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Abstract This chapter formulates and solves an optimal resource allocation prob-
lem of thermal and hydropower plants with multiple basins and multiple connected
reservoirs. The stochastic factors of the problem are here represented by natural
hydro inflows. A multivariate scenario tree is in this case obtained taking into
account the stochastic inputs and their spatial and temporal dependencies. The
hydropower plant efficiency depends on its water head and the reservoir volume
depends nonlinearly on the headwater elevation, leading to a large-scale stochastic
nonlinear optimization problem, whose formulation and solution are detailed in the
case study. An analysis of exhaustive alternatives of computer implementation is
also discussed.
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Notation

For clarity purposes parameters are represented in uppercase letters and variables
are represented by lowercase letters.

Indices

p time period
p′ time subperiod
t thermal unit
h storage hydro or pumped storage hydro plant
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r hydro reservoir
rr(r) reservoir upstream of reservoir r
rh(r) reservoir r upstream of storage hydro plant
hr(r) storage hydro plant upstream of reservoir r
ω inflow scenario
a(ω) ancestor scenario of scenario ω in previous period

Parameters

Dpp′ demand of subperiod p′ in period p (MW)
DUpp′ duration of subperiod p′ in period p (h)
Pωp probability of scenario ω in period p (p.u.)
T P pt , T P pt minimum and maximum output of thermal unit t in period p
VCt Variable cost of thermal unit t (e/MWh)
FORt Forced outage rate of thermal unit t (p.u.)
Ht , Ht Minimum and maximum yearly operation hours of thermal unit

t (h)
PDHt , PEHt Penalty by deficit or surplus of yearly operation hours of

thermal unit t (e/kh)
HPph , HPph Minimum and maximum output of storage hydro plant h (MW)
PPph , PPph Minimum and maximum consumption of pumped storage

hydro plant h (MW)
ηh Efficiency of pumped storage hydro plant h (p.u)
R pr , R pr Minimum and maximum operational reserve volume of

reservoir r in period p (hm3) (GWh)
C pr , C pr Minimum and maximum capacity of reservoir r in period p

(hm3) (GWh)
IRr , FRr Initial and final reserve volume of reservoir r (hm3) (GWh)
PDFRr , PEFRr Penalty by deficit in final reserve (and in minimum and artificial

reserve) and surplus in final reserve (and in maximum reserve)
of reservoir r (ke/hm3) (e/MWh)

G pr Minimum release of reservoir r in period p (hm3) (GWh).
This accounts for other uses of water for water supply,
environmental and ecological concerns like fish and wildlife
maintenance and recreational activities

Iωpr Unregulated inflow of reservoir r in period p of scenario ω
(m3/s) (GWh)

THh Tailrace elevation of hydro plant h(m)
RHr Reference elevation of reservoir r (m)
Ah , A′h Fixed and linear term of production function of plant (hWh/m3)

(hWh/m4)
Br , B ′r , B ′′r Fixed, linear, and quadratic terms of reserve volume of

reservoir r (hm3) (hm3/m) (hm3/m2)
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Variables

tpωpp′t Output of thermal unit t in subperiod p′ of period p of scenario
ω (MW)

hpωpp′h Output of storage hydro plant h in subperiod p′ of period p of
scenario ω (MW)

ppωpp′h Consumption of pumped storage hydro plant h in subperiod p′
of period p of scenario ω (MW)

sωpr Spillage of reservoir r in period p of scenario ω (hm3) (GWh)
arωpr Artificial reserve of reservoir r in period p of scenario ω (hm3)

(GWh)
rωpr Reserve volume of reservoir r at the end of period p of scenario

ω (hm3) (GWh)
dfrωr , efrωr Deficit and surplus of final reserve of reservoir r in scenario

ω (hm3) (GWh)
dmrωpr , emrωpr Deficit of minimum reserve and surplus of maximum reserve of

reservoir r in period p of scenario ω (hm3)
dohωt , eohωt Deficit of minimum yearly operation hours and surplus of

maximum yearly operation hours of thermal unit t in scenario
ω (h)

gωpr Release of reservoir r in period p of scenario ω (hm3)
gωph Release of storage hydro plant h in period p of scenario

ω (hm3)
pfωph Production function of hydro plant h in period p of scenario ω

(hWh/m3)
tvωph Tailrace volume of hydro plant h in period p of scenario ω (m)
rhωph Reservoir elevation of reservoir r in period p of scenario ω (m)
whωpr Headwater elevation of reservoir r in period p of scenario ω (m)

7.1 Introduction

Nowadays, under a deregulated framework in many countries electric companies
manage their own generation resources and need detailed operation planning tools.
In the next future, high penetration of renewable intermittent generation is going
to change the electric system operation. Pumped storage hydro and storage hydro
plants will play a much more important role due to their flexibility and complemen-
tary use with intermittent generation.

Operation planning models considering multiple interconnected cascaded
hydroplants belonging to multiple basins can be classified into

• hydroelectric models that deal exclusively with hydropower plants and
• hydrothermal coordination models (HTCM) that manage the integrated operation

planning of both hydropower and thermal power plants.



146 A. Ramos et al.

By nature, the later models are high-dimensional, dynamic, nonlinear, stochastic,
and multiobjective. Solving these models is still a challenging task for large-scale
systems. One key question for them is to obtain a feasible operation for each hydro
plant, which is very difficult because the models require a huge amount of data, by
the complexity of hydro subsystems and by the need to evaluate multiple hydro-
logical scenarios. For these models no aggregation or disaggregation process for
hydropower input and output is established. Besides, thermal power units are con-
sidered individually. Thus, rich marginal cost information is used for deciding hydro
scheduling.

An HTCM determines the optimal yearly operation of all the thermal and
hydropower plants taking into account multiple cascaded reservoirs in multiple
basins. The objective function is based on cost minimization because the main goal
is the medium-term hydro operation. However, the objective function can be easily
modified to consider profit maximization if marginal prices are known (Stein-Erik
and Trine Krogh 2008), which is a common assumption for price-taker companies.

This model is connected with other models within a hierarchical structure. At
an upper level, a stochastic market equilibrium model (Cabero et al. 2005) with
monthly periods is run to determine the hydro basin production. At a lower level, a
stochastic simulation model (Latorre et al. 2007a) with daily periods details hydro
plant power output. This later model analyzes for several scenarios the optimal oper-
ational policies proposed by the HTCM. In Fig. 7.1 it is represented the hierarchy
of these three models. Adjustment feedbacks are allowed to assure the coherence
among the output results.

The model presented in this chapter has two main uses. On one hand, Fig. 7.2
represents the typical horizon for yearly operation planning. It is a 2-year long scope
beginning in October and ending in September, which corresponds to 2 consec-
utive hydrological years needed by the existence of multiannual reservoirs. This
timeframe is used to avoid initial and terminal effects on the planning horizon
because the natural planning period of interest is defined from January to December.
On the other hand, Fig. 7.3 represents the second possible use of the model for
obtaining optimal and “feasible” decisions under uncertainty in hydro inflows for
the immediate future (for example, next 2 weeks). The operational decisions span
for 2 years but only the first 2 weeks are actually implemented. Future decisions
beyond these 2 weeks are not known with certainty. Once these 2-week decisions
have been implemented, the model is reformulated with a new 2-year rolling horizon
and solved again.

A recent review of the state of the art of hydro scheduling models is done in
(Labadie 2004). According to stochasticity treatment models are classified into
deterministic and stochastic ones.

Deterministic approaches are based on network flows, linear programming (LP),
nonlinear programming (NLP) (Dembo et al. 1990), or mixed integer linear pro-
gramming (MILP), where binary variables come from commitment decisions of
thermal units or hydro plants or from piecewise linear approximation of nonlinear
and nonconvex water head effects. For taking into account these nonlinear effects a
successive LP solves are typically used. This process does not necessarily converge
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Fig. 7.1 Hierarchy of operation planning models

Fig. 7.2 Model scope for yearly operation planning

to the optimal solution; see (Bazaraa et al. 1993). This non-convergent behavior will
also be tested with our model.

Stochastic approaches are represented by stochastic dynamic programming
(SDP), stochastic linear programming (SLP) (Seifi and Hipel 2001), and stochastic
nonlinear programming (SNLP). For SLP problems decomposition techniques like
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Fig. 7.3 Model scope for next future decisions under uncertain inflows

Benders (Jacobs et al. 1995), Lagrangian relaxation, or stochastic dual dynamic
programming (SDDP) (Pereira and Pinto 1991) can be used.

This model has the following main characteristics:

• Specially suited for large-scale hydroelectric systems
• Deals with multireservoir, multiple cascaded hydro plants
• Consider nonlinear water head effects
• Takes into account stochastic hydro inflows
• Uses a robust solution method

The chapter is organized as follows. In Section 7.3 it is described the modeling
of the system including all the equations of the mathematical optimization problem.
The model implementation is introduced in Section 7.4. Then, the results for a real
case study are presented and, finally, some conclusions are extracted.

7.2 System Modeling

The electric demand is modeled in a weekly basis with two constant load levels
(peak and off-peak hours). Thermal units are treated individually. Commitment deci-
sions of these units are considered as continuous variables given that the model is
used for medium-term analysis. For hydro reservoirs a different modeling approach
is followed depending on the following:

• Relevance of the reservoir
Important large reservoirs are modeled in water units [volume in hm3 and inflow
in m3/s]. They are modeled with nonlinear water head effects. On the contrary,
smaller reservoirs are represented with a linear dependency; therefore, the model
do not become unnecessarily complex.

• Owner company
Hydropower plants belonging to other companies or state-operated reservoirs or
the own small reservoirs are aggregated and modeled with one equivalent and
independent reservoir each one, given that the reservoir and plant characteristics
of some of them are generally ignored. They use energy units [volume and inflow
in GWh].
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Unregulated hydro inflows are assumed to be the dominant source of uncertainty
in current Spanish electric system. In this system, stochasticity in hydro inflows have
produced a hydroenergy availability ranging from 33.2 TWh in 2003 to 12.9 TWh
in 2005 and hydroenergy generated has accounted for 20% in 2003 to only 9% in
2005 of the total energy demand, see (REE, http://www.ree.es).

Temporal changes in reservoir reserves are significant because of

• stochasticity in hydro inflows,
• highly seasonal pattern of inflows, and
• capacity of each reservoir with respect to its own inflow.

Stochasticity in hydro inflows is represented for the optimization problem by
means of a multivariate scenario tree. This tree is generated by a neural gas cluster-
ing technique (Latorre et al. 2007b) that simultaneously takes into account the main
stochastic inflow series and their spatial and temporal dependencies. The algorithm
can take historical or synthetic series of hydro inflows as input data. Very extreme
scenarios can be artificially introduced with a very low probability. The number of
scenarios generated is enough for medium-term hydrothermal operation planning.

In Fig. 7.4 it is represented a scenario tree with eight scenarios. They corre-
spond to the knee point of the quantization error function that measures the distance
between the inflow series and the scenario tree versus the number of scenarios.
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7.3 Model Formulation

This HTCM is formulated as a stochastic nonlinear optimization problem as
described in the following sections. The corresponding notation can be found at
the beginning of the chapter. For clarity, uppercase letters are used for parameters
and lower-case letters for variables.

The main results for each subperiod or load level (e.g., peak and off-peak) of
each period (e.g., week) and scenario are storage hydro and pumped storage hydro
plants operation and thermal unit operation, reservoir management, basin produc-
tion, and marginal costs. As a byproduct the optimal water release tables for dif-
ferent stochastic inflows and reservoir volumes are obtained. They are computed
by stochastic nested Benders’ decomposition technique (Birge and Louveaux 1997)
of a linear approximation of the stochastic nonlinear optimization problem. These
release tables are used by the lower level daily stochastic simulation model, as seen
in Fig. 7.1.

7.3.1 Constraints

The constraints introduced into the model are the following:

• Balance between generation and demand including pumping (MW)
Generation of thermal units and storage hydro plants, tpωpp′t and hpωpp′h , respec-
tively, minus consumption of pumped storage hydro plants, ppωpp′h , is equal to the
demand Dpp′ for each scenario ω, period (week) p, and subperiod (load level) p′:

∑
t

t pωpp′t +
∑

h

hpωpp′h −
∑

h

(
ppωpp′h/ηh

) = Dpp′ ∀p, p′, ω, (7.1)

where ηh is the efficiency of pumped storage hydro plant h.
• Minimum and maximum yearly operation hours for each thermal unit in each

scenario (h)
These constraints are relaxed by introducing deficit and surplus variables,
dohωt and eohωt , respectively, that are penalized in the objective function; see
Section 7.3.2. Those slack variables can be strictly necessary in the case of many
scenarios of stochasticity where the larger the variability of hydro inflows the
larger the change in a subset of thermal units.
This type of constraints are introduced to account for some aspects that are not
explicitly modeled into this model like unavailability of thermal units, domestic
coal subsidies, CO2 emission allowances, long-term capacity payments, etc.

Ht − dohωt ≤
∑

pp′ DUpp′ tpωpp′t
T Pt

≤ Ht + eohωt ∀t, ω (7.2)

being DUpp′ the duration of subperiod p′ of period p.
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• Minimum and maximum yearly average operation hours for each thermal
unit (h)
Observe that this constraint does not have deficit and surplus variables because it
corresponds to average generating hours:

Ht ≤
∑

pp′ω Pωp DUpp′ tpωpp′t
T Pt

≤ Ht ∀t, (7.3)

where Pωp is the probability of scenario ω in period p.

• Water inventory balance for large reservoirs modeled in water units (hm3)
Reservoir volume at the beginning of the period ra(ω)

p−1,r plus unregulated
inflows Iωpr plus spills from upstream reservoirs

∑
r ′∈rr(r) sωpr ′ minus spills

from this reservoir sωpr plus turbined water from upstream storage hydro plants∑
r ′∈rr(r) gωpr ′ plus pumped water from downstream pumped storage hydro plants∑
r ′∈rr(r) pωpr ′ minus turbined gωpr and pumped water from this reservoir pωpr is

equal to reservoir volume at the end of the period rωpr .
An artificial inflow arωpr is allowed and penalized in the objective function; see
Section 7.3.2. Hydro plant h that takes water from reservoir r is rh(r) or releases
it to reservoir r , hr(r). The initial value of reservoir volume is assumed known.
No lags are considered in water releases because 1 week is the time period unit:

ra(ω)
p−1,r+ arωpr+ Iωpr+

∑
r ′∈rr(r)

(
sωpr ′ + gωpr ′ + pωpr ′

)
−sωpr−gωpr−pωpr = rωpr ∀p, r, ω,

(7.4)
where a(ω) is the ancestor scenario of scenario ω in previous period.

• Energy inventory balance for reservoirs modeled in energy (GWh)
Reservoir volume at the beginning of the period ra(ω)

p−1,r plus unregulated inflows
Iωpr minus spills from this reservoir sωpr minus turbined water from this reser-
voir gωpr is equal to reservoir volume at the end of the period rωpr . An artificial
inflow arωpr is allowed and penalized in the objective function. The initial value
of reservoir volume is assumed known:

ra(ω)
p−1,r + arωpr + Iωpr − sωpr − gωpr = rωpr ∀p, r, ω. (7.5)

• Hydro plant generation (GWh) as a function of the water release
The hydro output can be expressed as the product of the water release gωph , the
head of the plant phωph , the gravity acceleration g, the efficiency of the turbine η,
and of the generator η′ and the water density ρ:

∑
p′

DUpp′hpωpp′h = gωph · phωph · g · η · η′ · ρ ∀p, h, ω. (7.6)
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The last four terms can be approximated by the production function variable pfωph
(also called efficiency)

pfωph = phωph · g · η · η′ · ρ (7.7)

and, therefore, the energy produced by the plant is the product of the water release
and the production function.
The production function is usually given by level curves that relate the power
output of a plant with the net head for an amount of water released through the
turbine. Figure 7.5 shows a typical hill diagram, similar to another found in (Diniz
et al. 2007). It may be observed that given a net head (vertical dashed line) for
the reservoir, there is an optimum water outflow (thick line).
Equation (7.6) is a nonlinear nonconvex constraint that considers the long-term
effects of reservoir management and can be rewritten as

∑
p′

DUpp′hpωpp′h = gωph p f ωph ∀p, h, ω. (7.8)

• Total reservoir release gωpr is equal to the sum of reservoir releases from all the

downstream hydro plants (hm3)

gωpr =
∑

h∈hr(r)

gωph ∀p, r, ω. (7.9)

• Pumped water pωpr in (hm3) is equal to the pumped storage hydro plant consump-
tion ppωpp′h in (GWh) divided by the production function PFh :
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pωpr =
∑

p′

∑
h∈hr(r)

DUpp′
ppωpp′h
PFh

∀p, r, ω. (7.10)

• Achievement of a preestablished final reservoir volume FRr with deficit dfrωr and
surplus variables efrωr (hm3)(GWh)
This final reserve is determined by running a medium-term market equilibrium
model, as seen in Fig. 7.1:

rωpr + dfrωr − efrωr = FRr ∀r, ω. (7.11)

• Minimum and maximum reservoir volume per period with deficit dmrωpr and

surplus variables emrωpr (hm3) (GWh)
Those bounds are included to consider flood control curve, dead storage, and
other plant operation concerns. The deficit variables will be strictly necessary in
the case of many scenarios where inflow variety is higher:

R pr − dmrωpr ≤ rωpr ≤ R pr + emrωpr ∀p, r, ω. (7.12)

• Computation of the plant water head (m) and the production function variable
(hWh/m3) as a linear function of it.
Production function variable p f ωph is a linear function of the water head of the
plant that is determined as the forebay elevation of the reservoir rhωpr minus the
tailrace elevation of the plant thωph . Tailrace elevation of the plant is the maximum
of the forebay elevation of downstream reservoir rhωpr and the tailrace elevation
of the plant T Hh . This value depends on the outflow through the power plant.
However, in this medium-term model it has been assumed as constant:

p f ωph = Ah + A′h
(

rhωpr − thωph

)
∀p, h, ω,

tvωph ≥ max (rhωpr ,THh) ∀p, h, ω.
(7.13)

• Computation of the reservoir headwater elevation (m) and the reservoir volume
(hm3) as a nonlinear function of it.
Reservoir headwater elevation whωpr is determined as the forebay elevation rhωpr
minus the reference elevation. Reserve volume rωpr is a quadratic function of the
reservoir headwater elevation whωpr :

whωpr = rhωpr − RHr ∀p, r, ω,

rωpr = Br + B ′r
(
whωpr

)
+ B ′′r

(
whωpr

)2 ∀p, r, ω.
(7.14)

• Variable bounds, i.e., reservoir volumes between limits for each hydro reservoir
and power operation between limits for each unit
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0 ≤ TPpt ≤ tpωtp′t ≤ TPpt ∀p, p′, t, ω,
0 ≤ HPph ≤ hpωhp′h ≤ HPph ∀p, p′, h, ω,
0 ≤ PPph ≤ ppωpp′h ≤ PPph ∀p, p′, h, ω,
0 ≤ sωpr ∀p, r, ω,
0 ≤ arωpr ∀p, r, ω,
0 ≤ p f ωph ∀p, h, ω,
0 ≤ gωprh ∀p, r, h, ω,
G pr ≤ gωpr ∀p, r, ω,
0 ≤ ppωpr ∀p, r, ω,
0 ≤ dfrωr ≤ FRr ∀r, ω,
0 ≤ efrωr ∀r, ω,
0 ≤ dmrωpr , emrωpr ∀p, r, ω,
0 ≤ dohωt , eohωt ≤ 8760 ∀t, ω.
rω0r = IRr

(7.15)

7.3.2 Objective Function

The multiobjective function in [e] minimizes

• thermal variable costs plus,
• some penalty terms for deviations from ideal reservoir levels, i.e., deficit or sur-

plus of final reservoir volumes, exceeding minimum and maximum operational
rule curves, artificial inflows, and

• penalty terms for relaxing constraints like minimum and maximum yearly oper-
ation hours of thermal units.

It is important to notice the difficulties of finding a feasible solution for all the
scenarios, so the penalties introduced into the objective function just accommo-
date these deviations in the best possible way. Different solutions and trade-offs can
be obtained by changing these penalties and analyzing the stochastic optimization
problem in a multicriteria decision-making framework:

min
∑

pp′tω
Pωp DUpp′VCt t pωpp′t

+∑
rω

Pωp
(
PDFRr dfrωr + PEFRr efrωr

)
+ ∑

prω
Pωp

(
PDFRr dmrωpr + PEFRr emrωpr

)

+ ∑
prω

Pωp
(

PDFRr arωpr

)

+∑
ptω

Pωp
(
PDHt dohωt + PEHt eohωt

)
.

(7.16)



7 A Decision Support Model for Weekly Operation of Hydrothermal Systems . . . 155

7.4 Model Implementation

According to (Labadie 2004) “the keys to success in implementation of reservoir
system optimization models are (1) improving the levels of trust by more inter-
active of decision makers in system development; (2) better ‘packaging’ of these
systems; and (3) improved linkage with simulation models which operators more
readily accept.” Following guideline (2) this model has been implemented with a
spreadsheet-based graphical user interface that improves easiness and usability. It
is able to represent any general reservoir system topology, given that it is not cus-
tomized. The optimization problem is written in GAMS 23.3, see (Brooke et al.
2008), and automatically executed from the interface. The scenario tree generator is
also embedded into the hydrothermal coordination model.

As guideline (3) suggests the optimal decisions obtained with this model are
passed to another stochastic simulation model (Latorre et al. 2007a) to evaluate
decisions at a daily level; see Fig. 7.1.

7.5 Case Study

The case study represents the Spanish electric system with 118 thermal units, 5
main basins with 49 hydro reservoirs, 56 hydro plants, and 2 pumped storage hydro
plants. The hydro subsystem is very diverse. Hydro reservoir volumes range from
0.15 to 2433 hm3 and hydro plant capacities go from 1.5 to 934 MW. We consider
different number of scenarios of unregulated hydro inflows.

In the following sections we have done different runs to analyze the electric sys-
tem and some modeling issues.

7.5.1 Computational Results

In this section we show the use of different nonlinear solvers for different case stud-
ies. For avoiding numerical problems a careful natural scaling of variables around 1
has been done and simple expressions are used in the nonlinear constraints, which
are very efficiently managed by nonlinear solvers. The nonlinear problem is solved
providing initial values and bounds for all the variables from the solution given
by the linear solver CPLEX 12.1 (ILOG-CPLEX, http://www.ilog.com/products/
cplex/) by an interior point method. Several nonlinear solvers have been tested with
different cases to check their robustness and solution time. The tested solvers have
been CONOPT3 3.14 based on a generalized reduced gradient method (Drud 1994),
IPOPT 3.7 based on a primal–dual interior point filter line search algorithm (Wchter
and Biegler 2006), KNITRO 5.1.2 using an interior point (Byrd et al. 2006), MINOS
5.51 based on a project Lagrangian algorithm (Murtagh and Saunders 1987). The
default options and algorithms have been used for all the solvers.

The model has been run in a PC with a processor running at 1.83 GHz and with
1 GB of RAM memory. The problem with eight scenarios has been the biggest one

http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/
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Table 7.1 Size of linear and nonlinear problems

R V E R V E NE

1 scen 30,952 57,883 157,705 36,984 55,283 157,705 1248
4 scen 120,269 224,925 612,883 143,701 214,825 612,883 4848
8 scen 234,641 438,837 1,195,803 280,345 419,137 1,195,803 9456

Table 7.2 Solutions provided by linear and nonlinear solvers

CPLEX CONOPT IPOPT KNITRO MINOS

O.F. time O.F. time O.F. time O.F. time O.F. time
(Me) (s) (Me) (s) (Me) (s) (Me) (s) (Me) (s)

1 scen 15,717.452 6 15,689.029 275 15,689.086 6003 15,689.103 601 15,689.875 78
4 scen 15,750.979 43 15,730.440 3202 15,730.502 4200 15,728.997 2309 15,730.796 2557
8 scen 15,764.817 132 15,750.062 6513 15,746.309 9010 15,754.388 5600 15,747.004 7628

that has fitted into the PC memory. Table 7.1 summarizes the sizes of the problems
where R is the number of constraints, V number of variables, E nonzero elements,
and NE nonlinear nonzero elements, and Table 7.2 the objective functions in (Me)
and the solution times in seconds.

The solution of the nonlinear nonconvex problem by a linear approximation has
been tested. The linearization is made by fixing the value of the production function
obtained in previous iteration. The results are shown in Fig. 7.6. It can be concluded
that the linear iterations do not converge necessarily to the NLP solution.
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The relevant conclusion to extract from this analysis is that large-scale stochastic
hydrothermal coordination problems can nowadays be solved by several general-
purpose NLP solvers.

7.5.2 Hydro Reservoir Operation Planning

As it has been seen from the previous tables the impact of the nonlinear approx-
imation is not very important regarding the objective function (less than a 0.2%).
However, the operation of the hydro plants makes a crucial difference between them.
The following figures show the different operation of a large hydro reservoir (with
a maximum volume of approximately 900 hm3) due to use of the linear or nonlinear
modeling of water head effects in the four-scenario case. The curves represented in
each graph correspond to minimum and maximum volume level, lower and upper
operating rule curves, mode (most probable scenario), and five quantiles.

Although in a stochastic framework the only relevant decisions are those corre-
sponding to the first stage, given that these here and now decisions will be imple-
mented, it can be observed that the operation of the reservoir is smoother in the
nonlinear approach than in the linear one, see, for example, curves in the weeks
from s0852 to s0926 of Fig. 7.7. Besides, there is a strong difference in the opti-
mal volume of the reservoir in the weeks from s0932 up to s1004. In the lin-
ear case, reservoir volume is remarkably lower because the production function
does not depend on the water head and therefore the linear model is indifferent
to this volume. This rational and realistic operation of the reservoir in the nonlinear
model fully justifies the importance of using the nonlinear approximation and shows
that feasibility is as important as optimality in stochastic hydrothermal planning
models.

7.5.3 Scenario Analysis and Stochastic Measures

Figure 7.8 represents on the left y-axis the value of the objective function for
the different scenarios with anticipative decisions and on the right y-axis the rel-
ative natural inflows (value 1 corresponds to the mean value). Changes in the
objective function are around 10% among scenarios. Figure 7.9 plots the quadratic
regression function of both variables, determining the impact of hydro inflows in the
objective function.

Additionally, we have conducted a scenario analysis and determined some
stochastic measures; see (Birge and Louveaux 1997) for their definition, whose val-
ues appear in Table 7.3. In this case it can be seen that the expected value of perfect
information (EVPI) that measures the impact of the non-anticipative decisions and
the value of the stochastic solution (VSS) are very small. The reason is that the
branching process of the tree is done in early stages (at the end of the first month)
and the scenarios are almost independent among them.
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Fig. 7.7 Reserve volume for the planning horizon under stochastic hydro inflows with the linear
(above) and nonlinear (below) approximation
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Fig. 7.8 Scenario analysis

Fig. 7.9 Relation between natural inflows and total variable costs

Table 7.3 Stochastic measures

Expected value with perfect information (EVWPI) 15,764.709
Expected value solution (EV) 15,716.937
Stochastic solution (SS) 15,764.817
Expected result of the expected value solution (EEV) 15,764.755
Expected result of the stochastic solution (ESS) 15,764.848
Value of the stochastic solution (VSS) 0.062
Expected value of perfect information (EVPI) 0.108

Another reason for that comes from the electric system. Since the last 5 years the
Spanish electric system has had a strong investment in CCGTs. As a result nowa-
days there are only three thermal technologies: nuclear, coal, and natural gas, being
natural gas the less competitive from a variable cost point of view. Stochasticity in
hydro inflows may represent a variation of approximately 20 TWh of energy from a
dry to a wet year and it is fully replaced by electricity produced by CCGTs. Those
units are relatively new and therefore have similar heat rates. As the total variable
cost of the system behaves linearly with respect to the stochasticity in hydro inflows,
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see Fig. 7.9, the stochastic measures, that account for changes in the objective func-
tion with respect to the mean value or with respect to the anticipative solution, are
negligible.

This tendency can be observed not only in Spain but also in many other countries
where natural gas has massively replaced old coal and oil thermal units. However,
as important as the objective function is the production of the different units and
this may substantially change from one scenario to another. So, the model results
are much more useful by providing the output of the thermal and hydro units and
the spillage of hydro reservoirs under each scenario. This is the value of a stochastic
programming model for electricity production planning.

7.6 Conclusions

In this chapter we have presented a medium-term stochastic hydrothermal coordi-
nation model for complex multireservoir and multiple cascaded hydro subsystems.
Nonlinear water head effects are modeled for important large reservoirs. Stochastic-
ity of natural hydro inflows is considered.

The optimization problem is stated as a stochastic nonlinear optimization prob-
lem solved directed by a general-purpose nonlinear solver giving a close initial
solution provided by a linear solver.

A case study of a complex and large-scale electric system with a 2-year time
scope with weekly detail has been tested and thorough results were presented and
discussed. In particular it is shown the importance of considering the nonlinear mod-
eling in obtaining realistic hydro reservoir operations and the value of the stochas-
ticity for this case.
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