each i ∈ I let
τ1
i be the corresponding graphs with weights 1, and let, by some abuse of nota-

tion, (τ1)s be their common absolute stabilization; we obtain a combinatorial
morphism τ s → (τ1)s.

These morphisms can be completed to the following diagram of a cube:

∐
i τi

‘
Φi //

��

σ

��

∐
i τ

1
i

W (τi) ;;wwww ‘
Φ1
i

//

��

σ1

W (σ)

??~~

��
τ s Φ //σs

(τ1)s

::uuuuu
Φ1 //(σ1)s

=={{{{

More precisely, there exist unique contractions Φ1 : (τ1)s → (σ1)s and
Φ1
i : τ1

i → σ1 such that
(I) the top and bottom square are commutative in the category of weighted

marked graphs, and
(II) the square in front is a cartesian isogeny diagram.

Assuming these claims, the desired property can be deduced from the cor-
responding property [BM96, Definition 7.1, (5)] by careful diagram computa-
tion:
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Since none of the squares of the cube necessarily yield cartesian
squares of moduli spaces, we need to consider the products Pback =
M(τ s) ×M(σs) M(V, σ), Pfront = M((τ1)s) ×M((σ1)s) M(V, σ1) and
Pdiag = M(τ s) ×M(σs)M(V, σ1). Let hback and hfront be the induced map
from the corresponding corner of the cube to Pback and Pfront, respectively,
and hd→b : Pdiag → Pback, hf→b : Pfront → Pback and hf→d : Pfront → Pdiag

the maps induced by the commutative cube. We obtain

M(Φ)!J(V, σ) =M(Φ)!M(W (σ))∗J(V, σ1) (by definition)

= hd→b∗M(Φ)!J(V, σ1) (push-forward)

= hd→b∗hf→d∗M(Φ1)!J(V, σ1) (lemma 6.3.4)

= hf→b∗hfront∗
∑
i

J(V, τ1
i ) (*)

= hback∗
∑
i

W (τi)∗J(V, τ1
i )

= hback∗
∑
i

J(V, τi), (by definition)

where (*) holds according to [BM96, Definition 7.1, (5)]. So it remains to
prove the two claims above.

The definition of Φ1
i is obvious and necessarily unique, as the graphs τi and

τ1
i , as well as σi and σ1

i , are identical as marked graphs after forgetting the
weights. Commutativity of the top square is equivalent to the claim that the
combinatorial morphism w(τi) : τi → τ1

i is the stable pull-back (see p. 18) of
w(σ) : σ → σ1 along Φ1

i , which is equally obvious.
For the bottom square involving Φ1, we need to review the construction of

cartesian isogenies. Consider any tail f ∈ Sσs ; it corresponds to a long tail in
σ consisting of edges {f1, f̄1}, . . . , {fn, f̄n}, of vertices v1, . . . , vn and of tails
fn+1, . . . , fn+k attached to vn. Its preimage ΦF (f) ∈ Sτs corresponds to an
identical long tail {ΦF

i (f1),ΦF
i (f̄1)}, ... etc. in τi. After adjusting the weights

to one, we again see identical long tails as part of σ1 respectively τ1
i ; these

will have identical stabilization in (σ1)s resp. (τ1)s. This shows that Φ1 is
uniquely determined on the stabilization of this long tail. The same discussion
applies to any edge of σs corresponding to a long edge in σs. Finally, any part
of τ s contracted by Φ will appear identically in τi, and thus in τ1

i and (τ1)s.
Hence Φ1 will necessarily contract it, too.

We have thus constructed Φ1 so that the front square is a cartesian isogeny
diagram. At the same time, the above discussion shows that the stable pull-
back of σs → (σ1)s along Φ1 will recover τ s → (τ1)s, i.e. the bottom square
is indeed commutative.

(5) This holds by definition.
(6) This follows from the definition and the fact that reduction morphisms are

compatible with composition (Proposition 1.2.1).
(3) By properties (4a) and (4b), we can consider only graphs having a single ver-

tex. Further, we may assume that the combinatorial morphism a combines
exactly two tails f1, f2 ∈ Sτ to a single tail f = aF (f1) = aF (f2) ∈ Sσ.
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Let ρ be the V -graph obtained from σ1 by adding a second vertex of class
and genus zero, having two tails f ′1, f

′
2 of weight 1 and one edge whose second

flag connects it to the original vertex and replaces the tail f ; geometrically, we
attach a tripod5 to the tail f .

The morphism ρ → σ1 induced by the combinatorial morphism σ1 → ρ
gives an isomorphism of moduli spacesM(ρ)→M(σ1), which respects the
virtual fundamental classes by properties (1), (4a) and (4b).

There is a morphism Ψ: ρ → τ1 contracting the edge in ρ and sending f ′i
to fi. Thus we have the following commutative diagram:

M(ρ) ∼=M(σ1)
M(Ψ) //

W (σ)
��

M(τ1)

W (τ)
��

M(σ)
M(Φ) //M(τ)

A discussion similar to the one in the proof of (4c) shows that this is a cartesian
square. Let Ξ: τ1 → σ1 be the morphism obtained by forgetting the tail f1 and
mapping f2 to f . ThenM(Ψ) is a section ofM(Ξ), soM(Ψ)![M(τ1)]virt =
M(Ψ)!M(Ξ)∗[M(σ1)]virt = [M(σ1)]virt. The desired equality follows by
push-forward and the vanishing of excess intersection.
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[MM08] Anca M. Mustaţǎ and Andrei Mustaţǎ. The Chow ring of M0,m(Pn, d), 2008.

arXiv:math.AG/0507464.
[Orl05] D. O. Orlov. Derived categories of coherent sheaves, and motives. Uspekhi Mat. Nauk,

60(6(366)):231–232, 2005. arXiv:math.AG/0512620.
[SGA1] Revêtements étales et groupe fondamental. Springer-Verlag, Berlin, 1971. Séminaire
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