
ASYNPLEX, an asynchronous parallelrevised simplex algorithmJ.A.J. Hall K.I.M. McKinnonFebruary 1998MS 95-050b
Supported by EPSRC research grant GR/J08942

Presented at APMOD95 Brunel University 3rd April 1995
Department of Mathematics and StatisticsUniversity of Edinburgh, The King's Buildings, Edinburgh EH9 3JZTel. (33) 131 650 5075 E-Mail : jajhall@maths.ed.ac.uk, ken@maths.ed.ac.uk



ASYNPLEX, an asynchronousparallel revised simplex algorithmJ. A. J. Hall K. I. M. McKinnon27th February 1998AbstractThis paper describes ASYNPLEX, an asynchronous variant of therevised simplex method which is suitable for parallel implementationon a shared memory multiprocessor or MIMD computer withfast inter-processor communication. The method overlaps simplexiterations on di�erent processors. Candidates to enter the basisare tentatively selected using reduced costs which may be out ofdate. Later the up-to-date reduced costs of the tentative candidatesare calculated and candidates are either discarded or accepted toenter the basis. The implementation of this algorithm on a CrayT3D is described and results demonstrating signi�cant speed-up arepresented.1 IntroductionLinear programming (LP) is a widely applicable technique both in its ownright and as a sub-problem in the solution of other optimization problems.The revised simplex method and the barrier method are the two e�cientmethods for general LP problems on serial machines. There have beensuccessful parallel implementations of the barrier method but as yet littleprogress has been reported on parallel methods based on the revised simplexalgorithm. In contexts where families of related LP problems have to besolved, such as in integer programming and decomposition methods, therevised simplex method is usually the more e�cient method, so there isstrong motivation to devise a parallel version of this method. If this is tobe of value then it should be signi�cantly faster than current serial simplexsolvers. 1



The particular approach to exploiting parallelism which is considered inthis paper is to overlap simplex iterations performed by a number of iterationprocesses, with an additional invert process devoted to calculating a factoredinverse of simplex basis matrices. Candidates for variables to enter the basisare tentatively selected using the most recently available reduced costs, andthe true reduced costs for these columns are calculated cheaply later before�nally deciding whether or not they will enter the basis. The e�ectivenessof the method relies on there being some persistence in the values of thereduced costs in the course of a small number of iterations. The algorithmis a variant of the simplex method and as such follows a single path on thesurface of the feasible region. This requires the coordination of the basischange decisions among all the processors.A detailed description of the algorithm ASYNPLEX is given in Section 2.Its implementation on a Cray T3D is described in Section 3. Computationalresults presented in Section 4 demonstrate signi�cant speed-up for arepresentative set of four test problems from the Netlib set [5]. Thepotential for implementing the algorithm on a shared memory multiprocessoris discussed in Section 5 and further conclusions are o�ered in Section 6.1.1 BackgroundThe two main variants of the simplex method are the standard simplexmethod and the revised simplex method. Although early versions of therevised simplex method used an explicit form of the inverse, this was quicklyreplaced by methods based on a factored form of the inverse. Most importantLP problems are large (some with millions of variables and constraints) andsparse (the coe�cient matrix has an average of 5{10 non-zeros per column).An important point to note is that for large sparse problems the standardsimplex and the explicit inverse form of the revised simplex are completelyuncompetitive in speed compared with the revised simplex method when afactored form of the inverse is used.There have been several studies [3, 14, 17] which have implemented eitherthe standard form of the simplex or the revised simplex with the inverse ofthe basis matrix stored as a full matrix. Both methods parallelise well but,as noted above, are so bad for large sparse problems, that the results are alot slower than a good serial implementation.For the revised simplex method with a factored inverse, attentionhitherto has been given to parallelising the individual computationalcomponents of the algorithm. Pfe�erkorn and Tomlin [15] discuss how allthe major operations might be parallelised on an ILLIAC IV, althoughno implementation was attempted. However, in reports of practical2



implementations [12, 16], exploitation of parallelism has been limited to justthe PRICE operation and/or overlapping the refactorization of the inversewith simplex iterations, so little or no speed-up was obtained.An investigation of the extent to which the simplex method can exploit avector processor was made by Forrest and Tomlin [4]. They report a speed-up of between 1 and 5 for their �rst twelve problems, and a speed-up of 12for a further problem.1.2 The revised simplex methodA linear programming problem has the formmaximize f = cTxsubject to x � 0Ax = bwhere x 2 IRn and b 2 IRm:At any stage in the simplex method the variables are partitioned into twosets, basic variables xB and nonbasic variables xN . The set of basic variablesis referred to as the basis. If the problem is partitioned correspondinglythen the objective function is f = cTBxB + cTNxN , the constraints are BxB +NxN = b and the basis matrix B is nonsingular. Each basic variable isidenti�ed with a particular row of the constraint matrix A, and each nonbasicvariable is identi�ed with a particular column of the matrix N . The majorcomputational steps of the revised simplex method are illustrated in Figure 1.BTRAN: Form �T = cTBB�1.PRICE: Calculate the reduced costs ĉTN = cTN � �TN .CHUZC: Scan ĉN for a variable q with a negative reduced cost.If no such candidate exists then exit. (Basis is optimal.)FTRAN: Form âq = B�1aq, where aq is column q of A.CHUZR: Scan the ratios b̂i=âiq for the row p of a good candidate toleave the basis, where b̂ = B�1b. Let � = b̂p=âpq.UPRHS: Update right hand side using b̂ := b̂+ �âq.If fgrowth in factorsg thenINVERT: Find a factored inverse of B.elseUPDATE: Update the inverse of B corresponding to the basis change.endif Figure 1: A major iteration of the revised simplex method3



At the beginning of an iteration of the revised simplex method itis assumed that a factored inverse of the basis matrix B is available:elementary row or column matrices M1;M2; : : : ;Mr are known such thatB�1 = M1M2 : : :Mr. The �rst operation is the calculation of the dualvariables �T = cTBB�1 by passing backwards through the factors of B�1,an operation known as BTRAN. This is followed by the PRICE operation,which is a sparse matrix-vector product which yields the reduced costs ofthe nonbasic variables. These reduced costs are scanned for a negative valuein the operation known as CHUZC. Although any variable, q say, with anegative reduced cost can be chosen as the variable to enter the basis, the ruleused for selecting among the variables with negative reduced cost can havea major impact on the number of iterations required to solve the problem.The original rule was the Dantzig criterion, which selects the variable withthe reduced cost. For many problems it is more e�cient to use an exactor approximate steepest edge criterion. Exact steepest edge is described byGoldfarb and Reid in [8] and Devex approximate steepest edge is describedby Harris in [11]. However a discussion of these latter techniques in theparallel context is beyond the scope of this paper.In order to determine the basic variable which would be replaced bythe variable q entering the basis it is necessary to calculate the columnof the standard simplex tableau corresponding to q. This pivotal columnâq = B�1aq, where aq is column q of the constraint matrix A, is formed bypassing forward through the factors of B�1, an operation known as FTRAN.The row corresponding to the leaving variable is determined by the CHUZRoperation which scans the ratios b̂i=âiq, where b̂ = B�1b is the vector ofcurrent values of the basic variables. Traditionally the leaving variable isthe one corresponding to the smallest non-negative ratio, since this ensuresthat no variable exceeds its bounds after the basis change . However it ispreferable for numerical stability to select the row with the largest value ofâiq among those which lead to bound violations which are su�ciently small.Such `thick pencil' techniques are described by Harris in [11] and by Gill etal in [7].Once a basis change has occurred, the inverse of the current basis matrixis normally updated rather than recalculated. Various methods are possiblefor the UPDATE operation. Let the basis invert produced by INVERT bedenoted by B�10 and the inverse k basis changes later by B�1k . The simplestform of update is the product form update [2], which represents B�1k asS�1k : : : S�11 B�10 : (1)The matrix Sj is an elementary column matrix whose only non unit columnis simply derived from the vector âq for the variable to enter the basis in4



that iteration and is referred to as an eta vector. The Bartels-Golub andForrest-Tomlin updates modify the factors of B�10 in order to reduce the sizeof the factored inverse of Bk. Update procedures based on the use of a Schurcomplement are described by Gill et al in [6].1.3 Parallelising the revised simplex method with afactored inverseFor the conventional revised simplex method as illustrated in Figure 1, eachof the major computational steps has to be completed before the followingstep can start. In the revised simplex method on a serial machine, INVERTtakes typically 10% of the time, so there is very limited scope for speed-up in using one process to perform INVERT and one other to perform therest of the algorithm in parallel. This approach was taken in one of theexperiments reported by Ho and Sundarraj [12], but no worthwhile speed-upwas obtained.It follows that any real exploitation of parallelism in the method asgiven in Figure 1 is limited to the parallelisation of the of the individualcomputational steps. For sparse problems, it is easy to parallelise PRICE,CHUZC and CHUZR. Shu and Wu [16], and Ho and Sundarraj [12] reportexperiments in which the PRICE operation is parallelised but achieve little orno speed-up over their serial implementation. The parallelisation of PRICEwithin the dual simplex algorithm has formed the basis of recent work byBixby and Martin [1].In contrast to the simple techniques required to parallelise PRICE, CHUZCand CHUZR, the parallelism which may be exploited within BTRAN, FTRANand INVERT is limited, very �ne grained and hard to achieve. This wasidenti�ed by Pfe�erkorn and Tomlin [15]. This suggests that algorithmswhich are genuinely parallel variants of the revised simplex method shouldbe considered. Subsequent to the ASYNPLEX algorithm presented in thispaper, experiments with alternative parallel algorithms have been reportedby Wunderling [18] (fully parallel for only two processors) and by Hall andMcKinnon [10].2 ASYNPLEX, an asynchronous parallelalgorithmSince the parallelisation of all individual steps of the revised simplex methodis limited and very hard to achieve, it is important to consider how the5



method itself can be modi�ed to allow the maximum degree of independencebetween the computational steps in di�erent iterations. However, it isalso essential that any algorithm performs INVERT in parallel with simplexiterations, otherwise INVERT will then become the dominant step and limitthe possible speed-up.The ASYNPLEX algorithm performs serial simplex iterations but overlapsthem to the maximum extent possible using a technique described inSection 2.1. The algorithm also performs INVERT in parallel with simplexiterations. This means that the basis matrix whose factored inverse is formedis out-of-date when INVERT is completed. The issue of bringing the newfactored inverse up-to-date with minimal overhead, and the consequences fornumerical stability are discussed in Section 2.2.Further algorithmic re�nements which ensure that the overlappingsimplex iterations determine a single path on the surface of the feasible regionand duplicated work is reduced to a minimum are discussed in Section 2.3.The ASYNPLEX algorithm is also presented formally as pseudocodesuitable for implementation on a distributed memory machine. The minormodi�cations to the algorithm for a shared memory implementation arediscussed brie
y.Note that although the sequence of computational steps is performeddi�erently, ASYNPLEX may be viewed as a variant of the revised simplexmethod since it corresponds to a particular column selection rule. Since thevariables are only allowed to enter the basis if they have negative reducedcost, ASYNPLEX inherits the termination properties of the simplex method.2.1 Overlapping simplex iterationsIn the simplex method, there are usually several variables with a negativereduced cost, and a valid simplex iteration will occur if any of these ischosen to enter the basis. It is common, especially in very sparse problems,for variables with negative reduced costs in one iteration to have negativereduced costs for a number of subsequent iterations. It is this candidatepersistence which is exploited by the ASYNPLEX algorithm to allow simplexiterations to be overlapped.Rather than waiting for the reduced costs for the current basis to becalculated, an attractive candidate is selected from the most up-to-datereduced costs yet formed and the FTRAN operation is started, allowing it tooverlap with calculations from previous iterations. Provided the up-to-datereduced cost is calculated and found to be negative before that variable is�nally allowed to enter the basis, a valid simplex iteration will occur.Once the updated pivotal column âq for the tentative candidate q has6



been calculated, the updated reduced cost can be calculated as follows. Bycombining the BTRAN and PRICE steps (see Figure 1) it is seen that thereduced costs may be expressed as ĉTN = cTN � cTB(B�1N). Since âq is thecolumn of B�1N corresponding to variable q, the reduced cost for variable qis given by ĉq = cq � cTBâq:This operation involves a single inner product within which any sparsity isreadily exploited.If ĉq � 0, the variable q no longer has a negative reduced cost and isnot chosen to enter the basis. In this case the work done in performingthe FTRAN has been wasted. Also, even when q is accepted to enter thebasis, its true reduced cost is likely to be poorer than the best availableusing up-to-date information, and this is likely to lead to an increase in thenumber of iterations taken to solve the problem. As a result, it is importantto minimise the extent to which the reduced costs are out-of-date. This isachieved by performing the BTRAN and PRICE operations after every basischange. With this strategy it is natural to use the same process to do this aswas used to perform the CHUZR leading to that basis change, as this processis guaranteed to be free at that point.2.2 Overlapping INVERTAs observed above, since the particular basis which is reinverted is generallyunimportant, it follows that INVERT can be performed in parallel to, andindependent of, any simplex iterations. Since each UPDATE operationgenerally increases the cost of using the factored inverse in subsequentFTRAN and BTRAN operations, it follows that if the cost of accommodatinga new factored inverse is relatively small and su�cient processors are availablethat one can be dedicated to INVERT, then there is no upper limit on thedesirable reinversion frequency.When INVERT is overlapped with simplex iterations, the major issueswhich need to be addressed are how to bring the factored inverse up-to-datewith respect to basis changes which have been determined since the start ofINVERT, how e�ciently this may be achieved and the impact on numericalstability.Recovering an up-to-date factored inverse after INVERTThe issue of recovering an up-to-date factored inverse following reinversionis discussed by Hall and McKinnon in [9] where it is concluded that theuse of Bartels-Golub or Forrest-Tomlin updates is inappropriate. With these7



update methods it is expensive to incorporate the basis changes which haveoccurred during INVERT and the updates alter the original factors, so itis more di�cult to share the factored invert between di�erent processes.However, when product form or Schur complement update procedures areused, the inverse can be brought up-to-date in an e�cient manner. Theproduct form update is particularly simple and it is this approach which isused in ASYNPLEX.The procedure used in ASYNPLEX to update the factors produced by areinversion to correspond to the current basis is as follows. Suppose that theINVERT which produced the factors currently incorporated into the basisfactors started at basis r, that a new INVERT started at basis s and becomesavailable for use when basis t is current. Let the factors after the INVERTs bedenoted by B�1r and B�1s , and the product form update corresponding to thebasis changes from basis r to s and from s to t be denoted by U�1s r and U�1t srespectively. Before the factors from the new INVERT are used, the factorsfor basis t have the form U�1t sU�1s rB�1r . It is normal in implementations ofthe revised simplex method to allow the reinversion procedure to permute(implicitly) the columns of the basis matrix so as to obtain sparser factors.A separate index is kept which records the variable which is solved for ineach row after FTRAN. After each basis change this index is updated. Afterreinversion, the new factors will solve for the same variables as before butusually in a di�erent order. Thus the the previous order can be recoveredby permuting the solution produced by the new factorization. This maybe expressed as a permutation Ps such that U�1s rB�1r = PsB�1s from whichit follows that the current factors U�1t sU�1s rB�1r are entirely equivalent toU�1t sPsB�1s .There are three ways to accommodate this permutation. It could be leftwhere it is in the algebraic expression for the current factored inverse andapplied in the middle of every BTRAN and FTRAN. This is unattractivebecause in both cases a full vector has to be reordered at a stage when itwould not otherwise be accessed. Alternatively the permutation Ps may beapplied symmetrically to either U�1t s or B�1s to giveU�1t sPsB�1s = Ps(P�1s U�1t sPs)B�1sor U�1t sPsB�1s = U�1t s(PsB�1s P�1s )Ps:The disadvantage of permuting the U�1t s factors is that this informationis distributed in the local memory (or cache) of several processors so thedelay caused by this permutation a�ects all processors. The alternative ofpermuting the B�1s factors, can be done once by the INVERT process andso is preferred. This is what is implemented in ASYNPLEX. Note that the8



permutation must be applied symmetrically to each of the elementary factorsof B�1s , otherwise the sparsity of the representation is lost. Apart from thispermutation of the new factors, each (usually sparse) right-hand-side vectoraq for FTRAN and each output � from BTRAN has to be permuted. Howeverthis is done as a stage where these vectors are naturally being processed soit is not a large overhead.Permuting the factors of B�1s is achieved in two stages. First thepermutation itself is determined by scattering the list of what variable issolved for in each row before INVERT and then gathering it using thecorresponding list after INVERT at a total cost of 2m integer operations.Applying the symmetric permutation to the factored form of B�1s requireseach of its constituent indices to be permuted. Since this operation doesnot require each of the elementary factors to be treated in a separate loopand no 
oating-point operations are required, the total cost of applying thepermutation is signi�cantly less than that which would be incurred by asingle BTRAN applied to a full right-hand-side.Once the new (permuted) inverse factors are available, all that is theninvolved in bringing the new factors up to date is to discard those currentfactors corresponding to basis changes which occurred before the recentINVERT was started, and attach the remaining current factors to thoseproduced by INVERT. Provided the BTRAN and FTRAN implementationcan deal with factors in separate blocks, this change can be implemented bya few changes of pointers and does not require the factors to be moved.Impact on numerical stabilityThe e�ciency of using the product form update comes at a cost in termsof numerical stability compared to Bartels-Golub, Forrest-Tomlin or Schurcomplement updates. If the basis at any stage is ill-conditioned, then factorswill be inaccurate. With product form updates the factors will remaininaccurate, whereas with the other update methods it is possible for thefactors to regain accuracy when the basis becomes less ill-conditioned. Duringreinversion, the ability to select pivots on numerical grounds means that astable representation of the basis being factorised can be obtained. If thevalues of the basic variables and reduced costs are also recalculated then in animplementation where the invert does not overlap the iterations, subsequentsimplex iterations may be viewed as having a numerical `fresh start'. Thisdoes not occur in the case where the invert is overlapped as the updatefactors U�1t s are re-used without change. These update factors result fromFTRANs performed using factors from a previous inverse and, if these areinaccurate, the update factors are likely also to be inaccurate. Thus the9



RepeatV1: While fbasis changes received I8 not yet incorporated in listgUpdate list of basic variablesend whileINVERT; Permute factorsV2: Send!I1 on all iteration processes the new factored inverseuntil fSimplex algorithm terminatesgFigure 2: ASYNPLEX: Algorithm for the invert processornumerical cleansing resulting from reinversion is not so e�ective in the parallelcase. The `thick pencil' row selection techniques described by Harris in [11]and by Gill et al in [7], reduce the incidence of small pivots and so areparticularly valuable in the context of parallel algorithms in which INVERTand simplex iterations are performed concurrently. Our implementation ofASYNPLEX uses a modi�cation of the EXPAND technique of Gill et al inwhich, for reasons given in the following subsection, does not further expandthe feasible region each iteration.2.3 The ASYNPLEX algorithmThe ASYNPLEX algorithm is de�ned and discussed here in terms of theoperation of four types of process, an iteration process, and invert process,a column selection manager process and a basis change manager process.There must be p � 1 iteration processes and one each of the other processtypes. The iteration processes perform all the major computational stepsof the method with the exception of INVERT, which is done by the invertprocess. Coordination among the iteration processes is achieved by the basischange and column selection manager process. The roles of these processesare discussed below. Detailed pseudo-code for the operations performed byeach of the process types is given in Figures 2{5.One goal of the implementation is to allow processes to operate in anasynchronous manner as independently of each other as possible. A result ofthis asynchronous execution is that di�erent processes can be working withdi�erent bases at the same time. Each iteration process i must thereforekeep its own record of the basis in use by that process, and this is done bya basis counter ki. This is incremented whenever iteration process i changesthe basis after its own CHUZR, or whenever it incorporates basis changesmade by other iteration processes into its own data structures. In both casesthis operation is referred to as UPDATE BASIS and consists of updating thevalues of the basic variables (referred to as UPRHS in Figure 1) and the10



ki = 0BTRANPRICELet q be the ith most attractive candidateRepeatI1: If fReceived V2 a new factored inversegInstall new factored inverseI2: While fbasis changes received I7 not yet appliedgAPPLY_BASIS_CHANGE; ki := ki + 1end whilePermute column aq; FTRAN1 ContinueI3: While fbasis changes received I7 are not yet appliedgAPPLY_BASIS_CHANGE; FTRAN_STEP; ki := ki + 1end whileIf fĉq > 0g thenI4: Send!C4 a message that the candidate is unattractiveelseI5: Send!R1 an o�er to perform CHUZRI6: Wait (R2 or R3) for a reply to o�erIf fO�er acceptedg thenCHUZRI7: Send!(I2 or I3 or I10 on all other iteration processes)the basis change and pivotal columnI8: Send!(V1 and C1) basis changeUPDATE_BASIS; ki := ki + 1BTRAN; Permute �PRICEChoose a set of the most attractive candidatesI9: Send!C2 the most attractive candidateselseI10: Wait to receive I7 next basis changegoto 1end ifend ifI11: Wait to receive (C3 or C5) a new candidate column, quntil fSimplex algorithm terminatesgFigure 3: ASYNPLEX: Algorithm for iteration process i11



kc = 0Mark all nonbasic variables as un-selectedRepeatC1: If fReceived I8 basis changeg thenMark the variables which has left the basis as unselectedC2: else if fReceived I9:i a set of candidatescorresponding to basis kig thenIf fki > kcg thenFilter out the candidates already selected and thosealready rejected after the FTRAN at a basis � kikc = kiendifC3: Send!I11:i the most attractive candidate to enter the basis andmark the candidate as selectedC4: else if fReceived I4:i a message that its currentcandidate is now unattractiveg thenC5: Send!I11:i the most attractive candidate to enter the basis andmark the candidate as selectedendifuntil fSimplex algorithm terminatesgFigure 4: ASYNPLEX: Algorithm for the column selection managerkb = 1RepeatR1: If fReceived I5:i an o�er to perform CHUZRcorresponding to basis kig thenIf fki = kbg thenR2: Send!I6:i an acceptance of the o�erkb = kb + 1elseR3: Send!I6:i a refusal of the o�erendifendifuntil fSimplex algorithm terminatesgFigure 5: ASYNPLEX: Algorithm for the basis change manager12



relatively small amount of index modi�cation required to add the new etato the factored inverse and change the status of the variables entering andleaving the basis.The column selection managerThe column selection manager maintains a pool of candidates from whichit supplies iteration processes when they become idle. The column selectionmanager keeps track of those candidates which have been sent and thosewhich have been rejected due to having a positive reduced cost once theirpivotal column is up-to-date, together with the basis number when thisoccurred. When the column selection manager receives a set of attractivecandidates from an iteration process (after that process has performedCHUZC), so long as this set of candidates is more up-to-date than thosewhich form the current pool, it forms a new pool. This is done by �lteringout those candidates which have been sent to other iteration processes (butwhich have not yet entered the basis or been rejected), and those candidateswhich have been rejected due to being found unattractive at a more up-to-date basis.The basis change managerThe basis change manager ensures that no two iteration processes performCHUZR for the same basis and, hence, that the algorithm follows a singlepath on the surface of the feasible region. Whenever a iteration process hasno more basis changes to make and is ready to start a CHUZR (which willthen lead to a basis change), it sends its current basis number ki to the basischange manager. The basis change manager maintains a record kb of thebasis number of the last basis which it has given permission be created. Ifki < kb then iteration process i has not yet applied a pending basis changeand the request is refused. In this case the iteration process waits until itreceives a basis change message from another process before making a furtherrequest to change the basis. If ki = kb then iteration process i is up to date.Permission is given for it to make the next basis change and kb is incrementedby one.Operation of the column selection and basis change managerThe action of the column selection and basis change managers in relation totypical events on two iteration processes is illustrated by the Gantt chart inFigure 6. Arrows indicate communication between processes, with dashedarrows representing the communication of purely logical information (a few13



bytes), solid arrows representing the communication of a small amount ofinformation (a few tens of bytes) and the solid arrows representing thecommunication of a larger amounts of information (of the order of m bytes,where m is the number of rows in the LP).Note that this illustration is not to scale in that the time requiredfor communication and the length of some of the shorter operations isexaggerated for reasons of clarity. An example Gantt chart for true processoractivity in the T3D implementation described in Section 3 is given in Figure 7.
BTRANFTRANFTRAN

U
_B

S

CPRICE

FTRAN R

U
_B

S

CPRICEBTRAN

U
_B

S

R

U
_B

S

BTRAN

1 3

3 5

2

U
_B

S

U
_B

S

R PRICEBTRAN

2 4

FTRAN

C

2

1

R C: CHUZC R: CHUZR U BS: UPDATE BASISFigure 6: Column selection manager (C), basis change manager (R) and twoiteration processes (not to scale)The numbered sections on the Gantt chart indicate the (relative) basiscount of each of the four processes. The uppermost bar in the Gantt chartcorresponds to the column selection manager and the height of this barrepresents the number of attractive candidates in the pool. When the setof candidates arrives following CHUZC on iteration process 2, the numberof attractive candidates increases. Note that the size of the pool is notguaranteed to increase since when a new set of candidates arrives. Thiscan be due to a reduction in the total number of attractive candidates (asoptimality is reached) or due to the removal of candidates which have beensent to iteration processes.Iteration process 1 begins the time slice illustrated in Figure 6 bycompleting FTRAN. It then updates the basis and the pivotal column withrespect to the basis change determined during FTRAN as a result of a CHUZRon iteration process 2 (not shown). The candidate remains attractive so14



iteration process 2 requests the right to change basis 2. Since kb = 2, thebasis change manager has not yet given permission for basis 3 to be formed, sothis request is granted. Once iteration process 1 has performed CHUZR andcommunicated the pivotal column (and index of the pivotal row) to iterationprocess 2, it updates its own basis and starts calculating the reduced costsfor basis 3.Meanwhile, the basis update operation on process 2 corresponding tothe basis change determined by iteration process 1 is being overlapped withsending the list of attractive candidates to the column selection managerand receiving an individual attractive candidate in return. The number ofattractive candidates in the pool is seen to be reduced by one prior to thislatter communication. Following the FTRAN operation on this candidate,it is discovered that, as a result of the change from basis 2 to basis 3, thecandidate is no longer attractive. Iteration process 2 requests a new candidatefrom the column selection manager and is idle until the candidate arrives.Upon completion of the subsequent FTRAN, the candidate is found to be stillattractive so iteration processor 2 sends a request to change basis 3. Sincethe basis change manager has not yet received a request to change basis 3,the request from iteration process 2 is granted and it starts CHUZR.At this stage, both iteration processors are at almost the same stagein a simplex iteration and the necessity for a basis change manager becomesevident. Iteration process 1 brings its pivotal column up-to-date with respectto basis changes already performed before receiving the pivotal column andpivotal row index from iteration process 2, indicating that a further basishas occurred. Iteration process 1 requests permission to change basis 3 butthis is refused since kb = 4, indicating that the basis change manager hasgiven permission for another iteration process to change basis 3. This refusalthus prevents CHUZR from being started by more than one process for thesame basis. Iteration process 1 is then idle, not only for the time required forthe communication to and from the basis change manager, but also for thetime until the pivotal column and pivotal row index determined by iterationprocess 2 have arrived.Limit on parallel performanceThe need to ensure that basis changes do not happen simultaneouslyleads to an upper limit on the iteration frequency of ASYNPLEX. Thislimiting iteration frequency is the reciprocal of the minimum time betweenbasis changes which, in turn is the (typical) sum of the time required tocommunicate a pivotal column and pivotal row index, the time required byUPDATE BASIS, the time required for communication to and from the basis15



change manager and the time required for CHUZR. Considerable e�ort mustbe put into implementing these four operations e�ciently lest they result ina serious bottleneck in the parallel performance.Duplicated workThe only work in ASYNPLEX which is duplicated across all iterationprocesses is that required by UPDATE BASIS in Figure 3. When a non-zero step is made, the majority of the cost of UPDATE BASIS is incurred inupdating the values of the basic variables.In many linear programming problems, a signi�cant proportion of theiterations are degenerate. When the traditional ratio test is used, this resultsin a zero step for which, of course, there is no need to update the right-hand-side. However, the EXPAND technique for CHUZR of Gill et al reduces thepossibility of cycling or stalling in the presence of degeneracy by ensuring thatzero steps are not made. This is achieved by expanding the feasible region asmall amount each iteration, so guaranteeing that (at least) a small positivestep is made. Unfortunately this means that the right-hand-side must beupdated after every basis change: a signi�cant amount of duplicated work inthe context of ASYNPLEX. Since we place less value on this anti-degeneracyprocedure than the improved numerical stability properties a�orded by the`thick pencil' row selection possibilities, we choose not to expand the feasibleregion each iteration and so obtain a signi�cant reduction in the number ofsmall nonzero steps made.3 Implementation on a Cray T3DAn implementation of ASYNPLEX has been written for the Cray T3Dbased at Edinburgh University. This machine has the very high ratio ofcommunication to computation speed which is necessary to achieve speed-upwhen using ASYNPLEX on a distributed memory machine.In addition to an implementation of the widely-used message-passingroutines MPI and PVM, the Cray T3D has a suite of inter-processorcommunication routines known as SHMEM. These virtual shared memoryroutines allow one processor to write to, or read from, an address on anyother processor with no signi�cant impact on the speed of any computationwhich is being performed on that processor. In particular, the shmem putroutine enables data to be written to another processor with a latency offewer than ten microseconds and at a bandwidth of 120MB/s. By contrast,messages sent using PVM or MPI have a latency of tens of microseconds16



and a bandwidth of 40-60MB/s. Despite the non-portability of the SHMEMroutines and the fact that they have to be used with much greater care thanPVM or MPI routines, initial experiments dictated that all communicationsin the implementation of ASYNPLEX be performed using shmem put.The T3D processing elements are Dec Alpha chips with 300M
op peakperformance. However, this computational performance is not approachedfor large sparse linear programming problems because of the the indirectaddressing of arrays which the solution of these problems involves.The implementation ASYNPLEX was developed using modules of ourserial code ERGOL. The INVERT module of ERGOL compromises thereduction of �ll-in and numerical stability for speed. This balance ofproperties is important when implementing ASYNPLEX. A fast INVERTincreases the frequency with which new factored bases become available andso reduces the number of update etas which must be applied, thus increasingthe speed of FTRAN and BTRAN. In practice, the �ll-in generated by thisINVERT is not signi�cantly greater than is obtained by procedures based onthe Markowitz criterion, which preserve sparsity particularly well.CommunicationWhen ASYNPLEX is implemented on a distributed memory machine, thereare four main communication requirements. In only two of these is the volumeof communication related to the dimension of the problem. However thesemessages can be overlapped with computation. The other communicationsinvolve no more than a few tens of bytes but are frequent and not allcan be overlapped with computation. As a result, the algorithm must beimplemented using message-passing routines with very low latency.Each factored basis must be broadcast from the invert processor to eachof the iteration processors. This is by far the largest single communicationbut, as with INVERT itself, it can be overlapped with simplex iterations.The second largest communication in terms of volume is the broadcastof the pivotal column from the iteration processor which determinesthe corresponding basis change to the other iteration processors. Inour implementation, the values and row indices of the nonzero entries(determined during the pass through the pivotal column in CHUZR) arewritten directly to their �nal destination in the factored inverse of the basison each other iteration processor. This is overlapped by computation, exceptwhen the receiving processor is idle because all previous updates have alreadytaken place. Once the values of the basic variables have been updated (ifnecessary), all that is required to update the factored inverse is to calculatethe reciprocal of the pivot, store the index of the row in which it occurs and17



increase the eta count by one. This virtually `free' UPDATE operation is onlypossible when using the product form. Thus the number of passes throughall the entries in the pivotal column is reduced to a minimum. As identi�edabove, this is important since each UPDATE BASIS operation is duplicatedover all iteration processes.Once an iteration processor has performed BTRAN and PRICE, it choosesa set of good candidates to send to the column selection manager. In practicethe number of candidates chosen is seldom more than ten so the volume ofthis communication is not signi�cant. Before the processor can start FTRANfor a new candidate, it must wait until its set of good candidates has beenreceived by the column selection manager and a new candidate has beenidenti�ed and communicated back. Once again this is a communication ofinsigni�cant volume but the iteration processor may be idle for at least twicethe latency period for a single communication. A similar idle period willalways occur after a pivotal column has been brought up-to-date. This isdue to the logical send-and-receive with the row selection manager whichis required to determine whether the iteration processor can proceed withCHUZR.4 Computational experimentsComputational experiments on the Cray T3D were performed for fourrepresentative problems from the Netlib [5] test set. These test problemsare discussed in Section 4.1 and the results of the experiments are given inSection 4.24.1 Test problemsThe names and the number of rows, columns and nonzeros in the constraintmatrix for the LP problems selected for the numerical experiments are givenin the following table.Problem Rows Columns NonzerosSHELL 536 1775 3556SCTAP3 1480 2480 887425FV47 821 1571 10400GREENBEB 2382 5405 30877Although these problems are small by modern practical standards, they arerepresentative of the problems in the Netlib test set and have neither acommon structure nor extreme relative dimensions.18



SHELL is a particularly sparse problem for which the basis matrix canalways be reordered into triangular form and, even at the optimal basis,pivotal columns are 2% full on average|corresponding to just ten non-zeroentries. It is also a problem for which candidate persistence is known tobe good. The number of iterations required to solve the problem is nota�ected signi�cantly by the column selection strategy, the Dantzig, Devexand steepest edge �nding the optimal solution in 774, 708 and 715 iterationsrespectively (using ERGOL). As a result, column selection using out-of-datereduced costs is not expected to have a signi�cant e�ect on the number ofiterations required to solve the problem. SCTAP3 is a larger problem whichexhibits similar low �ll-in but is a little more sensitive to the choice of columnselection criterion.Although of dimensions which are comparable to those of SHELL and withonly three times as many nonzeros, 25FV47 is a problem for which �ll-in issigni�cant. The factored inverse of the optimal basis has 66% more nonzerosthan the matrix itself and pivotal columns at the optimal basis are 58% full.GREENBEB was chosen to represent the larger problems in the Netlib set.The factored inverse of the optimal basis has 23% more nonzeros than thematrix itself and pivotal columns at the optimal basis are 24% full.4.2 ResultsA stated aim in the Introduction was that a parallel algorithm should besigni�cantly faster than good serial simplex solvers. Although no comparisonwith a commercial solver is possible on the T3D, Table 1 gives a comparisonof ERGOL and OSL Version 1.2 [13] for the four test problems. The solutiontimes given are the CPU time required on a SUN SPARCstation 5, startingfrom a logical basis and using the Dantzig strategy in CHUZC.Problem Solution time (s) Simplex iterations Iteration frequency (s�1)ERGOL OSL ERGOL OSL ERGOL OSLSHELL 3.25 3.79 774 751 238 198SCTAP3 12.3 21.7 1630 1677 133 7725FV47 95.8 62.7 4922 4164 51 66GREENBEB 358. 424. 11636 11869 33 28Table 1: Comparison of ERGOL and OSLThe results for the same four problems using ASYNPLEX on the T3D arepresented in Tables 2-5. In each case the problem was scaled and then solved19



from a logical basis. The �rst column in each table gives the number ofiteration processors, with zero corresponding to ERGOL running on oneprocessor. The number of simplex iterations required to solve the problemis given in the second column. Column three gives the total number ofcandidates which prove to be unattractive when their pivotal column isbrought up-to-date. The �nal two pairs of columns give the iterationfrequency and solution time, together with the respective speed-up comparedwith the serial implementation. The total solution time is the maximumelapsed time on any processor. The number of iteration processors usedwas increased in unit steps up to six and then in steps of two until eitherno further speed-up in solution time could be achieved or a maximum totalnumber of sixteen processors (including the two manager processors) wasreached, this being the limit on the number of processors which could beused interactively.Iteration Simplex Unattractive Iteration frequency Solution timeprocessors iterations candidates (s�1) Speed-up (s) Speed-up0 774 - 260 - 3.0 -1 759 0 210 0.8 3.6 0.82 772 198 370 1.4 2.1 1.43 766 312 510 2.0 1.5 2.04 742 341 620 2.4 1.2 2.55 762 469 820 3.2 0.93 3.26 803 421 940 3.7 0.85 3.58 814 779 1000 4.0 0.79 3.810 761 601 1200 4.5 0.66 4.512 783 977 1300 4.9 0.62 4.8Table 2: Results for SHELL using ASYNPLEXThe di�erence in the number of simplex iterations when ERGOL is used(zero iteration processors) and the case where just one processor performssimplex iterations is explained by the fact that di�erent basis matrices areinverted, leading to di�erent rounding and hence di�erences in both columnselection (when reduced costs would be equal using exact arithmetic) androw selection when the vertex is degenerate.For SHELL and SCTAP3 there is no gain in e�ciency by performingINVERT in parallel with just one simplex iteration processor. Howeverthere is some speed-up for 25FV47 and GREENBEB. This is partly becauseINVERTs are relatively more expensive for these problems but mainly due tothe signi�cant reduction in the average time for FTRAN and BTRAN whennew factored inverses are available more frequently.20



Iteration Simplex Unattractive Iteration frequency Solution timeprocessors iterations candidates (s�1) Speed-up (s) Speed-up0 1681 - 110 - 15.8 -1 1589 0 110 1.0 15.0 1.12 1949 520 190 1.8 10.4 1.53 2021 1005 260 2.5 7.7 2.14 2119 1387 320 3.0 6.6 2.45 2299 1410 360 3.4 6.4 2.56 2390 1876 400 3.7 6.0 2.68 2333 2418 470 4.4 5.0 3.210 2453 2843 500 4.7 4.9 3.212 2363 2771 530 4.9 4.5 3.5Table 3: Results for SCTAP3 using ASYNPLEXIteration Simplex Unattractive Iteration frequency Solution timeprocessors iterations candidates (s�1) Speed-up (s) Speed-up0 5003 - 48 - 107 -1 5263 0 71 1.5 74 1.42 6561 3247 110 2.3 62 1.73 7111 5542 140 3.0 51 2.14 8171 8825 160 3.4 52 2.15 8245 10710 180 3.8 46 2.36 7678 12082 190 4.1 40 2.78 9279 16760 210 4.5 44 2.4Table 4: Results for 25FV47 using ASYNPLEXIn each case the iteration frequency increases steadily with the numberof iteration processors and a speed-up of between 4.0 and 4.5 is achievedwhen eight processors are used. This indicates that the time per iteration oneach iteration processor has increased by a factor of up to two. This is partlyexplained by the increasing time spent bringing unattractive pivotal columnsup-to date and applying basis changes determined on other processors, andpartly by an increase in the time required to perform BTRAN and FTRANas the number of simplex iterations between reinversion increases. Finally,note that the speed-up in the solution time will be less than the speed-upin iteration frequency if the use of out-of-date reduced costs increases thenumber of iterations taken.In the results for SHELL given in Table 2, it is seen that the number ofiterations does not increase with the number of iteration processors. As a21



Iteration Simplex Unattractive Iteration frequency Solution timeprocessors iterations candidates (s�1) Speed-up (s) Speed-up0 11821 - 31 - 384 -1 11914 0 37 1.2 319 1.22 14679 5852 64 2.1 231 1.73 15883 10560 82 2.7 193 2.04 16848 14966 98 3.2 171 2.25 15444 16898 110 3.7 137 2.86 17692 21057 120 4.0 144 2.78 20556 28532 130 4.3 155 2.510 18077 29873 150 4.9 119 3.2Table 5: Results for GREENBEB using ASYNPLEXresult, the speed-up in the solution time is similar to that for the iterationfrequency. For SCTAP3 there is some increase in the number of simplexiterations so the e�ciency of using several iteration processors is not somarked. The practical performance of the parallel solver when applied to25FV47 is less good than with the �rst two problems. The number ofiterations and unattractive candidates increases signi�cantly, limiting thespeed-up that can be achieved. Although the candidate persistence forGREENBEB is poor, FTRAN is relatively inexpensive so signi�cant speed-upis still achieved.An illustration of typical processor activity when solving LP problemsis given in the Gantt chart illustrated in Figure 7, the data for whichcomes from approximately three-quarters of the way through the solutionof GREENBEB. Processor activity is seen to be almost continuous, althoughsome of this is spent calculating pivotal columns for candidates which proveto be unattractive and may be identi�ed by FTRANs without a subsequentBTRAN. Note that CHUZR is normally so fast that only one is actuallyidenti�ed in the chart. Lightly-shaded boxes correspond to time associatedwith communication and, with the exception of the time spent broadcastingthe new factored inverse, is very low and only visible in one band forprocessors 4 and 6. Note that the average time required by INVERT forthis problem is 0.13s, approximately ten times the time taken to broadcastthe factored inverse in this illustration. However, the work of updating withrespect to simplex iterations determined on other processors is duplicated andappears in heavily-shaded boxes. Once the new factored inverse is received,it is clear that the cost of performing FTRAN is immediately reduced.22



0 INVERT S I INVERT

1 F FTRAN FTRAN FTRAN F BTRAN PRICE C

2 BTRAN PRICE C FTRAN F F BTRAN PRICE

3 B PRICE C FTRAN F F F BTRAN PRICE

4 FTRAN R BTRAN PRICE C F BTRAN PRICE

5 BTRAN PRICE C FTRAN F F F BTRAN PRICE

6 C FTRAN FTRAN BTRAN PRICE C F B

32.95 32.96 32.97 32.98 32.99 33C: CHUZC F: FTRAN R: CHUZR SI: Send new factored inverseFigure 7: Processor activity when solving GREENBEB5 Potential for implementation on a sharedmemory multiprocessorAlthough ASYNPLEX was described in Section 2 for a distributed memorymachine with communication between processes de�ned in terms of messagepassing instructions, the underlying algorithm is appropriate for sharedmemory multiprocessors (SMPs). The details of the transfers of data betweenprocessors would not be needed in such an implementation as these transferswould be done automatically by the hardware. The main algorithmicdi�erence would be that the work of updating the right hand side in theUPDATE BASIS step would be eliminated. This would be at the expense ofhaving to transfer the current values of the right hand side into the cache ofthe processor about to start the next CHUZR.In the revised simplex method the ratio of number of memory accesses tonumber of arithmetic operations is very high. It is therefore very importantthat the data needed by a processor is available in its local memory or cache.In our Cray T3D distributed implementation, this is achieved by processorssending data when they generate it to the local memory of other processorswhich will need this data later. The transfer is done by the very fast SHMEM`put' operation. This has the advantage that the data transfer can be fully23



overlapped with calculation. In contrast, on a shared memory machine thetransfer of data to the cache of the local processor is done by hardwarecontrol. This makes a SMP much easier to program, however the resultingperformance is more di�cult to predict. Normally on a shared memorymachine, when one processor changes data, the transfer of this changed datato another processor's cache occurs when that processor accesses the changeddata. Thus the transfer is not overlapped with the calculation. There is alsoa danger that several processors will require access simultaneously to changeddata, causing a bottleneck in transferring it into their caches.In our T3D implementation the entire data for the problem is duplicatedon each processor. Since all the data must be stored in main memory, whichis 64MB for each processor, this places a limit on the size of problem whichcould be tackled. This would not be a restriction on a shared memorymachine. However the performance on such a machine would degrade unlessits caches were large enough to hold the data which are accessed eachiteration, which are the majority of the data.The actions of the column selection and basis change managers are stillrequired on a SMP. However they would be much simpler to implement. TheCray T3D allows only a single process per processor, so the managers take uptwo processors in the T3D implementation, even although the work they dois negligible. This could be avoided by doing the managers' tasks on di�erentiteration processors and using locks to ensure that no two iteration processorswere doing column or basis change manager tasks simultaneously. This canbe done with negligible loss of speed, however it would be more di�cult toprogram than using dedicated processors. On a shared memory machine it isnormal to have multiple processes or threads on a single processor, and thiswould make it very easy to implement the manager processes.6 ConclusionsA parallel algorithm for the revised simplex method has been described andpractical results demonstrating speed-up of between 2.5 and 4.8 have beengiven. These results could be improved by further performance optimization.However, the limitations of the algorithm should also be addressed. TheDantzig column selection criterion is not often best and the reduced costsare calculated from scratch each time. If the reduced costs are updated thenthe PRICE operation can be considerably cheaper for sparse problems suchas SHELL. This is because the vector for PRICE is eTpB�1k which is generallyrather more sparse than cTBB�1k .An algorithmic development which leads from this observation is to24



maintain reduced costs by updating them on one or more processors. Steepestedge weights for column selection could be updated on dedicated processorsin a similar manner, allowing the expected total number of simplex iterationsto be reduced.Although most of the communication overhead has been minimized by theuse of SHMEM routines, the cost of broadcasting the new factored inverse isstill signi�cant. This factored inverse may only be applied a few times on eachprocessor and it may prove more e�cient to communicate the inverse to justone or two processors which would then communicate partially FTRANnedcolumns and complete BTRAN for columns whose BTRAN operation hasbeen started elsewhere. An obvious algorithmic extension to ASYNPLEX isto use several INVERT processes to increase the frequency with which a newfactored inverse becomes available. This would reduce the average time forFTRAN and BTRAN at a cost of increased communication.These algorithmic developments are currently being considered and areexpected to form the basis of future work.The authors would like to thank the referees for their comments whichhave led to a great improvement in the presentation of this paper.References[1] R. E. Bixby and A. Martin. Parallelizing the dual simplexmethod. Technical Report SC-95-45, Konrad-Zuse-Zentrum f�urInformationstechnik Berlin, 1995.[2] G. B. Dantzig and W. Orchard-Hays. The product form for the inversein the simplex method. Math. Comp., 8:64{67, 1954.[3] J. Eckstein, I. Boduroglu, L. Polymenakos, and D. Goldfarb. Data-parallel implementations of dense simplex methods on the ConnectionMachine CM-2. ORSA Journal on Computing, 7(4):402{416, 1995.[4] J. J. H. Forrest and J. A. Tomlin. Vector processing in the simplexand interior methods for linear programming. Annals of OperationsResearch, 22:71{100, 1990.[5] D. M. Gay. Electronic mail distribution of linear programming testproblems. Mathematical Programming Society COAL Newsletter, 13:10{12, 1985. 25



[6] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Sparse matrixmethods in optimization. SIAM J. Sci. Stat. Comput., 5:562{589, 1984.[7] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Apractical anti-cycling procedure for linear and nonlinear programming.Technical Report SOL 88-4, Systems Optimization Laboratory, StanfordUniversity, 1990.[8] D. Goldfarb and J. K. Reid. A practical steepest-edge simplex algorithm.Mathematical Programming, 12:361{371, 1977.[9] J. A. J. Hall and K. I. M. McKinnon. Update procedures for the parallelrevised simplex method. Technical Report MSR 92-13, Department ofMathematics and Statistics, University of Edinburgh, 1992.[10] J. A. J. Hall and K. I. M. McKinnon. PARSMI, a parallel revisedsimplex algorithm incorporating minor iterations and Devex pricing. InJ. Wa�sniewski, J. Dongarra, K. Madsen, and D. Olesen, editors, AppliedParallel Computing, volume 1184 of Lecture Notes in Computer Science,pages 67{76. Springer, 1996.[11] P. M. J. Harris. Pivot selection methods of the Devex LP code.Mathematical Programming, 5:1{28, 1973.[12] J. K. Ho and R. P. .Sundarraj. On the e�cacy of distributed simplexalgorithms for linear programming. Computational Optimization andApplications, 3(4):349{363, 1994.[13] IBM. Optimization Subroutine Library, guide and reference, release 2,1993.[14] J. Luo, A. N. M. Hulsbosch, and G. L. Reijns. An MIMD work-stationfor large LP problems. In E. Chiricozzi and A. D'Amico, editors, ParallelProcessing and Applications, pages 159{169. Elsevier Science PublishersB.V. (North-Holland), 1988.[15] C. E. Pfe�erkorn and J. A. Tomlin. Design of a linear programmingsystem for the ILLIAC IV. Technical Report SOL 76-8, SystemsOptimization Laboratory, Stanford University, 1976.[16] W. Shu and M. Wu. Sparse implementation of revised simplexalgorithms on parallel computers. In Proceedings of 6th SIAMConference on Parallel Processing for Scienti�c Computing, pages 501{509, 1993. 26



[17] C. B. Stunkel. Linear optimization via message-based parallelprocessing. In International Conference on Parallel Processing, volumeIII, pages 264{271, August 1988.[18] R. Wunderling. Paralleler und objektorientierter simplex. TechnicalReport TR-96-09, Konrad-Zuse-Zentrum f�ur InformationstechnikBerlin, 1996.

27


