Interior point methods: Exploiting sparsity

Part 2
- Interior point methods: exploiting sparsity when solving \((A\Theta A^T)x = b\)
 - Using direct methods
 - Using iterative methods
- Exploiting problem structure
 - Network structure
 - Row-linked block angular problems
 - Column-linked block angular problems

Features
- \(A\) has full rank and \(\Theta\) is diagonal with positive entries
- \(G = A\Theta A^T\) is symmetric and positive definite since
 \[x^T G x = x^T A\Theta A^T x = \sum_{i=1}^{n} \theta_i[A^T x]_i^2 \geq 0 \text{ with equality iff } A^T x = 0 \text{ iff } x = 0 \]
- Very large range of values in \(\Theta\) so \(G\) is ill-conditioned
Interior point methods: Exploiting sparsity with direct methods

- Form $G = A\Theta A^T$
 - Since $[G]_{ij} = \sum_{k=1}^{n} a_{ik} \theta_k a_{kj}$ sparsity will be lost in forming G
 - Since $G = \sum_{k=1}^{n} a_{ik} \theta_k a_{kj}^T$ a single full column in A makes G full

- Form Cholesky decomposition $LL^T = G$
 - L is well defined without permutations
 - As with LU decomposition, pivoting for sparsity is valuable
 - Use special case of Markowitz to identify permutation P so sparsity of L in $LL^T = PGP^T$ is good

- Solve $Gx = b$ as
 $$Ly = Pb \quad \text{then} \quad L^Tz = y \quad \text{and} \quad x = P^Tz$$

Sounds good: does it work?
- Approximate solution of $Gx = b$ is obtained in a small number of iterations...
 - if eigenvalues of G lie in a corresponding number of clusters
- Very rare for this to occur as a natural consequence of the class of LP
- Generally necessary to precondition the system $Gx = b$
 - Identify a matrix P so $\tilde{G} = P^{-1}GP^{-T}$ has the desired spectral property
 - System becomes $\tilde{G}(P^T x) = P^{-1}b$
 - Need to form $P^{-1}GP^{-T}z$ so consider the cost of forming P and operating with P^{-1}
 - P is some approximation to the Cholesky matrix L so that $P^{-1}GP^{-T} \approx I$
- In problems solved successfully via matrix-free IPM P contains only a very few columns of L

Exploiting structure in convex optimization

- For some LP problems, memory required to form L (and the computation required) may be prohibitive
- Recent work has considered iterative methods for solving $Gx = b$
- Referred to as matrix-free methods
- Based on the conjugate gradient method

For $s^{(1)} = b$ repeat, for $k = 1, 2, \ldots$

- $w = Gs^{(k)}$
- $\alpha^{(k)} = r^{(k)} T s^{(k)}/w^T s^{(k)}$
- $x^{(k+1)} = x^{(k)} + \alpha^{(k)} s^{(k)}$
- $r^{(k+1)} = r^{(k)} - \alpha^{(k)} w$
- If $\|r^{(k+1)}\| \leq \epsilon$ then stop
- $\beta^{(k)} = \|r^{(k+1)}\|^2/\|r^{(k)}\|^2$
- $s^{(k+1)} = r^{(k+1)} + \beta^{(k)} s^{(k)}$

- $y = \Theta z$
- $z = A^T s^{(k)}$
- $w = Ay$

- Key feature: G only appears in $w = Gs^{(k)}$
- Form $w = A(\Theta(A^T s^{(k)}))$
- Reduces computation to operations on original sparse data
Exploiting structure in convex optimization

- Problem structure is generally manifested in the constraint matrix
- Many classes of structure, principally
 - Network structure
 - Block-angular structure

\[A = \begin{bmatrix}
 A_{00} & A_{01} & A_{02} & \ldots & A_{0N} \\
 A_{11} & & & & \\
 & A_{22} & & & \\
 & & & & \\
 & & & A_{NN} & \\
\end{bmatrix}\]

Row-linked block-angular form

\[A = \begin{bmatrix}
 A_{00} & A_{10} & A_{11} & & \\
 & A_{20} & & & \\
 & & & & \\
 & & & A_{M0} & \\
 & & & & \\
 & & & & A_{MM} \\
\end{bmatrix}\]

Column-linked block-angular form

- Structure can be explicit or hidden
- Exploit structure within standard algorithms or by using dedicated algorithms

Exploiting network structure

Classical network optimization problem is minimum cost network flow

- Problem has
 - \(m + 1 \) nodes, each with supply \(b_i \)
 - \(n \) arcs, each with cost \(c_j \) and non-negative flow \(x_j \) so objective is \(f = \sum_{j=1}^{n} c_j x_j \)

- Constraints: Net flow into each node equals supply
 - Each arc is from one node to another node
 - Each column of the constraint matrix has one +1 and one −1
 - Net supply to network is zero so \(\sum_{j=1}^{m} b_j = 0 \)
 - Sum of all constraints is zero: remove constraint \(m + 1 \)

Exploiting network structure

Classical network optimization problem is minimum cost network flow

- Problem has
 - \(m + 1 \) nodes, each with supply \(b_i \)
 - \(n \) arcs, each with cost \(c_j \) and non-negative flow \(x_j \) so objective is \(f = \sum_{j=1}^{n} c_j x_j \)

- Constraints: Net flow into each node equals supply
- Problem is sparse LP

\[
\text{maximize } f = c^T x \quad \text{subject to } Ax = b, \quad x \geq 0
\]
Exploiting network structure

Basic solution has
- \(n - m \) nonbasic arcs \(x_n = 0 \)
- \(m \) basic arcs \(x_B \)

Basic arcs form a **spanning tree**
- Can solve \(Bx = b \) by traversing tree from leaves
- Corresponds to permuting \(Bx = b \) as \(UQx = Pb \), where \(U \) is upper triangular
 - All leaves have Markowitz count of zero
 - Once pivoted, other leaves are created
Then solve via forward substitution
Triangularisation is guaranteed for all basic solutions

- Pure network optimization problems have specialised algorithms
- Many LPs have partial or hidden network structure due to underlying model
- Simplex basis matrix \(B \) is typically (almost) triangularisable
- Underlying LP is typically **hyper-sparse**
- Simplex may out-perform IPM significantly, even for very large problems

Exploiting row-linked block-angular structure

Row-linked block-angular LP problems

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \quad x \geq 0
\end{align*}
\]

where
\[
A = \begin{bmatrix}
A_{00} & A_{01} & A_{02} & \ldots & A_{0N} \\
A_{11} & A_{22} & & & \\
& & \ddots & & \\
& & & A_{NN}
\end{bmatrix}
\]

Structure:
- The **linking rows** are \([A_{00} \ A_{01} \ \ldots \ A_{0N}]\)
- The **diagonal blocks** are \([A_{11} \ A_{22} \ \ldots \ A_{NN}]\)
- Diagonal blocks can be many or few; dense or sparse

Origin:
- Occur naturally in (eg) decentralised planning and multicommodity flow
- Linking rows (constraints) correspond to shared resources
- Without the linking constraints the problem would be \(N \) independent LPs
Row-linked block-angular structure: Dantzig-Wolfe decomposition

General row-linked block-angular LP is

\[
\begin{align*}
\text{minimize} & \quad c_0^T x_0 + c_1^T x_1 + \ldots + c_N^T x_N \\
\text{subject to} & \quad A_{00} x_0 + A_{01} x_0 + \ldots + A_{0N} x_N = b_0 \\
& \quad A_{11} x_1 = b_1 \\
& \quad \vdots \\
& \quad A_{NN} x_N = b_N \\
x_0 \geq 0 & \quad x_1 \geq 0 & \ldots & \quad x_N \geq 0
\end{align*}
\]

Dantzig-Wolfe decomposition algorithm

- Feasible region \(K_i \) for each sub-problem is given by \(A_i x_i = b, x_i \geq 0 \)
- Key observation: Any point in \(K_i \) is given by
 \[x_i = E_i \theta_i, \quad e^T \theta_i = 1 \quad \theta_i \geq 0 \]
 where \(E_i \) is the matrix of all \(p_i \) extreme points of \(K_i \)

Substituting \(x_i = E_i \theta_i \) in the original problem yields the master problem

\[
\begin{align*}
\text{minimize} & \quad f^T \theta \\
\text{subject to} & \quad G \theta = h, \quad \theta \geq 0
\end{align*}
\]

where

\[
\begin{align*}
\theta &= \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_N \end{bmatrix}, \quad f = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{bmatrix}, \quad h = \begin{bmatrix} b_0 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \\
G &= \begin{bmatrix} G_1 & G_2 & \ldots & G_N \\ e^T & e^T & \ldots & e^T \end{bmatrix}
\end{align*}
\]

for \(G_i = A_{0i} E_i \) and \(f_i^T = c_i^T E_i \).

- Master problem has
 - Fewer equations: \(m_0 + N \)
 - Many more variables \(\sum_{i=1}^{N} p_i \)
Row-linked block-angular structure: Dantzig-Wolfe decomposition

Using the revised simplex method to solve

\[
\text{minimize } f^T \theta \quad \text{subject to } G\theta = h, \quad \theta \geq 0
\]

Consider forming the reduced costs \(\hat{f}_N = f_N - N^T G_B^{-T} f_B \)
- Basis matrix \(G_B \) is of dimension \(m_0 + N \) so \(\pi = G_B^{-T} f_B \) is formed cheaply
- However, cannot form \(\hat{f}_N = f_N - G^T N \pi \) since \(G_N \) cannot be known
- **Key trick:** Find the smallest reduced cost \(\hat{f}_j \) for each sub-problem by solving

\[
\text{minimize } (c_j - A_{0j}^T u) x_j - v_j \quad \text{subject to } A_{jj} x_j = b_j, \quad x_j \geq 0
\]

where \(\pi \) is partitioned into \(u \in \mathbb{R}^{m_0} \) and \(v \in \mathbb{R}^N \)
- Each yields an extreme point \(\zeta_j \) to add to the master problem
- Simplex iterations continue until optimality

Pros:
- Appealing reduction in problem size
- Immediate scope for parallelism when solving independent sub-problems

Cons:
- Uses “most negative reduced cost” rule
- Can build up large numbers of extreme points

Summary:
- Can be advantageous on “loosely coupled” problems
- Otherwise, solve BALP problems as single LPs if possible

Leads into **column generation methods** for classes of very large scale (unstructured) LPs

Exploiting column-linked block-angular structure

Column-linked block-angular LP problems

\[
\text{minimize } c^T x \quad \text{subject to } A x = b, \quad x \geq 0
\]

\[
A = \begin{bmatrix}
A_{00} & A_{01} & \cdots & A_{0M_0} \\
A_{10} & A_{11} & \cdots & A_{1M_1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{M_0} & A_{M_1} & \cdots & A_{MM}
\end{bmatrix}
\]

Structure:
- The linking columns are
- The diagonal blocks are
- Diagonal blocks can be many or few; dense or sparse

Origin:
- Occur naturally in (eg) stochastic optimization with \(M \) scenarios
- Linking columns (variables) correspond to decisions affecting all scenarios
- Without the linking variables the problem would be \(M \) independent LPs
Exploiting column-linked block-angular structure: Example

Example: Stochastic wind energy generation

- An expected cost energy generation model is
 \[
 \text{minimize } \ c^T x_0 + c(x) \\
 \text{subject to } \ A_0 x_0 + w(x) = b_0 \\
 T x_0 + w(x) = b
 \]

 where the values of the functions \(c \) and \(w \) depend on the stochastic behaviour of wind power generation.

- Sample the stochastic behaviour to generate \(M \) discrete scenarios.

Sampling to generate \(M \) discrete scenarios yields the stochastic LP

\[
\begin{align*}
\text{minimize} & \quad c_0^T x_0 + c_1^T x_1 + \ldots + c_M^T x_M \\
\text{subject to} & \quad A_0 x_0 + \ldots + A_M x_M = b_0 \\
& \quad T x_0 + \ldots + W_1 x_1 = b_1 \\
& \quad \ldots \\
& \quad T x_0 + \ldots + W_M x_M = b_M \\
& \quad x_0 \geq 0 \quad x_1 \geq 0 \quad \ldots \quad x_M \geq 0
\end{align*}
\]

- The 12-hour Illinois model with 8,192 scenarios has
 - 463,113,276 variables
 - 486,899,712 constraints

 This is very large scale optimization!

Convenient to permute the LP thus:

\[
\begin{align*}
\text{minimize} & \quad c_1^T x_1 + \ldots + c_M^T x_M + c_0^T x_0 \\
\text{subject to} & \quad W_1^T x_1 + \ldots + W_M^T x_M + T_1^T x_0 = b_1 \\
& \quad \ldots \\
& \quad W_M^T x_M + T_M^T x_0 = b_M \\
& \quad x_0 \geq 0 \quad x_1 \geq 0 \quad \ldots \quad x_M \geq 0
\end{align*}
\]

- Inversion of the basis matrix \(B \) is key to revised simplex efficiency.

\[
B = \begin{bmatrix}
W_1^B & T_1^B \\
\vdots & \vdots \\
W_M^B & T_M^B \\
A^B
\end{bmatrix}
\]

- \(W_i^B \) are columns corresponding to \(n_i^B \) basic variables in scenario \(i \)
- \(T_i^B \) are columns corresponding to \(n_0^B \) basic first stage decisions
Exploiting column-linked block-angular structure: Basis matrix inversion

- Eliminate sub-diagonal entries in each W_i^B (independently)
- Apply elimination operations to each T_i^B (independently)
- Accumulate non-pivoted rows from the W_i^B with A^n and complete elimination

Scope for parallelism
- During inversion
 Since GE is applied independent to each $[W_i^B | T_j^T]$
- When solving systems involving B and B^T
 Since they are independent subsystems linked by few equations and variables
- Also scope for parallelism when forming $N^T \pi$
 Since N inherits structure from A

Exploiting column-linked block-angular structure: Results

- Solved stochastic LP problems with increasing number of scenarios
- The 12-hour Illinois model with 8,192 scenarios has
 - 463,113,276 variables
 - 486,899,712 constraints
- Solved using simplex implementation developed by H and Lubin (2013)
- Run on BlueGene/P at Argonne National Laboratory
- Possibly the largest “real” LP solved using the simplex method

Exploiting column-linked block-angular structure: Generally

- Interior point methods can also exploit column-linked block-angular structure
- The (Nested) Benders decomposition algorithm can be very efficient
- Identified how IMP can exploit sparsity via iterative methods for $(A\Theta A^T)x = b$
- Illustrated how matrix structure can be exploited for
 - Network LP problems: within the simplex method
 - Row-linked block-angular LP problems: using Dantzig-Wolfe decomposition
 - Column-linked block-angular LP problems: within the simplex method
- Only really scratched the surface of what is possible