Applications of algebra to a problem in topology

Joint work with

Mike Hill

Doug Ravenel

Pontryagin (1930's)

Pontryagin (1930's)

cobordism group of stably framed K-manifolds

$$
\pi_{n+k} S^{n}, n \gg 0
$$

$$
\pi_{k} S^{0}
$$

Pontryagin (1930's)

Pontryagin (1930s) $\quad k=2$

Pontryagin (1930s) $\quad k=2$

Pontryagin (1930s) $\quad k=2$

Pontryagin (1930s) This defines a fuction

$$
\varphi: H_{1}(M ; \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2
$$

If genus $M>0, \operatorname{dim} H_{1}(M)>1$ and so $\operatorname{ker} \varphi \neq 0$

You can always lower the genus with surgery

$$
=\pi_{2} S^{0}=0
$$

Pontryagin (?)

φ is not linear
it's quadratic and refines the intersection pairing

Pontryagin (?)

$$
\Phi(\Sigma)=\operatorname{Arf}(\varphi)
$$

$$
\pi_{2} S^{0}=\mathbb{Z} / 2
$$

Kervaire (1960)

$$
M=M^{4 k+2} \quad(\text { framed })
$$

defined $\quad \varphi: H^{2 k+1}(M ; \mathbb{Z} / 2) \rightarrow \mathbb{Z} / 2$
quadratic refinement of the intersection pairing

$$
\Phi(M)=\operatorname{Ar} f(\varphi)
$$

showed $\Phi\left(M^{10}\right)=0$

Kervaire (1960)

produced a piecewise linear N^{10}
with $\Phi\left(N^{10}\right) \neq 0$
hence N^{10} has no smooth structure

Browder (1969)

$$
\begin{array}{ll}
n \neq 2^{j}-1 & \Phi\left(M^{2 n}\right)=0 \\
n=2^{j}-1 & \Phi\left(M^{2 n}\right) \neq 0
\end{array}
$$

there exists $\quad \theta_{j} \in \pi_{2^{j+2}-2} S^{0}$ represented by $h_{j}^{2} \in \operatorname{Ext}_{A}(\mathbb{Z} / 2, \mathbb{Z} / 2)$

Barratt-Jones-Mahowald $(1969,1984)$

The elements θ_{j} exist for $j=1,2,3,4,5$

dimensions

$2,6,14,30,62$
so the first open dimension is 126

The Kervaire invariant problem

In which dimensions can

$$
\Phi(M)
$$

be non-zero?

(Hill, H., Ravenel)

If $\Phi\left(M^{n}\right) \neq 0$ then $n=2,6,14,30,62$ or 126

In other words θ_{j} does not exist for $j \geq 7$

Adams-Novikov
Spectral Sequence

Adams Spectral Sequence
$\operatorname{Ext}_{M U_{*}, M U}^{s, t}\left(M U_{*}, M U_{*}\right)$ $\Longrightarrow \pi_{t-s} S^{0}$

$$
\begin{gathered}
H^{s}\left(\mathbb{Z} / 2 ; K_{t}\right) \\
\Longrightarrow K O_{t-s}
\end{gathered}
$$

$\operatorname{Ext}_{A}^{s, t}(\mathbb{Z} / 2, \mathbb{Z} / 2)$
$\Longrightarrow \pi_{t-s} S^{0}$

Adams-Novikov
Spectral Sequence

Adams Spectral Sequence

$$
H^{s}\left(\mathbb{Z} / 2 ; K_{t}\right) \Longrightarrow K O_{t-s}
$$

for $j \geq 2, \theta_{j}$ supports a

non-zero differential

Adams-Novikov Spectral Sequence

Something easier to compute

Adams Spectral Sequence

periodicity Theorem

Rochlin's Theorem

K-theory and reality (Atiyah, 1966)

$X \longleftarrow$ space with a $\mathbb{Z} / 2$ action
$K R(X) \longleftarrow$ vector bundles with compatible conjugatelinear action

$$
K R(X) \approx K R\left(X \wedge S^{n, n}\right)
$$

$$
S^{n, n}=\overline{\mathbb{C}^{n}}
$$

slice filtration

(Dugger, Hu-Kriz, H.-Morel, Voevodsky)

Assemble K-theory from the equivariant chains on $S^{n, n}$

slice filtration

level 5 topological modular forms

Like $K R$ with $\mathbb{Z} / 4$ instead of $\mathbb{Z} / 2$

$$
j \geq 4
$$

$$
j \geq 4
$$

2 below the period

$$
j \geq 4
$$

2 below the period

Assemble tmf(5) from the equivariant chains

$$
\text { on } S^{m \rho_{4}}
$$

ρ_{4} the 4 dimensional real regular representation of $\mathbb{Z} / 4$

2 below the period

\Longrightarrow differentials on the θ_{j}

The actual proof

Step 1: Use $\mathbb{Z} / 8$ and an appropriate cohomology theory

Step 2: Show that all the choices of θ_{j} are distinguished

Step 3: Prove a gap theorem (easy)

Step 4: Prove a periodicity theorem (of period 256)

Relation to Geometry/Physics?

4 dimensional field theory?
generalization of Clifford algebras with periodicity of $2^{8} 3^{3} 5=34,560$
(maybe twice that)

Question

Given a real manifold $M^{2 d}$ whose fixed point space N bounds an unoriented manifold, find a cobordism invariant of M which, when $N=\emptyset$ is

$$
\int_{M /(\mathbb{Z} / 2)} w_{1}^{2 d}
$$

