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Abstract. In this paper, we present PSMG — Parallel Structured Model
Generator — a parallel implementation of a model generator for the struc-
ture conveying modelling language SML[1]. PSMG analyses the structure
of an optimization problem given as an SML model file and uses this in-
formation to parallelise the model generation process itself. As far as
we are aware PSMG is the only algebraic modelling language that can
perform parallel problem generation.

PSMG offers an interface that can be linked in parallel with many differ-
ent categories of structure exploiting optimization solvers such as interior
point or decomposition based solvers. One of the features of this interface
is that the decision on how to distribute problem parts to processors can
be delegated to the solver thus enabling better data locality and load
balancing.

We also present performance benchmark result for PSMG. The bench-
marking results show that PSMG achieves good parallel efficiency on up
to 256 processes. They also show that exploitation of parallelism enables
the generation of problems that cannot be processed on a single node
due to memory restrictions.

Keywords: modelling language, parallel, mathematical programming, prob-
lem generation,structure exploitation

1 Introduction

Mathematical Programming is an important tool for decision makers. As com-
puting power and need for accurate modelling increases, the size and complexity
of optimization models increases likewise. For many years, researchers have been
working on parallel optimization solvers to speed up their solution.
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ported by the eDIKT initiative ( http://www.edikt.org.uk).
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In most cases problems are modelled with an algebraic modelling language
(AML), such as AMPL[2], GAMS[3], etc to enable fast development and main-
tainability. However, for large problems the model generation process itself be-
comes a bottleneck, especially when the optimization solver is parallelised, but
the model generator is not.

Consider a mathematical programming problem in the form

iréi)r% f(z) s.t. g(x) <0,
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where X CIR", f:IR" - R, g: IR" = R™ %
Here z is the vector of decision variables, f(x) is the objective function and g(x)
are the constraint functions. Most optimization solvers are implemented with an
iterative algorithm. At each iteration, values of f(z), g(z),Vf(x), Vg(z),V?f(z),
V2g;(x) are required at a given point x € X. It is often the the case that the
solver is linked with an AML to whom the computation work of these values
are delegated. By using an AML, the modeller can focus on the underlining
mathematical relations of the problem rather than the programming work for
computing those values. Therefore use of an AML helps to produce an easy-to-
understand model in a concise format and improve the maintainability of large
optimization models.

For real life problems the number of constraints, m and the number of decision
variables, n can become very large: problem sizes in excess of tens or hundreds of
millions are not uncommon. Such large scale optimization problems are typically
not only sparse but also structured. Here ”structure” means that there exists
a ”discernible pattern” in the constraint matrix. This pattern is usually the
result of an underlying problem generation process, such as discretizations in
space, time or probability space; many real world complex optimization problems
are composed of multiple similar sub-problems and relations among the sub-
problems. Algorithms, such as Dantzig-Wolfe and Benders decomposition, and
interior point solvers, such as OOPS[4] and PIPS[5] can take advantage of such
structure to speed up the solution, enable the solution of larger problems and to
facilitate parallelism.

To use such techniques the solver needs to be aware of the problem structure.
Current modelling languages, however, do not usually have the capabilities to
express such structure and pass it on to the solver. There has been some research
work done to recover the structure information from the constraint matrix[6],
however, this is computationally expensive. More importantly we believe this is
unnecessary since the problem structure is most likely known to the modeller.

There are structure conveying modelling languages for specific applications
such as stochastic programming [7-10]. Alternatively structure information can
be provided to the optimization solver by annotation of the unstructured model[11].
These, however, are either not general approaches, or they require assembling the
complete unstructured model before annotations can be parsed, which is infeasi-
ble for large problems. The Structure-conveying Modelling Language SML[1] was
designed to be a generic AML for describing any structured problems by building



models from nested blocks. A similar approach has recently been implemented
in Pyomol[12].

The total time required for solving an optimization problem is the combina-
tion of time consumed for problem generation and function evaluations in the
AML plus the time consumed for the optimization solver. While the former is
often a comparatively small part of the overall process, for a large scale opti-
mization problems in a massively parallel environment, problem generation can
become a significant bottleneck for both memory and execution speed. Therefore
parallelisation, not only of the solver, but also of the problem generation and
function evaluation is necessary. The need for parallel model generation has also
been recognised by the European Exascale Software Initiative EESI[13].

In this paper we present a parallel model generator for SML, named Parallel
Structured Model Generator (PSMG). PSMG can not only convey the problem
structure to the solver, but also use it to parallelise the problem generation.
PSMG also removes memory limitation of a single node by distributing the
problem data. The subsequent sections of this paper are organized as follows:
Section 2 reviews the SML syntax and properties of structured problems. Section
3 presents important design considerations in PSMG and explains the interface
between PSMG and the parallel solver. Section 4 presents benchmarking results
regarding parallel efficiency and memory usage. Finally we present our conclu-
sions in Section 5.

2 Structured problems and review of SML

As an example of a structured problem we consider the Multi-commodity Sur-
vivable Network Design (MSND) problem[1]. In this problem the objective is to
install additional capacity on the links of a transportation network so that sev-
eral commodities can be routed simultaneously without exceeding link capacities
even when one of the links or nodes should fail. The pattern of the constraint
matrix for the MSND problem is shown in Figure 1. The matrix features network
constraints (Net blocks) that are repeated over commodities and joined by link
capacity constraints. These sub-blocks again are repeated for each missing link
or node. All is joined together by the column at the right hand side representing
additional capacity variables. The problem is highly structured of a from that
can be exploited by parallel solvers such as OOPS.

The SML model corresponding to the MSND problem is given in Model 1.1.
SML syntax is based on AMPL with additional keywords such as block, stochastic,
etc. The model features a description of the network block in lines 9-11 and 21—
23, which is then repeated by the block-statements in lines 8/20 and 6/17 over
commodities and missing links/nodes respectively. Each block defines a scope
which can contain variables, constraints, or further blocks. Variables can be ref-
erenced from outside of the scope with a syntax borrowed from object-oriented
programming (lines 15 and 26). Note the strong correspondence of the structure
of the constraint matrix and the structure implied by the nesting of block-
statements.
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set NODES, ARCS, COMM;
param cost{ARCS}, basecap{ARCS}, arc_source{ARCS}, arc_target{ARCS};
param comm_source{COMM}, comm_target{COMM}, comm_demand{COMM};
param b{k in COMM, i in NODES} := if(comm_source[k]==i) then comm_demand[k] else if(comm_target[kl==i) then
-comm_demand [k] else 0;
var sparecap{ARCS}>=0;
block MCNFArcs{a in ARCS}: {
set ARCSDIFF := ARCS diff {a};
block Net{k in COMM}: {
var Flow{ARCSDIFF}>=0;
subject to FlowBalance{i in NODES}:
sum{j in ARCSDIFF:arc_target[jl==ord(i)} Flow[j] - sum{j in ARCSDIFF:arc_source[jl==ord(i)} Flowl[j]l =
blk,il;
}
var capslack{ARCSDIFF} >= 0;
subject to Capacity{j in ARCSDIFF}:
sum{k in COMM} Net[k].Flow[j] = basecap[j] + sparecap[j]l + capslack([jl;

}
block MCNFNodes{n in NODES}: {
set NODESDIFF := NODES diff {n};
set ARCSDIFF := {m in ARCS:arc_source[m]!=ord(n) and arc_target[m]!=ord(n)};

block Net{k in COMM}: {
var Flow{ARCS} >= 0;
subject to FlowBlance{i in NODESDIFF}:
sum{j in ARCSDIFF:arc_target[jl==ord(i)}Flow[j] - sum{j in ARCSDIFF:arc_source[jl==ord(i)}Flow[j]l = b[
k,il;
¥
subject to Capacity{j in ARCSDIFF}:
sum{k in COMM} Net[k].Flow[j] <= basecap[j] + sparecapl[jl;
}

minimize costToInstall: sum{x in ARCS} sparecap[x]*cost[x];

Model 1.1: SML model for MSND problem.
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Fig.1: The block angular structure of the constraint matrix for MSND problem.




3 Model Generator Design Issues

3.1 Solver driven work assignment approach.

PSMG parallelises both the problem generation and the function evaluates rou-
tines. In order to avoid unnecessary communication it is evident that function
and derivative evaluation routines for a particular part of the problem (and by
extension the generation of the necessary data), should be performed on the pro-
cessor that is also assigned to this part of the problem by the solver. In addition
we note that only the solver can judge subproblem complexity (ie. computation
work involved in the solution process) in order to achieve load balancing.

This leads us to a design in which initially a minimal set of information
describing the problem structure is extracted from the model and passed to the
solver. The solver will then decide how to distribute problem components among
processors based on this structure and subsequently initiate the remainder of
the model processing and function evaluations through call-back functions on a
processor-by-processor basis.

We now describe some important components of our design.

3.2 Prototype model tree

The prototype model tree (Figure 2) is PSMGs internal representation of the
nested block dependencies defined in the model file. Every node in the tree cor-
responds to one block declared in the model. It contains a list of entities declared
in this block of the model file in generic form. Each node is also associated with
an indexing expression which will be expanded when generating the expanded
model tree. For example, in the prototype model tree for MSND problem, the
node Root_MCNFArcs has an indexing expression of [ in Arcs.

n in NODES

Root MCNFNodes.Net

k in COMM k in COMM
Fig.2: The prototype model tree Fig. 3: The expanded model tree for the MSND

for MSND problem specified in problem.
Model 1.1.

3.3 Expanded model tree

The expanded model tree (Figure 2 represents an instance of the problem which
is generated after reading the problem data. It is obtained by creating copies of



each node in the prototype tree according to the associated indexing expression.
The information stored in each node is restricted to the size of the subprob-
lem (numbers of constraints and variables declared locally) and a pointer to the
corresponding prototype tree node. Once the expanded model tree is generated
by PSMG, it is passed to solver. The solver will be able to traverse the ex-
panded model tree recursively to retrieve the structure information and set up
the problem.

3.4 Model context tree and memory consideration.

The model context tree stores additional information for each node of the ex-
pended model tree. This data includes names for the local variables and con-
straints and values for the locally declared sets and parameters, mapping infor-
mation for dummy variables etc; namely the context in which to interpret the
generic model of the prototype tree. The model context tree is set up at the
same time as the expanded model tree but only populated at the request of the
solver initiated call-back for function evaluation. In particular the model context
tree will only be populated on those processors that have requested the data.
This ”lazy” approach of data computation guarantees that memory is only used
when and where it is necessary. The model context tree also provides hierarchi-
cal lookup: for example, in the MSND problem (defined in Model 1.1), all the
lookup requests for the set value(s) of the COMM set will fall back to the root
level context (where the COMM set is defined).

3.5 Solver interface.

Figure 4 illustrate the overall workflow between PSMG and the solver. After
processing of the model and data file on every PSMG processes the prototype
tree, expanded model tree and an empty model context tree will be generated on
all processes. Every processes will thus have the size and structure information
of the entire problem. The time and storage required for these common proce-
dures are very small compared to the function and derivation evaluation routine
invoked later. Once this information is set up on every parallel processor, there
is no further need for any communication among the PSMG processes. Then
the structure information (in form of the prototype and expanded model trees)
will be handed over to solver. The solver can then employ an appropriate dis-
tribution algorithm to assign blocks to available processes in order to achieve
load balancing and minimize solver internal communication. After that, every
parallel processes will be able to request the function and derivative values of
each block in parallel from PSMG.

The design of the solver interface allows PSMG to be linked with any struc-
ture exploiting parallel solver, not only interior point solvers (such as OOPS[4]),
but also decomposition based solvers.
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Fig. 4: The PSMG workflow with a parallel optimization solver.

4 Performance evaluation

4.1 Serial Performance

We are aware that our implementation will not match the performance of a com-
mercial model generator such as AMPL on a single node but believe this will be
offset by the advantage generated from exploiting parallelisation. In particular,
we remove the memory limitation of a single node, and will be able to generate
larger problems than could be handled by AMPL on a single node with limited
memory.

In the following section we compare the performance of PSMG with the pre-
vious serial AMPL based SML implementation from [1] (SML-AMPL), and plain
AMPL for the equivalent unstructured model on a series of test problems. The
problem generation times are composed of two parts: first parsing the model
and setting up the structures and secondly function and derivative evaluations.
Note that AMPL does a complete expansion of all indexing expressions (in vari-
able and constraint declarations as well as in sum expressions) when parsing the
model. PSMG on the other hand, in order to minimize the time until control is
passed to the solver, defers these expansions until the first time the automatic
differentiation routines are called. As a result in AMPL the majority of time is
spend in parsing the model, whereas for PSMG it is in the function and deriva-
tive evaluations. This design allows PSMG to distribute its most costly work,
namely function and derivative evaluations among the parallel processes in or-
der to speed up the problem generation time. Both AMPL and SML-AMPL use
nl-files to communicate the model to the solver. Therefore problem generation
times are also dependent on the file-system speed.

We have generated a set of random instances for the MSND model (Model
1.1). The data is based on a network of 20 Nodes and 190 Arcs, corresponding



to a complete graph. The number of commodities varies between 1 and 256.
The number of constraints and variables in these problems increase linearly
with the number of commodities; the largest problem in the sequence has 10.2
million variables and 1.1 million constraints. The problem generation times are
presented in Table 1 and Figures 5, 6 and 7.

We can observe that PSMG and AMPL both achieve linear scaling. However,
this is not the case for SML-AMPL. Therefore PSMG significantly improves
the performance of the previous SML implementation. The serial performance
figures, however, also show that AMPL still has a much better performance in
the serial case than PSMG. However the purpose for PSMG is not to beat AMPL
but to attain parallelisable model generation for structure exploiting solvers.

Table 1: Problem generation time for MSND problem with increasing problem size
on a compete graph of a network of 20 nodes and 190 arcs. Number of variables and
constraints in the problem increases linearly with commodities

Number PSMG (s) AMPL (s) SML-AMPL (s)
of Com- B A :
modities Function Function Function
Structure and' . Structure and. . Structure and. .
Setup Derivative Setup Derivative Setup Derivative
Evalua- Evalua- Evalua-
tion tion tion
1 0.21 5.56 0.8 0.16 1 5
2 0.23 10.15 1.33 0.2 2 9
4 0.23 19.25 2.31 0.31 3 19
8 0.24 37.71 4.11 0.52 5 45
16 0.27 74.27 7.72 0.9 9 127
32 0.31 145.9 15.66 1.65 17 404
64 0.42 285.99 31.62 3.16 35 1405
128 0.58 583.53 64.62 5.9 70 5480
256 1.01 1166.6 140.7 11.89 196 25340

4.2 Parallel Efficiency

On a node with 4GB memory, the plain AMPL will not be able to generate the
MSND problem that has 55 commodities on a network of complete graph of 30
vertex and 435 arcs because of not enough memory. This problem (msnd30-55)
has 11, 30, 795 variables and 967,410 constraints. Now we will be able to generate
this problem in parallel by PSMG.

Table 2 and Figure 8 show the parallel benchmarking results for this problem
on up to 256 processes. We observe that PSMG obtains excellent speed-up on 16
processes and still an respectable speed-up of 184 on 256 processes, corresponding
to a parallel efficiency of 0.72. The main reason preventing even higher speed-up
is lack of perfect load balancing.
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Table 2: PSMG speedup and parallel efficiency for problem msnd30_55. Note that the
Finishing Time column is the maximum time taken for problem generation among the
parallel processes.

Number of

I]?%nl\a/[lgl ?lillz}(l:)lg Speedup Efficiency
processes

1 1911.17 NA NA
2 1009.79 1.89 0.95
4 509.71 3.75 0.94
8 254.39 7.51 0.94
16 125.78 15.19 0.95
32 71.06 26.9 0.84
64 37.61 50.82 0.79
128 20.53 93.09 0.73
256 10.37 184.3 0.72

4.3 PSMG Memory Usage Analysis

We have also measured per processor and total memory usage of PSMG for
generating problem msnd30_55. The memory usage in each PSMG process is
composed of the memory used for storing the problem structures (prototype
model tree and expanded model tree) and the data in the model context tree.
Recall that the problem data in the model context tree will be distributed over
all the parallel processes, whereas the problem structure information is not dis-
tributable and has to be repeated on every processes. We define the memory
overhead to be this (ie. the non-distributable) part of the total memory usage.

This memory usage data is presented in Table 3. Columns 5 and 6 respectively
give the total and per-processor memory requirements. The total memory is
broken down in columns 2—4 into memory for the prototype tree, expanded model
tree and model context tree. Column 7 gives memory overhead as a percentage
of total memory usage. We also plot the total memory usage and the average
memory usage in Figure 9 and 10 correspondingly.

The results in Table 3 show that the memory required by PSMG to gener-
ate problem msnd30_55 consists of a non-distributable part used for storing the
structure of about 9.59 MB that is repeated on every processor and a remain-
ing part of 4.20 GB that is distributable over processes. Thus we are able to
distribute the vast majority of the storage requirements, enabling the genera-
tion of problems that can not be generated on a single node. The overhead in
non-distributable memory is mainly due to making the prototype and expanded
model tree available on every processor. This, however, is crucial to enable the
solver driven processor assignment, so we maintain that it is a worthwhile use
of memory.
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Table 3: Memory usage information for generating a Problem msnd30-55

Number of Total Total Total
Memory Memory Memory Total Memory Structure
parallel
PSMG Prototype Expanded Context Memory per Process Memory
rocesses Tree Tree Tree (GBytes) (MBytes) Overhead
P (MBytes) (MBytes) (GBytes)
1 0.05 9.54 4.20 4.21 4309.87 0.22%
2 0.10 19.07 4.20 4.22 2160.32 0.44%
4 0.20 38.14 4.20 4.24 1085.01 0.88%
8 0.40 76.28 4.21 4.28 548.20 1.75%
16 0.81 152.56 4.21 4.36 279.01 3.44%
32 1.61 305.12 4.22 4.52 144.48 6.63%
64 3.23 610.24 4.23 4.83 77.24 12.41%
128 6.46 1220.49 4.25 5.45 43.62 21.97%
256 12.92 2440.97 4.31 6.70 26.81 35.75%
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Fig. 9: Total memory usage plot for gener-

ating problem msnd30_55. generating problem msnd30_55.

5 Conclusions

In this paper, we have presented a parallel structure-conveying model generator
(PSMG) for the structure conveying modelling language SML. Firstly, PSMG re-
tains the advantages of SML, which are: offering an easy-to-use syntax to model
optimization problems that are composed of nested sub-problems, and being able
to pass the problem structure information to the optimization solver. PSMG is
able to use the structure defined in the model to parallelise the problem gen-
eration process itself. PSMG also features a novel parallel interface design that
enables the parallel solver to achieve load balancing and data locality in order to
minimize the amount of data communications among parallel processes. As far
as we are aware SML/PSMG is the only parallel algebraic modelling language
that can pass the structure information to the solver and uses this information
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to parallelise the model generation process. We have presented some key design
decisions that have influenced our implementation. We have illustrated that by
paying a small memory overhead, PSMG can implement solver driver problem
distribution and further eliminate inter processor communication in both the
model generation and function evaluation stages. The performance evaluation
of PSMG shows good parallel efficiency both in terms of speed and memory
usage. We demonstrate that PSMG is able to handle much larger mathematical
programming problem which could not be generated on a single node before.

Currently PSMG only supports linear programming. The obvious extension
to nonlinear programming would require Hessian evaluation routines and keep-
ing trace of cross products between sub-model components in the constraint
functions. We leave this for future work.
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