HYPERBOLIC MONOPOLES AND RATIONAL NORMAL CURVES

Nigel Hitchin (Oxford)

Edinburgh April 20th 2009

A NOTE ON THE TANGENTS OF A TWISTED CUBIC

By M. F. ATIYAH

Communicated by J. A. Todd

Received 8 May 1951

- 1. Consider a rational normal cubic C_3 . In the Klein representation of the lines of S_3 by points of a quadric Ω in S_5 , the tangents of C_3 are represented by the points of a rational normal quartic C_4 . It is the object of this note to examine some of the consequences of this correspondence, in terms of the geometry associated with the two curves.
- 2. C_4 lies on a Veronese surface V, which represents the congruence of chords of $C_3(1)$. Also C_4 determines a 4-space Σ meeting Ω in Ω_1 , say; and since the surface of

M F Atiyah, A note on the tangents to a twisted cubic, Proc. Camb. Phil. Soc. 48 (1952) 204–205

".. The tangents at four points of a twisted cubic have a unique transversal if and only if the four points are equianharmonic".

RATIONAL NORMAL CURVES

ullet $\mathbf{P}^1\subset\mathbf{P}^n$ of degree n

• ... not contained in any hyperplane

ullet = image by a projective transformation of $z\mapsto [1,z,z^2,\dots,z^n]$

• Symmetric product $S^n(\mathbf{P}^1) = \mathbf{P}^n$

• Diagonal $\Delta \subset S^n(\mathbf{P}^1) = \{(x, x, \dots, x) : x \in \mathbf{P}^1\}$

• Symmetric product $S^n(\mathbf{P}^1) = \mathbf{P}^n$

• Diagonal
$$\Delta \subset S^n(\mathbf{P}^1) = \{(x, x, \dots, x) : x \in \mathbf{P}^1\}$$

 \bullet V= 2-dim symplectic vector space, S^nV symmetric tensor product

•
$$S^n(\mathbf{P}(V)) = \mathbf{P}(S^nV), \ \Delta = \{[v \otimes v \otimes \ldots \otimes v] : v \in V\}$$

• rational normal curve $C \subset \mathbf{P}(W)$ defines an isomorphism $W^* \cong H^0(C, \mathcal{O}(n) = S^n H^0(C, \mathcal{O}(1)) = S^n V^*$

 \bullet S^nV has a symplectic/ orthogonal (n odd/even) structure

EXAMPLES

ullet conic in ${\bf P}^2$

 \bullet twisted cubic in ${\bf P}^3$

EXAMPLES

- conic in P^2
- twisted cubic in P^3
- \bullet tangents to a twisted cubic $\subset \mathbf{Q}^4 \subset \mathbf{P}^5$...
- $\bullet \ \dots \ \text{lies in} \ P^4 \cap Q^4$
- (S^3V) symplectic, $P(S^3V)$ contact, twisted cubic Legendrian)

A NOTE ON THE TANGENTS OF A TWISTED CUBIC

By M. F. ATIYAH

Communicated by J. A. Todd

Received 8 May 1951

- 1. Consider a rational normal cubic C_3 . In the Klein representation of the lines of S_3 by points of a quadric Ω in S_5 , the tangents of C_3 are represented by the points of a rational normal quartic C_4 . It is the object of this note to examine some of the consequences of this correspondence, in terms of the geometry associated with the two curves.
- 2. C_4 lies on a Veronese surface V, which represents the congruence of chords of C_3 (1). Also C_4 determines a 4-space Σ neeting Ω in Ω_1 , say; and since the surface of

VECTOR BUNDLES ON THE PROJECTIVE PLANE

By R. L. E. SCHWARZENBERGER

[Received 13 October 1960]

Let k be an algebraically closed field, and P_n the n-dimensional projective space defined over k. We consider algebraic vector bundles with fibre k^r , group GL(r,k), and base P_n , and then speak of k^r -bundles, or, when r=1, of line bundles. The equivalence classes of line bundles on an algebraic variety have been classified (10): they are in one-one correspondence with the divisor classes. In particular, on P_n there is one equivalence class of line bundles for each (positive or negative) integer. If H is the line bundle

The construction of k^n -bundles on P_n in § 1 is based on unpublished work of Hodge and Atiyah for the case n=2.

1. SCHWARZENBERGER BUNDLES

- 2. RESTRICTION TO RATIONAL NORMAL CURVES
- 3. HYPERBOLIC MONOPOLES AND RATIONAL MAPS

SCHWARZENBERGER BUNDLES

FIRST DEFINITION

$$\bullet S^rV \to S^{r-n}V \otimes S^nV$$

•
$$\mathbf{P}^n = \mathbf{P}(S^n V)$$

FIRST DEFINITION

$$\bullet S^rV \to S^{r-n}V \otimes S^nV$$

$$\bullet \ \mathbf{P}^n = \mathbf{P}(S^n V)$$

•
$$S^rV \to S^{r-n}V \otimes H^0(\mathbf{P}^n, \mathcal{O}(1))$$

•
$$0 \to E_n^{r*} \to S^r V \to \mathcal{O}(1) \otimes S^{r-n} V \to 0$$

SECOND DEFINITION

•
$$f: Y = \mathbf{P}(S^{n-1}V) \times \mathbf{P}(V) \to \mathbf{P}(S^nV)$$

ullet or $S^nV=$ degree n homogeneous polynomials $p(z_0,z_1)$ and

•
$$Y = \{([p(z)], [w]) : p(w) = 0\}$$

SECOND DEFINITION

•
$$f: Y = \mathbf{P}(S^{n-1}V) \times \mathbf{P}(V) \to \mathbf{P}(S^nV)$$

 \bullet or $S^nV=$ degree n homogeneous polynomials $p(z_0,z_1)$ and

•
$$Y = \{([p(z)], [w]) : p(w) = 0\}$$

• $f: \mathbf{P}(S^{n-1}V) \times \mathbf{P}(V) \to \mathbf{P}(S^nV)$ n-fold branched covering

$$\bullet \ E_n^r = f_*\mathcal{O}(0,r)$$

PROPERTIES

•
$$c(E_n^r) = (1-h)^{n-r-1}$$

$$TP^n = E_n^n(1)$$

PROPERTIES

•
$$c(E_n^r) = (1-h)^{n-r-1}$$

$$\bullet T\mathbf{P}^n = E_n^n(1)$$

- E_n^r is stable
- The unstable hyperplanes $(H^0(\mathbf{P}^{n-1},(E_n^r)^*)\neq 0)$ are defined by the dual curve of Δ
- $(S^n V \cong S^n V^* \text{ so } \mathbf{P}(S^n V) \cong \mathbf{P}(S^n V)^{\vee})$

RESTRICTION TO RATIONAL CURVES

Birkhoff-Grothendieck: Any holomorphic vector bundle on ${\bf P}^1$ is a direct sum of line bundles.

RESTRICTION TO RATIONAL NORMAL CURVES

ullet $C\subset \mathbf{P}^n$ rational normal curve: degree n

$$ullet$$
 $C\cong {f P}^1$, ${\cal O}_{{f P}^n}(1)|_C\cong {\cal O}_{{f P}^1}(n)$

RESTRICTION TO RATIONAL NORMAL CURVES

• $C \subset \mathbf{P}^n$ rational normal curve: degree n

$$ullet$$
 $C\cong \mathbf{P}^1$, $\mathcal{O}_{\mathbf{P}^n}(1)|_C\cong \mathcal{O}_{\mathbf{P}^1}(n)$

•
$$c_1(E_n^r) = (r+1-n)h$$
, degree $(r+1-n)n$ on C

• generic splitting type $\mathbf{C}^n \otimes \mathcal{O}(r+1-n)$

WHEN DOES $E_n^r|_C$ CONTAIN $\mathcal{O}(m)$ FOR $m \geq r$?

•
$$0 \to \mathcal{O}(-1) \otimes S^{r-n}V \to S^rV \to E_n^r \to 0$$

• ...
$$\rightarrow H^1(\mathbf{P}^1, \mathcal{O}(-n-r)) \otimes S^{r-n}V \xrightarrow{\alpha} H^1(\mathbf{P}^1, \mathcal{O}(-r)) \otimes S^rV \rightarrow ...$$

•
$$H^0(\mathbf{P}^1, E_n^r(-r)) = \ker \alpha$$

•
$$\alpha: \mathbf{C}^{n+r-1} \otimes \mathbf{C}^{r-n+1} \to \mathbf{C}^{r-1} \otimes \mathbf{C}^{r+1}$$

ullet matrices $A: {f C}^m o {f C}^n$ of non-maximal rank are codimension (n-m+1)

•
$$\alpha: \mathbb{C}^{n+r-1} \otimes \mathbb{C}^{r-n+1} \to \mathbb{C}^{r-1} \otimes \mathbb{C}^{r+1}$$

ullet matrices $A: {f C}^m
ightarrow {f C}^n$ of non-maximal rank are codimension (n-m+1)

•
$$(r-1)(r+1)-(r+n-1)(r-n+1)+1=(n-1)^2$$
 constraints

THE CASE n=2

- $\Delta, C \subset \mathbf{P}^2$ conics
- $(n-1)^2 = 1$ constraint
- jumping conics four parameter family.

"in-and-circumscribed polygon"

ullet rational normal curve B defines a vector bundle $E^r(B)$

ullet take another rational normal curve C

• Define C < B if $H^0(C, E^r(B)(-r)) \neq 0$

Theorem: C < B if and only if $B^{\vee} < C^{\vee}$

Theorem: C < B if and only if $B^{\vee} < C^{\vee}$

•
$$B = \phi(\Delta), C = \psi(\Delta)$$

$$\bullet \ B^{\vee} = (\phi^T)^{-1}(\Delta)$$

Theorem: C < B if and only if $B^{\vee} < C^{\vee}$

•
$$B = \phi(\Delta), C = \psi(\Delta)$$

•
$$B^{\vee} = (\phi^T)^{-1}(\Delta)$$

•
$$C < B \Leftrightarrow \phi^{-1}\psi(\Delta) < \Delta$$

•
$$B^{\vee} < C^{\vee} \Leftrightarrow \psi^T(\phi^T)^{-1}(\Delta) < \Delta$$

•
$$\Leftrightarrow (\phi^{-1}\psi)^T(\Delta) < \Delta$$

Theorem: C < B if and only if $B^{\vee} < C^{\vee}$

•
$$B = \phi(\Delta), C = \psi(\Delta)$$

$$\bullet \ B^{\vee} = (\phi^T)^{-1}(\Delta)$$

•
$$C < B \Leftrightarrow \phi^{-1}\psi(\Delta) < \Delta$$

•
$$B^{\vee} < C^{\vee} \Leftrightarrow \psi^T(\phi^T)^{-1}(\Delta) < \Delta$$

•
$$\Leftrightarrow (\phi^{-1}\psi)^T(\Delta) < \Delta$$

• RTP: $\psi(\Delta) < \Delta$ if and only if $\psi^T(\Delta) < \Delta$

$$\mathbf{P}^{n-1} imes \mathbf{P}^1 o \mathbf{P}^n$$
 \cup C

$$\mathbf{P}^{n-1} \times \mathbf{P}^1 \to \mathbf{P}^n$$

$$\cup \qquad \qquad \cup$$

$$S \longrightarrow C$$

- *n*-fold covering
- $S \hookrightarrow C \times \mathbf{P}^1$

$$\mathbf{P}^{n-1} \times \mathbf{P}^1 \to \mathbf{P}^n$$

$$\cup \qquad \qquad \cup$$

$$S \longrightarrow C$$

- *n*-fold covering
- $S \hookrightarrow C \times \mathbf{P}^1$
- ullet choose an identification $C\cong {f P}^1=\Delta$ (condition invariant under ${
 m Aut}(\Delta))$

$$S: \sum_{i,j=0}^{n} \phi_{ij} z^{i} (-w)^{n-j} = 0$$

$$\mathbf{P}^{n-1} \times \mathbf{P}^1 \to \mathbf{P}^n$$

$$\cup \qquad \qquad \cup$$

$$S \longrightarrow C$$

$$\bullet \ E_n^r = f_*\mathcal{O}(0,r)$$

•
$$E_n^r(-r)|_C = f_*\mathcal{O}_{C\times\mathbf{P}^1}(-r,r)|_S$$

$$\mathbf{P}^{n-1} \times \mathbf{P}^1 \to \mathbf{P}^n$$

$$\cup \qquad \qquad \cup$$

$$S \longrightarrow C$$

$$\bullet E_n^r = f_*\mathcal{O}(0,r)$$

•
$$E_n^r(-r)|_C = f_*\mathcal{O}_{C\times\mathbf{P}^1}(-r,r)|_S$$

•
$$H^0(C, E_n^r(-r)) \cong H^0(S, \mathcal{O}(-r, r))$$

• $H^0(C, E_n^r(-r)) \neq 0$ if and only if $\mathcal{O}(-r, r)$ is trivial on S

•
$$\phi \mapsto \phi^T \Leftrightarrow (w, z) \mapsto (z, w)$$

ullet $\mathcal{O}(-r,r)$ is trivial on S if and only if its inverse $\mathcal{O}(r,-r)$ is trivial.

HYPERBOLIC MONOPOLES

- \bullet H^3 hyperbolic three-space of curvature -1
- Bogomolny equations $F_A = *d_A \phi$ for SU(2) connection A
- boundary conditions:

$$mass = |\phi| \rightarrow p$$
 $charge = n = \deg \phi : S_R^2 \rightarrow S^2$

• M F Atiyah, *Magnetic monopoles in hyperbolic spaces* in "Vector bundles on algebraic varieties (Bombay, 1984)" 1–33, Tata Inst. Fund. Res. Stud. Math., 11, Bombay, 1987.

 \bullet space of geodesics $S^2\times S^2\setminus \Delta$

SPECTRAL CURVE

- geodesics: $\mathbf{P}^1 \times \mathbf{P}^1 \setminus \{w = \overline{z}\}$
- spectral curve S: divisor of a section of $\mathcal{O}(n,n)$
- constraint: $\mathcal{O}(r,-r)$ is trivial on S where r=2p+n $(p=\max,\ n=\text{charge})$

Theorem: C < B if and only if $B^{\vee} < C^{\vee}$

 \Leftrightarrow

Fact: A monopole (A, ϕ) transforms to a monopole (with opposite orientation) under a hyperbolic reflection in a point.

MONOPOLE MODULI SPACES

The Geometry and Dynamics of Magnetic Monopoles

MICHAEL ATTYAH AND NIGEL HITCHIN

M. B. PORTER LECTURES
RICE UNIVERSITY

MONOPOLES ON R³

- moduli space M^{4n} is hyperkähler
- ullet twistor space complex manifold Z^{2n+1}
- ullet holomorphic fibration $p:Z o {f P}^1$
- complex symplectic fibres
- M = a space of sections

ullet each fibre of $p\cong$ based degree n rational maps

•
$$S(z) = p(z)/q(z)$$
, zeros of $q: z_1, \ldots, z_n$

• symplectic form:

$$\sum_i dz_i \wedge d\log p(z_i)$$

L Faybusovich & M Gekhtman, *Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices*, Phys. Lett. A 272 (2000), 236–244

K L Vaninsky, *The Atiyah-Hitchin bracket and the open Toda lattice*, J. Geom. Phys. 46 (2003) 283–307

K L Vaninsky, *The Atiyah-Hitchin bracket and the cubic nonlinear Schrödinger equation*, IMRP (2006), 17683, 1–60.

- fix p: Lagrangian submanifold
- fix q: Lagrangian submanifold
- Define $f_x(S) = p(x)$, $g_x(S) = q(x)$
- Poisson bracket:

$$\{f_x, g_y\} = \frac{p(x)q(y) - q(x)p(y)}{x - y}$$

(Bezoutian)

MONOPOLES ON H^3

For each point on $S^2 = \partial H^3$ the moduli space is isomorphic to the space of based rational maps.

M F Atiyah, *Instantons in two and four dimensions*, Commun. Math. Phys. **93** (1984), 437–451

P J Braam & D M Austin, *Boundary values of hyperbolic monopoles* Nonlinearity **3** (1990), 809–823

M K Murray, P Norbury & M A Singer, *Hyperbolic monopoles* and holomorphic spheres, Ann. Global Anal. Geom. **23** (2003) 101–128

SYMPLECTIC STRUCTURE

O Nash, A new approach to monopole moduli spaces, Nonlinearity **20** (2007) 1645-1675

SYMPLECTIC STRUCTURE

O Nash, A new approach to monopole moduli spaces, Nonlinearity **20** (2007) 1645-1675

- ullet spectral curve $S\subset {f P}^1 imes {f P}^1$
- constraint lifts S to $\mathcal{O}(-r,r)$
- deformation theory of a curve in a three-manifold

SCHWARZENBERGER BUNDLES AND RATIONAL MAPS

•
$$0 \rightarrow S^{r-n}V(-1) \rightarrow S^rV \rightarrow E_n^r \rightarrow 0$$

- S^kV = homogeneous polynomials $q(z_0, z_1)$ of degree k
- \bullet fibre of E_n^r over $[q] \in \mathbf{P}(S^nV) \cong$ polynomials p of degree r modulo q

SCHWARZENBERGER BUNDLES AND RATIONAL MAPS

•
$$0 \rightarrow S^{r-n}V(-1) \rightarrow S^rV \rightarrow E_n^r \rightarrow 0$$

- S^kV = homogeneous polynomials $q(z_0, z_1)$ of degree k
- \bullet fibre of E_n^r over $[q] \in \mathbf{P}(S^nV) \cong$ polynomials p of degree r modulo q

• common factor?

 \bullet $f: Y \to X$

ullet evaluation map ev : $f^*f_*L o L$

 \bullet $f: Y \to X$

• evaluation map ev : $f^*f_*L \to L$

• \Rightarrow section α of $\text{Hom}(f^*E_n^r, \mathcal{O}(0,r))$ on $\mathbf{P}^{n-1} \times \mathbf{P}^1$

• kernel of $\alpha={\rm rank}\;(n-1)$ bundle over ${\bf P}^{n-1}\times {\bf P}^1=p,q$ with common factor

• $(E_n^r)_0 = \text{complement}$

• choose $[a_0, a_1] \in \mathbf{P}^1$, restrict to q with $q(a_0, a_1) \neq 0$

• $[a_0, a_1] = [0, 1]$, $q = \text{degree } n \text{ polynomial in } z = z_1/z_0$

• p = aq + b, $\deg b < n$

ullet based rational map b(z)/q(z)

TWISTOR SPACES

• spectral curve S defines a rational normal curve $C \subset \mathbf{P}(S^nV)$

$$w \mapsto \sum_{i,j=0}^{n} \phi_{ij} z^{i} (-w)^{n-j}$$

• constraint $H^0(C, E_n^r(-r)) \neq 0$ lifts C to $E_n^r(-r)_0$

TWISTOR SPACES

• spectral curve S defines a rational normal curve $C \subset \mathbf{P}(S^nV)$

$$w \mapsto \sum_{i,j=0}^{n} \phi_{ij} z^{i} (-w)^{n-j}$$

• constraint $H^0(C, E_n^r(-r)) \neq 0$ lifts C to $E_n^r(-r)_0$

• (Note: $\mathcal{O}(-r) = \mathcal{O}_{\mathbf{P}^n}(-r/n)|_C$)

TWISTOR SPACES

• spectral curve S defines a rational normal curve $C \subset \mathbf{P}(S^nV)$

$$w \mapsto \sum_{i,j=0}^{n} \phi_{ij} z^{i} (-w)^{n-j}$$

• constraint $H^0(C, E_n^r(-r)) \neq 0$ lifts C to $E_n^r(-r)_0$

• (Note: $\mathcal{O}(-r) = \mathcal{O}_{\mathbf{P}^n}(-r/n)|_C$)

• $C \Rightarrow S$ requires an isomorphism $C \cong \mathbf{P}^1$

 $\mathbf{P}(\bar{V}) \times \mathbf{P}(S^n V) \setminus \{(w, q) : q(\bar{w}) = 0\}$

$$E_n^r(r, -r/n)_0$$

$$Z^{2n+1} = \bigcup_{\mathbf{P}(\bar{V}) \times \mathbf{P}(S^n V) \setminus \{(w, q) : q(\bar{w}) = 0\}}$$

MONOPOLES ON H^3

- complex manifold \mathbb{Z}^{2n+1}
- ullet holomorphic fibration $p:Z o {f P}^1$
- complex symplectic fibres
- M = a space of sections

PROBLEMS

• no real structure

• symplectic forms along fibres do not vary holomorphically

CHARGE 2 MONOPOLES

CENTRES

• $V \cong \bar{V} \Rightarrow$ Hermitian form = point in H^3

ullet spectral curve equation $\in S^nV\otimes S^nar{V}$

 $\bullet S^n V \otimes S^n V = 1 + S^2 V + \ldots + S^{2n} V$

ullet centred monopole: S^2V component vanishes

•
$$V \cong \bar{V} \Rightarrow$$

• real structure on Schwarzenberger bundle

•
$$V \cong \bar{V} \Rightarrow$$

• real structure on Schwarzenberger bundle

• if
$$C = \phi(\Delta)$$
, $\bar{C} = \phi^T(\Delta)$

• charge 2 centred: $1 + S^4V$ symmetric

The projective Schwarzenberger bundle $P((E_2^r)_0)$ is the twistor space for a 4-dimensional self-dual Einstein manifold.

N J Hitchin *A new family of Einstein metrics*, in "Manifolds and geometry (Pisa, 1993)", 190–222, Sympos. Math., XXXVI, Cambridge Univ. Press, Cambridge, 1996

EXAMPLE: CHARGE 2

$$g = fdr^{2} + T_{1}\sigma_{1}^{2} + T_{2}\sigma_{2}^{2} + T_{3}\sigma_{3}^{2}$$

$$T_{1} = \frac{(1 - r^{2})^{2}}{(1 + r + r^{2})(r + 2)(2r + 1)}$$

$$T_{2} = \frac{1 + r + r^{2}}{(r + 2)(2r + 1)^{2}}$$

$$T_{3} = \frac{r(1 + r + r^{2})}{(r + 2)^{2}(2r + 1)}$$

$$f = \frac{1 + r + r^{2}}{r(r + 2)^{2}(2r + 1)^{2}}$$

•
$$M^4 = S^4 \setminus \mathbf{R}P^2$$

- (irreducible 5-dimensional rep of SO(3))
- ullet orbifold singularity around ${f R}P^2$, (r-2)-fold quotient.

•
$$M^4 = S^4 \setminus \mathbf{R}P^2$$

• (irreducible 5-dimensional rep of SO(3))

ullet orbifold singularity around ${f R}P^2$, (r-2)-fold quotient.

• ... SO(3) bundle H_r over M^4 – smooth, Einstein (3-Sasakian)

•
$$r = 3$$
, $M^4 = S^4$

- twistor space $P^3 = P(S^3V)$
- What's the link with $P(E_2^3)$?

• $C \subset \mathbf{P}^3$ rational normal curve

• $x \neq C \Rightarrow$ unique secant through x

• $C \subset \mathbf{P}^3$ rational normal curve

• $x \neq C \Rightarrow$ unique secant through x

•
$$f: \mathbf{P}^3 \setminus C \to S^2C = \mathbf{P}^2$$
 $f(x) = (p, p')$

• $C \subset \mathbf{P}^3$ rational normal curve

• $x \neq C \Rightarrow$ unique secant through x

•
$$f: \mathbf{P}^3 \setminus C \to S^2C = \mathbf{P}^2$$
 $f(x) = (p, p')$

• Blow up C: \mathbf{P}^1 fibration = $\mathbf{P}(E_2^3)$

• lines in ${\bf P}^3 \sim$ sections of ${\bf P}(E_2^3)$...

ullet ... constrained conics in ${\bf P}^2$

M F Atiyah, A note on the tangents to a twisted cubic, Proc. Camb. Phil. Soc. 48 (1952) 204–205

".. The tangents at four points of a twisted cubic have a unique transversal if and only if the four points are equianharmonic".

M F Atiyah, A note on the tangents to a twisted cubic, Proc. Camb. Phil. Soc. 48 (1952) 204–205

".. The tangents at four points of a twisted cubic have a unique transversal if and only if the four points are equianharmonic".

There is a unique constrained conic passing through four points of Δ if and only if the four points are equianharmonic.

•
$$C: (x_1 + x_2)z_0^2 + (x_2 + x_0)z_1^2 + (x_0 + x_1)z_2^2 = 0$$

• cross-ratio of intersection points: $(x_1 - x_0)/(x_2 - x_0)$

• constraint: $\sigma_2 = x_1x_2 + x_2x_0 + x_0x_1 = 0$

• in pencil: $x_i \mapsto x_i + t$,

$$\sigma_2 + 2\sigma_1 t + 3t^2 = 0$$

• constraint: $\sigma_2 = x_1x_2 + x_2x_0 + x_0x_1 = 0$

• in pencil: $x_i \mapsto x_i + t$,

$$\sigma_2 + 2\sigma_1 t + 3t^2 = 0$$

• one root: $\sigma_1^2 = 3\sigma_2$

• constraint: $\sigma_2 = x_1x_2 + x_2x_0 + x_0x_1 = 0$

• in pencil: $x_i \mapsto x_i + t$, $\sigma_2 + 2\sigma_1 t + 3t^2 = 0$

• one root: $\sigma_1^2 = 3\sigma_2$

• $x_1^2 - x_1(x_0 + x_2) + x_0^2 + x_2^2 - x_0x_2 = 0$

• constraint:
$$\sigma_2 = x_1x_2 + x_2x_0 + x_0x_1 = 0$$

• in pencil: $x_i \mapsto x_i + t$, $\sigma_2 + 2\sigma_1 t + 3t^2 = 0$

• one root:
$$\sigma_1^2 = 3\sigma_2$$

•
$$x_1^2 - x_1(x_0 + x_2) + x_0^2 + x_2^2 - x_0x_2 = 0$$

$$x_1 = \frac{x_0 + x_2 \pm i\sqrt{3}(x_0 - x_2)}{2}$$
 cross-ratio: $\frac{1 \pm i\sqrt{3}}{2}$

• HAPPY BIRTHDAY, SIR MICHAEL!