MS 94-001 Abstract

A Generic Global Optimization Algorithm for the Chemical and Phase Equilibrium Problem

Technical Report MS 94-001

Ken McKinnon and Marcel Mongeau

This paper addresses the problem of minimizing the Gibbs free energy in the c-component, multi-phase chemical and phase equilibrium problem. After surveying previous work in the field and pointing out the main issues in the chemical and phase equilibrium problem, we extend the necessary and sufficient condition for global optimality based on the ``reaction tangent-plane criterion'', to the case involving different thermodynamical models. We then present an algorithmic approach that reduces this global optimization problem (involving a search space of c(c-1) dimensions) to a finite sequence of local optimization steps in K(c - 1)-space, K <= m+1 <= c, and global optimization steps in (c-1)-space (where m is the number of chemical elements, in the chemical equilibrium problem, or is equal to c - 1, in the case of the phase equilibrium problem). The global (phase stability) step uses the tangent-plane criterion to determine whether the current solution is optimal, and, if it is not, it finds an improved feasible solution either with the same number of phases or with one added phase. The global step also determines what type of phase (e.g. the state; liquid, vapour) is to be added, if any phase is to be added. The algorithm is proved to converge to a global minimum in a finite number of the above local and global steps.

Key words
Global optimization, Gibbs free energy, chemical and phase equilibrium, non-convex optimization, tangent-plane criterion, convexity.

Postscript MS (273Kb).
Compressed postscript MS (108Kb).
G-Zipped postscript MS (79Kb).
Submited to Journal of Global Optimization in Nov 1994.
A significantly revised version of this paper appears as MS 96-011
Related Publications
Technical Report MS 95-001a
Technical Report MS 96-004