ASYNPLEX, an asynchronous parallel
revised simplex algorithm

J.A.J. Hall K.I.LM. McKinnon

February 1998

MS 95-050b

Supported by EPSRC research grant GR/J08942

Presented at APMOD95 Brunel University 3rd April 1995

Department of Mathematics and Statistics
University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ

Tel. (33) 131 650 5075 E-Mail : jajhall@maths.ed.ac.uk, ken@maths.ed.ac.uk

ASYNPLEX, an asynchronous
parallel revised simplex algorithm

J. A. J. Hall K. I. M. McKinnon

27" February 1998

Abstract

This paper describes ASYNPLEX, an asynchronous variant of the
revised simplex method which is suitable for parallel implementation
on a shared memory multiprocessor or MIMD computer with
fast inter-processor communication. The method overlaps simplex
iterations on different processors. Candidates to enter the basis
are tentatively selected using reduced costs which may be out of
date. Later the up-to-date reduced costs of the tentative candidates
are calculated and candidates are either discarded or accepted to
enter the basis. The implementation of this algorithm on a Cray
T3D is described and results demonstrating significant speed-up are
presented.

1 Introduction

Linear programming (LP) is a widely applicable technique both in its own
right and as a sub-problem in the solution of other optimization problems.
The revised simplex method and the barrier method are the two efficient
methods for general LP problems on serial machines. There have been
successful parallel implementations of the barrier method but as yet little
progress has been reported on parallel methods based on the revised simplex
algorithm. In contexts where families of related LP problems have to be
solved, such as in integer programming and decomposition methods, the
revised simplex method is usually the more efficient method, so there is
strong motivation to devise a parallel version of this method. If this is to
be of value then it should be significantly faster than current serial simplex
solvers.

The particular approach to exploiting parallelism which is considered in
this paper is to overlap simplex iterations performed by a number of iteration
processes, with an additional invert process devoted to calculating a factored
inverse of simplex basis matrices. Candidates for variables to enter the basis
are tentatively selected using the most recently available reduced costs, and
the true reduced costs for these columns are calculated cheaply later before
finally deciding whether or not they will enter the basis. The effectiveness
of the method relies on there being some persistence in the values of the
reduced costs in the course of a small number of iterations. The algorithm
is a variant of the simplex method and as such follows a single path on the
surface of the feasible region. This requires the coordination of the basis
change decisions among all the processors.

A detailed description of the algorithm ASYNPLEX is given in Section 2.
Its implementation on a Cray T3D is described in Section 3. Computational
results presented in Section 4 demonstrate significant speed-up for a
representative set of four test problems from the Netlib set [5]. The
potential for implementing the algorithm on a shared memory multiprocessor
is discussed in Section 5 and further conclusions are offered in Section 6.

1.1 Background

The two main variants of the simplex method are the standard simplex
method and the revised simplex method. Although early versions of the
revised simplex method used an explicit form of the inverse, this was quickly
replaced by methods based on a factored form of the inverse. Most important
LP problems are large (some with millions of variables and constraints) and
sparse (the coefficient matrix has an average of 5-10 non-zeros per column).
An important point to note is that for large sparse problems the standard
simplex and the explicit inverse form of the revised simplex are completely
uncompetitive in speed compared with the revised simplex method when a
factored form of the inverse is used.

There have been several studies [3, 14, 17] which have implemented either
the standard form of the simplex or the revised simplex with the inverse of
the basis matrix stored as a full matrix. Both methods parallelise well but,
as noted above, are so bad for large sparse problems, that the results are a
lot slower than a good serial implementation.

For the revised simplex method with a factored inverse, attention
hitherto has been given to parallelising the individual computational
components of the algorithm. Pfefferkorn and Tomlin [15] discuss how all
the major operations might be parallelised on an ILLIAC IV, although
no implementation was attempted. However, in reports of practical

implementations [12, 16], exploitation of parallelism has been limited to just
the PRICE operation and/or overlapping the refactorization of the inverse
with simplex iterations, so little or no speed-up was obtained.

An investigation of the extent to which the simplex method can exploit a
vector processor was made by Forrest and Tomlin [4]. They report a speed-
up of between 1 and 5 for their first twelve problems, and a speed-up of 12
for a further problem.

1.2 The revised simplex method

A linear programming problem has the form

maximize f=clz
subject to « >0
Az =0
where x € IR" and be IR™.

At any stage in the simplex method the variables are partitioned into two
sets, basic variables ; and nonbasic variables & . The set of basic variables
is referred to as the basis. If the problem is partitioned correspondingly
then the objective function is f = cLx, + cLxy, the constraints are Bz, +
Nz, = b and the basis matrix B is nonsingular. Each basic variable is
identified with a particular row of the constraint matrix A, and each nonbasic
variable is identified with a particular column of the matrix N. The major
computational steps of the revised simplex method are illustrated in Figure 1.

BTRAN: Form 7’ = ¢ B~
PRICE: Calculate the reduced costs ¢& = ¢& — TN,
CHUZC: Scan ¢, for a variable ¢ with a negative reduced cost.
If no such candidate exists then exit. (Basis is optimal.)
FTRAN: Form a, = B~ 'a,, where a, is column ¢ of A.
CHUZR: Scan the ratios I;i/diq for the row p of a good candidate to
leave the basis, where b = B~'b. Let o = b,/dp,.
UPRHS: Update right hand side using b:=b+ aa,.
If {growth in factors} then
INVERT: Find a factored inverse of B.
else
UPDATE: Update the inverse of B corresponding to the basis change.
endif

Figure 1: A major iteration of the revised simplex method

At the beginning of an iteration of the revised simplex method it
is assumed that a factored inverse of the basis matrix B is available:
elementary row or column matrices M, Mo, ..., M, are known such that
B™' = M;M,...M,. The first operation is the calculation of the dual
variables w! = ¢! B! by passing backwards through the factors of B~!,
an operation known as BTRAN. This is followed by the PRICE operation,
which is a sparse matrix-vector product which yields the reduced costs of
the nonbasic variables. These reduced costs are scanned for a negative value
in the operation known as CHUZC. Although any variable, ¢ say, with a
negative reduced cost can be chosen as the variable to enter the basis, the rule
used for selecting among the variables with negative reduced cost can have
a major impact on the number of iterations required to solve the problem.
The original rule was the Dantzig criterion, which selects the variable with
the reduced cost. For many problems it is more efficient to use an exact
or approximate steepest edge criterion. Exact steepest edge is described by
Goldfarb and Reid in [8] and Devezr approximate steepest edge is described
by Harris in [11]. However a discussion of these latter techniques in the
parallel context is beyond the scope of this paper.

In order to determine the basic variable which would be replaced by
the variable ¢ entering the basis it is necessary to calculate the column
of the standard simplex tableau corresponding to ¢. This pivotal column
a, = B 'a,, where a, is column ¢ of the constraint matrix A, is formed by
passing forward through the factors of B~!, an operation known as FTRAN.
The row corresponding to the leaving variable is determined by the CHUZR
operation which scans the ratios l;i/diq, where b = B~'b is the vector of
current values of the basic variables. Traditionally the leaving variable is
the one corresponding to the smallest non-negative ratio, since this ensures
that no variable exceeds its bounds after the basis change . However it is
preferable for numerical stability to select the row with the largest value of
a;q among those which lead to bound violations which are sufficiently small.
Such ‘thick pencil’ techniques are described by Harris in [11] and by Gill et
al in [7].

Once a basis change has occurred, the inverse of the current basis matrix
is normally updated rather than recalculated. Various methods are possible
for the UPDATE operation. Let the basis invert produced by INVERT be
denoted by By ! and the inverse k basis changes later by B, *. The simplest
form of update is the product form update [2], which represents B, ' as

St STt Byt (1)

The matrix S; is an elementary column matrix whose only non unit column
is simply derived from the vector a, for the variable to enter the basis in

4

that iteration and is referred to as an eta vector. The Bartels-Golub and
Forrest-Tomlin updates modify the factors of By ' in order to reduce the size
of the factored inverse of By. Update procedures based on the use of a Schur
complement are described by Gill et al in [6].

1.3 Parallelising the revised simplex method with a
factored inverse

For the conventional revised simplex method as illustrated in Figure 1, each
of the major computational steps has to be completed before the following
step can start. In the revised simplex method on a serial machine, INVERT
takes typically 10% of the time, so there is very limited scope for speed-
up in using one process to perform INVERT and one other to perform the
rest of the algorithm in parallel. This approach was taken in one of the
experiments reported by Ho and Sundarraj [12], but no worthwhile speed-up
was obtained.

It follows that any real exploitation of parallelism in the method as
given in Figure 1 is limited to the parallelisation of the of the individual
computational steps. For sparse problems, it is easy to parallelise PRICE,
CHUZC and CHUZR. Shu and Wu [16], and Ho and Sundarraj [12] report
experiments in which the PRICE operation is parallelised but achieve little or
no speed-up over their serial implementation. The parallelisation of PRICE
within the dual simplex algorithm has formed the basis of recent work by
Bixby and Martin [1].

In contrast to the simple techniques required to parallelise PRICE, CHUZC
and CHUZR, the parallelism which may be exploited within BTRAN, FTRAN
and INVERT is limited, very fine grained and hard to achieve. This was
identified by Pfefferkorn and Tomlin [15]. This suggests that algorithms
which are genuinely parallel variants of the revised simplex method should
be considered. Subsequent to the ASYNPLEX algorithm presented in this
paper, experiments with alternative parallel algorithms have been reported
by Wunderling [18] (fully parallel for only two processors) and by Hall and
McKinnon [10].

2 ASYNPLEX, an asynchronous parallel
algorithm

Since the parallelisation of all individual steps of the revised simplex method
is limited and very hard to achieve, it is important to consider how the

method itself can be modified to allow the maximum degree of independence
between the computational steps in different iterations. However, it is
also essential that any algorithm performs INVERT in parallel with simplex
iterations, otherwise INVERT will then become the dominant step and limit
the possible speed-up.

The ASYNPLEX algorithm performs serial simplex iterations but overlaps
them to the maximum extent possible using a technique described in
Section 2.1. The algorithm also performs INVERT in parallel with simplex
iterations. This means that the basis matrix whose factored inverse is formed
is out-of-date when INVERT is completed. The issue of bringing the new
factored inverse up-to-date with minimal overhead, and the consequences for
numerical stability are discussed in Section 2.2.

Further algorithmic refinements which ensure that the overlapping
simplex iterations determine a single path on the surface of the feasible region
and duplicated work is reduced to a minimum are discussed in Section 2.3.
The ASYNPLEX algorithm is also presented formally as pseudocode
suitable for implementation on a distributed memory machine. The minor
modifications to the algorithm for a shared memory implementation are
discussed briefly.

Note that although the sequence of computational steps is performed
differently, ASYNPLEX may be viewed as a variant of the revised simplex
method since it corresponds to a particular column selection rule. Since the
variables are only allowed to enter the basis if they have negative reduced
cost, ASYNPLEX inherits the termination properties of the simplex method.

2.1 Overlapping simplex iterations

In the simplex method, there are usually several variables with a negative
reduced cost, and a valid simplex iteration will occur if any of these is
chosen to enter the basis. It is common, especially in very sparse problems,
for variables with negative reduced costs in one iteration to have negative
reduced costs for a number of subsequent iterations. It is this candidate
persistence which is exploited by the ASYNPLEX algorithm to allow simplex
iterations to be overlapped.

Rather than waiting for the reduced costs for the current basis to be
calculated, an attractive candidate is selected from the most up-to-date
reduced costs yet formed and the FTRAN operation is started, allowing it to
overlap with calculations from previous iterations. Provided the up-to-date
reduced cost is calculated and found to be negative before that variable is
finally allowed to enter the basis, a valid simplex iteration will occur.

Once the updated pivotal column a, for the tentative candidate ¢ has

been calculated, the updated reduced cost can be calculated as follows. By
combining the BTRAN and PRICE steps (see Figure 1) it is seen that the
reduced costs may be expressed as ¢ = ¢l — cL(B7'N). Since a, is the
column of B™'N corresponding to variable ¢, the reduced cost for variable ¢
is given by

6, =cy— Chay,.

This operation involves a single inner product within which any sparsity is
readily exploited.

If ¢, > 0, the variable ¢ no longer has a negative reduced cost and is
not chosen to enter the basis. In this case the work done in performing
the FTRAN has been wasted. Also, even when ¢ is accepted to enter the
basis, its true reduced cost is likely to be poorer than the best available
using up-to-date information, and this is likely to lead to an increase in the
number of iterations taken to solve the problem. As a result, it is important
to minimise the extent to which the reduced costs are out-of-date. This is
achieved by performing the BTRAN and PRICE operations after every basis
change. With this strategy it is natural to use the same process to do this as
was used to perform the CHUZR leading to that basis change, as this process
is guaranteed to be free at that point.

2.2 Overlapping INVERT

As observed above, since the particular basis which is reinverted is generally
unimportant, it follows that INVERT can be performed in parallel to, and
independent of, any simplex iterations. Since each UPDATE operation
generally increases the cost of using the factored inverse in subsequent
FTRAN and BTRAN operations, it follows that if the cost of accommodating
a new factored inverse is relatively small and sufficient processors are available
that one can be dedicated to INVERT, then there is no upper limit on the
desirable reinversion frequency.

When INVERT is overlapped with simplex iterations, the major issues
which need to be addressed are how to bring the factored inverse up-to-date
with respect to basis changes which have been determined since the start of
INVERT, how efficiently this may be achieved and the impact on numerical
stability.

Recovering an up-to-date factored inverse after INVERT

The issue of recovering an up-to-date factored inverse following reinversion
is discussed by Hall and McKinnon in [9] where it is concluded that the
use of Bartels-Golub or Forrest-Tomlin updates is inappropriate. With these

7

update methods it is expensive to incorporate the basis changes which have
occurred during INVERT and the updates alter the original factors, so it
is more difficult to share the factored invert between different processes.
However, when product form or Schur complement update procedures are
used, the inverse can be brought up-to-date in an efficient manner. The
product form update is particularly simple and it is this approach which is
used in ASYNPLEX.

The procedure used in ASYNPLEX to update the factors produced by a
reinversion to correspond to the current basis is as follows. Suppose that the
INVERT which produced the factors currently incorporated into the basis
factors started at basis r, that a new INVERT started at basis s and becomes
available for use when basis ¢ is current. Let the factors after the INVERTS be
denoted by B, ! and B!, and the product form update corresponding to the
basis changes from basis r to s and from s to ¢t be denoted by Uz, and U,
respectively. Before the factors from the new INVERT are used, the factors
for basis ¢ have the form U, ',UZ!, B!, It is normal in implementations of
the revised simplex method to allow the reinversion procedure to permute
(implicitly) the columns of the basis matrix so as to obtain sparser factors.
A separate index is kept which records the variable which is solved for in
each row after FTRAN. After each basis change this index is updated. After
reinversion, the new factors will solve for the same variables as before but
usually in a different order. Thus the the previous order can be recovered
by permuting the solution produced by the new factorization. This may
be expressed as a permutation P; such that U.!, B, ' = P,B; ' from which
it follows that the current factors U, L,U=! B! are entirely equivalent to

ST
Ut?—lsPSBs_l‘

There are three ways to accommodate this permutation. It could be left
where it is in the algebraic expression for the current factored inverse and
applied in the middle of every BTRAN and FTRAN. This is unattractive
because in both cases a full vector has to be reordered at a stage when it
would not otherwise be accessed. Alternatively the permutation P; may be
applied symmetrically to either U, ', or B; ' to give

Ul.P,BY = P,(P7'UP,)B;!
or UP,B' = U (P,B;'P7Y)P,.

The disadvantage of permuting the U,', factors is that this information
is distributed in the local memory (or cache) of several processors so the
delay caused by this permutation affects all processors. The alternative of
permuting the B! factors, can be done once by the INVERT process and
so is preferred. This is what is implemented in ASYNPLEX. Note that the

permutation must be applied symmetrically to each of the elementary factors
of B!, otherwise the sparsity of the representation is lost. Apart from this
permutation of the new factors, each (usually sparse) right-hand-side vector
a, for FTRAN and each output 7 from BTRAN has to be permuted. However
this is done as a stage where these vectors are naturally being processed so
it is not a large overhead.

Permuting the factors of B;' is achieved in two stages. First the
permutation itself is determined by scattering the list of what variable is
solved for in each row before INVERT and then gathering it using the
corresponding list after INVERT at a total cost of 2m integer operations.
Applying the symmetric permutation to the factored form of B;! requires
each of its constituent indices to be permuted. Since this operation does
not require each of the elementary factors to be treated in a separate loop
and no floating-point operations are required, the total cost of applying the
permutation is significantly less than that which would be incurred by a
single BTRAN applied to a full right-hand-side.

Once the new (permuted) inverse factors are available, all that is then
involved in bringing the new factors up to date is to discard those current
factors corresponding to basis changes which occurred before the recent
INVERT was started, and attach the remaining current factors to those
produced by INVERT. Provided the BTRAN and FTRAN implementation
can deal with factors in separate blocks, this change can be implemented by
a few changes of pointers and does not require the factors to be moved.

Impact on numerical stability

The efficiency of using the product form update comes at a cost in terms
of numerical stability compared to Bartels-Golub, Forrest-Tomlin or Schur
complement updates. If the basis at any stage is ill-conditioned, then factors
will be inaccurate. With product form updates the factors will remain
inaccurate, whereas with the other update methods it is possible for the
factors to regain accuracy when the basis becomes less ill-conditioned. During
reinversion, the ability to select pivots on numerical grounds means that a
stable representation of the basis being factorised can be obtained. If the
values of the basic variables and reduced costs are also recalculated then in an
implementation where the invert does not overlap the iterations, subsequent
simplex iterations may be viewed as having a numerical ‘fresh start’. This
does not occur in the case where the invert is overlapped as the update
factors Uy', are re-used without change. These update factors result from
FTRANs performed using factors from a previous inverse and, if these are
inaccurate, the update factors are likely also to be inaccurate. Thus the

Repeat

Vi: While {basis changes received«I8 not yet incorporated in list}
Update list of basic variables
end while
INVERT; Permute factors
V2: Send—1I1 on all iteration processes the new factored inverse

until {Simplex algorithm terminates}

Figure 2: ASYNPLEX: Algorithm for the invert processor

numerical cleansing resulting from reinversion is not so effective in the parallel
case. The ‘thick pencil’ row selection techniques described by Harris in [11]
and by Gill et al in [7], reduce the incidence of small pivots and so are
particularly valuable in the context of parallel algorithms in which INVERT
and simplex iterations are performed concurrently. Our implementation of
ASYNPLEX uses a modification of the EXPAND technique of Gill et al in
which, for reasons given in the following subsection, does not further expand
the feasible region each iteration.

2.3 The ASYNPLEX algorithm

The ASYNPLEX algorithm is defined and discussed here in terms of the
operation of four types of process, an iteration process, and invert process,
a column selection manager process and a basis change manager process.
There must be p > 1 iteration processes and one each of the other process
types. The iteration processes perform all the major computational steps
of the method with the exception of INVERT, which is done by the invert
process. Coordination among the iteration processes is achieved by the basis
change and column selection manager process. The roles of these processes
are discussed below. Detailed pseudo-code for the operations performed by
each of the process types is given in Figures 2-5.

One goal of the implementation is to allow processes to operate in an
asynchronous manner as independently of each other as possible. A result of
this asynchronous execution is that different processes can be working with
different bases at the same time. Each iteration process ¢ must therefore
keep its own record of the basis in use by that process, and this is done by
a basis counter k;. This is incremented whenever iteration process ¢ changes
the basis after its own CHUZR, or whenever it incorporates basis changes
made by other iteration processes into its own data structures. In both cases
this operation is referred to as UPDATE_BASIS and consists of updating the
values of the basic variables (referred to as UPRHS in Figure 1) and the

10

BTRAN
PRICE
Let ¢ be the i*" most attractive candidate
Repeat
It: If {Received«V2 a new factored inverse}
Install new factored inverse
12: While {basis changes received«I7 not yet applied}
APPLY_BASIS_CHANGE; k; := k; + 1
end while
Permute column a,; FTRAN
1 Continue

13: While {basis changes received«I7 are not yet applied}
APPLY_BASIS_CHANGE; FTRAN_STEP; k; :=k; + 1
end while
1f {¢, >0} then
14: Send—C4 a message that the candidate is unattractive
else
15: Send—R1 an offer to perform CHUZR
16: Wait«(R2 or R3) for a reply to offer
If {Offer accepted} then
CHUZR
I7: Send—(I2 or I3 or I10 on all other iteration processes)
the basis change and pivotal column
18: Send— (V1 and C1) basis change

UPDATE_BASIS; k; := k; + 1
BTRAN; Permute 7

PRICE
Choose a set of the most attractive candidates
19: Send—C2 the most attractive candidates
else
I10: Wait to receive«I7 next basis change
goto 1
end if
end if
I11: Wait to receive«+(C3 or C5) a new candidate column, ¢

until {Simplex algorithm terminates}

Figure 3: ASYNPLEX: Algorithm for iteration process ¢

11

k.=0
Mark all nonbasic variables as un-selected
Repeat
Cl: If {Received«I8 basis change} then
Mark the variables which has left the basis as unselected
C2: else if {Received«I9: a set of candidates
corresponding to basis k;} then
If {k; > k.} then
Filter out the candidates already selected and those
already rejected after the FTRAN at a basis > £;
I{IC == I{Il
endif
C3: Send—I11: the most attractive candidate to enter the basis and
mark the candidate as selected
C4: else if {Received«I4:i a message that its current
candidate is now unattractive} then
C5: Send—I11: the most attractive candidate to enter the basis and
mark the candidate as selected
endif
until {Simplex algorithm terminates}

Figure 4: ASYNPLEX: Algorithm for the column selection manager

ky =1
Repeat
R1: If {Received«I5:i an offer to perform CHUZR
corresponding to basis k;} then
If {k; =ky} then

R2: Send—16:i an acceptance of the offer
ky =ky+1
else
R3: Send—I6:i a refusal of the offer
endif
endif

until {Simplex algorithm terminates}

Figure 5: ASYNPLEX: Algorithm for the basis change manager

12

relatively small amount of index modification required to add the new eta
to the factored inverse and change the status of the variables entering and
leaving the basis.

The column selection manager

The column selection manager maintains a pool of candidates from which
it supplies iteration processes when they become idle. The column selection
manager keeps track of those candidates which have been sent and those
which have been rejected due to having a positive reduced cost once their
pivotal column is up-to-date, together with the basis number when this
occurred. When the column selection manager receives a set of attractive
candidates from an iteration process (after that process has performed
CHUZC), so long as this set of candidates is more up-to-date than those
which form the current pool, it forms a new pool. This is done by filtering
out those candidates which have been sent to other iteration processes (but
which have not yet entered the basis or been rejected), and those candidates
which have been rejected due to being found unattractive at a more up-to-
date basis.

The basis change manager

The basis change manager ensures that no two iteration processes perform
CHUZR for the same basis and, hence, that the algorithm follows a single
path on the surface of the feasible region. Whenever a iteration process has
no more basis changes to make and is ready to start a CHUZR (which will
then lead to a basis change), it sends its current basis number k; to the basis
change manager. The basis change manager maintains a record k; of the
basis number of the last basis which it has given permission be created. If
k; < ky then iteration process ¢ has not yet applied a pending basis change
and the request is refused. In this case the iteration process waits until it
receives a basis change message from another process before making a further
request to change the basis. If k; = k; then iteration process ¢ is up to date.
Permission is given for it to make the next basis change and k; is incremented
by one.

Operation of the column selection and basis change manager

The action of the column selection and basis change managers in relation to
typical events on two iteration processes is illustrated by the Gantt chart in
Figure 6. Arrows indicate communication between processes, with dashed
arrows representing the communication of purely logical information (a few

13

bytes), solid arrows representing the communication of a small amount of
information (a few tens of bytes) and the solid arrows representing the
communication of a larger amounts of information (of the order of m bytes,
where m is the number of rows in the LP).

Note that this illustration is not to scale in that the time required
for communication and the length of some of the shorter operations is
exaggerated for reasons of clarity. An example Gantt chart for true processor
activity in the T3D implementation described in Section 3 is given in Figure 7.

c @ @ €

U BS|<- - -

2 BTRAN PRICE C

T

|

|

|

|

! %)

FTRAN FTRAN R|D BTRAN PRICE

o)

Il

|

|

|

|
|
|
|
T
| BTRAN PRICE @ FTRAN
Il
|
|
|
i

l
|
%) %) ! %] %]
1 FTRAN ”Dﬂ, R 2 | R g, BTRAN
i T
| | | | | | |
| | | | | | |
v A
R @ ® @ ®

C: CHUZC R: CHUZR U_BS: UPDATE_BASIS

Figure 6: Column selection manager (C), basis change manager (R) and two
iteration processes (not to scale)

The numbered sections on the Gantt chart indicate the (relative) basis
count of each of the four processes. The uppermost bar in the Gantt chart
corresponds to the column selection manager and the height of this bar
represents the number of attractive candidates in the pool. When the set
of candidates arrives following CHUZC on iteration process 2, the number
of attractive candidates increases. Note that the size of the pool is not
guaranteed to increase since when a new set of candidates arrives. This
can be due to a reduction in the total number of attractive candidates (as
optimality is reached) or due to the removal of candidates which have been
sent to iteration processes.

Iteration process 1 begins the time slice illustrated in Figure 6 by
completing FTRAN. It then updates the basis and the pivotal column with
respect to the basis change determined during FTRAN as a result of a CHUZR
on iteration process 2 (not shown). The candidate remains attractive so

14

iteration process 2 requests the right to change basis 2. Since k, = 2, the
basis change manager has not yet given permission for basis 3 to be formed, so
this request is granted. Once iteration process 1 has performed CHUZR and
communicated the pivotal column (and index of the pivotal row) to iteration
process 2, it updates its own basis and starts calculating the reduced costs
for basis 3.

Meanwhile, the basis update operation on process 2 corresponding to
the basis change determined by iteration process 1 is being overlapped with
sending the list of attractive candidates to the column selection manager
and receiving an individual attractive candidate in return. The number of
attractive candidates in the pool is seen to be reduced by one prior to this
latter communication. Following the FTRAN operation on this candidate,
it is discovered that, as a result of the change from basis 2 to basis 3, the
candidate is no longer attractive. Iteration process 2 requests a new candidate
from the column selection manager and is idle until the candidate arrives.
Upon completion of the subsequent FTRAN, the candidate is found to be still
attractive so iteration processor 2 sends a request to change basis 3. Since
the basis change manager has not yet received a request to change basis 3,
the request from iteration process 2 is granted and it starts CHUZR.

At this stage, both iteration processors are at almost the same stage
in a simplex iteration and the necessity for a basis change manager becomes
evident. Iteration process 1 brings its pivotal column up-to-date with respect
to basis changes already performed before receiving the pivotal column and
pivotal row index from iteration process 2, indicating that a further basis
has occurred. Iteration process 1 requests permission to change basis 3 but
this is refused since k, = 4, indicating that the basis change manager has
given permission for another iteration process to change basis 3. This refusal
thus prevents CHUZR from being started by more than one process for the
same basis. Iteration process 1 is then idle, not only for the time required for
the communication to and from the basis change manager, but also for the
time until the pivotal column and pivotal row index determined by iteration
process 2 have arrived.

Limit on parallel performance

The need to ensure that basis changes do not happen simultaneously
leads to an upper limit on the iteration frequency of ASYNPLEX. This
limiting iteration frequency is the reciprocal of the minimum time between
basis changes which, in turn is the (typical) sum of the time required to
communicate a pivotal column and pivotal row index, the time required by
UPDATE_BASIS, the time required for communication to and from the basis

15

change manager and the time required for CHUZR. Considerable effort must
be put into implementing these four operations efficiently lest they result in
a serious bottleneck in the parallel performance.

Duplicated work

The only work in ASYNPLEX which is duplicated across all iteration
processes is that required by UPDATE_BASIS in Figure 3. When a non-
zero step is made, the majority of the cost of UPDATE_BASIS is incurred in
updating the values of the basic variables.

In many linear programming problems, a significant proportion of the
iterations are degenerate. When the traditional ratio test is used, this results
in a zero step for which, of course, there is no need to update the right-hand-
side. However, the EXPAND technique for CHUZR of Gill et al reduces the
possibility of cycling or stalling in the presence of degeneracy by ensuring that
zero steps are not made. This is achieved by expanding the feasible region a
small amount each iteration, so guaranteeing that (at least) a small positive
step is made. Unfortunately this means that the right-hand-side must be
updated after every basis change: a significant amount of duplicated work in
the context of ASYNPLEX. Since we place less value on this anti-degeneracy
procedure than the improved numerical stability properties afforded by the
‘thick pencil’ row selection possibilities, we choose not to expand the feasible
region each iteration and so obtain a significant reduction in the number of
small nonzero steps made.

3 Implementation on a Cray T3D

An implementation of ASYNPLEX has been written for the Cray T3D
based at Edinburgh University. This machine has the very high ratio of
communication to computation speed which is necessary to achieve speed-up
when using ASYNPLEX on a distributed memory machine.

In addition to an implementation of the widely-used message-passing
routines MPI and PVM, the Cray T3D has a suite of inter-processor
communication routines known as SHMEM. These virtual shared memory
routines allow one processor to write to, or read from, an address on any
other processor with no significant impact on the speed of any computation
which is being performed on that processor. In particular, the shmem put
routine enables data to be written to another processor with a latency of
fewer than ten microseconds and at a bandwidth of 120MB/s. By contrast,
messages sent using PVM or MPI have a latency of tens of microseconds

16

and a bandwidth of 40-60MB/s. Despite the non-portability of the SHMEM
routines and the fact that they have to be used with much greater care than
PVM or MPI routines, initial experiments dictated that all communications
in the implementation of ASYNPLEX be performed using shmem_put.

The T3D processing elements are Dec Alpha chips with 300Mflop peak
performance. However, this computational performance is not approached
for large sparse linear programming problems because of the the indirect
addressing of arrays which the solution of these problems involves.

The implementation ASYNPLEX was developed using modules of our
serial code ERGOL. The INVERT module of ERGOL compromises the
reduction of fill-in and numerical stability for speed. This balance of
properties is important when implementing ASYNPLEX. A fast INVERT
increases the frequency with which new factored bases become available and
so reduces the number of update etas which must be applied, thus increasing
the speed of FTRAN and BTRAN. In practice, the fill-in generated by this
INVERT is not significantly greater than is obtained by procedures based on
the Markowitz criterion, which preserve sparsity particularly well.

Communication

When ASYNPLEX is implemented on a distributed memory machine, there
are four main communication requirements. In only two of these is the volume
of communication related to the dimension of the problem. However these
messages can be overlapped with computation. The other communications
involve no more than a few tens of bytes but are frequent and not all
can be overlapped with computation. As a result, the algorithm must be
implemented using message-passing routines with very low latency.

Each factored basis must be broadcast from the invert processor to each
of the iteration processors. This is by far the largest single communication
but, as with INVERT itself, it can be overlapped with simplex iterations.

The second largest communication in terms of volume is the broadcast
of the pivotal column from the iteration processor which determines
the corresponding basis change to the other iteration processors. In
our implementation, the values and row indices of the nonzero entries
(determined during the pass through the pivotal column in CHUZR) are
written directly to their final destination in the factored inverse of the basis
on each other iteration processor. This is overlapped by computation, except
when the receiving processor is idle because all previous updates have already
taken place. Once the values of the basic variables have been updated (if
necessary), all that is required to update the factored inverse is to calculate
the reciprocal of the pivot, store the index of the row in which it occurs and

17

increase the eta count by one. This virtually ‘free” UPDATE operation is only
possible when using the product form. Thus the number of passes through
all the entries in the pivotal column is reduced to a minimum. As identified
above, this is important since each UPDATE_BASIS operation is duplicated
over all iteration processes.

Once an iteration processor has performed BTRAN and PRICE, it chooses
a set of good candidates to send to the column selection manager. In practice
the number of candidates chosen is seldom more than ten so the volume of
this communication is not significant. Before the processor can start FTRAN
for a new candidate, it must wait until its set of good candidates has been
received by the column selection manager and a new candidate has been
identified and communicated back. Once again this is a communication of
insignificant volume but the iteration processor may be idle for at least twice
the latency period for a single communication. A similar idle period will
always occur after a pivotal column has been brought up-to-date. This is
due to the logical send-and-receive with the row selection manager which
is required to determine whether the iteration processor can proceed with
CHUZR.

4 Computational experiments

Computational experiments on the Cray T3D were performed for four
representative problems from the Netlib [5] test set. These test problems
are discussed in Section 4.1 and the results of the experiments are given in
Section 4.2

4.1 Test problems

The names and the number of rows, columns and nonzeros in the constraint
matrix for the LP problems selected for the numerical experiments are given
in the following table.

Problem Rows | Columns | Nonzeros
SHELL 536 1775 3556
SCTAP3 1480 2480 8874
25FV47 821 1571 10400
GREENBEB | 2382 5405 30877

Although these problems are small by modern practical standards, they are
representative of the problems in the Netlib test set and have neither a
common structure nor extreme relative dimensions.

18

SHELL is a particularly sparse problem for which the basis matrix can
always be reordered into triangular form and, even at the optimal basis,
pivotal columns are 2% full on average—corresponding to just ten non-zero
entries. It is also a problem for which candidate persistence is known to
be good. The number of iterations required to solve the problem is not
affected significantly by the column selection strategy, the Dantzig, Devex
and steepest edge finding the optimal solution in 774, 708 and 715 iterations
respectively (using ERGOL). As a result, column selection using out-of-date
reduced costs is not expected to have a significant effect on the number of
iterations required to solve the problem. SCTAP3 is a larger problem which
exhibits similar low fill-in but is a little more sensitive to the choice of column
selection criterion.

Although of dimensions which are comparable to those of SHELL and with
only three times as many nonzeros, 25FV47 is a problem for which fill-in is
significant. The factored inverse of the optimal basis has 66% more nonzeros
than the matrix itself and pivotal columns at the optimal basis are 58% full.
GREENBEB was chosen to represent the larger problems in the Netlib set.
The factored inverse of the optimal basis has 23% more nonzeros than the
matrix itself and pivotal columns at the optimal basis are 24% full.

4.2 Results

A stated aim in the Introduction was that a parallel algorithm should be
significantly faster than good serial simplex solvers. Although no comparison
with a commercial solver is possible on the T3D, Table 1 gives a comparison
of ERGOL and OSL Version 1.2 [13] for the four test problems. The solution
times given are the CPU time required on a SUN SPARCstation 5, starting
from a logical basis and using the Dantzig strategy in CHUZC.

Problem Solution time (s) | Simplex iterations | Iteration frequency (s7!)

ERGOL | OSL | ERGOL OSL ERGOL OSL
SHELL 3.25 3.79 774 751 238 198
SCTAP3 12.3 21.7 1630 1677 133 7
25FV47 95.8 62.7 4922 4164 ol 66
GREENBEB 358. 424. 11636 11869 33 28

Table 1: Comparison of ERGOL and OSL

The results for the same four problems using ASYNPLEX on the T3D are
presented in Tables 2-5. In each case the problem was scaled and then solved

19

from a logical basis. The first column in each table gives the number of
iteration processors, with zero corresponding to ERGOL running on one
processor. The number of simplex iterations required to solve the problem
is given in the second column. Column three gives the total number of
candidates which prove to be unattractive when their pivotal column is
brought up-to-date. The final two pairs of columns give the iteration
frequency and solution time, together with the respective speed-up compared
with the serial implementation. The total solution time is the maximum
elapsed time on any processor. The number of iteration processors used
was increased in unit steps up to six and then in steps of two until either
no further speed-up in solution time could be achieved or a maximum total
number of sixteen processors (including the two manager processors) was
reached, this being the limit on the number of processors which could be
used interactively.

Iteration | Simplex | Unattractive | Iteration frequency | Solution time
processors | iterations | candidates (s7h) Speed-up | (s) Speed-up
0 774 - | 260 -1 3.0 -
1 759 0| 210 0.8 3.6 0.8
2 772 198 | 370 1.4 2.1 1.4
3 766 312 | 510 20| 1.5 2.0
4 742 341 620 24| 1.2 2.9
5 762 469 | 820 3.210.93 3.2
6 803 421 | 940 3.710.85 3.5
8 814 779 | 1000 4.0 1 0.79 3.8
10 761 601 | 1200 4.5 | 0.66 4.5
12 783 977 | 1300 4.9 | 0.62 4.8

Table 2: Results for SHELL using ASYNPLEX

The difference in the number of simplex iterations when ERGOL is used
(zero iteration processors) and the case where just one processor performs
simplex iterations is explained by the fact that different basis matrices are
inverted, leading to different rounding and hence differences in both column
selection (when reduced costs would be equal using exact arithmetic) and
row selection when the vertex is degenerate.

For SHELL and SCTAP3 there is no gain in efficiency by performing
INVERT in parallel with just one simplex iteration processor. However
there is some speed-up for 25FV47 and GREENBEB. This is partly because
INVERTS are relatively more expensive for these problems but mainly due to
the significant reduction in the average time for FTRAN and BTRAN when
new factored inverses are available more frequently.

20

Iteration | Simplex | Unattractive | Iteration frequency | Solution time
processors | iterations | candidates (s7h) Speed-up | (s) Speed-up
0 1681 - 110 -1 15.8 -
1 1589 0 110 1.0] 15.0 1.1
2 1949 520 190 1.8 110.4 1.5
3 2021 1005 260 20| 7.7 2.1
4 2119 1387 320 3.0 6.6 2.4
) 2299 1410 360 34| 64 2.9
6 2390 1876 400 3.7 6.0 2.6
8 2333 2418 470 441 5.0 3.2
10 2453 2843 500 4.7 | 4.9 3.2
12 2363 2771 530 49| 4.5 3.9

Table 3: Results for SCTAP3 using ASYNPLEX

Iteration | Simplex | Unattractive | Iteration frequency | Solution time

processors | iterations | candidates (s7h) Speed-up | (s) Speed-up
0 5003 - 48 - | 107 -
1 5263 0 71 1.5 74 1.4
2 6561 3247 110 2.3 | 62 1.7
3 7111 09542 140 3.0 o1 2.1
4 8171 8825 160 3.4 | 52 2.1
) 8245 10710 180 3.8 46 2.3
6 7678 12082 190 4.1 | 40 2.7
8 9279 16760 210 4.5 | 44 2.4

Table 4: Results for 25FV47 using ASYNPLEX

In each case the iteration frequency increases steadily with the number
of iteration processors and a speed-up of between 4.0 and 4.5 is achieved
when eight processors are used. This indicates that the time per iteration on
each iteration processor has increased by a factor of up to two. This is partly
explained by the increasing time spent bringing unattractive pivotal columns
up-to date and applying basis changes determined on other processors, and
partly by an increase in the time required to perform BTRAN and FTRAN
as the number of simplex iterations between reinversion increases. Finally,
note that the speed-up in the solution time will be less than the speed-up
in iteration frequency if the use of out-of-date reduced costs increases the
number of iterations taken.

In the results for SHELL given in Table 2, it is seen that the number of
iterations does not increase with the number of iteration processors. As a

21

Iteration | Simplex | Unattractive | Iteration frequency | Solution time
processors | iterations | candidates (s7h) Speed-up | (s) Speed-up
0 11821 - 31 - | 384 -
1 11914 0 37 1.2] 319 1.2
2 14679 0852 64 2.1 | 231 1.7
3 15883 10560 82 2.7 | 193 2.0
4 16848 14966 98 3.2 | 171 2.2
) 15444 16898 110 3.7 | 137 2.8
6 17692 21057 120 4.0 | 144 2.7
8 20556 28532 130 4.3 | 155 2.9
10 18077 29873 150 4.9 | 119 3.2

Table 5: Results for GREENBEB using ASYNPLEX

result, the speed-up in the solution time is similar to that for the iteration
frequency. For SCTAP3 there is some increase in the number of simplex
iterations so the efficiency of using several iteration processors is not so
marked. The practical performance of the parallel solver when applied to
25FV47 is less good than with the first two problems. The number of
iterations and unattractive candidates increases significantly, limiting the
speed-up that can be achieved. Although the candidate persistence for
GREENBEB is poor, FTRAN is relatively inexpensive so significant speed-up
is still achieved.

An illustration of typical processor activity when solving LP problems
is given in the Gantt chart illustrated in Figure 7, the data for which
comes from approximately three-quarters of the way through the solution
of GREENBEB. Processor activity is seen to be almost continuous, although
some of this is spent calculating pivotal columns for candidates which prove
to be unattractive and may be identified by FTRANs without a subsequent
BTRAN. Note that CHUZR is normally so fast that only one is actually
identified in the chart. Lightly-shaded boxes correspond to time associated
with communication and, with the exception of the time spent broadcasting
the new factored inverse, is very low and only visible in one band for
processors 4 and 6. Note that the average time required by INVERT for
this problem is 0.13s, approximately ten times the time taken to broadcast
the factored inverse in this illustration. However, the work of updating with
respect to simplex iterations determined on other processors is duplicated and
appears in heavily-shaded boxes. Once the new factored inverse is received,
it is clear that the cost of performing FTRAN is immediately reduced.

22

o Lo/~ Wl e (I evmew [o= [JJel] e]
sleman | mee [c | e W[I ermen [e]

Qe [W[f] ewmaw [ez [l [Wefl] ewan [emee
ale] mee [c ||l re WA emew [mece |
2| e [e [[l e [e[e] e [mce |
Ml e W men || emew W] emew [me= [c |
o | mverr | S' Ul INVERT

T T T T T T
32.95 32.96 32,97 32.98 32.99 33

C: CHUZC F: FTRAN R: CHUZR SI: Send new factored inverse

Figure 7: Processor activity when solving GREENBEB

5 Potential for implementation on a shared
memory multiprocessor

Although ASYNPLEX was described in Section 2 for a distributed memory
machine with communication between processes defined in terms of message
passing instructions, the underlying algorithm is appropriate for shared
memory multiprocessors (SMPs). The details of the transfers of data between
processors would not be needed in such an implementation as these transfers
would be done automatically by the hardware. The main algorithmic
difference would be that the work of updating the right hand side in the
UPDATE_BASIS step would be eliminated. This would be at the expense of
having to transfer the current values of the right hand side into the cache of
the processor about to start the next CHUZR.

In the revised simplex method the ratio of number of memory accesses to
number of arithmetic operations is very high. It is therefore very important
that the data needed by a processor is available in its local memory or cache.
In our Cray T3D distributed implementation, this is achieved by processors
sending data when they generate it to the local memory of other processors
which will need this data later. The transfer is done by the very fast SHMEM
‘put’ operation. This has the advantage that the data transfer can be fully

23

overlapped with calculation. In contrast, on a shared memory machine the
transfer of data to the cache of the local processor is done by hardware
control. This makes a SMP much easier to program, however the resulting
performance is more difficult to predict. Normally on a shared memory
machine, when one processor changes data, the transfer of this changed data
to another processor’s cache occurs when that processor accesses the changed
data. Thus the transfer is not overlapped with the calculation. There is also
a danger that several processors will require access simultaneously to changed
data, causing a bottleneck in transferring it into their caches.

In our T3D implementation the entire data for the problem is duplicated
on each processor. Since all the data must be stored in main memory, which
is 64MB for each processor, this places a limit on the size of problem which
could be tackled. This would not be a restriction on a shared memory
machine. However the performance on such a machine would degrade unless
its caches were large enough to hold the data which are accessed each
iteration, which are the majority of the data.

The actions of the column selection and basis change managers are still
required on a SMP. However they would be much simpler to implement. The
Cray T3D allows only a single process per processor, so the managers take up
two processors in the T3D implementation, even although the work they do
is negligible. This could be avoided by doing the managers’ tasks on different
iteration processors and using locks to ensure that no two iteration processors
were doing column or basis change manager tasks simultaneously. This can
be done with negligible loss of speed, however it would be more difficult to
program than using dedicated processors. On a shared memory machine it is
normal to have multiple processes or threads on a single processor, and this
would make it very easy to implement the manager processes.

6 Conclusions

A parallel algorithm for the revised simplex method has been described and
practical results demonstrating speed-up of between 2.5 and 4.8 have been
given. These results could be improved by further performance optimization.
However, the limitations of the algorithm should also be addressed. The
Dantzig column selection criterion is not often best and the reduced costs
are calculated from scratch each time. If the reduced costs are updated then
the PRICE operation can be considerably cheaper for sparse problems such
as SHELL. This is because the vector for PRICE is egBk_ ! which is generally
rather more sparse than c% B; '

An algorithmic development which leads from this observation is to

24

maintain reduced costs by updating them on one or more processors. Steepest
edge weights for column selection could be updated on dedicated processors
in a similar manner, allowing the expected total number of simplex iterations
to be reduced.

Although most of the communication overhead has been minimized by the
use of SHMEM routines, the cost of broadcasting the new factored inverse is
still significant. This factored inverse may only be applied a few times on each
processor and it may prove more efficient to communicate the inverse to just
one or two processors which would then communicate partially FTRANned
columns and complete BTRAN for columns whose BTRAN operation has
been started elsewhere. An obvious algorithmic extension to ASYNPLEX is
to use several INVERT processes to increase the frequency with which a new
factored inverse becomes available. This would reduce the average time for
FTRAN and BTRAN at a cost of increased communication.

These algorithmic developments are currently being considered and are
expected to form the basis of future work.

The authors would like to thank the referees for their comments which
have led to a great improvement in the presentation of this paper.

References

[1] R. E. Bixby and A. Martin. Parallelizing the dual simplex
method. Technical Report SC-95-45, Konrad-Zuse-Zentrum fiir
Informationstechnik Berlin, 1995.

[2] G. B. Dantzig and W. Orchard-Hays. The product form for the inverse
in the simplex method. Math. Comp., 8:64—67, 1954.

[3] J. Eckstein, I. Boduroglu, L. Polymenakos, and D. Goldfarb. Data-
parallel implementations of dense simplex methods on the Connection
Machine CM-2. ORSA Journal on Computing, 7(4):402-416, 1995.

[4] J. J. H. Forrest and J. A. Tomlin. Vector processing in the simplex
and interior methods for linear programming. Annals of Operations
Research, 22:71-100, 1990.

[5] D. M. Gay. Electronic mail distribution of linear programming test
problems. Mathematical Programming Society COAL Newsletter, 13:10—
12, 1985.

25

[6]

7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. Sparse matrix
methods in optimization. SIAM J. Sci. Stat. Comput., 5:562-589, 1984.

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. A
practical anti-cycling procedure for linear and nonlinear programming.
Technical Report SOL 88-4, Systems Optimization Laboratory, Stanford
University, 1990.

D. Goldfarb and J. K. Reid. A practical steepest-edge simplex algorithm.
Mathematical Programming, 12:361-371, 1977.

J. A. J. Hall and K. I. M. McKinnon. Update procedures for the parallel
revised simplex method. Technical Report MSR 92-13, Department of
Mathematics and Statistics, University of Edinburgh, 1992.

J. A. J. Hall and K. I. M. McKinnon. PARSMI, a parallel revised
simplex algorithm incorporating minor iterations and Devex pricing. In
J. Wasniewski, J. Dongarra, K. Madsen, and D. Olesen, editors, Applied
Parallel Computing, volume 1184 of Lecture Notes in Computer Science,
pages 67-76. Springer, 1996.

P. M. J. Harris. Pivot selection methods of the Devex LP code.
Mathematical Programming, 5:1-28, 1973.

J. K. Ho and R. P. .Sundarraj. On the efficacy of distributed simplex
algorithms for linear programming. Computational Optimization and
Applications, 3(4):349-363, 1994.

IBM. Optimization Subroutine Library, guide and reference, release 2,
1993.

J. Luo, A. N. M. Hulsbosch, and G. L. Reijns. An MIMD work-station
for large LLP problems. In E. Chiricozzi and A. D’Amico, editors, Parallel
Processing and Applications, pages 159-169. Elsevier Science Publishers
B.V. (North-Holland), 1988.

C. E. Pfefferkorn and J. A. Tomlin. Design of a linear programming
system for the ILLIAC IV. Technical Report SOL 76-8, Systems
Optimization Laboratory, Stanford University, 1976.

W. Shu and M. Wu. Sparse implementation of revised simplex
algorithms on parallel computers. In Proceedings of 6™ SIAM
Conference on Parallel Processing for Scientific Computing, pages 501
509, 1993.

26

[17] C. B. Stunkel. Linear optimization via message-based parallel
processing. In International Conference on Parallel Processing, volume
II1, pages 264-271, August 1988.

[18] R. Wunderling. Paralleler und objektorientierter simplex. Technical
Report TR-96-09, Konrad-Zuse-Zentrum fiir Informationstechnik
Berlin, 1996.

27

