HYPERBOLIC MONOPOLES AND RATIONAL NORMAL CURVES

Nigel Hitchin (Oxford)
Edinburgh April 20th 2009

A NOTE ON THE TANGENTS OF A TWISTED CUBIC

By M. F. ATIYAH
Communicated by J. A. Todd
Received 8 May 1951

1. Consider a rational normal cubic C_{3}. In the Klein representation of the lines of S_{3} by points of a quadric Ω in S_{5}, the tangents of C_{3} are represented by the points of a rational normal quartic C_{4}. It is the object of this note to examine some of the consequences of this correspondence, in terms of the geometry associated with the two curves.
2. C_{4} lies on a Veronese surface V, which represents the congruence of chords of $C_{3}(\mathbf{1})$. Also C_{4} determines a 4-space Σ meeting Ω in Ω_{1}, say; and since the surface of

M F Atiyah, A note on the tangents to a twisted cubic, Proc. Camb. Phil. Soc. 48 (1952) 204-205
".. The tangents at four points of a twisted cubic have a unique transversal if and only if the four points are equianharmonic".

RATIONAL NORMAL CURVES

- $\mathbf{P}^{1} \subset \mathbf{P}^{n}$ of degree n
- ... not contained in any hyperplane
- = image by a projective transformation of $z \mapsto\left[1, z, z^{2}, \ldots, z^{n}\right]$
- Symmetric product $S^{n}\left(\mathbf{P}^{1}\right)=\mathbf{P}^{n}$
- Diagonal $\Delta \subset S^{n}\left(\mathbf{P}^{1}\right)=\left\{(x, x, \ldots, x): x \in \mathbf{P}^{1}\right\}$
- Symmetric product $S^{n}\left(\mathbf{P}^{1}\right)=\mathbf{P}^{n}$
- Diagonal $\Delta \subset S^{n}\left(\mathbf{P}^{1}\right)=\left\{(x, x, \ldots, x): x \in \mathbf{P}^{1}\right\}$
- $V=2$-dim symplectic vector space, $S^{n} V$ symmetric tensor product
- $S^{n}(\mathbf{P}(V))=\mathbf{P}\left(S^{n} V\right), \Delta=\{[v \otimes v \otimes \ldots \otimes v]: v \in V\}$
- rational normal curve $C \subset \mathbf{P}(W)$ defines an isomorphism

$$
W^{*} \cong H^{0}\left(C, \mathcal{O}(n)=S^{n} H^{0}(C, \mathcal{O}(1))=S^{n} V^{*}\right.
$$

- $S^{n} V$ has a symplectic/ orthogonal (n odd/even) structure

EXAMPLES

- conic in P^{2}
- twisted cubic in P^{3}

EXAMPLES

- conic in \mathbf{P}^{2}
- twisted cubic in P^{3}
- tangents to a twisted cubic $\subset \mathrm{Q}^{4} \subset \mathrm{P}^{5} \ldots$
- ... lies in $\mathrm{P}^{4} \cap \mathrm{Q}^{4}$
- ($S^{3} V$ symplectic, $\mathbf{P}\left(S^{3} V\right)$ contact, twisted cubic Legendrian $)$

A NOTE ON THE TANGENTS OF A TWISTED CUBIC

By M. F. ATIYAH
Communicated by J. A. Todd
Received 8 May 1951

1. Consider rational normal cubic C_{3}. In the Klein representation of the lines of S_{3} by pointe of armin \cap in S_{0}, tho tangents of C_{3} are represented by the points of a rational normal quartic C_{4}. It is the object of this note to examine some of the consequen of thi colrespondence, in terms of the geometry associated with the two curves.
2. C_{4} lies-nir a Veronese surface V, which represents the congruence of chords of $C_{3}(1)$. Also C_{4} determines a 4 -space Σ neeting Ω in Ω_{1}, say; and since the surface of

VECTOR BUNDLES ON THE PROJECTIVE PLANE

By R. L. E. SCHWARZENBERGER

[Received 13 October 1960]
Let k be an algebraically closed field, and P_{n} the n-dimensional projective space defined over k. We consider algebraic vector bundles with fibre k^{r}, group $G L(r, k)$, and base P_{n}, and then speak of k^{r}-bundles, or, when $r=1$, of line bundles. The equivalence classes of line bundles on an algebraic variety have been classified (10): they are in one-one correspondence with the divisor classes. In particular, on P_{n} there is one equivalence class of line bundles for each (positive or negative) integer. If H is the line bundle

The construction of k^{n}-bundles on P_{n} in $\S 1$ is based on unpublished work of Hodge and Atiyah for the case $n=2$.

1. SCHWARZENBERGER BUNDLES
2. RESTRICTION TO RATIONAL NORMAL CURVES
3. HYPERBOLIC MONOPOLES AND RATIONAL MAPS

SCHWARZENBERGER BUNDLES

FIRST DEFINITION

- $S^{r} V \rightarrow S^{r-n} V \otimes S^{n} V$
- $\mathbf{P}^{n}=\mathbf{P}\left(S^{n} V\right)$

FIRST DEFINITION

- $S^{r} V \rightarrow S^{r-n} V \otimes S^{n} V$
- $\mathbf{P}^{n}=\mathbf{P}\left(S^{n} V\right)$
- $S^{r} V \rightarrow S^{r-n} V \otimes H^{0}\left(\mathbf{P}^{n}, \mathcal{O}(1)\right)$
- $0 \rightarrow E_{n}^{r *} \rightarrow S^{r} V \rightarrow \mathcal{O}(1) \otimes S^{r-n} V \rightarrow 0$

SECOND DEFINITION

- $f: Y=\mathbf{P}\left(S^{n-1} V\right) \times \mathbf{P}(V) \rightarrow \mathbf{P}\left(S^{n} V\right)$
- or $S^{n} V=$ degree n homogeneous polynomials $p\left(z_{0}, z_{1}\right)$ and
- $Y=\{([p(z)],[w]): p(w)=0\}$

SECOND DEFINITION

- $f: Y=\mathbf{P}\left(S^{n-1} V\right) \times \mathbf{P}(V) \rightarrow \mathbf{P}\left(S^{n} V\right)$
- or $S^{n} V=$ degree n homogeneous polynomials $p\left(z_{0}, z_{1}\right)$ and
- $Y=\{([p(z)],[w]): p(w)=0\}$
- $f: \mathbf{P}\left(S^{n-1} V\right) \times \mathbf{P}(V) \rightarrow \mathbf{P}\left(S^{n} V\right) n$-fold branched covering
- $E_{n}^{r}=f_{*} \mathcal{O}(0, r)$

PROPERTIES

- $c\left(E_{n}^{r}\right)=(1-h)^{n-r-1}$
- $T \mathbf{P}^{n}=E_{n}^{n}(1)$

PROPERTIES

- $c\left(E_{n}^{r}\right)=(1-h)^{n-r-1}$
- $T \mathbf{P}^{n}=E_{n}^{n}(1)$
- E_{n}^{r} is stable
- The unstable hyperplanes $\left(H^{0}\left(\mathbf{P}^{n-1},\left(E_{n}^{r}\right)^{*}\right) \neq 0\right)$ are defined by the dual curve of Δ
- $\left(S^{n} V \cong S^{n} V^{*}\right.$ so $\left.\mathbf{P}\left(S^{n} V\right) \cong \mathbf{P}\left(S^{n} V\right)^{\vee}\right)$

RESTRICTION TO RATIONAL CURVES

Birkhoff-Grothendieck: Any holomorphic vector bundle on \mathbf{P}^{1} is a direct sum of line bundles.

RESTRICTION TO RATIONAL NORMAL CURVES

- $C \subset \mathbf{P}^{n}$ rational normal curve: degree n
- $C \cong \mathbf{P}^{1},\left.\mathcal{O}_{\mathbf{P}^{n}}(1)\right|_{C} \cong \mathcal{O}_{\mathbf{P}^{1}}(n)$

RESTRICTION TO RATIONAL NORMAL CURVES

- $C \subset \mathbf{P}^{n}$ rational normal curve: degree n
- $C \cong \mathbf{P}^{1},\left.\mathcal{O}_{\mathbf{P}^{n}}(1)\right|_{C} \cong \mathcal{O}_{\mathbf{P}^{1}}(n)$
- $c_{1}\left(E_{n}^{r}\right)=(r+1-n) h$, degree $(r+1-n) n$ on C
- generic splitting type $\mathrm{C}^{n} \otimes \mathcal{O}(r+1-n)$

WHEN DOES $\left.E_{n}^{r}\right|_{C}$ CONTAIN $\mathcal{O}(m)$ FOR $m \geq r ?$

- $0 \rightarrow \mathcal{O}(-1) \otimes S^{r-n} V \rightarrow S^{r} V \rightarrow E_{n}^{r} \rightarrow 0$
- $\ldots \rightarrow H^{1}\left(\mathbf{P}^{1}, \mathcal{O}(-n-r)\right) \otimes S^{r-n} V \xrightarrow{\alpha} H^{1}\left(\mathbf{P}^{1}, \mathcal{O}(-r)\right) \otimes S^{r} V \rightarrow \ldots$
- $H^{0}\left(\mathbf{P}^{1}, E_{n}^{r}(-r)\right)=\operatorname{ker} \alpha$
- $\alpha: \mathbf{C}^{n+r-1} \otimes \mathbf{C}^{r-n+1} \rightarrow \mathbf{C}^{r-1} \otimes \mathbf{C}^{r+1}$
- matrices $A: \mathbf{C}^{m} \rightarrow \mathbf{C}^{n}$ of non-maximal rank are codimension $(n-m+1)$
- $\alpha: \mathbf{C}^{n+r-1} \otimes \mathbf{C}^{r-n+1} \rightarrow \mathbf{C}^{r-1} \otimes \mathbf{C}^{r+1}$
- matrices $A: \mathbf{C}^{m} \rightarrow \mathbf{C}^{n}$ of non-maximal rank are codimension $(n-m+1)$
- $(r-1)(r+1)-(r+n-1)(r-n+1)+1=(n-1)^{2}$ constraints

THE CASE $n=2$

- $\triangle, C \subset \mathbf{P}^{2}$ conics
- $(n-1)^{2}=1$ constraint
- jumping conics - four parameter family.
"in-and-circumscribed polygon"

DUALITY

- rational normal curve B defines a vector bundle $E^{r}(B)$
- take another rational normal curve C
- Define $C<B$ if $H^{0}\left(C, E^{r}(B)(-r)\right) \neq 0$

Theorem: $C<B$ if and only if $B^{\vee}<C^{\vee}$

Theorem: $C<B$ if and only if $B^{\vee}<C^{\vee}$

- $B=\phi(\Delta), C=\psi(\Delta)$
- $B^{\vee}=\left(\phi^{T}\right)^{-1}(\Delta)$

Theorem: $C<B$ if and only if $B^{\vee}<C^{\vee}$

- $B=\phi(\Delta), C=\psi(\Delta)$
- $B^{\vee}=\left(\phi^{T}\right)^{-1}(\Delta)$
- $C<B \Leftrightarrow \phi^{-1} \psi(\Delta)<\Delta$
- $B^{\vee}<C^{\vee} \Leftrightarrow \psi^{T}\left(\phi^{T}\right)^{-1}(\Delta)<\Delta$
- $\Leftrightarrow\left(\phi^{-1} \psi\right)^{T}(\Delta)<\Delta$

Theorem: $C<B$ if and only if $B^{\vee}<C^{\vee}$

- $B=\phi(\Delta), C=\psi(\Delta)$
- $B^{\vee}=\left(\phi^{T}\right)^{-1}(\Delta)$
- $C<B \Leftrightarrow \phi^{-1} \psi(\Delta)<\Delta$
- $B^{\vee}<C^{\vee} \Leftrightarrow \psi^{T}\left(\phi^{T}\right)^{-1}(\Delta)<\Delta$
- $\Leftrightarrow\left(\phi^{-1} \psi\right)^{T}(\Delta)<\Delta$
- RTP: $\psi(\Delta)<\Delta$ if and only if $\psi^{T}(\Delta)<\Delta$

$$
\begin{aligned}
\mathbf{P}^{n-1} \times \mathbf{P}^{1} \rightarrow & \mathbf{P}^{n} \\
& \cup \\
& C
\end{aligned}
$$

$$
\begin{array}{cc}
\mathbf{P}^{n-1} \times \mathbf{P}^{1} \rightarrow & \mathbf{P}^{n} \\
& \cup \\
S \longrightarrow & C
\end{array}
$$

- n-fold covering
- $S \hookrightarrow C \times \mathbf{P}^{1}$

$$
\begin{array}{cc}
\mathbf{P}^{n-1} \times \mathbf{P}^{1} \rightarrow & \mathbf{P}^{n} \\
& \cup \\
S \longrightarrow & C
\end{array}
$$

- n-fold covering
- $S \hookrightarrow C \times \mathbf{P}^{1}$
- choose an identification $C \cong \mathbf{P}^{1}=\Delta$ (condition invariant under $\operatorname{Aut}(\Delta)$)

$$
S: \sum_{i, j=0}^{n} \phi_{i j} z^{i}(-w)^{n-j}=0
$$

$$
\begin{array}{cc}
\mathbf{P}^{n-1} \times \mathbf{P}^{1} \rightarrow & \mathbf{P}^{n} \\
& \cup \\
S \longrightarrow & C
\end{array}
$$

- $E_{n}^{r}=f_{*} \mathcal{O}(0, r)$
- $\left.E_{n}^{r}(-r)\right|_{C}=\left.f_{*} \mathcal{O}_{C \times \mathbf{P}^{1}}(-r, r)\right|_{S}$

$$
\begin{aligned}
\mathbf{P}^{n-1} \times \mathbf{P}^{1} \rightarrow & \mathbf{P}^{n} \\
& \cup \\
\cup & C
\end{aligned}
$$

- $E_{n}^{r}=f_{*} \mathcal{O}(0, r)$
- $\left.E_{n}^{r}(-r)\right|_{C}=\left.f_{*} \mathcal{O}_{C \times \mathbf{P}^{1}}(-r, r)\right|_{S}$
- $H^{0}\left(C, E_{n}^{r}(-r)\right) \cong H^{0}(S, \mathcal{O}(-r, r))$
- $H^{0}\left(C, E_{n}^{r}(-r)\right) \neq 0$ if and only if $\mathcal{O}(-r, r)$ is trivial on S
- $\phi \mapsto \phi^{T} \Leftrightarrow(w, z) \mapsto(z, w)$
- $\mathcal{O}(-r, r)$ is trivial on S if and only if its inverse $\mathcal{O}(r,-r)$ is trivial.

HYPERBOLIC MONOPOLES

- H^{3} hyperbolic three-space of curvature -1
- Bogomolny equations $F_{A}=* d_{A} \phi$ for $S U(2)$ connection A
- boundary conditions:

$$
\text { mass }=|\phi| \rightarrow p \quad \text { charge }=n=\operatorname{deg} \phi: S_{R}^{2} \rightarrow S^{2}
$$

- M F Atiyah, Magnetic monopoles in hyperbolic spaces in "Vector bundles on algebraic varieties (Bombay, 1984)" 133, Tata Inst. Fund. Res. Stud. Math., 11, Bombay, 1987.

- space of geodesics $S^{2} \times S^{2} \backslash \Delta$

SPECTRAL CURVE

- geodesics: $\mathbf{P}^{1} \times \mathbf{P}^{1} \backslash\{w=\bar{z}\}$
- spectral curve S : divisor of a section of $\mathcal{O}(n, n)$
- constraint: $\mathcal{O}(r,-r)$ is trivial on S where $r=2 p+n$ ($p=$ mass, $n=$ charge)

Theorem: $C<B$ if and only if $B^{\vee}<C^{\vee}$
\Leftrightarrow

Fact: A monopole (A, ϕ) transforms to a monopole (with opposite orientation) under a hyperbolic reflection in a point.

MONOPOLE MODULI SPACES

MONOPOLES ON R^{3}

- moduli space $M^{4 n}$ is hyperkähler
- twistor space complex manifold $Z^{2 n+1}$
- holomorphic fibration $p: Z \rightarrow \mathbf{P}^{1}$
- complex symplectic fibres
- $M=$ a space of sections
- each fibre of $p \cong$ based degree n rational maps
- $S(z)=p(z) / q(z)$, zeros of $q: z_{1}, \ldots, z_{n}$
- symplectic form:

$$
\sum_{i} d z_{i} \wedge d \log p\left(z_{i}\right)
$$

L Faybusovich \& M Gekhtman, Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices, Phys. Lett. A 272 (2000), 236-244

K L Vaninsky, The Atiyah-Hitchin bracket and the open Toda Iattice, J. Geom. Phys. 46 (2003) 283-307

K L Vaninsky, The Atiyah-Hitchin bracket and the cubic nonlinear Schrödinger equation, IMRP (2006), 17683, 1-60.

- fix p : Lagrangian submanifold
- fix q : Lagrangian submanifold
- Define $f_{x}(S)=p(x), g_{x}(S)=q(x)$
- Poisson bracket:

$$
\left\{f_{x}, g_{y}\right\}=\frac{p(x) q(y)-q(x) p(y)}{x-y}
$$

(Bezoutian)

MONOPOLES ON H^{3}

For each point on $S^{2}=\partial H^{3}$ the moduli space is isomorphic to the space of based rational maps.

M F Atiyah, Instantons in two and four dimensions, Commun. Math. Phys. 93 (1984), 437-451

P J Braam \& D M Austin, Boundary values of hyperbolic monopoles Nonlinearity 3 (1990), 809-823

M K Murray, P Norbury \& M A Singer, Hyperbolic monopoles and holomorphic spheres, Ann. Global Anal. Geom. 23 (2003) 101-128

SYMPLECTIC STRUCTURE

O Nash, A new approach to monopole moduli spaces, Nonlinearity 20 (2007) 1645-1675

SYMPLECTIC STRUCTURE

O Nash, A new approach to monopole moduli spaces, Nonlinearity 20 (2007) 1645-1675

- spectral curve $S \subset \mathbf{P}^{1} \times \mathbf{P}^{1}$
- constraint lifts S to $\mathcal{O}(-r, r)$
- deformation theory of a curve in a three-manifold

SCHWARZENBERGER BUNDLES AND RATIONAL MAPS

- $0 \rightarrow S^{r-n} V(-1) \rightarrow S^{r} V \rightarrow E_{n}^{r} \rightarrow 0$
- $S^{k} V=$ homogeneous polynomials $q\left(z_{0}, z_{1}\right)$ of degree k
- fibre of E_{n}^{r} over $[q] \in \mathbf{P}\left(S^{n} V\right) \cong$ polynomials p of degree r modulo q

SCHWARZENBERGER BUNDLES AND RATIONAL MAPS

- $0 \rightarrow S^{r-n} V(-1) \rightarrow S^{r} V \rightarrow E_{n}^{r} \rightarrow 0$
- $S^{k} V=$ homogeneous polynomials $q\left(z_{0}, z_{1}\right)$ of degree k
- fibre of E_{n}^{r} over $[q] \in \mathbf{P}\left(S^{n} V\right) \cong$ polynomials p of degree r modulo q
- common factor?
- $f: Y \rightarrow X$
- evaluation map ev : $f^{*} f_{*} L \rightarrow L$
- $f: Y \rightarrow X$
- evaluation map ev : $f^{*} f_{*} L \rightarrow L$
- \Rightarrow section α of $\operatorname{Hom}\left(f^{*} E_{n}^{r}, \mathcal{O}(0, r)\right)$ on $\mathbf{P}^{n-1} \times \mathbf{P}^{1}$
- kernel of $\alpha=$ rank ($n-1$) bundle over $\mathbf{P}^{n-1} \times \mathbf{P}^{1}=p, q$ with common factor
- $\left(E_{n}^{r}\right)_{0}=$ complement
- choose $\left[a_{0}, a_{1}\right] \in \mathbf{P}^{1}$, restrict to q with $q\left(a_{0}, a_{1}\right) \neq 0$
- $\left[a_{0}, a_{1}\right]=[0,1], q=$ degree n polynomial in $z=z_{1} / z_{0}$
- $p=a q+b, \operatorname{deg} b<n$
- based rational map $b(z) / q(z)$

TWISTOR SPACES

- spectral curve S defines a rational normal curve $C \subset \mathbf{P}\left(S^{n} V\right)$

$$
w \mapsto \sum_{i, j=0}^{n} \phi_{i j} z^{i}(-w)^{n-j}
$$

- constraint $H^{0}\left(C, E_{n}^{r}(-r)\right) \neq 0$ lifts C to $E_{n}^{r}(-r)_{0}$

TWISTOR SPACES

- spectral curve S defines a rational normal curve $C \subset \mathbf{P}\left(S^{n} V\right)$

$$
w \mapsto \sum_{i, j=0}^{n} \phi_{i j} z^{i}(-w)^{n-j}
$$

- constraint $H^{0}\left(C, E_{n}^{r}(-r)\right) \neq 0$ lifts C to $E_{n}^{r}(-r)_{0}$
- (Note: $\left.\mathcal{O}(-r)=\left.\mathcal{O}_{\mathbf{P}^{n}}(-r / n)\right|_{C}\right)$

TWISTOR SPACES

- spectral curve S defines a rational normal curve $C \subset \mathbf{P}\left(S^{n} V\right)$

$$
w \mapsto \sum_{i, j=0}^{n} \phi_{i j} z^{i}(-w)^{n-j}
$$

- constraint $H^{0}\left(C, E_{n}^{r}(-r)\right) \neq 0$ lifts C to $E_{n}^{r}(-r)_{0}$
- (Note: $\left.\mathcal{O}(-r)=\left.\mathcal{O}_{\mathrm{P}^{n}}(-r / n)\right|_{C}\right)$
- $C \Rightarrow S$ requires an isomorphism $C \cong \mathbf{P}^{1}$

$$
\mathbf{P}(\bar{V}) \times \mathbf{P}\left(S^{n} V\right) \backslash\{(w, q): q(\bar{w})=0\}
$$

$$
Z^{2 n+1}=\begin{gathered}
E_{n}^{r}(r,-r / n)_{0} \\
\\
\mathbf{P}(\bar{V}) \times \mathbf{P}\left(S^{n} V\right) \backslash\{(w, q): q(\bar{w})=0\}
\end{gathered}
$$

MONOPOLES ON H^{3}

- complex manifold $Z^{2 n+1}$
- holomorphic fibration $p: Z \rightarrow \mathbf{P}^{1}$
- complex symplectic fibres
- $M=$ a space of sections

PROBLEMS

- no real structure
- symplectic forms along fibres do not vary holomorphically

CHARGE 2 MONOPOLES

CENTRES

- $V \cong \bar{V} \Rightarrow$ Hermitian form $=$ point in H^{3}
- spectral curve equation $\in S^{n} V \otimes S^{n} \bar{V}$
- $S^{n} V \otimes S^{n} V=1+S^{2} V+\ldots+S^{2 n} V$
- centred monopole: $S^{2} V$ component vanishes
- $V \cong \bar{V} \Rightarrow$
- real structure on Schwarzenberger bundle
- $V \cong \bar{V} \Rightarrow$
- real structure on Schwarzenberger bundle
- if $C=\phi(\Delta), \bar{C}=\phi^{T}(\Delta)$
- charge 2 centred: $1+S^{4} V$ symmetric

The projective Schwarzenberger bundle $\mathbf{P}\left(\left(E_{2}^{r}\right)_{0}\right)$ is the twistor space for a 4-dimensional self-dual Einstein manifold.

N J Hitchin A new family of Einstein metrics, in "Manifolds and geometry (Pisa, 1993)", 190-222, Sympos. Math., XXXVI, Cambridge Univ. Press, Cambridge, 1996

EXAMPLE: CHARGE 2

$$
\begin{gathered}
g=f d r^{2}+T_{1} \sigma_{1}^{2}+T_{2} \sigma_{2}^{2}+T_{3} \sigma_{3}^{2} \\
T_{1}=\frac{\left(1-r^{2}\right)^{2}}{\left(1+r+r^{2}\right)(r+2)(2 r+1)} \\
T_{2}=\frac{1+r+r^{2}}{(r+2)(2 r+1)^{2}} \\
T_{3}=\frac{r\left(1+r+r^{2}\right)}{(r+2)^{2}(2 r+1)} \\
f=\frac{1+r+r^{2}}{r(r+2)^{2}(2 r+1)^{2}}
\end{gathered}
$$

- $M^{4}=S^{4} \backslash \mathbf{R} P^{2}$
- (irreducible 5-dimensional rep of $S O(3)$)
- orbifold singularity around $\mathbf{R} P^{2},(r-2)$-fold quotient.
- $M^{4}=S^{4} \backslash \mathbf{R} P^{2}$
- (irreducible 5-dimensional rep of $S O(3)$)
- orbifold singularity around $\mathbf{R} P^{2},(r-2)$-fold quotient.
- ... SO(3) bundle H_{r} over M^{4} - smooth, Einstein (3-Sasakian)
- $r=3, M^{4}=S^{4}$
- twistor space $\mathbf{P}^{3}=\mathbf{P}\left(S^{3} V\right)$
- What's the link with $\mathbf{P}\left(E_{2}^{3}\right)$?

THE TWISTED CUBIC

- $C \subset \mathrm{P}^{3}$ rational normal curve
- $x \neq C \Rightarrow$ unique secant through x

- $C \subset \mathrm{P}^{3}$ rational normal curve
- $x \neq C \Rightarrow$ unique secant through x

- $f: \mathbf{P}^{3} \backslash C \rightarrow S^{2} C=\mathbf{P}^{2}$
$f(x)=\left(p, p^{\prime}\right)$
- $C \subset \mathrm{P}^{3}$ rational normal curve
- $x \neq C \Rightarrow$ unique secant through x

- $f: \mathbf{P}^{3} \backslash C \rightarrow S^{2} C=\mathbf{P}^{2}$
$f(x)=\left(p, p^{\prime}\right)$
- Blow up $C: \mathbf{P}^{1}$ fibration $=\mathbf{P}\left(E_{2}^{3}\right)$
- lines in $\mathbf{P}^{3} \sim$ sections of $\mathbf{P}\left(E_{2}^{3}\right) \ldots$
- ... constrained conics in \mathbf{P}^{2}

M F Atiyah, A note on the tangents to a twisted cubic, Proc. Camb. Phil. Soc. 48 (1952) 204-205
".. The tangents at four points of a twisted cubic have a unique transversal if and only if the four points are equianharmonic".

M F Atiyah, A note on the tangents to a twisted cubic, Proc. Camb. Phil. Soc. 48 (1952) 204-205
".. The tangents at four points of a twisted cubic have a unique transversal if and only if the four points are equianharmonic".

$$
\Leftrightarrow
$$

There is a unique constrained conic passing through four points of Δ if and only if the four points are equianharmonic.

- $\Delta: z_{0}^{2}+z_{1}^{2}+z_{2}^{2}=0$
- $C:\left(x_{1}+x_{2}\right) z_{0}^{2}+\left(x_{2}+x_{0}\right) z_{1}^{2}+\left(x_{0}+x_{1}\right) z_{2}^{2}=0$
- cross-ratio of intersection points: $\left(x_{1}-x_{0}\right) /\left(x_{2}-x_{0}\right)$
- constraint: $\sigma_{2}=x_{1} x_{2}+x_{2} x_{0}+x_{0} x_{1}=0$
- in pencil: $x_{i} \mapsto x_{i}+t$,

$$
\sigma_{2}+2 \sigma_{1} t+3 t^{2}=0
$$

- constraint: $\sigma_{2}=x_{1} x_{2}+x_{2} x_{0}+x_{0} x_{1}=0$
- in pencil: $x_{i} \mapsto x_{i}+t$,

$$
\sigma_{2}+2 \sigma_{1} t+3 t^{2}=0
$$

- one root: $\sigma_{1}^{2}=3 \sigma_{2}$
- constraint: $\sigma_{2}=x_{1} x_{2}+x_{2} x_{0}+x_{0} x_{1}=0$
- in pencil: $x_{i} \mapsto x_{i}+t$,

$$
\sigma_{2}+2 \sigma_{1} t+3 t^{2}=0
$$

- one root: $\sigma_{1}^{2}=3 \sigma_{2}$
- $x_{1}^{2}-x_{1}\left(x_{0}+x_{2}\right)+x_{0}^{2}+x_{2}^{2}-x_{0} x_{2}=0$
- constraint: $\sigma_{2}=x_{1} x_{2}+x_{2} x_{0}+x_{0} x_{1}=0$
- in pencil: $x_{i} \mapsto x_{i}+t$,

$$
\sigma_{2}+2 \sigma_{1} t+3 t^{2}=0
$$

- one root: $\sigma_{1}^{2}=3 \sigma_{2}$
- $x_{1}^{2}-x_{1}\left(x_{0}+x_{2}\right)+x_{0}^{2}+x_{2}^{2}-x_{0} x_{2}=0$

$$
x_{1}=\frac{x_{0}+x_{2} \pm i \sqrt{3}\left(x_{0}-x_{2}\right)}{2}
$$

- HAPPY BIRTHDAY, SIR MICHAEL!

