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1. Consider a rational normal cubic C;. In the Klein representation of the lines of
S; by points of a quadric Q in §;, the tangents of C; are represented by the points of
a rational normal quartic C,. It is the object of this note to examine some of the
consequences of this correspondence, in terms of the geometry associated with the
two curves.

2. Cy lies on a Veronese surface V, which represents the congruence of chords of
Cs(1). Also () determines a 4-space 2 meeting 2 in €,, say; and since the surface of

~ -



M F Atiyah, A note on the tangents to a twisted cubic, Proc.
Camb. Phil. Soc. 48 (1952) 204—205

“.. The tangents at four points of a twisted cubic have a unique
transversal if and only if the four points are equianharmonic’ .



RATIONAL NORMAL CURVES



e Pl c P" of degree n

e ... not contained in any hyperplane

e — image by a projective transformation of z — [1, z, z2, g



e Symmetric product S"(Pl) = P~

e Diagonal A ¢ S™(PY) = {(z,z,...,2) : z € P1}



Symmetric product S"(P1) = P~
Diagonal A ¢ S"(PY) = {(z,z,...,z) : « € P1}

V = 2-dim symplectic vector space, SV symmetric tensor
product

SP(P(V))=P(S"V), A={|vrQ®v®...Qv] :veV}



e rational normal curve C C P(W) defines an isomorphism

w* =2 HO(C,0(n) = S"HO(C,0(1)) = S"V*

e S™V has a symplectic/ orthogonal (n odd/even) structure



EXAMPLES

e conic in P2

e twisted cubic in P3



EXAMPLES
conic in P2

twisted cubic in P3

tangents to a twisted cubic ¢ Q% c P> ...
. lies in P*n Q%

(S3V symplectic, P(S3V) contact, twisted cubic Legendrian)
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VECTOR BUNDLES ON THE PROJECTIVE
PLANE

By R. L. E. SCHWARZENBERGER

[Received 13 October 1960]

LET k be an algebraically closed field, and P, the n-dimensional projective
space defined over k. We consider algebraic vector bundles with fibre %7,
group GL(r, k), and base P,, and then speak of k"-bundles, or, when r = 1,
of line bundles. The equivalence classes of line bundles on an algebraic
variety have been classified (10): they are in one-one correspondence with
the divisor classes. In particular, on P, there is one equivalence class of
line bundles for each (positive or negative) integer. If H is the line bundle

The construction of k"-bundles on P, in § 1 ig based on unpublished
work of Hodge and Atiyah for the case n = 2.




1. SCHWARZENBERGER BUNDLES

2. RESTRICTION TO RATIONAL NORMAL CURVES

3. HYPERBOLIC MONOPOLES AND RATIONAL MAPS



SCHWARZENBERGER BUNDLES



FIRST DEFINITION

¢ STV — 5TV @ SV

o P = P(S"V)



FIRST DEFINITION

o SV — STV ® S"V

o P = P(S"V)

e STV — STV @ HO(P™, O(1))

e 0 FE*>S"V-01)S"™"™V =0



SECOND DEFINITION

e /:Y =P(S" V) x P(V) — P(S"V)

e or SV = degree n homogeneous polynomials p(zg,21) and

o Y = {([p(x)], [w]) : p(w) = 0}



SECOND DEFINITION

e /:Y =P(S" V) x P(V) — P(S"V)

e or SV = degree n homogeneous polynomials p(zg,21) and

o Y = {([p(x)], [w]) : p(w) = 0}

e f:P(S" V) x P(V) — P(S"V) n-fold branched covering

o E" = £.0(0,r)



PROPERTIES
e ¢«(Er)=((1—-h)" 71

o TP" = FE'(1)



PROPERTIES
e c(EL) = (1—h)rr=1

o TP" = FE'(1)

e I is stable

e The unstable hyperplanes (HO(P"1, (Er)*) # 0) are defined
by the dual curve of A

o (S"V £ S"V* so P(S"V) = P(S"V)VY)



RESTRICTION TO RATIONAL CURVES

Birkhoff-Grothendieck:  Any holomorphic vector bundle on P1
iSs a direct sum of line bundles.



RESTRICTION TO RATIONAL NORMAL CURVES
e C C P" rational normal curve: degree n

o C 2Pl Opn(1)|¢ = Opi(n)



RESTRICTION TO RATIONAL NORMAL CURVES

C C P"™ rational normal curve: degree n
C £ Pl, Opn(1)|c £ Op1(n)
ci1(E}) =(r+1—n)h, degree (r+1—n)n on C

generic splitting type C" O(r +1 —n)



WHEN DOES E'|o CONTAIN O(m) FOR m > r?

e 0-0(-1)®S" "W -85V —-E —0

o ...—» HY(PL,O(—n—r)os" "V S HI(PL,O(—r)®SV — ...

o HO(PL, E(—71)) = kera



o o Cntr—1 ® cr—n+l _, or—1 ® Cr+1

e matrices A : C" — C"™ of non-maximal rank are codimension

(n—m+1)



o o Cntr—1 ® cr—n+l _, or—1 ® Cr+1

e matrices A : C" — C"™ of non-maximal rank are codimension

(n—m+1)

e r—1)(r4+1)—(r4+n—-1)(r—n+1)+1 = (n—1)2 constraints



THE CASE n =2

e A, C C P? conics

e (n—1)2 =1 constraint

e jumping conics — four parameter family.



“in-and-circumscribed polygon”













DUALITY



e rational normal curve B defines a vector bundle E"(B)

e take another rational normal curve C

e Define C < B if HO(C,E"(B)(—=r)) # 0






Theorem: C < B if and only if BY < CV



Theorem: C < B if and only if BY < CV

e B=¢(A),C=9y(A)

e BV = (¢1)1(A)



Theorem: C < B if and only if BY < CV

e B=¢(A),C=9y(A)

e BV = (¢1)1(A)

e C<Bso¢o (A< A

e BV < CV s yl(eH ()<

e & (o i)I(A) < A



Theorem: C < B if and only if BY < CV

e B=¢(A),C=9y(A)

e BV = (¢1)1(A)

e C<Bso¢o (A< A

e BV < CV s yl(eH ()<

e & (o i)I(A) < A

e RTP: (A) < A if and only if ¥1(A) < A



P'n,—l
x Pl — pn



e n-fold covering

e S C x P!




pr-l xpl — pn

)
Q

e n-fold covering
e S— CxP!

e choose an identification C = P! = A (condition invariant
under Aut(AQ))

S En: gbijzi(—w)n_j =0

1,7=0



o E" = £.0(0,r)

o Er(—m)lc = f+Ocypi(—r,7)ls



o E" = £.0(0,r)

o Er(—m)lc = f+Ocypi(—r,7)ls

e HO(C,Er(—7)) = HO(S,O(—r,r))

o HO(C,EZ(—7)) # 0 if and only if O(—r,r) is trivial on S



¢ o ¢l & (w,2) — (2,w)

e O(—r,r) is trivial on S if and only if its inverse O(r,—r) is
trivial.



HYPERBOLIC MONOPOLES



H3 hyperbolic three-space of curvature —1

Bogomolny equations Fy = xd4¢ for SU(2) connection A

boundary conditions:

mass = || — p charge = n =deg ¢ : S& — S

M F Atiyah, Magnetic monopoles in hyperbolic spaces in
“Vector bundles on algebraic varieties (Bombay, 1984)" 1-—
33, Tata Inst. Fund. Res. Stud. Math., 11, Bombay, 1987.



e ATTm————
.
-

e space of geodesics 52 x S2\ A



SPECTRAL CURVE

e geodesics: P1 x P1\ {w =7}

e spectral curve S: divisor of a section of O(n,n)

e constraint: O(r,—r) is trivial on S where r = 2p+n (p =
mass, n = charge)



Theorem: C < B if and only if BY < CV

Fact: A monopole (A, ¢) transforms to a monopole (with oppo-
site orientation) under a hyperbolic reflection in a point.



MONOPOLE MODULI SPACES



The Geometry

and Dynamics

of Magnetic Monopoles

M B PORTERLICTURES

RICE UNIVERSTY




MONOPOLES ON R3

moduli space M4" is hyperkahler

twistor space complex manifold z2nt1

holomorphic fibration p: Z — P1

complex symplectic fibres

M = a space of sections



e cach fibre of p = based degree n rational maps
e S(z) =p(2)/q(z), zeros of q: z1,...,2n

e symplectic form:

Y dz; Adlogp(z;)
)



L Faybusovich & M Gekhtman, Poisson brackets on rational
functions and multi-Hamiltonian structure for integrable lattices,
Phys. Lett. A 272 (2000), 236—244

K L Vaninsky, The Atiyah-Hitchin bracket and the open Toda
lattice, J. Geom. Phys. 46 (2003) 283—-307

K L Vaninsky, The Atiyah-Hitchin bracket and the cubic nonlinear
Schrédinger equation, IMRP (2006), 17683, 1-60.



fix p: Lagrangian submanifold

fix g: Lagrangian submanifold

Define f(S) = p(x), g+(S) = q(x)

Poisson bracket:

p(z)q(y) — q(x)p(y)

{fe, 9y} = z—7

(Bezoutian)



MONOPOLES ON H3

For each point on S2 = §H3 the moduli space is isomorphic to
the space of based rational maps.

M F Atiyah, Instantons in two and four dimensions, Commun.
Math. Phys. 93 (1984), 437—-451

P JBraam & D M Austin, Boundary values of hyperbolic monopoles
Nonlinearity 3 (1990), 809—823

M K Murray, P Norbury & M A Singer, Hyperbolic monopoles
and holomorphic spheres, Ann. Global Anal. Geom. 23 (2003)
101-128






SYMPLECTIC STRUCTURE

O Nash, A new approach to monopole moduli spaces, Nonlin-
earity 20 (2007) 1645-1675



SYMPLECTIC STRUCTURE

O Nash, A new approach to monopole moduli spaces, Nonlin-
earity 20 (2007) 1645-1675

e spectral curve S c P1 x P!

e constraint lifts S to O(—r,7)

e deformation theory of a curve in a three-manifold



SCHWARZENBERGER BUNDLES AND RATIONAL MAPS

e 0—-S"""W(-1)—>S"V->E'—0

e SV = homogeneous polynomials ¢(zg, z1) of degree k

e fibre of E! over [¢q] € P(S"V) = polynomials p of degree r
modulo q



SCHWARZENBERGER BUNDLES AND RATIONAL MAPS

e 0—-S"""W(-1)—>S"V->E'—0

e SV = homogeneous polynomials ¢(zg, z1) of degree k

e fibre of E! over [¢q] € P(S"V) = polynomials p of degree r
modulo q

e common factor?



e f.Y - X

e cvaluation map ev : f*f«L — L



fiYy—-X

evaluation map ev : f*f«L — L

= section a of Hom(f*E”,©(0,r)) on P*»~1 x p1

kernel of & = rank (n—1) bundle over P*~1 x P1 = p, ¢ with
common factor

(ET)o = complement



choose [ag, aq] € P1, restrict to ¢ with ¢(ag,a1) # O

lag,a1] = [0, 1], ¢ = degree n polynomial in z = z1/zg

p=aq-+0b, degb<n

based rational map b(z)/q(z)



TWISTOR SPACES

e spectral curve S defines a rational normal curve C C P(S™V)

wi Y ¢zt (—w)"

1, =0

e constraint HO(C, Er(—r)) # 0 lifts C to E’(—r)g



TWISTOR SPACES

e spectral curve S defines a rational normal curve C C P(S™V)

wi Y ¢zt (—w)"

1,J=0

e constraint HO(C, Er(—r)) # 0 lifts C to E’(—r)g

e (Note: O(—r) = Opn(—r/n)|c)



TWISTOR SPACES

e spectral curve S defines a rational normal curve C C P(S™V)

n . .
wis Y Bzt (—w)
,j=0
e constraint HO(C, Er(—r)) # 0 lifts C to E’(—r)g

e (Note: O(—r) = Opn(—r/n)|c)

e C = S requires an isomorphism C = P1



P(V) x P(S"V)\ {(w, q) : ¢(w) = 0}



Ey(r, —r/n)o

72n+1 —

P(V) x P(S"V)\ {(w, q) : ¢(w) = 0}



MONOPOLES ON H3

complex manifold z2nt1

holomorphic fibration p: Z — P1

complex symplectic fibres

M = a space of sections



PROBLEMS

e NO real structure

e symplectic forms along fibres do not vary holomorphically



CHARGE 2 MONOPOLES



CENTRES

V 2V = Hermitian form = point in H3

spectral curve equation € SV ® S™V

S @SV =1+ S2V 4 ...+ S22y

centred monopole: S2y component vanishes



e real structure on Schwarzenberger bundle



e real structure on Schwarzenberger bundle

o if C=o¢(A), C=e¢l'(D)

e Ccharge 2 centred: 1+ S4V symmetric



The projective Schwarzenberger bundle P((E%)g) is the twistor
space for a 4-dimensional self-dual Einstein manifold.

N J Hitchin A new family of Einstein metrics, in “Manifolds
and geometry (Pisa, 1993)", 190—222, Sympos. Math., XXXVI,
Cambridge Univ. Press, Cambridge, 1996



EXAMPLE: CHARGE 2

g = fdr? + Ti0% + Tro5 + T30%

(1-— 7“2)2

R G R e | Ry

. 1—|—fr—|—7“2
 (r+2)(2r+1)32

_ r(l+r+r?)
(r+2)2(2r+1)

F= 1474172
 r(r4+2)2(2r+1)2

1>

13




o M*=5%\RP?

e (irreducible 5-dimensional rep of SO(3))

e orbifold singularity around RPZ?, (r — 2)-fold quotient.



° M4=S4\RP2

e (irreducible 5-dimensional rep of SO(3))

e orbifold singularity around RPZ?, (r — 2)-fold quotient.

e ... SO(3) bundle H, over M* — smooth, Einstein (3-Sasakian)



o r=3 M*=25%
e twistor space P3 = P(S53V)

e What's the link with P(E3)?



THE TWISTED CUBIC



e C C P3 rational normal curve

e r *= (C = unique secant through x




e C C P3 rational normal curve

e r *= (C = unique secant through x

X

o f:P3\C — S?2C =P? f(x) = (p,p")



e C C P3 rational normal curve

e r *= (C = unique secant through x

X

o f:P3\C — S?2C =P? f(x) = (p,p")



e Blow up C: P! fibration = P(E3)
e lines in P3 ~ sections of P(E3) ...

e ... constrained conics in P2



M F Ativah, A note on the tangents to a twisted cubic, Proc.
Camb. Phil. Soc. 48 (1952) 204—205

“.. The tangents at four points of a twisted cubic have a unique
transversal if and only if the four points are equianharmonic”.



M F Ativah, A note on the tangents to a twisted cubic, Proc.
Camb. Phil. Soc. 48 (1952) 204—205

“.. The tangents at four points of a twisted cubic have a unique
transversal if and only if the four points are equianharmonic”.

There is a unigue constrained conic passing through four points
of A if and only if the four points are equianharmonic.



° A:zg—l—z%—l—zgzo
o C: (x]_+.CU2)Z%—|-($2+$O)Z%+($O+$1)Z% =0

e cross-ratio of intersection points: (x1 — xzg)/(z2 — xg)



e constraint: oo = x1xo + xoxg + o1 =0

e in pencil: x;, — x; + ¢,

oo+ 201t +3t2 =0



e constraint: oo = x1xo + xoxg + o1 =0

e in pencil: x;, — x; + ¢,

oo+ 201t +3t2 =0

e one root: o7 = 305



constraint: oo = 122 + xoxg + xgxr1 = 0

in pencil: z; — x; + t,

oo+ 201t +3t2 =0

one root: 0% = 305

a:%—a:l(xo+:c2)+x%+x%—azosc2 =0



e constraint: oo = x1xo + xoxg + o1 =0

e in pencil: x;, — x; + ¢,

oo+ 201t +3t2 =0
e one root: o7 = 305

o a:%—a;l(a;o—l—ajg)—l—x%—l—x%—xoxg=O

_ 0 + x> £ Z\/§(:Eo — x9)
2

1 cross-ratio:
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e HAPPY BIRTHDAY, SIR MICHAEL!



