Geometric invariant theory for non-reductive group actions and jet differentials

Frances Kirwan

Oxford

(based on joint work with Brent Doran and Gergely Berczi)

Moduli spaces (or stacks) are often constructed as quotients of algebraic varieties by group actions.

Reductive groups \leadsto we can use Mumford's GIT (+ techniques from symplectic geometry)

Non-reductive groups?

E.g. moduli spaces of hypersurfaces/complete intersections in toric varieties - automorphism group of a toric variety is not in general reductive.

Example: weighted projective plane $\mathbb{P}(1,1,2)$

$$
\operatorname{Aut}(\mathbb{P}(1,1,2)) \cong R \ltimes U
$$

with $R \cong G L(2) \times_{\mathbb{C}^{*}} \mathbb{C}^{*} \cong G L(2)$ reductive

$$
U \cong\left(\mathbb{C}^{+}\right)^{3} \text { unipotent }
$$

where $(x, y, z) \mapsto\left(x, y, z+\lambda x^{2}+\mu x y+\nu y^{2}\right)$ for $(\lambda, \mu, \nu) \in \mathbb{C}^{3}$

Mumford's GIT

G complex reductive group
X complex projective variety acted on by G

We require a linearisation of the action (i.e. an ample line bundle L on X and a lift of the action to L; think of $X \subseteq \mathbb{P}^{n}$ and the action given by a representation $\rho: G \rightarrow G L(n+1))$.

$$
\begin{array}{ccc}
X \\
\mid & \Rightarrow A(X)= & \mathbb{C}\left[x_{0}, \ldots, x_{n}\right] / \mathcal{I}_{X} \\
\mid & \cup \oplus_{k=0}^{\infty} H^{0}\left(X, L^{\otimes k}\right) \\
\vdots & & \\
X / / G & \Leftarrow A(X)^{G} \quad \text { ring of invariants }
\end{array}
$$

G reductive implies that $A(X)^{G}$ is a finitely generated graded complex algebra so that $X / / G=\operatorname{Proj}\left(A(X)^{G}\right)$ is a projective variety.

The rational map $X--\rightarrow X / / G$ fits into a diagram

X	$--\rightarrow$	$X / / G$	cx proj variety	
U		$\\|$		
semistable	$X^{s s}$	onto	$X / / G$	
	\cup		\cup	
stable	X^{s}	\longrightarrow	X^{s} / G	

where the morphism $X^{s s} \rightarrow X / / G$ is G-invariant and surjective.

Topologically $X / / G=X^{s s} / \sim$ where

$$
x \sim y \Leftrightarrow \overline{G x} \cap \overline{G y} \cap X^{s s} \neq \emptyset .
$$

N.B. G reductive $\Leftrightarrow G$ is the complexification $K_{\mathbb{C}}$ of a maximal compact subgroup K (for example $S L(n)=S U(n)_{\mathbb{C}}$), and then

$$
X / / G=\mu^{-1}(0) / K
$$

for a suitable moment map μ for the action of K.

What if G is not reductive?

Problem: We can't define a projective variety

$$
X / / G=\operatorname{Proj}\left(A(X)^{G}\right)
$$

where $A(X)=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] / \mathcal{I}_{X}$ because $A(X)^{G}$ is not necessarily finitely generated. [In fact G is reductive if and only if $A(X)^{G}$ is finitely generated for all such X].

Question: Can we define a sensible 'quotient' variety $X / / G$ when G is not reductive?
N.B. Any linear algebraic group has a unipotent normal subgroup $U \leqslant G$ (its unipotent radical) such that $R=G / U$ is reductive [for unipotent think strictly upper triangular matrices].

Moreover U has a (canonical) chain of normal subgroups

$$
\{1\}=U_{0} \leqslant U_{1} \leqslant \ldots \leqslant U_{s}=U
$$

such that each $U_{j} / U_{j-1} \cong \mathbb{C}^{+} \times \mathbb{C}^{+} \times \cdots \times \mathbb{C}^{+}$.

Theorem (Doran, K): Let $H=R \ltimes U$ be a linear algebraic group over \mathbb{C} acting linearly on $X \subseteq \mathbb{P}^{n}$.

Then X has open subsets X^{s} ('stable points') and $X^{s s}$ ('semistable points') with a geometric quotient $X^{s} \rightarrow X^{s} / H$ and an 'enveloping quotient' $X^{s s} \rightarrow X / / H$.
Moreover if $A(X)^{H}$ is finitely generated then

$$
X / / H=\operatorname{Proj}\left(A(X)^{H}\right)
$$

We have a similar diagram to the reductive case

	X	$--\rightarrow$	$X / / H$
	U		I/
semistable	$X^{s s}$	\longrightarrow	$X / / H$
	\cup		U
stable	X^{s}	-	X^{s} / H

BUT $X / / H$ is not necessarily projective and $X^{s s} \rightarrow X / / H$ is not necessarily onto.

Reductive envelopes

We can choose reductive $G \supseteq H$ and a suitable compactification $\overline{G \times{ }_{H} X}$ of $G \times_{H} X$ giving a (non-canonical) compactification $\overline{G \times{ }_{H} X} / / G$ of $X / / H$:

$$
X^{s} / H \subseteq X / / H \subseteq \overline{G \times_{H} X} / / G
$$

However although such a compactification always exists, it is not at all easy in general to decide when a compactification $\overline{G \times{ }_{H} X}$ of $G \times_{H} X$ has the properties needed.

Simple example: \mathbb{C}^{+}acting on \mathbb{P}^{n}
We can choose coordinates in which the generator of $\operatorname{Lie}\left(\mathbb{C}^{+}\right)$has Jordan normal form with blocks of size $k_{1}+1, \ldots, k_{q}+1$. The linear \mathbb{C}^{+} action therefore extends to $G=S L$ (2) with

$$
\mathbb{C}^{+}=\left\{\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right): a \in \mathbb{C}\right\} \leqslant G
$$

via $\mathbb{C}^{n+1} \cong \oplus_{i=1}^{q} \operatorname{Sym}^{k_{i}}\left(\mathbb{C}^{2}\right)$.
In fact in this case the invariants are finitely generated (Weitzenbock) so we can define

$$
\mathbb{P}^{n} / / \mathbb{C}^{+}=\operatorname{Proj}\left(\left(\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]\right)^{\mathbb{C}^{+}}\right)
$$

N.B. Via $(g, x) \mapsto\left(g \mathbb{C}^{+}, g x\right)$ we have

$$
\begin{aligned}
G \times_{\mathbb{C}^{+}} \mathbb{P}^{n} \cong\left(G / \mathbb{C}^{+}\right) \times \mathbb{P}^{n} \cong\left(\mathbb{C}^{2} \backslash\{0\}\right) \times \mathbb{P}^{n} \\
\subseteq \mathbb{C}^{2} \times \mathbb{P}^{n} \subseteq \mathbb{P}^{2} \times \mathbb{P}^{n}
\end{aligned}
$$

and so

$$
\mathbb{P}^{n} / / \mathbb{C}^{+} \cong\left(\mathbb{P}^{2} \times \mathbb{P}^{n}\right) / / S L(2)
$$

Example when $\left(\mathbb{P}^{n}\right)^{s s} \rightarrow \mathbb{P}^{n} / / \mathbb{C}^{+}$is not onto:
$\mathbb{P}^{3}=\mathbb{P}\left(\operatorname{Sym}^{3}\left(\mathbb{C}^{2}\right)\right)=\left\{3\right.$ unordered points on $\left.\mathbb{P}^{1}\right\}$.
Then $\left(\mathbb{P}^{3}\right)^{s s}=\left(\mathbb{P}^{3}\right)^{s}$ is
$\left\{3\right.$ unordered points on \mathbb{P}^{1}, at most one at ∞ \}
and its image in

$$
\mathbb{P}^{3} / / \mathbb{C}^{+}=\left(\mathbb{P}^{3}\right)^{s} / \mathbb{C}^{+} \sqcup \mathbb{P}^{3} / / S L(2)
$$

is the open subset $\left(\mathbb{P}^{3}\right)^{s} / \mathbb{C}^{+}$which does not include the 'boundary' points coming from

$$
0 \in \mathbb{C}^{2} \subseteq \mathbb{P}^{2}
$$

The blow-up $\tilde{\mathbb{P}}^{2}$ of \mathbb{P}^{2} at $0 \in \mathbb{C}^{2} \subseteq \mathbb{P}^{2}$ can be identified with $G \times{ }_{B} \mathbb{P}^{1}$ where B is the Borel subgroup of $G=S L(2)$ containing \mathbb{C}^{+}and the standard maximal torus $T \cong \mathbb{C}^{*}$.
Similarly the blow-up of $\mathbb{P}^{2} \times \mathbb{P}^{n}$ along $\{0\} \times \mathbb{P}^{n}$ can be identified with $G \times{ }_{B}\left(\mathbb{P}^{1} \times \mathbb{P}^{n}\right)$.
Let $\widetilde{\mathbb{P}^{n} / / \mathbb{C}}+$ be the blow-up of

$$
\mathbb{P}^{n} / / \mathbb{C}^{+}=\left(\mathbb{P}^{2} \times \mathbb{P}^{n}\right) / / G
$$

along the subvariety $\mathbb{P}^{n} / / G$ corresponding to $0 \in \mathbb{P}^{2}$. Then the G-invariant surjection

$$
\left(\mathbb{P}^{2} \times \mathbb{P}^{n}\right)^{s s, G} \rightarrow\left(\mathbb{P}^{2} \times \mathbb{P}^{n}\right) / / G=\mathbb{P}^{n} / / \mathbb{C}^{+}
$$

induces a B-invariant surjection

$$
\left(\mathbb{P}^{1} \times \mathbb{P}^{n}\right)^{s s, B} \rightarrow \mathbb{P}^{n} / / \mathbb{C}^{+}
$$

from a suitable open subset $\left(\mathbb{P}^{1} \times \mathbb{P}^{n}\right)^{s s, B}$ of $\mathbb{P}^{1} \times \mathbb{P}^{n}$, and thus a surjection from an open subset of the GIT quotient

$$
\mathcal{X}=\left(\mathbb{P}^{1} \times \mathbb{P}^{n}\right) / / T
$$

to $\mathbb{P}^{n} / / \mathbb{C}^{+}$.

In constructing the GIT quotient

$$
\mathcal{X}=\left(\mathbb{P}^{1} \times \mathbb{P}^{n}\right) / / T
$$

to get a surjection from an open subset $\mathcal{X}^{s s}$ of \hat{X} to $\mathbb{P}^{n} / / \mathbb{C}^{+}$, the action of $T \cong \mathbb{C}^{*}$ on $\mathbb{P}^{1} \times \mathbb{P}^{n}$ has to be appropriately linearised; a different choice of linearisation would give

$$
\left(\mathbb{P}^{1} \times \mathbb{P}^{n}\right) / / T=\left(\mathbb{C}^{*} \times \mathbb{P}^{n}\right) / T=\mathbb{P}^{n}
$$

Thus the theory of variation of GIT quotients (Thaddeus, Dolgachev-Hu, Ressayre) tells us that \mathcal{X} and \mathbb{P}^{n} are related by a sequence of explicit blow-ups + blow-downs (flips in the sense of Thaddeus).

VGIT $\leadsto \mathcal{X}=\left(\mathbb{P}^{1} \times \mathbb{P}^{n}\right) / / T \stackrel{\text { flips }}{\leftarrow} \rightarrow X=\mathbb{P}^{n}$

Defn: Call a unipotent linear algebraic group U graded unipotent if there is a homomorphism $\lambda: \mathbb{C}^{*} \rightarrow \operatorname{Aut}(U)$ with the weights of the \mathbb{C}^{*} action on $\operatorname{Lie}(U)$ all strictly positive. Then let

$$
\hat{U}=U \rtimes \mathbb{C}^{*}=\left\{(u, t): u \in U, t \in \mathbb{C}^{*}\right\}
$$

with multiplication $(u, t) \cdot\left(u^{\prime}, t^{\prime}\right)=\left(u\left(\lambda(t)\left(u^{\prime}\right)\right), t t^{\prime}\right)$.
Thm: Let U be graded unipotent acting linearly on a projective variety X, and suppose that the action extends to $\widehat{U}=U \rtimes \mathbb{C}^{*}$. Then (i) the ring $A(X)^{U}$ of U-invariants is finitely generated, so that $X / / U=\operatorname{Proj}\left(A(X)^{U}\right)$; (ii) there is a projective variety \mathcal{X} which is related to X via VGIT and a surjection $\mathcal{X}^{s s} \rightarrow X / / U$ to $X / / U$ from an open subset $\mathcal{X}^{s s}$ of \mathcal{X}.
flips

Example: The automorphism group of the weighted projective plane $\mathbb{P}(1,1,2)$ is

$$
\operatorname{Aut}(\mathbb{P}(1,1,2)) \cong R \ltimes U
$$

with $R \cong G L(2)$ reductive and $U \cong\left(\mathbb{C}^{+}\right)^{3}$ unipotent $\ldots .(\lambda, \mu, \nu) \in\left(\mathbb{C}^{+}\right)^{3}$ acts as $(x, y, z) \mapsto\left(x, y, z+\lambda x^{2}+\mu x y+\nu y^{2}\right)$.

The central one-parameter subgroup \mathbb{C}^{*} of $R \cong$ $G L(2)$ acts on $\operatorname{Lie}(U)$ with all positive weights, and the associated extension $\hat{U}=U \rtimes \mathbb{C}^{*}$ can be identified with a subgroup of $\operatorname{Aut}(\mathbb{P}(1,1,2))$.

Corollary When $H=\operatorname{Aut}(\mathbb{P}(1,1,2))$ acts linearly on a projective variety X, the ring of invariants $A(X)^{H}$ is finitely generated as a complex algebra, so that

$$
X / / H=\operatorname{Proj}\left(A(X)^{H}\right),
$$

and moreover there is a projective variety \mathcal{X} which is related to X via VGIT and a surjection $\mathcal{X}^{s s} \rightarrow X / / H$ to $X / / H$ from an open subset $\mathcal{X}^{s s}$ of \mathcal{X}.

Application to jet differentials (following Demailly 1995)

X complex manifold, $\operatorname{dim} X=n$
$J_{k} \rightarrow X$ bundle of k-jets of holomorphic curves
$f:(\mathbb{C}, 0) \rightarrow X$
[f and g have the same k-jet if their Taylor expansions at 0 coincide up to order k]. More generally $J_{k, p} \rightarrow X$ is the bundle of k-jets of holomorphic maps $f: \mathbb{C}^{p} \rightarrow X$.

Under composition modulo t^{k+1} we have a group \mathbb{G}_{k} given by
$\{k$-jets of germs of biholomorphisms of ($\mathbb{C}, 0)\}$ $t \mapsto \phi(t)=a_{1} t+a_{2} t^{2}+\ldots+a_{k} t^{k}, \quad a_{j} \in \mathbb{C}, a_{1} \neq 0$
\mathbb{G}_{k} acts on J_{k} fibrewise by reparametrising k jets. Similarly we have $\mathbb{G}_{k, p}$ acting fibrewise on $J_{k, p}$.
$\mathbb{G}_{k} \cong\left\{\left(\begin{array}{cccc}a_{1} & a_{2} & \ldots & a_{k} \\ 0 & a_{1}^{2} & \ldots & \\ & & \ldots & \\ 0 & 0 & \ldots & a_{1}^{k}\end{array}\right): a_{1} \in \mathbb{C}^{*}, a_{2}, \ldots a_{k} \in \mathbb{C}\right\}$
\mathbb{G}_{k} has a subgroup \mathbb{C}^{*} (represented by $\phi(t)=$ $a_{1} t$) and a unipotent subgroup \mathbb{U}_{k} (represented by $\left.\phi(t)=t+a_{2} t^{2}+\ldots+a_{k} t^{k}\right)$ such that

$$
\mathbb{G}_{k} \cong \mathbb{U}_{k} \rtimes \mathbb{C}^{*}
$$

Similarly

$$
\mathbb{G}_{k, p} \cong \mathbb{U}_{k, p} \rtimes G L(p)
$$

where $\mathbb{U}_{k, p}$ is the unipotent radical of $\mathbb{G}_{k, p}$, and the central one-parameter subgroup \mathbb{C}^{*} of $G L(p)$ acts on $\operatorname{Lie}\left(\mathbb{U}_{k, p}\right)$ with all weights strictly positive. Thus
linear actions of $\mathbb{G}_{k, p}$ have finitely generated invariants.

Green-Griffiths (1979): For $x \in X$ consider

$$
\begin{gathered}
\left(J_{k}\right)_{x} \cong \underset{j=1}{\Theta_{1}^{k}} \operatorname{Sym}^{j}\left(\mathbb{C}^{n}\right) \\
\text { and }
\end{gathered}
$$

$\left(E_{k, m}^{G G}\right)_{x}=\left\{\mathbb{C}\right.$-valued polynomials on $\left(J_{k}\right)_{x}$ of weighted degree m wrt $\left.\mathbb{C}^{*} \leqslant \mathbb{G}_{k}\right\}$.

Demailly-Semple jet differentials:

$$
\left(E_{k, m}\right)_{x}=\left(E_{k, m}^{G G}\right)_{x}^{\mathbb{U}_{k}}=\mathcal{O}\left(\left(J_{k}\right)_{x}\right)^{\mathbb{G}_{k}}
$$

is the fibre at x of the bundle $E_{k, m}$ of invariant jet differentials of order k and degree m over X. (N.B. The action of \mathbb{G}_{k} on $\mathcal{O}\left(\left(J_{k}\right)_{x}\right)$ is twisted by the character $\mathbb{G}_{k} \rightarrow \mathbb{C}^{*}$ with kernel $\left.\mathbb{U}_{k}\right)$.

Merker (2008) gave algorithm to generate all invariants, and showed invariants are finitely generated for small n and k (in the case $p=1$).

Kobayashi hyperbolicity
 X compact complex manifold

X is Kobayashi hyperbolic $\Longleftrightarrow \nexists$ nonconstant entire holo curve in X

Idea: global holo sections of $E_{k, m}$ vanishing on a fixed divisor \leadsto global algebraic differential equations satisfied by every entire holo curve $f: \mathbb{C} \rightarrow X$.

Conjecture (Kobayashi 1970)
$X \subseteq \mathbb{P}^{n+1}$ generic hypersurface of degree $d \gg n$
$\Rightarrow X$ hyperbolic.

Siu (2004): method of proof but no effective lower bound for d.

Conjecture (Green-Griffiths)

$X \subseteq \mathbb{P}^{n+1}$ generic hypersurface of degree

$$
d \geq d(n) \gg n
$$

$\Rightarrow \exists$ proper algebraic subvariety $Y \subset X$ such that every nonconstant entire holo curve $f: \mathbb{C} \rightarrow X$ is contained in Y.

Diverio-Merker-Rousseau (2009) prove this with

$$
d(n) \sim n^{(n+1)^{n+5}}
$$

(for $n \geq 2$).

Berczi-K use non-reductive GIT to obtain

$$
d(n) \sim n^{3 / 2}
$$

Method goes back to Demailly

$$
J_{k}^{r e g}=\left\{f \in J_{k}: f^{\prime}(0) \neq 0\right\}
$$

Thm (Demailly 1995) $J_{k}^{\text {reg }} / \mathbb{G}_{k}$ is a locally trivial bundle over X with a compactification

$$
\pi: X_{k} \rightarrow X
$$

and a line bundle $\mathcal{O}_{X_{k}}(1)$ satisfying $\pi_{*}\left(\mathcal{O}_{X_{k}}(m)\right)=$ $E_{k, m}$.

If \exists an ample line bundle $L \rightarrow X$ such that $H^{0}\left(X_{k}, \mathcal{O}_{X_{k}}(m) \otimes \pi^{*} L^{-1}\right) \cong H^{0}\left(X, E_{k, m} \otimes L^{-1}\right) \neq 0$ with basis $\sigma_{1}, \ldots, \sigma_{N}$ and base locus Z, then every entire holo curve $f: \mathbb{C} \rightarrow X$ is contained to k th order in Z.

The bound $n^{(n+1)^{n+5}}$ comes from the relatively complicated nature of the compactification X_{k} (an iterated projective bundle). The better bound $n^{3 / 2}$ comes from using the compactification of $J_{k}^{r e g} / \mathbb{G}_{k}$ obtained from non-reductive GIT.

