
SYMPLECTIC EMBEDDINGS OF 4-DIMENSIONAL ELLIPSOIDS

DUSA MCDUFF

Abstract. As has been known since the time of Gromov’s Nonsqueezing Theorem, symplectic embedding

questions lie at the heart of symplectic geometry. This talk will discuss some recent developments concerning

the question of when a 4-dimensional ellipsoid can be symplectically embedded in a ball. This problem turns
out to have unexpected relations to the properties of continued fractions and exceptional curves in blow ups

of the complex projective plane.

For Michael Atiyah on his 80th birthday

The standard symplectic structure on R2n is:

ω0 = dx1 ∧ dx2 + dx3 ∧ dx4 + · · · + dx2n−1 ∧ dx2n.

By Darboux’s theorem every symplectic form is lo-
cally diffeomorphic to this one, so it is crucial to under-
stand its properties.

Gromov’s question: What are the images of a
symplectic ball? How are the symplectic and volume
preserving cases different?

Let B := B2n(a) be the standard (closed) ball of radius√
a (so a is proportional to a 2-dimensional area)

and let φ : B
s
↪→ R2n be a symplectic embedding

(i.e. a smooth embedding onto φ(B) that preserves ω0).

The problem is to describe φ(B) – for example: can it
be long and thin?

Since ωn0 = n! dx1 ∧ · · · ∧ dx2n is a volume form, every symplectic

embedding preserves volume.
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Volume preserving embeddings: if V ⊂ R2n is
diffeomorphic to a ball and volV = volB then there
is a volume preserving diffeomorphism ψ : B → V .

The analogous statement is NOT true for symplectomorphisms since

the boundary of V has symplectic invariants. Nevertheless one might

ask if one can fully fill V by a symplectic ball. This means that for

every ε > 0 there is a ball B and a symplectic embedding φ : B
s
↪→V

such that vol
(
Vrφ(B)

)
< ε.

Let Z(A) be the cylinder

D2(A)× R2n−2 = {(x1, . . . , x2n) : x2
1 + x2

2 ≤ A}

Gromov’s Nonsqueezing Theorem: There is a

symplectic embedding φ : B2n(a)
s
↪→Z(A) if and only if

a ≤ A.

Figure 0.1. Does the ball embed in the cylinder?

[Eliashberg and Hofer]: A diffeomorphism that has this
nonsqueezing property for all balls and all symplectic
cylinders must preserve the symplectic structure.
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Embedding disjoint unions of balls. How much of
the volume of B(1) can be filled by k equal symplectic
balls?

[Gromov]: there are obstructions when k = 2:

if B(a) tB(a)
s
↪→B(1) then a ≤ 1/2;

i.e. the volume of the image of B(a) tB(a) is ≤ 1
2n−1vol (B(1)).

[McDuff and Polterovich]: for any d ≥ 1 the 2n-dimensional
ball B(1) can be fully filled by k = dn equal balls.

Describing embeddings by toric models:
Consider the (moment) map Φ : C2 → R2,Φ(z1, z2) = (|z1|2, |z2|2).

Then Φ(B(1)) is the (standard) triangle
{
0 ≤ x1, x2; x1 + x2 ≤ 1

}
.

Since every such triangle can be fully filled by a ball, we can see the

full fillings of B4(1) by d2 equal balls.

Figure 0.2. Embedding d2 standard triangles into a triangle of size 1.

[McDuff–Polterovich]: In dimension 4 there are obstruc-
tions when k < 9, k 6= 1, 4;
[Biran]: B4(1) can be fully filled by k equal balls for all
k ≥ 9 i.e. with enough balls, the obstructions disappear.

From now on we work in 4 (real) dimensions, and E
s
↪→B means there

is a symplectic embedding of E into B.
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Embedding ellipsoids into balls
Let E(a, 1) = {(x1, . . . , x4) ∈ R4 :

x2
1+x

2
2

a + x2
3 + x2

4 ≤ 1}.
Consider the embedding capacity function of [2] for a ≥ 1:

c(a) := inf{µ : E(a, 1)
s
↪→B(µ)}.

Note: c(a) ≥
√
a because volE(a, 1) = volB(

√
a).

Figure 0.3. The graph of c(a)

Theorem [McDuff–Schlenk] Let τ = 1+
√

5
2 . The graph of c(a)

divides into three parts:

• if 1 ≤ a < τ 4 the graph is piecewise linear – an infinite
Fibonacci staircase converging to (τ 4, τ 2); (mostly proven)

• τ 4 ≤ a < 8 1
36 is a transitional region; c(a) =

√
a except on a

finite number of short intervals; (mostly proven)

• if a ≥ 8 1
36 =

(
17
6

)
2 then c(a) =

√
a. (proven)

Fibonacci stairs: Let g0 = g1 = 1, g2 = 2, g3 = 5, g4 = 13, . . . ,
the odd Fibonacci numbers; set an :=

(
gn+1/gn

)
2, bn := gn+2/gn so

that an < bn < an+1, and an → τ 4.

Then c(x) = x/
√
an on [an, bn] and c(x) =

√
an+1 on [bn, an+1].
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Let w(a) = (w1, . . . , wN) be the weight expansion of a ∈ Q:

Figure 0.4. w(25/9) = (1, 1, 7/9, 2/9, 2/9, 2/9, 1/9, 1/9). The multiplicities
2, 1, 3, 2 of the weights are the terms (or partial quotients) of the continued
fraction [2; 1, 3, 2] representation of 25/9.

Thm I [McD] E(a, 1)
s
↪→B(µ) ⇐⇒ t

i≤N
B(wi)

s
↪→B(µ).

Given N write m := (m1, . . . ,mN) ∈ NN , mi ≥ mi+1. Let

EN =
{
(d; m) : d2 + 1 =

∑
i

m2
i , 3d− 1 =

∑
i

mi,

and another algebraic condition
}
.

Then EN = the set of homology classes dL −
∑
miEi represented

by symplectic exceptional divisors in the N fold blow up of CP 2.

Thm II [McD-Polt, Biran, Li-Li]

t
i≤N

B(wi)
s
↪→B(µ) ⇐⇒ µd ≥

∑
miwi

for all (d; m) ∈ EN .
Thus c(a) = sup

{√
a, sup

(d,m)∈EN

∑
miwi(a)
d

}
.

Example: E4 has the single element (1; 1, 1) (corresponding to
L− E1 − E2) and w(4) = (1, 1, 1, 1). Therefore c(4) = 2.

E5 also contains (2; 1, . . . , 1) corresponding to 2L −
∑5

i=1Ei. Thus

c(5) = sup{
√

5, 2, 5/2} = 5/2.
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Fact: If a = bn = gn+2/gn then
(
gn+1; gnw(a)

)
∈ EN .

Example: n = 2 gives: (5; 2w(13/2)) = (5; 2, . . . , 2, 1, 1) and
5L− 2(E1 + · · · + E6)− E7 − E8 ∈ E8.

Using this, we can find c(bn) for all n:

dµ ≥
∑

miwi =⇒ gn+1µ ≥ gn

∑
w2

i = gna

=⇒ µ ≥ (gngn+2)/(gn+1gn) =
√
an+1.

This shows c(bn) ≥
√
an+1. We get = because dd′ ≥

∑
mim

′
i for

all distinct pairs (d,m), (d′,m′) ∈ EN (positivity of intersections).

Conjecture: If a = (gn+1/gn)
2 then

(
gngn+1, g

2
n(w(a), 1)

)
∈ EN .

(Still need to establish the third condition; if the conjecture holds, the stairs are proven.)

What is special about a = τ 4?

a = τ 4 is the positive root of 3
√
a = a+1. The sharpest constraints

come from (d,m) where m ≈ λw(a). Since
∑
w2
i = a and

∑
m2
i ≈

d2, we need λ ≈ d/
√
a. But also∑

wi = 1 + a− 1/q ≈ 1 + a,
∑

λwi ≈
∑
i

mi ≈ 3d

implies 3d ≈ λ(1 + a) or 3
√
a ≈ 1 + a.

Why there are no constraints for a > 9.

We saw above that c(a) = sup(d,m)∈E

∑
miwi(a)
d . Hence c(a) >

√
a

only if there is (d,m) ∈ E such that
∑
miwi(a)/d >

√
a. But√

a ≥ 3, and∑
miwi ≤

∑
mi = 3d− 1 since all wi ≤ 1.

So
∑
miwi/d ≤ 3 always. More complicated versions of this argu-

ment show there are no constraints for a ≥ 8 1
36.
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Ideas behind the Proof:
I: Embedding balls and blowing up:

To blow up a point in complex geometry you remove the point and
replace it by the set of all lines through that point. In 2 complex
dimensions, this set is a complex line CP 1 called the exceptional
divisor E ∼= CP 1. Its normal bundle π : L → E has Chern class
−1.

Basic fact: LrE ∼= C2r{0}.
In symplectic geometry, by Darboux’s theorem you can identify a

nbhd of a point p in (M,ω) with a nbhd of {0} in R4 ≡ C2, and blow

up as before to get a manifold M̃ with blow down map bl : M̃ →M .

But you must put a symplectic form on M̃ , and the pullback form

bl∗(ω) vanishes on E. So the form ω̃a on M̃ equals bl∗(ω)+aπ∗(σE)
near E, where

∫
E σE = 1 and π : nbhd(E) → E.

Basic fact:
(
(nbhdE r E), ω̃a

)
is symplectomorphic to C2rB(a).

i.e. To blow up symplectically with weight a you remove an em-
bedded copy of the open ball intB(a) and collapse ∂B(a) = S3 to
S2 ≡ E by the Hopf map.

II: Cutting E(a, 1) into balls via toric models
If a = p/q the image of E(a, 1) under Φ : C2 → R2, (z1, z2) 7→

(|z1|2, |z2|2) is the triangle {0 ≤ x1, x2; qx1 + px2 ≤ 1}. This corre-
sponds to a singular variety, with singular points of orders p, q. We
can cut this triangle into standard triangles of different sizes.

The triangle decomposition is structurally the same as that giving
the weights for 5/3. It corresponds to a joint resolution of the two
singularities.
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The cuts needed to resolve the two singularities in the shaded poly-
tope on the left (after the triangle is removed) are illustrated on the
right: they are parallel to those that decomposed the singular triangle
into standard triangles: for details see [5].

If p > 2q the weight decomposition for p/q, corresponding to Eu-
clidean continued fractions (with + signs), is related to the multiplic-
ities of the two singular points, which are given by the Hirzebruch–
Jung (HJ) continued fractions (with − signs) for p/q and p/(p− q).
This relation is captured in the Riemenschneider staircase:

Here, the dots are labelled starting at the top right with the (normal-
ized) weight decomposition (5, 5, 5, 2, 2, 1, 1) for 17/5. The digits
4, 2, 3 are one more than the number of black dots in the each row,
and give the HJ multiplicities for 17/5. The digits 2, 2, 4, 2 are one
more than the numbers of black dots in the columns, and give the
HJ multiplicities for 17/(17− 5) = 17/12. Thus

17

5
= 3 +

1

2 + 1
2

= 4− 1

2− 1
3

,
17

12
= 2− 1

2− 1
4− 1

2

.
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