Scalable massively parallel simplex algorithms for block-structured linear programs

İlkay Boduroğlu1, Julian Hall2 and Jonathan Hogg2

1Informatics Institute, Istanbul Technical University

2School of Mathematics, University of Edinburgh

September 14th 2007
Simplex methods for LP problems

\[
\text{minimize} \quad f = c^T x \\
\text{subject to} \quad A x = b \\
\quad x \geq 0 \\
\text{where} \quad x \in \mathbb{R}^n \quad \text{and} \quad b \in \mathbb{R}^m
\]
Simplex methods for LP problems

minimize \(f = c^T x \)
subject to \(Ax = b \)
\(x \geq 0 \)

where \(x \in \mathbb{R}^n \) and \(b \in \mathbb{R}^m \)

- If \(A \) is dense use the simplex method with dense matrix algebra
Simplex methods for LP problems

minimize $f = c^T x$
subject to $Ax = b$
$x \geq 0$

where $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$

- If A is dense use the simplex method with dense matrix algebra
- If A is sparse but unstructured use a sparsity-exploiting revised simplex solver
Simplex methods for LP problems

\[
\begin{align*}
\text{minimize} & \quad f = c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0 \\
\text{where} & \quad x \in \mathbb{R}^n \quad \text{and} \quad b \in \mathbb{R}^m
\end{align*}
\]

- If \(A \) is dense use the simplex method with dense matrix algebra
- If \(A \) is sparse but unstructured use a sparsity-exploiting revised simplex solver
- If \(A \) is has block-angular form

\[
\begin{bmatrix}
A_0 & A_1 & A_2 & \ldots & A_r \\
D_1 & D_2 & \cdots & & \\
& D_r
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
A_0 & A_1 & D_1 \\
A_2 & D_2 & \cdots \\
\vdots & & & \ddots \\
A_r & & & & D_r
\end{bmatrix}
\]

consider methods that exploit this structure.
Parallel simplex

Outcome of work in this area is reviewed by Hall (2006) and summarised as follows

- When arithmetic is dense
 - Parallelisation is readily achieved
Parallel simplex

Outcome of work in this area is reviewed by Hall (2006) and summarised as follows

- When arithmetic is dense
 - Parallelisation is readily achieved
 - For sparse LP problems parallel dense solvers are uncompetitive with good serial solvers
Parallel simplex

Outcome of work in this area is reviewed by Hall (2006) and summarised as follows

- When arithmetic is dense
 - Parallelisation is readily achieved
 - For sparse LP problems parallel dense solvers are uncompetitive with good serial solvers unless implementation is *massively parallel*
Parallel simplex

Outcome of work in this area is reviewed by Hall (2006) and summarised as follows:

- **When arithmetic is dense**
 - Parallelisation is readily achieved
 - For sparse LP problems parallel dense solvers are uncompetitive with good serial solvers unless implementation is *massively parallel*

- **When arithmetic is sparse**
 - Parallelisation is *very hard* to achieve
Parallel simplex

Outcome of work in this area is reviewed by Hall (2006) and summarised as follows

- When arithmetic is dense
 - Parallelisation is readily achieved
 - For sparse LP problems parallel dense solvers are uncompetitive with good serial solvers unless implementation is *massively parallel*

- When arithmetic is sparse
 - Parallelisation is *very hard* to achieve
 - Any parallel performance is worthwhile
Parallel simplex

Outcome of work in this area is reviewed by Hall (2006) and summarised as follows

- When arithmetic is dense
 - Parallelisation is readily achieved
 - For sparse LP problems parallel dense solvers are uncompetitive with good serial solvers unless implementation is *massively parallel*
- When arithmetic is sparse
 - Parallelisation is *very hard* to achieve
 - Any parallel performance is worthwhile
- However, methods for block-angular LPs using dense matrix algebra offer scope for worthwhile parallel solvers
Massively parallel standard simplex method

- Dominant computational cost is updating the tableau using outer product operations
 \[\hat{A} := \hat{A} + uv^T \]
- Maps easily onto shared memory architecture using dense data structures and BLAS
Massively parallel standard simplex method

- Dominant computational cost is updating the tableau using outer product operations
 \[
 \hat{A} := \hat{A} + uv^T
 \]
- Maps easily onto shared memory architecture using dense data structures and BLAS
- Notable massively parallel implementation on Connection Machine CM-2
Massively parallel standard simplex method

- Dominant computational cost is updating the tableau using outer product operations

\[
\hat{A} := \hat{A} + uv^T
\]

- Maps easily onto shared memory architecture using dense data structures and BLAS
- Notable massively parallel implementation on Connection Machine CM-2
- Incorporated
 - Steepest edge pricing: Goldfarb and Reid, MP 12 (1977) 361–371
 - EXPAND ratio test: Gill et al., MP 45 (1989) 437–474
Massively parallel standard simplex method

- Dominant computational cost is updating the tableau using outer product operations
 \[\hat{\mathbf{A}} := \hat{\mathbf{A}} + \mathbf{u}\mathbf{v}^T \]

- Maps easily onto shared memory architecture using dense data structures and BLAS
- Notable massively parallel implementation on Connection Machine CM-2
- Incorporated
 - Steepest edge pricing: Goldfarb and Reid, MP 12 (1977) 361–371
 - EXPAND ratio test: Gill et al., MP 45 (1989) 437–474
- Achieved
 - linear speed-up
 - Remarkable numerical stability
- Applied to data mining problems
Methods for block-angular LP problems

- Dantzig-Wolfe and Benders decomposition are traditional approaches for, respectively,

\[
\begin{bmatrix}
A_0 & A_1 & A_2 & \cdots & A_r \\
D_1 \\
D_2 \\
\vdots \\
D_r
\end{bmatrix}
\text{ and }
\begin{bmatrix}
A_0 & D_1 \\
A_1 & D_2 \\
A_2 & \cdots \\
A_r & D_r
\end{bmatrix}
\]
Methods for block-angular LP problems

- Dantzig-Wolfe and Benders decomposition are traditional approaches for, respectively,

\[
\begin{bmatrix}
A_0 & A_1 & A_2 & \ldots & A_r \\
D_1 & & & & \\
D_2 & & & & \\
& \ddots & & & \\
& & D_r & & \\
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
A_0 & D_1 \\
A_1 & D_1 \\
A_2 & D_2 \\
\vdots & \\
A_r & D_r \\
\end{bmatrix}
\]

- Both have been parallelised but cannot incorporate edge-weight pricing strategies for efficiency and numerical stability
Methods for block-angular LP problems

• Dantzig-Wolfe and Benders decomposition are traditional approaches for, respectively,

\[
\begin{bmatrix}
A_0 & A_1 & A_2 & \ldots & A_r \\
D_1 & & & & \\
D_2 & & & & \\
& \ddots & & & \\
D_r & & & &
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
A_0 & D_1 \\
A_1 & D_1 \\
A_2 & D_2 \\
\vdots & \ddots \\
A_r & D_r
\end{bmatrix}
\]

• Both have been parallelised but cannot incorporate edge-weight pricing strategies for efficiency and numerical stability

• Kaul’s algorithm (1965) performs standard simplex iterations exploiting (row-linked) block-angular structure
 - Edge-weight pricing strategies can be incorporated
 - Dense arithmetic is restricted to “small” matrices
Kaul’s algorithm: introduction

- When A is in block angular form and partitioned as $[B \ N]$, the basis matrix B has structure
Kaul’s algorithm: introduction

- When A is in block angular form and partitioned as $[B \ N]$, the basis matrix B has structure

$$B = \begin{bmatrix} D & E \\ R & T \end{bmatrix}, \quad \text{where} \quad T = \begin{bmatrix} B_1 \\ & B_2 \\ & & \ddots \\ & & & B_r \end{bmatrix}$$
Kaul’s algorithm: introduction

- When A is in block angular form and partitioned as $[B\ N]$, the basis matrix B has structure

$$B = \begin{bmatrix} D & E \\ R & T \end{bmatrix}, \quad \text{where} \quad T = \begin{bmatrix} B_1 & B_2 & \cdots \\ & & & B_r \end{bmatrix}$$

- The standard simplex tableau can be represented as

$$B^{-1}N = B^{-1} \begin{bmatrix} N_1 \\ N_2 \end{bmatrix} = \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}$$

where

- Z_1 contains the tableau rows corresponding to the linking rows
- Z_2 can be expressed as $Z_2 = VZ_1 + \Lambda N_2$ where $V = -\Lambda R$ and $\Lambda = T^{-1}$
Kaul’s algorithm: introduction

- When A is in block angular form and partitioned as $[B \ N]$, the basis matrix B has structure

$$
B = \begin{bmatrix}
 D & E \\
 R & T
\end{bmatrix}, \quad \text{where} \quad T = \begin{bmatrix}
 B_1 \\
 B_2 \\
 \vdots \\
 B_r
\end{bmatrix}
$$

- The standard simplex tableau can be represented as

$$
B^{-1}N = B^{-1} \begin{bmatrix}
 N_1 \\
 N_2
\end{bmatrix} = \begin{bmatrix}
 Z_1 \\
 Z_2
\end{bmatrix}
$$

where

- Z_1 contains the tableau rows corresponding to the linking rows
- Z_2 can be expressed as $Z_2 = V Z_1 + \Lambda N_2$ where $V = -\Lambda R$ and $\Lambda = T^{-1}$

- Simplex iterations are performed by maintaining Z_1, V and $\Lambda_i = B_i^{-1}$, for $i = 1, \ldots, r$
 - Matrices Z_1 and V have one “small” dimension
 - Each Λ_i is a “small” square matrix
Kaul’s algorithm: iterations

Using the tableau representation

\[
\begin{bmatrix}
Z_1 \\
VZ_1 + \Lambda N_2 \\
\end{bmatrix}
\]

The data for each simplex iteration are obtained as follows.
Kaul’s algorithm: iterations

Using the tableau representation

\[
\begin{bmatrix}
Z_1 \\
VZ_1 + \Lambda N_2
\end{bmatrix}
\]

The data for each simplex iteration are obtained as follows

- Let the (pivotal) column \(q \) of the tableau correspond to diagonal block \(i \)
Kaul’s algorithm: iterations

Using the tableau representation

\[
\begin{bmatrix}
Z_1 \\
VZ_1 + \Lambda N_2
\end{bmatrix}
\]

The data for each simplex iteration are obtained as follows

- Let the (pivotal) column \(q \) of the tableau correspond to diagonal block \(i \)
 - Components from \(Z_1 \) are known explicitly
 - Components from \(Z_2 \) are formed using \(V \), column \(q \) of \(Z_1 \) and a product with \(\Lambda_i \)
Kaul’s algorithm: iterations

Using the tableau representation

\[
\begin{bmatrix}
Z_1 \\
VZ_1 + \Lambda N_2
\end{bmatrix}
\]

The data for each simplex iteration are obtained as follows

- Let the (pivotal) column \(q \) of the tableau correspond to diagonal block \(i \)
 - Components from \(Z_1 \) are known explicitly
 - Components from \(Z_2 \) are formed using \(V \), column \(q \) of \(Z_1 \) and a product with \(\Lambda_i \)
- For the (pivotal) row \(p \) of the tableau
 - If \(p \) is a linking row then the tableau row is known explicitly as a row of \(Z_1 \)
Kaul’s algorithm: iterations

Using the tableau representation

\[
\begin{bmatrix}
Z_1 \\
VZ_1 + \Lambda N_2
\end{bmatrix}
\]

The data for each simplex iteration are obtained as follows

- Let the (pivotal) column \(q \) of the tableau correspond to diagonal block \(i \)
 - Components from \(Z_1 \) are known explicitly
 - Components from \(Z_2 \) are formed using \(V \), column \(q \) of \(Z_1 \) and a product with \(\Lambda_i \)

- For the (pivotal) row \(p \) of the tableau
 - If \(p \) is a linking row then the tableau row is known explicitly as a row of \(Z_1 \)
 - Otherwise, \(p \) corresponds to diagonal block \(i \) and the tableau row is formed using a row of \(V \), \(Z_1 \) and a product with \(\Lambda_i^T \)
Kaul’s algorithm: iterations

Using the tableau representation

\[
\begin{bmatrix}
 Z_1 \\
 VZ_1 + \Lambda N_2
\end{bmatrix}
\]

The data for each simplex iteration are obtained as follows

- Let the (pivotal) column \(q \) of the tableau correspond to diagonal block \(i \)
 - Components from \(Z_1 \) are known explicitly
 - Components from \(Z_2 \) are formed using \(V \), column \(q \) of \(Z_1 \) and a product with \(\Lambda_i \)
- For the (pivotal) row \(p \) of the tableau
 - If \(p \) is a linking row then the tableau row is known explicitly as a row of \(Z_1 \)
 - Otherwise, \(p \) corresponds to diagonal block \(i \) and the tableau row is formed using a row of \(V, Z_1 \) and a product with \(\Lambda_i^T \)
- The updates of \(Z_1, V \) and (the appropriate) \(\Lambda_i \) require dense outer-product operations
Kaul’s algorithm: approximate steepest edge pricing

- Implementation of Kaul’s algorithm uses approximate steepest edge pricing
 Crowder and Hattingh, MP Study 4 (1975) 12–25
Kaul’s algorithm: approximate steepest edge pricing

- Implementation of Kaul’s algorithm uses approximate steepest edge pricing
 Crowder and Hattingh, MP Study 4 (1975) 12–25
 - Contributions to weights from Z_1 are exact
 - Contributions from Z_2 are unit then updated exactly
Kaul’s algorithm: approximate steepest edge pricing

- Implementation of Kaul’s algorithm uses approximate steepest edge pricing
 Crowder and Hattingh, MP Study 4 (1975) 12–25
 - Contributions to weights from Z_1 are exact
 - Contributions from Z_2 are unit then updated exactly
- Reduces the number of iterations required to solve the problem by a factor of 2–30
- Adds minimal computational cost per iteration \Rightarrow major net saving
- Improves the numerical stability
Kaul’s algorithm: results

- Very limited results to report
- On a small problem (2410 rows, 3864 columns)
 - Standard simplex: 30 iterations/second
 - Kaul’s algorithm: 70 iterations/second
- Will improve with problem size!
Kaul’s algorithm: dense parallel implementation

- The update of each of the dense matrices involves an outer product operation
- Techniques for the parallel standard simplex method can be used
- We will implement this on SunFire E15K and UoE’s new 512 processor cluster
Kaul’s algorithm: sparse implementation

- Based on revised simplex view of Kaul’s algorithm
Kaul’s algorithm: sparse implementation

- Based on revised simplex view of Kaul’s algorithm
- Observe that for

\[B = \begin{bmatrix} D & E \\ R & T \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} W^{-1} & -W^{-1}E\Lambda \\ -\Lambda RW^{-1} & \Lambda RW^{-1}E\Lambda + \Lambda \end{bmatrix} \]

where \(W = D - E\Lambda R \) (and \(\Lambda = T^{-1} \))
Kaul’s algorithm: sparse implementation

- Based on revised simplex view of Kaul’s algorithm
- Observe that for

\[B = \begin{bmatrix} D & E \\ R & T \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} W^{-1} & -W^{-1}EA \\ -\Lambda RW^{-1} & \Lambda RW^{-1}EA + \Lambda \end{bmatrix} \]

where \(W = D - E\Lambda R \) (and \(\Lambda = T^{-1} \))

- Sparse implementation thus requires
 - Dense factorisation of “small” matrix \(W \)
Kaul’s algorithm: sparse implementation

- Based on revised simplex view of Kaul’s algorithm
- Observe that for
 \[B = \begin{bmatrix} D & E \\ R & T \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} W^{-1} & -W^{-1}EA \\ -\Lambda RW^{-1} & \Lambda RW^{-1}EA + \Lambda \end{bmatrix} \]

 where \(W = D - E\Lambda R \) (and \(\Lambda = T^{-1} \))
- Sparse implementation thus requires
 - Dense factorisation of “small” matrix \(W \)
 - Sparse factored (product form) of \(\Lambda_i \), for \(i = 1, \ldots, r \)
Kaul’s algorithm: sparse implementation

- Based on revised simplex view of Kaul’s algorithm
- Observe that for
 \[
 B = \begin{bmatrix} D & E \\ R & T \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} W^{-1} & -W^{-1}E\Lambda \\ -\Lambda RW^{-1} & \Lambda RW^{-1}E\Lambda + \Lambda \end{bmatrix}
 \]
 where \(W = D - E\Lambda R \) (and \(\Lambda = T^{-1} \))
- Sparse implementation thus requires
 - Dense factorisation of “small” matrix \(W \)
 - Sparse factored (product form) of \(\Lambda_i \), for \(i = 1, \ldots, r \)
 - Products with submatrices of constraint matrix \(A \)
Kaul’s algorithm: sparse implementation

- Based on revised simplex view of Kaul’s algorithm
- Observe that for
 \[
 B = \begin{bmatrix} D & E \\ R & T \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} W^{-1} & -W^{-1} EA \\ -\Lambda RW^{-1} & \Lambda RW^{-1} EA + \Lambda \end{bmatrix}
 \]
 where \(W = D - E\Lambda R \) (and \(\Lambda = T^{-1} \))
- Sparse implementation thus requires
 - Dense factorisation of “small” matrix \(W \)
 - Sparse factored (product form) of \(\Lambda_i \), for \(i = 1, \ldots, r \)
 - Products with submatrices of constraint matrix \(A \)
- Parallelisation of sparse implementation requires
 - Parallel matrix-vector products
 - Concurrent serial operations with \(\Lambda_i \), for \(i = 1, \ldots, r \)
Kaul’s algorithm: sparse implementation

- Based on revised simplex view of Kaul’s algorithm
- Observe that for
 \[B = \begin{bmatrix} D & E \\ R & T \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} W^{-1} & -W^{-1}EA \\ -\Lambda RW^{-1} & \Lambda RW^{-1}EA + \Lambda \end{bmatrix} \]

 where \(W = D - E\Lambda R \) (and \(\Lambda = T^{-1} \))

- Sparse implementation thus requires
 - Dense factorisation of “small” matrix \(W \)
 - Sparse factored (product form) of \(\Lambda_i \), for \(i = 1, \ldots, r \)
 - Products with submatrices of constraint matrix \(A \)

- Parallelisation of sparse implementation requires
 - Parallel matrix-vector products
 - Concurrent serial operations with \(\Lambda_i \), for \(i = 1, \ldots, r \)

- Scope for scalable massively parallel implementation
The next steps

- Dense serial implementation is nearing completion
The next steps

- Dense serial implementation is nearing completion
- Dense parallel implementation is planned
The next steps

- Dense serial implementation is nearing completion
- Dense parallel implementation is planned
- Sparse serial implementation is planned
The next steps

- Dense serial implementation is nearing completion
- Dense parallel implementation is planned
- Sparse serial implementation is planned
- Sparse parallel implementation is next logical step
 Should yield a powerful solver for large scale block-angular LP problems
The next steps

- Dense serial implementation is nearing completion
The next steps

- Dense serial implementation is nearing completion
- Dense parallel implementation is planned
The next steps

- Dense serial implementation is nearing completion
- Dense parallel implementation is planned
- Sparse serial implementation is planned
The next steps

- Dense serial implementation is nearing completion
- Dense parallel implementation is planned
- Sparse serial implementation is planned
- Sparse parallel implementation is next logical step
 - Should yield a powerful solver for large scale block-angular LP problems