Exotic spheres and the Kervaire invariant

Addendum to the slides

Michel Kervaire's work in surgery and knot theory
http://www.maths.ed.ac.uk/~aar/slides/kervaire.pdf

Andrew Ranicki (Edinburgh)

29th May, 2009

The Kervaire-Milnor braid for m I.

- For any $m \geqslant 5$ there is a commutative braid of 4 interlocking exact sequences (slide 46)

The Kervaire-Milnor braid for m II.

- Θ_{m} is the K-M group of oriented m-dimensional exotic spheres.
- $P_{m}=\mathbb{Z}, 0, \mathbb{Z}_{2}, 0, \mathbb{Z}, 0, \mathbb{Z}_{2}, 0, \ldots$ is the m-dimensional simply-connected surgery obstruction group. These groups only depend on $m(\bmod 4)$.
- a : $A_{m}=\pi_{m}(G / O) \rightarrow P_{m}$ sends an m-dimensional almost framed differentiable manifold M to the surgery obstruction of the corresponding normal map $(f, b): M^{m} \rightarrow S^{m}$.
- For even $m b: P_{m} \rightarrow \Theta_{m-1}$ sends a nonsingular $(-)^{m / 2}$-quadratic form over \mathbb{Z} of rank r to the boundary $\Sigma^{m-1}=\partial W$ of the Milnor plumbing W of r copies of $\tau_{S^{m / 2}}$ realizing the form.
- The image of b is the subgroup $b P_{m} \subseteq \Theta_{m-1}$ of the ($m-1$)-dimensional exotic spheres Σ^{m-1} which are the boundaries $\Sigma^{m-1}=\partial W$ of m-dimensional framed differentiable manifolds W.
- c: $\Theta_{m} \rightarrow \pi_{m}(G / O)$ sends an m-dimensional exotic sphere Σ^{m} to its fibre-homotopy trivialized stable normal bundle.

The Kervaire-Milnor braid for m III.

- $J: \pi_{m}(O) \rightarrow \pi_{m}(G)=\pi_{m}^{S}$ is the J-homomorphism sending $\eta: S^{m} \rightarrow O$ to the m-dimensional framed differentiable manifold $\left(S^{m}, \eta\right)$.
- The map o: $\pi_{m}(G / O)=A_{m} \rightarrow \pi_{m-1}(O)$ sends an m-dimensional almost framed differentiable manifold M to the framing obstruction

$$
\mathfrak{o}(M) \in \pi_{m}(B O)=\pi_{m-1}(O)
$$

- The isomorphism $\pi_{m}(P L / O) \rightarrow \Theta_{m}$ sends a vector bundle $\alpha: S^{m} \rightarrow B O(k)$ (k large) with a $P L$ trivialization $\beta: \alpha^{P L} \simeq *: S^{m} \rightarrow B P L(k)$ to the exotic sphere Σ^{m} such that $\Sigma^{m} \times \mathbb{R}^{k}$ is the smooth structure on the $P L$-manifold $E(\alpha)$ given by smoothing theory, with stable normal bundle

$$
\nu_{\Sigma^{m}}: \Sigma^{m} \simeq S^{m} \xrightarrow{\alpha} B O(k)
$$

- $\pi_{m}(P L)=\Theta_{m}^{f r}$ is the K-M group of framed n-dimensional exotic spheres.

The Kervaire-Milnor braid for $m=4 k+2 \mathbf{I}$.

- For $m=4 k+2 \geqslant 5$ the braid is given by

with K the Kervaire invariant map.

The Kervaire-Milnor braid for $m=4 k+2$ II.

- K is the Kervaire invariant on the $(4 k+2)$-dimensional stable homotopy group of spheres

$$
\begin{aligned}
K: \pi_{4 k+2}(G) & =\pi_{4 k+2}^{S}={\underset{\longrightarrow}{\rightarrow}}^{\lim _{j+4 k+2}\left(S^{j}\right)} \\
& =\Omega_{4 k+2}^{f r}=\{\text { framed cobordism }\} \rightarrow P_{4 k+2}=\mathbb{Z}_{2}
\end{aligned}
$$

- K is the surgery obstruction: $K=0$ if and only if every $(4 k+2)$-dimensional framed differentiable manifold is framed cobordant to a framed exotic sphere.
- The exotic sphere group $\Theta_{4 k+2}$ fits into the exact sequence

$$
0 \rightarrow \Theta_{4 k+2} \rightarrow \pi_{4 k+2}(G) \xrightarrow{K} \mathbb{Z}_{2} \rightarrow \operatorname{ker}\left(\pi_{4 k+1}(P L) \rightarrow \pi_{4 k+1}(G)\right) \longrightarrow 0
$$

The Kervaire-Milnor braid for $m=4 k+2$ III.

- a: $\pi_{4 k+2}(G / O) \rightarrow \mathbb{Z}_{2}$ is the surgery obstruction map, sending a normal map $(f, b): M^{4 k+2} \rightarrow S^{4 k+2}$ to the Kervaire invariant of M.
- $b: P_{4 k+2}=\mathbb{Z}_{2} \rightarrow \Theta_{4 k+1}$ sends the generator $1 \in \mathbb{Z}_{2}$ to the boundary $b(1)=\Sigma^{4 k+1}=\partial W$ of the Milnor plumbing W of two copies of $\tau_{S^{2 k+1}}$ using the standard rank 2 quadratic form $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ over \mathbb{Z} with Arf invariant 1.
- The image of b is the subgroup $b P_{4 k+2} \subseteq \Theta_{4 k+1}$ of the $(4 k+1)$-dimensional exotic spheres $\Sigma^{4 k+1}$ which are the boundaries $\Sigma^{4 k+1}=\partial W$ of framed $(4 k+2)$-dimensional differentiable manifolds W. If k is such that $K=0$ (e.g. $k=2$) then $b P_{4 k+2}=\mathbb{Z}_{2} \subseteq \Theta_{4 k+1}$, and if $\Sigma^{4 k+1}=1 \in b P_{4 k+2}$ (as above) then $M^{4 k+2}=W \cup_{\Sigma^{4 k+1}} D^{4 k+2}$ is the $(4 k+2)$-dimensional Kervaire $P L$ manifold without a differentiable structure.
- c: $\Theta_{4 k+2} \rightarrow \pi_{4 k+2}(G / O)$ sends a $(4 k+2)$-dimensional exotic sphere $\Sigma^{4 k+2}$ to its fibre-homotopy trivialized stable normal bundle.

What if $K=0$?

- For any $k \geqslant 1$ the following are equivalent:
- $K: \pi_{4 k+2}(G)=\pi_{4 k+2}^{S} \rightarrow \mathbb{Z}_{2}$ is 0 ,
- $\Theta_{4 k+2} \cong \pi_{4 k+2}(G)$,
- $\operatorname{ker}\left(\pi_{4 k+1}(P L) \rightarrow \pi_{4 k+1}(G)\right) \cong \mathbb{Z}_{2}$,
- Every simply-connected $(4 k+2)$-dimensional Poincaré complex X with a vector bundle reduction $\tilde{\nu}_{X}: X \rightarrow B O$ of the Spivak normal fibration $\nu_{X}: X \rightarrow B G$ is homotopy equivalent to a closed ($4 k+2$)-dimensional differentiable manifold.

When is $K \neq 0$?

- Theorem (Browder 1969) If $K \neq 0$ then $4 k+2=2^{j}-2$ for some $j \geqslant 2$.
- It is known that $K \neq 0$ for $4 k+2 \in\{2,6,14,30,62\}$.
- Theorem (Hill-Hopkins-Ravenel 2009)

If $K \neq 0$ then $4 k+2 \in\{2,6,14,30,62,126\}$.

- It is not known if $K=0$ or $K \neq 0$ for $4 k+2=126$.

The exotic spheres home page

http://www.maths.ed.ac.uk/~aar/exotic.htm

The Kervaire invariant home page

http://www.math.rochester.edu/u/faculty/doug/kervaire.html

