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1. Consider a rational normal cubic C3. In the Klein representation of the lines of
$3 by points of a quadric Q in Ss, the tangents of C3 are represented by the points of
a rational normal quartic O4. It is the object of this note to examine some of the
consequences of this correspondence, in terms of the geometry associated with the
two curves.

2. C4 lies on a Veronese surface V, which represents the congruence of chords of
O3(l). Also C4 determines a 4-space 2 meeting D. in Qx, say; and since the surface of
tangents of O3 is a developable, consecutive tangents intersect, and therefore the
tangents to C4 lie on Q, and so on £lv Hence Qx, containing the sextic surface of
tangents to C4, must be the quadric threefold / associated with C4, i.e. the quadric
determining the same polarity as C4 (2). We note also that the tangents to C4 correspond
in #3 to the plane pencils with vertices on O3, and lying in the corresponding osculating
planes.

3. We shall prove that the surface U, which is the locus of points of intersection of
pairs of osculating planes of C4, is the projection of the Veronese surface V from L,

the pole of 2, on to 2 .

Let P denote a point of C3, and t, n the tangent line and osculating plane at P, and
let T, T, w denote the same for the corresponding point of C4. Further, let WXTB2 meet
in Q, which is therefore a point of U, and let LQ meet Q. in R, R'. We show that R and
R' represent the two lines PXP2 and (nv n2), and therefore that R, or R', is a point of V.

The polar 3-space of Q with respect to I, being the same as that with respect to C4,
meets C4 twice at each of Tx and T2, and therefore contains TX and T2. But this 3-space
is the polar 3-space of LQ with respect to Q. Hence R and R', being conjugate to all
the points of rx and T2, represent lines in S3 which intersect all lines of the pencils
(Plt n^) (P2, TT2), and so must be. the lines PXP2, {nx, n2) as stated.

4. We now give a geometrical proof of the well-known result: a necessary and suffi-
cient condition for four points on Ct to be equianharmonic is that the pole of the
3-space determined by them should lie on / (i.e. that the 3-space should touch / ) .

Let A, B, G be three points on Ct, and let T be a collineation on CA, such that

T(ABC) = (BCA).

Then T
3 = 1, the identical collineation, and T(H1H2) = {HXH2), where H^, H2 are the

Hessian pair ofA,B,C. Since C4 is a rational normal curve, there is a unique collinea-
tion S of /S4 which induces T on C4, and 8

Z = 1.
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“.. The tangents at four points of a twisted cubic have a unique
transversal if and only if the four points are equianharmonic”.



RATIONAL NORMAL CURVES



• P1 ⊂ Pn of degree n

• ... not contained in any hyperplane

• = image by a projective transformation of z "→ [1, z, z2, . . . , zn]



• Symmetric product Sn(P1) = Pn

• Diagonal ∆ ⊂ Sn(P1) = {(x, x, . . . , x) : x ∈ P1}

• V = 2-dimensional vector space, SnV symmetric tensor prod-
uct

• Sn(P(V )) = P(SnV ), ∆ = {[v ⊗ v ⊗ . . .⊗ v] : v ∈ V }
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• V = 2-dimensional vector space, SnV symmetric tensor prod-
uct

• Sn(P(V )) = P(SnV ), ∆ = {[v ⊗ v ⊗ . . .⊗ v] : v ∈ V }

• Symmetric product Sn(P1) = Pn

• Diagonal ∆ ⊂ Sn(P1) = {(x, x, . . . , x) : x ∈ P1}

• V = 2-dim symplectic vector space, SnV symmetric tensor
product

• Sn(P(V )) = P(SnV ), ∆ = {[v ⊗ v ⊗ . . .⊗ v] : v ∈ V }



• rational normal curve C ⊂ P(W ) defines an isomorphism

W ∗ ∼= H0(C,O(n) = SnH0(C,O(1)) = SnV ∗

• SnV has a symplectic/ orthogonal (n odd/even) structure



EXAMPLES

• conic in P2

• twisted cubic in P3

• tangents to a twisted cubic ⊂ Q4 ⊂ P5 ...

• ... lies in P4 ∩Q4

• (S3V symplectic, P(S3V ) contact, twisted cubic Legendrian)
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VECTOR BUNDLES ON THE PROJECTIVE

PLANE
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LET k be an algebraically closed field, and Pn the n-dimensional projective

space defined over k. We consider algebraic vector bundles with fibre k
r
,

group GL(r, k), and base Pn, and then speak of &
r
-bundles, or, when r = 1,

of line bundles. The equivalence classes of line bundles on an algebraic

variety have been classified (10): they are in one-one correspondence with

the divisor classes. In particular, on Pn there is one equivalence class of

line bundles for each (positive or negative) integer. If H is the line bundle

on Pn which corresponds to a hyperplane divisor, then the dual bundle

H* is the line bundle defined by the natural projection k
n+1

—{0} -> Pn.

Writing H
r
 for the tensor product of r copies of H, and H~

r
 for (H*)

r
 it

follows that any line bundle on Pn has the form H
r
, where now r may be

negative. H° = I is the trivial bundle Pn X k.

When n = 1, Grothendieck (6) proved that every Zf-bundle on Px is

a direct sum H
8l

@...@H
8
r, and it follows from a theorem of Atiyah (1)

that such a decomposition is unique up to permutations of the summands.

Thus &
r
-bundles on Px are completely classified.

When n > 1 there are indecomposable &
r
-bundles on Pn, and it is no

longer the case (as it is for bundles on algebraic curves) that all &
r
-bundles

can be constructed from line bundles by extensions. Indeed, if there is

an exact sequence of bundles on Pn (n > 1)

0 -> HP -+ E -> H* -> 0,

then E must be decomposable: E = H*>@H
Q
. This follows (2) from the

fact that H
x
(Pn, H

p
~

3
) = 0, where H is the sheaf of germs of sections of

H (14).

However, it is true (3), that if E is a fc
r
-bundle (r > n) there is an exact

sequence of the form

0 -+ I,_n <S> H-
8
 -> E -+ F -+ 0,

where j ^ _ n is the trivial bundle Pn X k
r
~

n
, and F is a &

n
-bundle. For this

reason it is important to construct all ifc
n
-bundles on Pn as a preliminary

to an attempt at a general classification. This paper is chiefly concerned

with the construction of &
2
-bundles on P2, although in § 1 a class of k

n
-

bundles on Pn is constructed which occurs in connexion with rational
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normal curves in Pn. These bundles are classified, by studying their

restriction to linear subspaces of Pn. For each r ^ n there is a set of

^bundles Er
n which are equivalent, when r = n, to the tangent bundle

of Pn, and which, when r > n, are in one-one correspondence with the

rational normal curves of Pn. The set of bundles Er
n is an example of an

algebraic family of bundles such that if Ev E2 are two bundles of the

family there is a collineation <f>\ Pn->Pn such that E2 = <f>*Ev

In § 2, which is independent of § 1, a general result is proved which

gives a method of constructing &2-bundles (and hence &r-bundles) over a

protective surface X. Every jfc2-bundle on X may be obtained as the direct

image of a line bundle on a double covering Y of X. Thus the problem

of constructing all vector bundles on X is reduced to a problem of deter-

mining divisors on double coverings of X.

The results of §§ 1 and 2 are used in § 3 to construct &
2
-bundles on P2.

The properties of these bundles are developed, and contrasted with those

of the almost decomposable bundles, defined and classified in (13).

A Jfc2-bundle on P2 has Chern classes cv c2 which may be regarded as

integers. It is shown in (13) that any integers cx, c2 actually occur as the

Chern classes of an almost decomposable &
2-bundle. The results of § 3

show that any integers clt c2 which satisfy cf—4c2 < 0. actually occur as

the Chern classes of a bundle which is not almost decomposable, and that

there exist bundles which have the same Chern classes and do not even

belong to the same algebraic family. These results may be read inde-

pendently of (13) and, when k = C is the field of complex numbers, yield

corollaries about the algebraic structures which can be given to a con-

tinuous <7r-bundle.

The construction of &
n-bundles on Pn in § 1 is, based on unpublished

work of Hodge and Atiyah for the case n = 2. Some of the &
2-bundles

described in § 3 have previously been studied by Todd (16). I am grateful

to M. F. Atiyah for his encouragement, and for much help and advice.

1. A class of ^-bundles on Pn

1.1. The projective line may be described by homogeneous parameters

(d:(f>), or when no confusion can occur by one parameter (6) which, by

convention, may take the value 0 = oo(=(l:O))as well as finite values

$ = 0O (= (0O: l)). Denote the n-fold symmetric product of Pt by Sn(Px).

A point s 6 ^n
(i^) corresponds to a set (dv...,6n) of points of Px, and so

to an equation j (-1)^(5)0*-* = 0,

where a^s) is the ith. elementary symmetric function of 9V..., 6n.

Let ir: Px -> Pr be a normal embedding of the projective line1. The image
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FIRST DEFINITION

• SrV → Sr−nV ⊗ SnV

• Pn = P(SnV )

• SrV → Sr−nV ⊗H0(Pn,O(1))

• 0→ O(Er
n
∗)→ O ⊗ SrV → O(1)⊗ Sr−nV → 0
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n
∗ → SrV → O(1)⊗ Sr−nV → 0



SECOND DEFINITION

• f : Y = P(Sn−1V )×P(V )→ P(SnV )

• or SnV = degree n homogeneous polynomials p(z0, z1) and

• Y = {([p(z)], [w]) : p(w) = 0}



SECOND DEFINITION

• f : Y = P(Sn−1V )×P(V )→ P(SnV )

• or SnV = degree n homogeneous polynomials p(z0, z1) and

• Y = {([p(z)], [w]) : p(w) = 0}

• f : P(Sn−1V )×P(V )→ P(SnV ) n-fold branched covering

• Er
n = f∗O(0, r)

• ∆ ⊂ P(SnV ) defines Er
n

• rational normal curve φ∗∆ defines φ∗Er
n

= Schwarzenberger bundle



PROPERTIES

• c(Er
n) = (1− h)n−r−1

• TPn = En
n(1)

• Er
n is stable

• The unstable hyperplanes (H0(Pn−1, (Er
n)
∗) #= 0) are defined

by the dual curve of ∆

• (SnV ∼= SnV ∗ so P(SnV ) ∼= P(SnV )∨)
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RESTRICTION TO RATIONAL CURVES

Birkhoff-Grothendieck: Any holomorphic vector bundle on P1

is a direct sum of line bundles.



RESTRICTION TO RATIONAL NORMAL CURVES

• C ⊂ Pn rational normal curve: degree n

• C ∼= P1, OPn(1)|C ∼= OP1(n)

• c1(Er
n) = (r + 1− n)h, degree (r + 1− n)n on C

• generic splitting type Cn ⊗O(r + 1− n)
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WHEN DOES Er
n|C CONTAIN O(m) FOR m ≥ r?

• 0→ O(−1)⊗ Sr−nV → SrV → Er
n → 0

• . . .→ H1(P1,O(−n−r))⊗Sr−nV
α→ H1(P1,O(−r))⊗SrV → . . .

• H0(P1, Er
n(−r)) = ker α



• α : Cn+r−1 ⊗Cr−n+1 → Cr−1 ⊗Cr+1

• matrices A : Cm → Cn of non-maximal rank are codimension
(n−m + 1)

• (r−1)(r+1)−(r+n−1)(r−n+1)+1 = (n−1)2 constraints



• α : Cn+r−1 ⊗Cr−n+1 → Cr−1 ⊗Cr+1

• matrices A : Cm → Cn of non-maximal rank are codimension
(n−m + 1)

• (r−1)(r+1)−(r+n−1)(r−n+1)+1 = (n−1)2 constraints

• α : Cn+r−1 ⊗Cr−n+1 → Cr−1 ⊗Cr+1

• matrices A : Cm → Cn of non-maximal rank are codimension
(n−m + 1)
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THE CASE n = 2

• ∆, C ⊂ P2 conics

• (n− 1)2 = 1 constraint

• jumping conics – four parameter family.



• rational normal curve C ⊂ P(W ) defines an isomorphism

W ∗ ∼= H0(C,O(n) = SnH0(C,O(1)) = SnV ∗

• SnV has a symplectic/ orthogonal (n odd/even) structure

• “in-and-circumscribed polygon”









DUALITY



• rational normal curve B defines a vector bundle Er(B)

• take another rational normal curve C

• Define C < B if H0(C, Er(B)(−r)) "= 0



B

C



Theorem: C < B if and only if B∨ < C∨

• B = φ(∆), C = ψ(∆)

• B∨ = (φT )−1(∆)

• C < B ⇔ φ−1ψ(∆) < ∆

• B∨ < C∨ ⇔ ψT (φT )−1(∆) < ∆

• ⇔ (φ−1ψ)T (∆) < ∆
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∪

C
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C
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• n-fold covering

• S ↪→ C ×P1

• choose an identification C ∼= P1 = ∆ (condition invariant
under Aut(∆))

• S

C
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• φ !→ φT ⇔ (w, z) !→ (z, w)

• O(−r, r) is trivial on S if and only if its inverse O(r,−r) is
trivial.



HYPERBOLIC MONOPOLES



• H3 hyperbolic three-space of curvature −1

• Bogomolny equations FA = ∗dAφ for SU(2) connection A

• boundary conditions:

mass = |φ|→ p charge = n = degφ : S2
R → S2

• M F Atiyah, Magnetic monopoles in hyperbolic spaces in
“Vector bundles on algebraic varieties (Bombay, 1984)” 1–
33, Tata Inst. Fund. Res. Stud. Math., 11, Bombay, 1987.



• space of geodesics S2 × S2 \∆

• L ⊂ CPn line, L⊥ orthogonal n− 2-space

• x ∈ L, x &→ (x, x + L⊥) ∈ P (T ∗CPn)

• quaternionic Kähler manifold = U(n + 1)/U(2)× U(n− 1)



SPECTRAL CURVE

• geodesics: P1 ×P1 \ {w = z̄}

• spectral curve S: divisor of a section of O(n, n)

• constraint: O(r,−r) is trivial on S where r = 2p + n (p =
mass, n = charge)



Theorem: C < B if and only if B∨ < C∨

⇔

Fact: A monopole (A, φ) transforms to a monopole (with oppo-
site orientation) under a hyperbolic reflection in a point.



MONOPOLE MODULI SPACES





MONOPOLES ON R3

• moduli space M4n is hyperkähler

• twistor space complex manifold Z2n+1

• holomorphic fibration p : Z → P1

• complex symplectic fibres

• M = a space of sections



• each fibre of p ∼= based degree n rational maps

• S(z) = p(z)/q(z), zeros of q: z1, . . . , zn

• symplectic form:

∑

i

dzi ∧ d log p(zi)
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L Faybusovich & M Gekhtman, Poisson brackets on rational
functions and multi-Hamiltonian structure for integrable lattices,
Phys. Lett. A 272 (2000), 236–244

K L Vaninsky, The Atiyah-Hitchin bracket and the open Toda
lattice, J. Geom. Phys. 46 (2003) 283–307

K L Vaninsky, The Atiyah-Hitchin bracket and the cubic nonlinear
Schrödinger equation, IMRP (2006), 17683, 1–60.



• fix p: Lagrangian submanifold

• fix q: Lagrangian submanifold

• Define fx(S) = p(x), gx(S) = q(x)

• Poisson bracket:

{fx, gy} =
p(x)q(y)− q(x)p(y)

x− y

• (Bezoutian)
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MONOPOLES ON H3

For each point on S2 = ∂H3 the moduli space is isomorphic to
the space of based rational maps.

M F Atiyah, Instantons in two and four dimensions, Commun.
Math. Phys. 93 (1984), 437–451

P J Braam & D M Austin, Boundary values of hyperbolic monopoles,
Nonlinearity 3 (1990), 809–823

M K Murray, P Norbury & M A Singer, Hyperbolic monopoles
and holomorphic spheres, Ann. Global Anal. Geom. 23 (2003)
101–128





SYMPLECTIC STRUCTURE

O Nash, A new approach to monopole moduli spaces, Nonlin-
earity 20 (2007) 1645-1675

• spectral curve S ⊂ P1 ×P1

• constraint lifts S to O(−r, r)

• deformation theory of a curve in a three-manifold
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SCHWARZENBERGER BUNDLES AND RATIONAL MAPS

• 0→ Sr−nV (−1)→ SrV → Er
n → 0

• SkV = homogeneous polynomials q(z0, z1) of degree k

• fibre of Er
n over [q] ∈ P(SnV ) ∼= polynomials p of degree r

modulo q

• common factor?
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• f : Y → X

• evaluation map ev : f∗f∗L→ L

• ⇒ section α of Hom(f∗Er
n,O(0, r)) on Pn−1 ×P1

• kernel of α = rank (n − 1) bundle over Pn−1 × P1 ⇒ p, q =
p, q with common factor

• (Er
n)0 = complement
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• f : Y → X

• evaluation map ev : f∗f∗L→ L

• ⇒ section α of Hom(f∗Er
n,O(0, r)) on Pn−1 ×P1

• kernel of α = rank (n−1) bundle over Pn−1×P1 = p, q with
common factor

• (Er
n)0 = complement



• choose [a0, a1] ∈ P1, restrict to q with q(a0, a1) "= 0

• [a0, a1] = [0,1], q = degree n polynomial in z = z1/z0

• p = aq + b, deg b < n

• based rational map b(z)/q(z)



TWISTOR SPACES

• spectral curve S defines a rational normal curve C ⊂ P(SnV )

w "→
n∑

i,j=0
φijz

i(−w)n−j

• constraint H0(C, Er
n(−r)) %= 0 lifts C to Er

n(−r)0

• C ⇒ S requires an isomorphism C ∼= P1

• (Note: O(−r) = OPn(−r/n)|C)
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Z2n+1 = Er
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RATIONAL CURVES

• spectral curve S defines a rational normal curve C ∈ P(SnV )

• C ⇒ S requires an isomorphism C ∼= P1

Z2n+1 = Er
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MONOPOLES ON H3

• complex manifold Z2n+1

• holomorphic fibration p : Z → P1

• complex symplectic fibres

• M = a space of sections



PROBLEMS

• no real structure

• symplectic forms along fibres do not vary holomorphically



CHARGE 2 MONOPOLES



CENTRES

• V ∼= V̄ ⇒ Hermitian form = point in H3

• spectral curve equation ∈ SnV ⊗ SnV̄

• SnV ⊗ SnV = 1 + S2V + . . . + S2nV

• centred monopole: S2V component vanishes



• V ∼= V̄ ⇒

• real structure on Schwarzenberger bundle

• if C = φ(∆), C̄ = φT (∆)

• charge 2 centred: 1 + S4V symmetric
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• charge 2 centred: 1 + S4V symmetric



The projective Schwarzenberger bundle P((Er
2)0) is the twistor

space for a 4-dimensional self-dual Einstein manifold.

N J Hitchin A new family of Einstein metrics, in “Manifolds
and geometry (Pisa, 1993)”, 190–222, Sympos. Math., XXXVI,
Cambridge Univ. Press, Cambridge, 1996



EXAMPLE: CHARGE 2

g = fdr2 + T1σ2
1 + T2σ2

2 + T3σ2
3

T1 =
(1− r2)2

(1 + r + r2)(r + 2)(2r + 1)

T2 =
1 + r + r2

(r + 2)(2r + 1)2

T3 =
r(1 + r + r2)

(r + 2)2(2r + 1)

f =
1 + r + r2

r(r + 2)2(2r + 1)2



• M4 = S4 \ RP2

• (irreducible 5-dimensional rep of SO(3))

• orbifold singularity around RP2, (r − 2)-fold quotient.

• ... SO(3) bundle Hr over M4 – smooth, Einstein (3-Sasakian)
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• (irreducible 5-dimensional rep of SO(3))

• orbifold singularity around RP2, (r − 2)-fold quotient.

• ... SO(3) bundle Hr over M4 – smooth, Einstein (3-Sasakian)



• r = 3, M4 = S4

• twistor space P3 = P(S3V )

• What’s the link with P(E3
2)?



THE TWISTED CUBIC



x

p

p′

• C ⊂ P3 rational normal curve

• x "= C ⇒ unique secant through x

• f : P3 \ C → S2C = P2

• x on a tangent to C ⇒ f(x) ∈∆
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• Blow up C: P1 fibration = P(E3
2)

• lines in P3 ∼ sections of P(E3
2) ...

• ... constrained conics in P2



M F Atiyah, A note on the tangents to a twisted cubic, Proc.
Camb. Phil. Soc. 48 (1952) 204–205

“.. The tangents at four points of a twisted cubic have a unique
transversal if and only if the four points are equianharmonic”.



M F Atiyah, A note on the tangents to a twisted cubic, Proc.
Camb. Phil. Soc. 48 (1952) 204–205

“.. The tangents at four points of a twisted cubic have a unique
transversal if and only if the four points are equianharmonic”.

⇔

There is a unique constrained conic passing through four points
of ∆ if and only if the four points are equianharmonic.



• ∆ : z2
0 + z2

1 + z2
2 = 0

• C : (x1 + x2)z2
0 + (x2 + x0)z2

1 + (x0 + x1)z2
2 = 0

• cross-ratio of intersection points: (x1 − x0)/(x2 − x0)



• constraint: σ2 = x1x2 + x2x0 + x0x1 = 0

• in pencil: xi !→ xi + t,

σ2 + 2σ1t + 3t2 = 0

• one root: σ2
1 = 3σ2

• x2
1 − x1(x0 + x2) + x2

0 + x2
2 − x0x2 = 0
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• HAPPY BIRTHDAY, SIR MICHAEL!


