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1. Letter Atiyah → Hirzebruch dated December 31 1957.

Trinity College
31st Dec. 1957

Dear Fritz,

        Greetings to you for the new year!  May 1958 see you & all the family flourishing.
        Thank you for your Christmas card.  The manuscript, long delayed is now almost ready.  It has
been typed and only a few correction remains.  I hope to despatch it to you within a week.
        Regarding next summer, I shall be very pleased to join in the “Bonn Colloquium” again.  I
cannot leave Cambridge till about June 20th since I have examinations to see to.  However after that
I am free, and could come at any suitable time to synchronize with other people.  Will you get Bott
this time?  I believe he will definitely be coming to Edinburgh & so should be available.
        I have within the last week or so proved a theorem which may interest you.  I have not yet
written it up but I think all the details are all right.  The result is the following:

Let X be an algebraic surface in projective 3-space P3 with only ordinary double points as
singularities.  (i.e., at a singularity the eqn. of X  becomes f2(x, y, z) + higher terms = 0 where f2(x, y,
z) is a non-singular quadratic form).

Resolve each singularity in the obvious way (e.g, by blowing up the point in P3) and we get a non-
singular surface X.  The X is homeomorphic to any non-singular algebraic surface in P3 of degree =
degree X.  In particular the Kummer surface (or Andreotti surface) is homeomorphic to the general
quartic surface.
        As far as I know this result is new.  It is very remarkable because it fails in all dimensions ≠ 2
as one easily verifies.  It works for dimension 2 essentially because the 2-dimensional quadric is the
only quadric which is fibered.
        How is Mathematics with you in Bonn?  Do you hear anything new?  How about the famous
paper with Borel?
        Do you plan to bring the family to Edinburgh?  We hope to see you all then even if we don't all
come to Bonn.

Yours sincerely
Michael



2. Letter Atiyah → Hirzebruch dated September 8 1958.

Grilerell [? undecipherable]
8th September 1958

Dear Fritz,

        A further request for a recommendation!  You were so successful last time that I have come
again.  This time it is for the Institute (Princeton).  I am applying for membership there for the fall
term 1959, and I need 3 recommendations for “character & academic ability”.   Would you consider
writing one on my behalf?  If so it should be sent direct to Miss Underwood at Princeton.

        I have a small problem for you:  prove that n > 2k the coefficients of xn-1 in (1–e–x)n–r–1 (for 1 ≤
r ≤ k–1) are all integers – n ≡ 0 mod qk, where qk  is some integer depending only on k.  Moreover
find a nice formula for qk .  For low values of k I have checked that to find q2 =2, q3 = q4 = 4!, q5 =
q6 = 4!5!.  This looks like a problem which suits you.  It has applications to problems of vector
fields on spheres.
        Regards to Inge & all the family.  

Yours
Michael



3. Letter Atiyah → Hirzebruch dated September 29 1958.

19 Beaumont Road,
Cambridge.     

29th September 1958.

Dear Fritz,

        I have recently made some progress with developing a “Grothendieck Theory” for almost
complex manifolds, and I thought you might be interested in the results.  So far I have only got
incomplete and preliminary results, and the final theory has yet to be properly developed, but the
main results are :

• A very simple direct proof that the Todd genus is an integer,
• A definition of f!(1) for any almost complex map f : Y → X,

•  A Grothendieck R-R theorem for f!(1),
•  A weak form of R-R Theorem in the form suggested by you (i.e. in terms of the R-R

subgroup of the cohomology group).

        Briefly the details are as follows.

Conventions and terminology.    All spaces are supposed to be of a type satisfying the classification
theorem, so that BU(n) will always be understood to mean U(N+n)/U(N)×U(n) for some large N, and
similarly for MU(n).  All maps, except where stated to have base points, and if X is any space we
denote by X + the union of X with a disjoint (base) point.  Let K = Ù×BU  (Ù denoting the integers),
and take a base point in the component 0×BU .  Let K(X +) denote the group of homotopy classes of
maps X + → K.  As usual S and Ω will denote suspension and loop space respectively.  Then by Bott
we have  Ω2(K) = K.

(i) Integrality of the Todd  genus.

        Let ξk denote the Universal bundle on BU (k), and consider

λ–1(ξk
*) = ∑ i(–1)iλi(ξk

*) Î K(BU (k)).

Restricted to BU (k-1) ξk = ξk-1Å1 and so λ–1(ξk
*) = λ–1(ξk–1

*)λ–1(1) =  0 since λ–1(1) =  0.  Hence λ–1(ξk
*)

defines an element of K(MU(k)),  i.e. a map Pk :  MU(k)* → K.  Consider the induced
homomorphism of homotopy : [Note: MU(k) has a canonical base point]

Pk* :  π2n(MU(k)*) → π2n (K) @ Ù.

I assert that this is just the Todd genus associated to a given Thom class.  In fact if X Ì S2n is a
representative manifold for the Thom class α Î π2n(MU(k)*), and if η Î π2n(K) is the element induced
by α from λ–1(ξk

*), then we have the Grothendieck formula:

ch(η) = φ*T(X),   φ* : H*(X) → H*(S2n) the Gysin homomorphism.



3. Letter Atiyah → Hirzebruch dated September 29 1958 (continued).

On the other hand, by Bott,
ch(η) = (1/n!)sn(η) =  Pk

*(α)g,

where g Î H2n(S2n) is the generator corresponding to a definite choice of orientation.

        Note that, just as in Milnor's proof, the manifold X has only to be generalized almost complex.
 
(ii) Definition of f!(1)

        Let X,Y be differentiable manifolds, Y almost complex and let f : Y → X be an almost complex
map (no base point), i.e. the graph Γf Ì X ×Y has a given almost complex structure in its normal
bundle.  Embed Y E2n, (as in Milnor's construction we want tangent γ Å normal = I2n as complex
vector bundles) and consider Γf  Ì X ×E2n with its normal bundle having the almost complex
structure given by addition.  This then defines a map (no base point) of X ×E2n →  MU(n+k) with
X ×Ė2n → base point, and hence defines a map (with base point):

S2n(X +) →  MU(n+k)    (2k = dim X – dim Y).

By composition with Pn+k this gives a map S2n(X +) →  K, and so a map X + →  Ω2n(K) = K.  By
definition this element of K(X  +) is f!(1).
        One must of course prove that this is independent of (a) the embedding of Y in E2n, and (b) of
the integer n (assuming this is sufficiently large).  The proof of (a) is as in Thom Theory, but the
proof of (b) is non-trivial and expresses a significant relation between the Bott periodicity for BU,
the stability (suspension) property of the Thom complexes MU(k), and the maps Pk.  Essentially one
has to verify the following.  Let αk and βk be the maps MU(k) → Ω2n(K), S2(MU(k)) → K given
respectively by the compositions :

Pk         
MU(k) → K =  Ω2n(K),

          inclusion          Pn+1

S2(MU(k)) → MU(k+1) → (K).

Then we must verify that these maps are adjoints of one another.  This is easily done by computing
Chern classes.

(iii) R-R for f!(1)

        One breaks up the proof, as in the case of Grothendieck, to (a) an inclusion Y Ì X, and (b) a
suspension argument (which is the analogue of the projection X×P → X of Grothendieck).  For the
inclusion the proof is essentially the same as the proof of the integrality of the Todd genus given
above;  one has simply to use the Grothendieck formula:

ch(λ–1ξk
*) = ck(ξk)T(ξk)–1.



3. Letter Atiyah → Hirzebruch dated September 29 1958 (continued).

For the suspension we proceed as follows.  We have Y = Γf Ì S2n(X +), and so a map 1Y → i!(1Y) Î
K(S2n(X +)) - even though S2n(X +) is not a manifold this is clearly defined.  Then one has simply to
check in the diagram :

ch
K(X +)   →    H(X)

S2n ↓             ↓S2n 

ch
K(S2n(X +)) → H(S2n(X +)),

                        S2n

(which is commutative as one sees from Bott) that f!(1) → i!(1).

        Of course, taking X = point, we see that the Todd genus of Y is just the dimension or
augmentation of f!(1), and so is necessarily an integer.

(iv) General R-R. 

        Let X be fixed and consider all f!(1Y) for variable Y and f.  A singular cycle on X will be a
formal sum of such maps.  Then one can prove the following:  the homomorphism of singular
cycles → K(X) is an epimorphism (cf. the similar but different result in Algebraic Geometry).  The
proof is essentially the G/T argument of Hirzebruch-Borel.  From this it follows formally that given
f : Y → X and given y Î K(Y +) there is an element x Î K(X +) such that the R-R Theorem holds:
f 

*(ch(y)T(f)) = ch(x).  If X, Y are both almost complex and f is compatible with their almost complex
structures then this is equivalent to the usual form of R-R.  The unsatisfactory feature of this is that I
know very little about y → x ; in particular is it really functorial (i.e. transitive)?  

        There are many points on which I am still not clear.  In particular I would like to understand
the exact nature of the Bott isomorphism K →  Ω2k in this context.  I hope also that there will be
interesting applications to integrality questions, but on this you will know more than me.

        Any comments or suggestions would be most welcome.

Yours sincerely,
Michael.

P.S.  On re-reading this I find there is some confusion about base points – I think a little goodwill is
needed here.



4. Letter Hirzebruch → Atiyah dated October 7 1958. 

7. Oktober 1958

Hirzebruch to Atiyah 

Excerpt
(slightly revised)

        Your proof of the integrality of the Todd genus is extremely elegant.  Thus this is reduced to
Bott's divisibility theorem.  In the joint paper with Borel the situation is exactly opposite.  We start
with the integrality of Todd (i.e. practically with the integrality of the index) and arrive at Bott's
theorem exc [? undecipherable] 2 (Milnor's Todd gives then the complete Bott)...
Your method can be used to prove that the Â-genus is an integer if the second Stiefel-Whitney class
vanishes and to show that Â(X) is an even integer if w2 = 0 and dim X ≡ 4 (mod. 8).  This last fact
was unknown.  Instead of the exterior product representations one has to use the spinor
representations.
        Let ξ be an SO(2r)-bundle with w2(ξ) = 0.  Then ξ comes from a  Spin(2r)-bundle ξ ' which we
can extend by the right and left spinor representations Δ+, Δ– to find two unitary bundles Δ+(ξ ') and
Δ–(ξ ').  Introducing I-equivalence classes we can form the difference

η = Δ+(ξ ') – Δ–(ξ ').

Write the Pontryagin classes of ξ as elementary symmetric functions in the squares of certain
variables ai  such that the product of the ai  is the Euler class of ξ.  Then it follows from the character
formula of the spinor representations that 

(1)                                             ch(η) = ∏(exp(ai/2) – exp(–ai )/2).

(The 0-dimensional term in ch(η) is irrelevant for the following: thus I do not bother).
        The sphere bundle ξ^ associated to ξ is the same as the sphere bundle associated to ξ '.  If one
lifts η to the total space Eξ^ one gets the trivial  I-equivalence class since the representations Δ+ and
Δ– become equivalent when restricted to Spin(2r–1).  Therefore η gives rise to an I-equivalence
class η of unitary bundles (not necessarily uniquely determined) over the Thom space M(ξ) =
(mapping cylinder of Eξ^ → B with E shrunk to a point).
        Now let X be a compact oriented differentiable manifold, with dim X = 4k and w2(X) = 0.
Imbed X in a sphere of dim 4k+8n.  Let ξ be the normal bundle (Bξ = X).  Then w2(ξ ) = 0.  The
bundle η mentioned before fives rise to a unitary bundle η over S4k+8n.  Let φ* be the Gysin
homomorphism H*(X) → H*(S4k+8n).  Then formula (1) which is valid in the universal case yields

(*)                                                              φ* A^(x) = ch(η).

Here A^(x) is of course the “total class” belonging to the power series

½√z/sinh½√z

Formula (*) corresponds in your proof of the integrality of Todd to the “Grothendieck formula”
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φ*T(X) = ch(η) where the η  comes in this case from the alternating sum of the exterior
representations and ξ is a unitary bundle as in Milnor's paper on the complex analogue of
cobordism.
        The U(24n–1)-bundles Δ+(ξ ') and Δ–(ξ ') can be reduced to SO(24n–1) by a theorem of E. Cartan
and Malcev (see the paper with Borel at the end of 26.5;  this was the reason why I chose the
codimension of X in sphere to be divisible by 8).  It follows easily that η  is also the
complexification of an orthogonal bundle.  Thus according to Bott-Kervaire

(**)                          ch(η )[S4k+8n] is an integer and an even integer if k is odd.

        The formula (*) implies : If w2 = 0, then  Â(X) is an integer ; if moreover dim X ≡ 4 mod 8,
then  Â(X) is an even integer.  For  dim X = 4, this is just Rohlin's theorem.
        Do you have a mimeographed copy of Milnor's talk in Edinburgh?  If not, let me know, and I
will send you one.  This talk has become a joint paper of Milnor-Kervaire.  As you know they prove
in there that the image of the stable group π4n–1(SO(m)) in the stable group πm+4n–1(S

m) under the
Whitehead-homomorphisms J is cyclic of a finite order divisible by the denominator of the rational
number Bnan/4n, where Bn is the Bernoulli number and an equal 2 for n odd and 1 for n even.  This
can now be improved by means of (**) to the effect that this order is divisible by the denominator
of Bn/4n.

P.S.  It seems possible that the formula (*) can be used to develop a “Grothendieck theory” for
differentiable manifolds.



5. Letter Atiyah → Hirzebruch dated March 13 1959.

19 Beaumont Road,
Cambridge.     

13th March 1959.

Dear Fritz,

        Many thanks for your various communications, written, typed, mimeographed and oral!  I feel
it is now my turn to reply.  First let me give my official acceptance to your invitation to the
“Arbeitstagung”.  The dates you suggested are quite suitable for me, but I would be prepared to
come at other times if this was more convenient for others.  However I cannot get away form
Cambridge before about June 20 because of examinations.  You have a fine invitation list and I
hope all will be able to come.

        I received your Bourbaki talk all right – in fact I received two copies.  You made a nice job of
it, and it will make a very useful draft for further versions.  One small point about references – you
refer at one stage to Puppe for the proof of the appropriate exact sequence for maps into an H-space.
I myself have been using the terminology of Hilton and Eckmann (Comptes Rendus notes 1958 P.
2444-2555), which is very elegant and suitable for this purpose.

        About the spectral sequence relating K(X) and H(X), I had myself made the same discovery but
not using the axioms of cohomology.  Of course it amounts to the same thing, but I got directly to
the spectral sequence by taking a cell-complex X, defining H(p, q) = K(X p, X q) where X p is the p-
skeleton of X, and using the approach to spectral sequences given in Eilenberg and Cartan Chap XV
§7.  As you say the spectral sequence becomes trivial after tensoring with Ð, and is actually trivial
over Ù if there is no torsion or if there is only even-dimensional cohomology.  This makes the
computation of K(X) for many homogeneous spaces X very simple.  Thus if G is without torsion
and U is of maximal rank, and if H(G/U, Ù) is given by Borel in the usual form in terms of x1, …, xn,
then ch(G/U) is simply obtained by replacing xi by exi.  For example for X = Pn(Æ) ch(X) = Ù[ex],
where x is the generator of H2(X, Ù).  I had remarked this some time ago, and made use of it in
connection with the problem of James that I wrote to you about letter of 7 October, but the use of
the spectral sequence gives a much more elegant proof.  I also agree about writing K–q instead of Kq.

        I have now had a provisional reply from Bott to my various questions.  So far he has been able
to show directly from his maps that his map S2×Ù×BU → Ù×BU   is given by tensor product with the
appropriate element of K(S2 ).  Actually he had a little difficulty but this was because he had not
properly taken into account the augmentation.  He has also definite ideas on how to extend this to
the real case, and this will then answer all our questions very nicely.  This will obviate the indirect
proof I had to give to get round the problem of commutativity between the real and complex cases.

        I have just found a nice application of the “unstable” Riemann-Roch which I mentioned in my
letter of 28 December.  The argument on page 3 of that letter which I used to prove the integrality
of the A-genus can just as well be used to deduce:
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Theorem    Let X be a compact oriented differentiable manifold of dimension m ≡ 0 mod 4, and
suppose that X can be differentiably embedded in Euclidean space of dimension 2m–2q.  Then the
A–genus of X is divisible by 2q.

As usual one can improve this slightly; if q ≡ 2 mod 4 then A(X) is divisible by 2q+1.

Of course for Spin manifolds this Theorem tell us nothing.  In general however it is quite a good
result for problems of embeddability.  For example consider the case of X = Pn(Æ) where n=2k.  One
deduces Pn(Æ) cannot be embedded in space of dimension 4n–2α(n)–2, where α(n) is defined as
follows:  write n = ∑ar2

r in binary form, (each ar = 0 or 1), then α(n) = ∑ar.  If moreover α(n) ≡ 2
mod 4 then Pn Ë Ñ4n–2α(n).  Although this result is not always bets possible it is much superior to other
known results for almost all n.  I have tried hard to improve these results by a further factor of 2,
bur so far without success.  Is it incidentally true that the A-genus is always divisible by 2?  It
certainly is in the first few cases.

        Your argument for proving Milnor's result on the divisibility of s(M) directly is very nice.
Frank Adams gave me the outline of the proof and I shall now study your manuscript for the details.

        I have been trying hard recently to see if I could understand the real reason why the Todd
polynomials came into your formula for the Steenrod powers on almost complex manifold.  I think I
see my way, and if I can get anything interesting I will let you know.  It has always seemed to me a
great mystery that the Todd polynomials should appear in this context – but perhaps you have some
insight into this?

        What do you think we should do about writing up and publishing Riemann-Roch and its
applications?  Do you think it would be appropriate if we published jointly a note in the Bulletin of
the American Mathematical Society?  This would have to be a brief statement of results with the
barest outline of method of proof.  We could then take our time thinking about the form of proper
publication.
 
Looking forward to our meeting in Bonn.
Regards to the family,

Your friend,
Michael

P.S. Perhaps this year I may be excused from giving a general colloquium talk.



6. Letter Hirzebruch → Atiyah dated March 22 1959.

22, März1959

Dear Michael:

        Thank you very much for your letter of March 13.  Here a few mathematical remarks.

1)  The A-genus is always even.  Proof:  The characteristic power series is 2√z/sinh2√z and the
coefficient of zk ,k ≥ 1 in this power series is (–1)k22k+1(22k–1–1)Bk/(2k)!, as mentioned in Borel-
Hirzebruch 25.1.  This coefficient does not contain 2 in its denominator, since (2k)! contains at most
the power 22k–1 and Bk has 2 exactly  to the first power in its denominator.  Because of the factor
22k+1 we see that the coefficient is 0 mod 2.  Thus the whole A-sequence is trivial mod 2 since its
characteristic series mod 2 equals 1.  ----  I do not know in general by which power 2μ(k) of 2 the
polynomial Ak is divisible (μ(k) ≤ α(k) – See your letter. - See page 6 [= page 13] of this resent
letter.)   If k is a power of 2, then Ak is exactly divisible by 2.  Of course, the fact that the A-genus is
an even integer does not contain more information about Pontryagin numbers than the statement
that the A-genus is an integer.  (There are no relations between Pontryagin numbers mod 2.)

2)  I like your application of the A-genus to imbedding problems very much.  Perhaps you have
already realized that your method gives a more general theorem.  For an almost complex manifold
X and an element ξ Î K(X) the number T(X, ξ) is defined.  For the definition of this number one uses
only the first Chern class, the Pontryagin classes of X, and the Chern character of ξ.  Replace in this
definition c1 by an arbitrary 2-dimensional integral cohomology class d of X and ch(ξ) = ex1 + ex2 +
··· + exq by ex1/2+ ex2/2 + ··· + exq/2.  Having no suitable terminology in the moment, let me denote this
multiplicative Chern character by ch(ξ1/2).  Then the number obtained from T(X, ξ) by the
manipulations just described shall be denoted by Â(X, d/2, ξ1/2).  This notation is in accordance with
Borel-Hirzebruch 25.5  Of course, if α is the line bundle with characteristic class d then

(1)                                                    Â(X, d/2, ξ1/2) =  Â(X, 0, (ξÄα)1/2).

The number Â(X, d/2, ξ1/2) is defined for any compact oriented differentiable manifold X and any ξ Î
K(X).

Theorem:  If dim X= 2n and if X is imbeddable in Ñ2n+2k, then

2n+kÂ(X, d/2, ξ1/2) is an integer.

This theorem tells us nothing if d ≡ w2 mod 2 and ch(ξ1/2) Î ch(K(X)), because then Â(X, d/2, ξ1/2) is
the value of an element of the Riemann-Roch group on the fundamental cycle of X.
        The proof of the above theorem is by your standard method.
        Suppose X Ì Ñ2n+2k.  Let y1, …, yk be the formal roots of the normal bundle and x1, …, xq the
formal roots of ξ.  Then

æ((ex1 + ··· + exq)(∏j=1
k(eyi – e–yj))/y1y2···yk)

is an integer.  (æ : taking the value on X).  For the moment, we denote this integer by a.  We have
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2–k·a = æ((ex1 + ··· + exq)∏j=1

k(sinh yj/yj ))
and

2–n–k·a = æ((ex1/2+ ex2/2 + ··· + exq/2)∏j=1
k(sinh yj/2)/(yj /2))Â(X, 0, ξ1/2).

Because of (1) the theorem is proved.

        The theorem admits many applications.
        If X is an algebraic variety of complex dimension n and H a divisor on X, then we can consider
Hilbert's polynomial

P(x) = χ(X,xH).

If we take in the theorem for d the first Chern class of X and for ξ the line bundle belonging to the
divisor H, we get the following result:

        If X is imbeddable in Ñ2n+2k, then 2n+kP(x) is an integer for every half-integer x.

        If for example P(x) has the form

(2)                                                     P(x) = (a/n!)(x+c1)(x+c2)···(x+cn)

with integers ci, a being the intersection number H◦H◦···◦H (n times), then 2n+kP(1/2) has to be an
integer.  This means that 2k(a/n!) does not contain 2 in its denominator.
        (2) is correct if X is one of the irreducible hermitian symmetric spaces U(p+q)/U(p)×U(q),
SO(2p)/U(p), SO(2p+2)/SO(2p)×SO(2), E6/Spin(10)×T1, E7/E6×T1 and if H corresponds to the
generator of H2(X, Ù).  This generalizes your result on the complex projective spaces.  For these
hermitian symmetric spaces the result gets worse corresponding to the power of 2 contained in the
degree of the projective imbedding corresponding to H.  For example, the quadric of complex
dimension n = 2p cannot be imbedded in the space of dimension 4n – 2α(n) – 4.  The degree of the
imbedding of E6/Spin(10)×T1 is 78.  This space has complex dimension 16.  Therefore it cannot be
imbedded in Ñ58.  The space E7/E6×T1 has dimension 27.  The degree of its projective imbedding is
13110.  Therefore it cannot be imbedded in Ñ96.  (Compare my Princeton talk, Characteristic
numbers of homogeneous domains).  I did not try yet to study the possible applications more
systematically, but at least I  applied the theorem of page 2 [= page 11] to the quaternionic
projective spaces Pq(K) = Sp(q+1)/Sp(1)×Sp(q).  As usual write its cohomology ring in the form
Ù[x1

2].  Then ex1 +e–x1 is the Chern character of an unitary bundle ξ, the unitary extension of the
canonical Sp(1)-bundle over Pq(K) = X.  We have to calculate the number Â(X, 0, ξ1/2).  Because of
the known relationship between the Pontryagin classes of X and those of the quadric of complex
dimension 2q which we denote here by Y we get

(3)         2·Â(X, 0, ξ1/2) = 2·χ(Y,(–q+1/2)H)    (= 2T(Y,(–q+1/2)g), g point, generator of H2(X, Ù).)

where H is the hyperplane section of the quadric.  The 2 on the left side of this equation comes form
the fact that H◦H◦···◦H (2q times) whereas x1

2q = 1·generator.  The 2 on the right side of the
equation comes, if one likes, form Serre duality.  Since χ(Y, xH) is a polynomial P in x of the form
(2) with
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a = 2 and since by (3) Â(X, 0, ξ1/2) = P(–q+1/2) we conclude from Pq(K) Ì Ñ4q+2k that 2k+1/(2q)! does
not contain 2 in its denominator.  In other words, Pq(K) cannot be imbedded in Ñ8q–2α(q)–4.
        Perhaps one should be able to prove that Pq(K) cannot be imbedded in Ñ8q–2α(q)–2, but I do not see
right now how this could be obtained.  If q is a power of 2, then it is known (elementary argument
using Stiefel-Whitney classes) that Pq(K) cannot be imbedded in Ñ8q–2.

3)  I have trouble with your remark that your imbedding theorem can be improved by a factor 2 in
certain cases.  To get this, it seems necessary that your element η of the representation ring of
SO(2m) (letter of December 28, page 3) comes for m even from a “virtual” orthogonal
representation.  Is this clear?  If yes, also the theorem on page 2 [= page 11] of my present letter
could be improved in certain cases.

4)  I will think about your question concerning the Todd polynomials in connection with
cohomology operations.  Here only two preliminary remarks.

a)  The occurrence of Todd polynomials in this context can be motivated by the theorem that T(X, ξ)
is integral.  If X has complex dimension p and if ξ is a line bundle with first Chern class d (p prime,
d Î H2(X, Ù), then
(4)                                              dp/p! + (dp–1/(p–1)!)T1 + ··· + dTp–1 + Tp                                 integral.

Since Tp is integral too, we get from (4) by multiplication with p that 

(5)                                              dp/(p–1)! + d(pTp–1) ≡ 0   mod p, 

here one uses that Tp–1 is the first Todd polynomial containing p (namely exactly to the first power)
in its denominator.  Since (p–1)! ≡ –1 mod p, we get from (5) dp ≡ d(pTp–1) mod p.
        A similar calculation is probably possible if one replaces d by the class dual to a subvariety Y
and ξ by i!(1).  (i: Y → X injection).  Since in this case d is a Chern class, the effect of the Steenrod
powers on d is probably hidden in the Chern character of ξ.  I shall try the calculation, but perhaps
you did just the same.

b)  The relations à la Wu between Pontryagin numbers can also be obtained from an imbedding of
the manifold in a sphere.  This is formally similar to RR.   It yields the proof that à la Wu one gets
all relations between Pontryagin numbers (compare Dold, Math, Zeitschrift 65 (1956), who did the
same for Stiefel-Whitney numbers).  I will write the details at some other occasion (continuation of
my exposé: Cohomologie-Operatonen in Mannigfaltigkeiten).
 
5)  This is an appendix to 1) on page 1 [= page 11].  I have just found a proof that μ(k) = α(k).
Recall that 2μ(k) is defined as the largest power of 2 such that Ak2

–μ(k) is a polynomial whose
coefficients do not contain 2 in their denominators.  α(k) is defined as in your letter.
        First one calculates the A-genus of P2k(Â).  We get

A(P2k(Â)) = (2k)!/k!k!  which is precisely divisible by 2α(k).
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        Every oriented compact differentiable manifold of dimension divisible by 4 can be written as
polynomial in the P2k(Â).  The coefficients of this polynomial have no 2 in their denominators.  (The
determinant of Pontryagin numbers of the products P2j1× ··· ×P2jr, j1 + ··· +jr = k, is odd.  This shows
also that there are no relations mod 2 between Pontraygin numbers.)  The A-genus of P2j1×···×P2jr is
divisible by 2 to the power α(j1) + α(j2) + ··· + α(jr) which exponent is not less than α(k).  Thus the
A-genus of every M4k is divisible by 2α(k) and this is also the best possible result.
        If μ(k) would be less than α(k), the just underlined result would give a relation mod 2 between
Pontryagin numbers which is impossible.  Thus μ(k) = α(k).
        This is a purely “number theoretic” result.  The above proof is also purely algebraic if one
replaces the complex projective spaces by the systems of their Pontryagin numbers.
        The result that the Â-genus of a Spin-manifold M4k is an integer (k even) respectively an even
integer (k odd) is thus a relation between Pontryagin number modulo 24k–α(k) respectively 24k–α(k)+1.
        A daring conjecture would be that 24k–α(k) – resp. 24k–α(k)+1 – multiple of any manifold is
cobounding to a Spin-manifold.
        I think I should come to an end.  Many thanks for your generous offer of publishing jointly
about RR.  This would be very nice, though I have a little bit a bad conscience since you had the
original ideas.  But perhaps I can continue to contribute and we have time to work together in
Princeton.  So if you like, we can start immediately to write the short note for the Bulletin.  It
should also contain applications to make it more interesting for some more people.  How should we
do the writing job?  Who shall start to write?
        I am supposed to give a talk at Lille (Colloque C.R.N.S.) in the beginning of June.  I must give
them a manuscript.  Perhaps I will take the cohomology operations if this is not too trivial.  In the
moment I am very interested in these imbedding problems.  Perhaps one gets nice results for a
larger class of algebraic varieties.  In the paper, which should only be a few pages, I could report
about your theorem on the A-genus, the generalisation on page 2 [= page 11] of this letter and
applications to projective spaces and some algebraic manifolds.  Perhaps it would be appropriate to
make this Lille paper a joint paper, or I could say that I am reporting on your methods like in the
case if Bourbaki.  We could then omit the imbedding applications from the Bulletin referring to
Lille.  What do you think?
        I am very glad that you will come to the “Arbeitstagung”.  Adams, yourself and Serre have
accepted agreeing to the proposed date.  Borel, Grothendieck have accepted, but they do not know
for sure yet whether the proposed date will be convenient.  Milnor will be probably attending since
he is here as a visitor for one month.  Thom and James cannot come since they are in Mexico or
Chicago respectively. 

With my best regards to all the family and a happy Easter
Yours,

Fritz
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March 28, 1959

Dear Michael:

        I am trying to get a more general formulation for the non-imbeddability theorems.  It is easy to
prove

I)  Let X be a compact oriented differentiable manifold of dimension 2n with Stiefel-Whitney class
w3 = 0.  If there exists an element d Î H2(X, Ù) such that <dn, X> is odd, then X is not imbeddable in
the space of dimension 4n–2α(n)–2.

Proof:  Let c1 be an element of H2(X, Ù) whose restriction mod 2 is w2.  Then Â(X, c1/2, ηt), where η
is the line bundle with cohomology class d, is a polynomial in t of degree n which takes for integral
t integral values.  It can therefore be written in the form

(1)                 Â(X, c1/2, ηt) = an( t )+ an–1( t )+ ···+ a1( t )+ a0= P(t),
n n–1 1

where the aj are integers.  (an = <dn, X>).  Assume that X can be imbedded in Ñ2n+2k.  Then 2n+kP(1/2)
is an integer.  This gives 

(2)        2k(an·odd/n! + 2nan–1·odd/n! + ··· + 2n–1n!· odd/n! + 2na0n!/n!) is an integer.  It follows
             because an is odd that

(3)        2k·odd/n!  is an integer which proves the desired result.

“odd” stands always for some odd integer.

II)  Let X be a compact oriented differentiable manifold of dimension 4m and with w3 = 0.  If there
exists a d Î H2(X, Ù) such that <d2m, X>/2 is an odd integer, then X cannot be imbedded in Ñ8m–2α(m)–4.

        For the proof one uses (2) with n = 2m.  Since an = 2·odd, one deduces that 2k+1odd/n! is an
integer if X Ì Ñ4m+2k, which proves (II).
        It is clear that one can find more theorems of a similar nature.

        Do you know a compact oriented M2n which cannot be imbedded in Ñ4n–2α(n)+2?
        Can one find a concrete imbedding of Pn(Â) in Ñ4n–2α(n)+2?

        James told me something about concrete imbeddings of projective spaces but I forgot the
details.  Do you know them?
        I am very surprised by these strong results concerning non-imbeddability obtained by your
method.

Cordial greeting to all of you
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March 28, 1959

        P.S.

       I) and II) can be generalized.  Let ξ Î K(X) where X is compact oriented differentiable of
dimension 2n.  Then we define s(ξ) = æ(n!ch(ξ)).  If X is almost-complex and ξ its complex tangent
bundle, then s(ξ) is the usual s(X).  If η Î K0(X) and if η0 is its complex extension, then define s(η) =
1/2s(η0);  this is 0 if dim X ≡ 0 (4) and if η is the real tangent bundle then s(η) equals the usual s(X).

III)  Let X be a compact oriented differentiable manifold of dimension 2n with Stiefel-Whitney class
w3 = 0.  If there exists an element ξ Î K(X) such that s(ξ) is odd, then X is not imbeddable in the
space of dimension 4n–2α(n)–2.

Proof.  Write ch(ξ) = ∑j=0
∞chj(ξ) with chj(ξ) Î H2j(X, Ð).  Then for every integer t also ∑j=0

∞tjchj(ξ)
belongs to ch(K(X)) and is the Chern character of a canonical ξ(t) Î K(X).  This is a consequenceof
the fact that etx1 + etx2 + ··· + etxq belongs to the representation ring of U(n).  Like in I) we have a
polynomial P(t) = Â(X, c1/2, ξ(t)) with an = s(ξ).  This proves III).  In the same way we get

IV)  Let X be as in III) but now of dimension 4m.  If there exists ξ Î K(X) such that s(ξ)/2 is an odd
integer.  Then X cannot be imbedded in Ñ8m–2α(m)–4.

        This has the result on the quaternionic projective spaces as corollary.

        In particular we have:
(*)  Let X be compact oriented differentiable of dimension 4m.  If s(X) is odd, then X cannot be
imbedded in Ñ8m–2α(m)–4.

        These results are subject to certain improvement (compare my question 3) on page 4 [= page
13] of my preceding letter.
        Perhaps it would be worthwhile motivated by (*) to look at the whole business from the
cobordism-view-point.
        Which X4m are cobounding to a Y4m imbeddable in Ñ8m–d (d given)?

        Perhaps the condition w3 = 0 in I – IV can be avoidable.



Appendix: Transcription of the comment page 2 of the letter dated March 22 1959. 

Following is a transcription of the comment in German found around “Theorem” on page 2 [= page
11].

ξ Î K0(X) orthogonal, k even

2n+2k ≡ 0 (4) mod 8

n+k ≡(2) mod 4
ß

a even
ß

2n+k–1Â(···) integer.


