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The history of the James Cook Mathematical Notes (JCMN) is
that the first issue (a single foolscap sheet) appeared in
September 1975, then others at irregular intervals, to number 17
in November 1978. JCMN settled into the routine of three issues
per year from 1979 to 1994; but from Issue 66 (April 1995) at
the start of Volume 7, it has been irregular, appearing when

enough contributions are available.

The issues up to number 31 (May, 1983) were produced and
sent out free by the Mathematics Department of the James Cook
University of North Queensland, of which I was then the
Professor. The arrangement was beginning to be unsatisfactory,
and in October 1983 I started producing the JCMN myself and
asking readers to pay subscriptions. In October 1992 it had
become clear that the paying of subscriptions by readers is an
inefficient operation. Bank charges for changing currency and
for international transfers, with postage, together absorb most
of the initial input of money. Therefore we abandoned
subscriptions as from issue number 60 (January, 1993). I now
ask readers only to tell me every two years if they still want
to have JCMN. To those who want to give something in return
for the JCMN, I ask them to make a gift to an animal welfare
society in their own country. The animals of the world will

be grateful and so will 1I.

Contributors, please tell me if and how you would like your

address printed.
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IN THE FOOTSTEPS OF PAFPUS (JCMN 68, p.7052)

A. Brown

To answer the question in the previous issue about the area
of the family of circles, it is necessary first to find the sunms

of some series.

Consider the odd function F(t) of period 2x with value 1 in

(o, =)
¢F
1
t
>
0 4 2x K} 4
-1
.-}
Fourier theory gives F(t) = § -——3% sin(2m+1)t

m=o (2m+1)x

Now take the Laplace transform term-by-tern. The Laplace

4 1

z ———

transform f(s) of F(t) is f(s) = 3 3
m=0 s° + (2m+1)

But also we may find the Laplace transform directly,

v 27 _ n _
f(s) = I e St - J e 5%t 4+ J e %tat - ...
0 x 27

= 1(_ 2 = 1 sx
- 20 ) s tanh =3

Equate the two expressions for f(s), and put s = 2u.

tanh -2 2 1
Thus we have the formula -35;313 = 2 z 3 13-
0 u + (m+§)

It is a little more complicated to find

[
$= T ——t 3
n=-o  s% + (n+b)

(where 0 < b < 1)

but the ideas are the same.
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Let F(t) have the constant value sin(2n+1)7b in each of

the intervals (2n7m, 2nw+27)

\F(t)

I
L

.

v

It is convenient to use a complex-valued function F*,
taking the values F#*(t) = exp (2n+l)irb in each interval
so that F is the imaginary part of F=.

Let G(t) = F*(t) exp-ibt. Then G takes the value
exp ib(2nw+x-t) in each interval, so that G is periodic,

Consequently G(t) = z h eint, where
ns«-w
1 2 -int sin #b
c, = 55 foc(t) e dt = ;TS:ET’ and therefore
[}
- Sin »b expi(b+n)t
Fx(t) L3 £ b+n
-0
. © .
and F(t) = Sin b o sin(b+n)t
L4 - b +n
N -]
Its Laplace transform is f(s) = 51: b z 3 1

-o §° 4 (b+n)2

But we may calculate the transform directly, the contribution

2nr+2x -st
from the typical interval is sin(2n+1)#b j e dt
2nw

é sin(2n+1)¥b sinh »s e-(2n+1)rs' the sum (n = 0 to =) is

- sinh 27s sin sb | .
f(s) S(cosh 27s - cos 27bB)’ equate this to the f(s) above.

o«

s = z
1 n=-om 52 + (n + b)2

1 - ¥ _sinh 2»s
s(cosh 2rs - cos 2wb) "

This is a periodic function of b, and so it may be
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expressed as the sum of its Fourier series:

!Illt:

e cos 2wnb

bt 2
T ns
=1

n

Differentiation with respect to the parameter s gives:-

£ (s? + (n+p)?)72 =
n=-o
sinh 4¥s - 4%¥s + 2 cos 2xb (2¥s cosh 2%s - sinh 27s)
4 s3 (cosh 2%s - cos 21rb)2
[ -]
= —15 + 78”3 £ (1 + 2#ns) e 2"MS cog(2mnb)
2s nel

An interesting point to observe is that if s is at all

large, this sum is almost independent of b. If s > /6 then
exp(~2¥s) < 2+.07 x 10'7. The reason for considering this
value of /6 for s will emerge soon. Recall the figure from

JCMN 68, page 7053.

7, WS 4féé;j¢9 7\

Circle number n has centre at (xn, yn) and diameter dn.

nW
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X, = kdn and Yo = (n + b)dn where
= 1 +R = -
k = 3 - 3R and b Yy /d1 1.

The lines x = 2 and x = 2/R and the circles between them
are obtained by inverting the figure from the origin A; they
make more obvious the equations for x,/d, and yn/dn.

2
n

that the circle number n touches the outer circle, we may find

From the equation x_ + yi - d§/4 - 2xn - dn' which says

d, = (k-1)/(k* - 3 + (n+;)?).

The sum of the areas of the circles is therefore

(-]
"R2(1-R)"% £ (5?2 + (n+b)?)72
n=—o

where s = JR/(1-R). In the drawing above we made R = %,
giving s = /6, and leading to the comment about the area being

nearly independent of b.

n
Other calculations, such as z —E—L:ll———i
n=-w s® + (n+b)

may be left as problems for the interested reader.

CONGRATULATIONS

John Parker has been awarded the 1996 Gold Medal of the

Royal Institute of Navigation.
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TRIGONOMETRIC IDENTITY (JCMN 68 p.7066)
P. H. Diananda
(49 Jalan Raja Udang # 10-55, Singapore 329210)
The identity was X cos A cos B sin (A-B) + I sin (A-B) = 0,
for any three angles A, B and C, the symbols £ and I meaning sums

and products over the three cyclic permutations of (A, B, C).

A possible proof is as follows. Let eiA = a, eiB = b,
el® = c.  Then L.H.S. =
spethiorbhg-Drok@-b

2

8ia’b?c? x L.H.S. = T (al+1)(b%+1)(a2-b?)c? - 1 (a%- b?)

= T a?b2c?(a?-b?) + T (a?-b%)c? + £ (a-b?)c?

- (azbzc2 - a%b? - c%a? + c2a* - b%c? + a%b* + b3t - azbzcz)

= 0 + T (a*-bHc? + 0 - T (a' -p%H)e? = o.

SUMS GIVEN BY ZETA FUNCTIONS
(JCMN 65 p.6360, 66 p.7010, 67 p.7030, 68 p.7058)
Chris Smyth, (University of Edinburgh)

It was conjectured in the previous issue that
w

=2k 1 .1 1
HD(2k) = A (L+3+3+ .00 +33)
2k+1 x-1
z‘""‘:z3E4t-l c(2k+1) - £ 22F¢(2k-2r)¢(2r+1).

r=1
This is confirmed by results in Explicit Evaluation of Euler

Sums by David Borwein, Jonathan M. Borwein & Roland Girgensohn

in Proceedings of the Edinburgh Math Soc, (1995) 38, 277-294.

-7085-

COCKED HATS AGAIN
(JCMN 41 p.4218, 55 p.6033, 56 p.6076, 62 p.6024)

A theorem in the Admiralty Manual of Navigation tells us
that, under very weak assumptions, the probability of the true
position being in the "cocked hat" formed from three position
lines is 1/4. It is tempting to ask how suitably stronger

assumptions would lead to a stronger conclusion.

To describe the error distribution of a position line, let
p be the perpendicular distance of the true position from the
position line, reckoned positive or negative according to some
rule. The original assumption of AMN was only that p could be
positive or negative, each with probability 1/2. We strengthen
this in two ways as follows:-
(a) The distribution is symmetrical about zero, i.e. for any
x > 0, the probability of p being in the interval (0, x) is equal
to that of its being in the interval (-x, 0). The distribution
may be described by the infinitesimal £(p) dp.

(b) All three position lines have the same error distribution.

Then we can draw two conclusions:-

(c) Let the cocked hat be the triangle ABC, draw the internal
bisectors of the angles, they meet at the incentre, they divide
the inside of the triangle into six regions, as shown below
(fig.l). Then the probability of the true position being in
each of these regions is 1/24. A

Figure 1
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(d) In the cocked hat ABC suppose that angle A > angle B.
Then there is probability 1/8 of the true position being in the
triangular region shown below (fig. 2), bounded by the side AC,
the side AB (produced) and the external bisector of the angle at
c. (In the limiting case of angle A = angle B the region
becomes infinite, but the conclusion still holds.)

B

Figure 2
Proof of (c) We have to consider the following random
process, which is modelled on what happens when a navigator sets

out to estimate a position from three position lines.

Take three directions in the plane, the directions of the
position lines. Consider a triangle ABC as in Fig. 3 below,
with the sides in these directions; note that our cocked hat has
sides parallel to those of fig. 3, but it also may be like fig.
4 (obtained by 180° rotation).

A b
c
a
B A
Figure 3 Figure 4
For each position line we distinguish a positive and a
negative side by taking the inside of the triangle ABC in fig.

3 as being on the positive side of all three lines, then in fig.
4 the inside will be on the negative side of all three lines.
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Next, from the error distribution for the position lines,
choose one error (positive or negative) for each position line
(this is taking three values of a random variable, in the usual
sense of probability theory). Denote the values by x for the
line BC, y for the line AC and z for the line AB. These
choices enable us to draw a triangle, the "cocked hat", by
starting with an origin, the "true position", and drawing each
position line to be in the assigned direction at the assigned
perpendicular distance. If x, y and z are all positive the
cocked hat will be like the triangle ABC of fig. 3 and the true
position will be inside; if they are all negative the cocked hat
will be like fig. 4, with the true position inside.

The proof of the theorem from the Admiralty Manual of
Navigation is now clear, the probability of the true position
being inside the cocked hat is the probability of x, y and z all
having the same sign, therefore equal to 1/4.

Now, we seek a more detailed result. Consider the data
of just two position lines, the lines AC and BC. Take them to
be at an angle of 2a, see Fig 5 below. With origin at the true
position, the intersection of the two position lines is as shown,
at perpendicular distances x and y from the two lines. Its
probability density is f(x) f(y) dx dy, or

sin 2a f(X sin a - Y cos a) f(X sin a + Y cos a) dX 4y
where X and Y are the rectangular Cartesian coordinates as shown.

Y &
x _ \x
x

Figure 5

Instead of regarding fig. 5 as showing where the
intersection of the position lines is relative to the true
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position, we may regard it as showing the probability
distribution of the true position relative to the intersection
C of the two position lines CA and CB. These two lines and the
internal and external bisectors of the angle at C divide the
plane into eight infinite sectors, and the data from the two
position lines tell us that there is probability 1/8 of the true
position being in any one of the sectors.

Suppose that the true position (TP) is in the cocked hat.
This can be in two ways, as shown in fig. 6 and fig. 7 below.

A -
c
C
A
Figure 6 Figure 7
These two cases are essentially the same, so that it will
be sufficient to consider only the case of fig. 6. The

perpendicular distances x, y and z of the true position from the
three position lines are all positive, and they are independent
random variables drawn from the same probability distribution
described by a certain density on the interval (0, ). Each
of their six possible relative orderings:-

0 <xXx<y<z 0 <cy<x<z2

0 <x<z<y

0 <y<z<x
has probability 1/6. That is to say, if the true position is
in the cocked hat, there is probability 1/6 of its being in each
of the six regions shown in fig. 1 above, separated by the angle
bisectors. The case of fig. 7, where x, y and 2z are all

0 <z<y«<x
0 <2<x<y

negative, clearly leads to the same result.
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Proof of (d)

Figure 8

Consider the two position lines through ¢ and the bisectors
of the angle between them, as shown above (fig. 8). The other
position line AB may be on either side of C, take one of the two
cases, that of fig. 3 (or fig. 6).

With probability 1/8 the true position TP will be in the
infinite sector shown shaded in fig. 8 above; if this is so then
the third position line AB will have probability 1/2 of giving
this configuration:

A similar calculation gives probability 1/16 for this:

Thus the result (d) is proved.
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EXAMPLES OF COCKED HATS
(JCMN 41 p.4218, 55 p.6033, 56 p.6076, 62 p.6284, 69 p.7085)

'

Recall how three position lines in the plane form a triangle
called a "cocked hat". The mathematics is conveniently
visualised as being concerned with a problem of navigation —
finding a point in the plane given three straight lines that
approximately go through the point; but more generally the work
is on the statistical problem of estimating two unknowns, x and
Y, from three linear equations such as ax + by = c (with ¢
inaccurate) connecting them. In what follows we shall use the
language and imagery of the navigational problem.

Example 1 Suppose that each position line has the error
distribution that it must be at unit perpendicular distance from
the true position. Then all three position lines are tangents
to the unit circle round the true position. This circle is
therefore either the inscribed circle or one of the escribed
circles of the cocked hat, these four possibilities are equally
probable. Because the true position must be at one of the
tritangent centres of the triangle, the probability of the true
position being in any one of the seven regions into which the
three position lines divide the plane, is as shown below.

Example 2 Consider the case of two position lines, so that we
have a cross instead of a cocked hat. For the error
distribution, make only the assumption that each position line
is as likely to be on one side of the true position as on the
other. The two position lines divide the plane into four
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sectors, and the probability of the true position being in any
one of them is 1/4.

1/4 1/4
1/4

Example 3 With three position lines, we know the cocked hat,
and we know two of the position lines to be very accurate and the
other to be inaccurate. For each of the seven regions into
which the position lines divide the plane, the probability of the
true position being in the region is as shown below, because the
true position is very close to where the two accurate position
lines meet, and we may use Example 2 above.

Example 4 The error distributions are as in Example 3 above,
but we do not know which position line is the inaccurate one.
The probabilities for the seven regions are then:-
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Example 5 Of the three position lines we know that one is
very accurate, and the two others are not. I1f we know which
of the position lines in a cocked hat is the accurate one then
the probability distribution of the true position among the seven
regions into which the cocked hat divides the plane, is as shown
below:

1/8 1/8
1/4
the accurate position line

1/8 1/4 ‘\\\\\\ 1/8

Example 6 Modify Example 5 by saying that in any cocked hat
we do not know which position line is the accurate one.

Then the probability distribution of the true position becomes
as in Example 4 above.

Example 7 All three position lines have the same error
distribution, which is negative exponential, the probability
of the true position being at a perpendicular distance between
p and p+dp from the position line is exp(-2p)dp. If the
cocked hat is an isosceles triangle the probability of the
true position being in each of the seven regions of the plane
is as shown below:~-

8(1 + 28)

1l + 4s
a(1 + 28)°

8(1 + 2s8)

where s = sin a and a is half the angle at the vertex of the
triangle, as shown below:
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A simple special case is that of the equilateral
triangle, where s = %, with the probabilities as below:

o

3/16

1/16

The proofs of these results about an isosceles triangle
cocked hat with negative exponential error distribution are not
interesting enough to be printed in full. They depend on the
fact that from two position lines we obtain a probability density
for the true position as follows:-

v
X

(Thinking of the y-axis as pointing North, and the x-axis as
pointing East, taking as origin the intersection of the two
position lines)

In the Northern sector: sin 2a exp(~4y cos a) dAx dy

In the Eastern sector: sin 2o exp(~-4x sin a) dx dy.
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SPHERICAL TRIANGLE GEOMETRY

(JCMN 47, p.5136, JCMN 68, pp.7069-7072)

In Euclidean 3-space take three linearly independent unit
vectors,a, B, and y; they specify a non-degenerate triangle ABC
on the unit sphere. Let p, g and r denote the cosines of the
sides BC, CA and AB. As (normalized) coordinates of any point
P on the sphere take x, y and z, the cosines of PA, PB and PC,
respectively. The coordinates may be treated as homogeneous,
treating (Ax, )y, >z) as representing the same point, for any
non-zero . Another way of defining the coordinates is to say
that a non-zero vector ¥ = ug + vB + wy, whether of unit length
or not, represents the point V/[[¥| on the sphere. The
(homogeneous) coordinates (x, y, z) of this point are related to
the coefficients (u, v, w) by

X = g.(ug + VB + wy) =u + rv + qw

y = B.(ug + VB + wy) =ru+ v + pvw

2 = xy.(ug + VB + wy) =qu + pv + w

and these equations may be written (u, v, w) = (x, y, 2)M

where ! = 1 r q
r 1 p
q p 1

1 2

det M} = 1 + 2pgr - p? - q® - r
which, in terms of the sides a, b, ¢, and angles A, B, C, may

by the cosine rule: cos a = cos b cos ¢ + sin b sin c cos A

be written sinzA sin’b sinzc or sinza sinZB sinzc, etc.
M o= 1-p° pq-r pr-q || (1+2pqr-p?-g%-r%)7!
pa-r 1-q2 qr-p
pr-q qr-p 1-r?
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Both M and its inverse are symmetric and positive definite.

In terms of the sides a, b, ¢, and angles, A, B, C, we have

M sin A sin B sin C sin a sin b sin¢c =

sin A 0 0 1 -cos C -cos B sin a 0 0
o] sin B 0 ~cos C 1 -cos A 0 sin b o
0 0 sin C -cos B -cos A 1 0 0 sin ¢

The middle one of these three matrices has an intriguing
relation to the inverse of M, because =-cos C = cos(¥-C) is
the cosine of a side of the polar triangle (whose sides are the
great circles orthogonal to the vertices of the original

triangle).

If X and y are the normalised coordinates of any two points
on the sphere, then the cosine of the distance between then is
the bilinear form

XMy
which is zero if the points are at 90" apart. It would be
interesting to factorize M as the product of some matrix and its

transpose.

If we have homogeneous coordinates (x, y, z) (as described
above) for a point on the sphere, we can obtain from them the
normalized coordinates, as follows. From (x, y, z) we find the
coefficients (u, v, w) = (x, y, z)M as above. The magnitude

of the vector ¥V = ug + vB + wy is given by the scalar product:

I¥l2 = (ug + vB + wy).(ug + VB + wy)



-7096-

= u2 + v2 + wz + 2pvw + 2gqwu + 2ruv

=uln !y = x'Mx, because u = Mx.
where we write X for the column vector that is the transpose

of the row (x, y, 2z), and similarly u.

Thus to normalize any homogeneous coordinates (x, y, 2)
we divide them all by J(xTHx). For instance the cosine of
the distance from the point (x, y, 2) to the vertex B is equal

to y(x"Mx)"2/2,

As always, there are analogies between plane and spherical
geometry. In plane geometry we take as (normalized) trilinear
coordinates of any point the distances (x, y, 2) from the sides
of the triangle of reference (the signs positive for points
inside):; and having done that, we can change to using
homogeneous coordinates, treating (ix, Ay, rz) as representing
the same point (for any i = 0). Normalised coordinates satisfy
the relation ax + by + cz = 24 (where A is the area of the
triangle of reference); and so from the homogeneous coordinates
(x, y, z) it is easy to recover the normalized coordinates, just

multiply by 24 and divide by ax+by+cz.

This algebra draws our attention to the line ax+by+cz = 0.

It is the line at infinity. what is the analogue in spherical
geometry? Is it the conic
x™Mx = 0 ?

This is the conic such that the polar of any point is the

great circle at right angles to the point. You might call it
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a non-conic, it has no points on the sphere, just as the line at
infinity in the Euclidean plane has no points. See the note

below on the grin of the Cheshire Cat.

The circumcentre of the triangle has the (normalised)
coordinates x = y = 2z = cos R, Qhere R is the radius of the
circumcircle. From this fact, by using the gquadratic form
given by the matrix M, it may be calculated that:

sina _ sinb _ sin ¢
sin A sin B sin C

a b ]
= 2 tan R cos 3 Cos 3 cos 3

which is the analogue of the sine rule:

b c

a
sin A sin B sin C 2R

for plane triangles.

For a plane triangle the centroid is where the sum of
squares of distances to the vertices is a minimum, equal to
one third of the sum of squares of the sides. The analogous
result for a spherical triangle is that the centroid is where
the sum of cosines of distances to the vertiqes is a naximuﬁ,

this maximum is equal to /(3 + 2 cos a + 2 cos b + 2 cos c).
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SPHERICAL GEOMETRY AND THE CHESHIRE CAT

Those familiar with Lewis Carroll’s book Alice’s Adventures
in Wonderland will recall the account in Chapter 6 of Alice’s
meeting with the Cheshire Cat. In particular:-

veeesses "YOu’ll see me there," said the Cat, and vanished.

Alice was not much surprised at this, she was getting
used to queer things happening. While she was looking at
the place where it had been, it suddenly '‘appeared again.

nBy-the bye, what became of the baby?" said the Cat,
"I’Qq nearly forgotten to ask."

"It turned into a pig," Alice quietly said, just as if
it had come back in a natural way.

"I thought it would," said the cat, and vanished again.

Alice waited a little, half expecting to see it again,
but it did not appear, and after a minute or two she walked
on in the direction in which the March Hare was said to
live. "I’ve seen hatters before," she said to herself:
wthe March Hare will be much the most interesting, and
perhaps as this is May, it won’t be raving mad —— at least
not so mad as it was in March." As she said this she
looked up, and there was the Cat again, sitting on a branch
of a tree.

"pid you say pig, or £ig?" said the Cat.

"] gaid pig," said Alice; "and I wish you wouldn‘t
keep appearing and vanishing so suddenly: you make one
quite giady."

"All right," said the Cat; and this time it vanished
quite slowly, beginning with the end of the tail, and ending
with the grin, which remained some time after the rest of it
had gone.

"Well! I’ve often seen a cat without a grin," thought
Alice; "but a grin without a cat! It’s the most curious
thing I ever saw in all my life!"

Consider the foundations of plane and spherical geometry,
a topic which Lewis Carroll, alias Charles Dodgson, would no
doubt have spent a lot of time explaining to his undergraduate

pupils. Modern mathematicans would start with a field F, but
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in those days it was the real variable. Consider elements
labelled by 3 real numbers not all zero, such as (x, y, z), and
take (Ax, Ay, iz) for any x » 0 to represent the same element.
our first geometrical picture of these elements is as the lines
through the origin in Cartesian 3-space. Our second picture
is as the real projective plane, obtained by taking any plane in
the 3-space not through the origin, and taking its intersection
with one of the lines to be a point of the projective plane. Our
third geometrical picture comes from taking the unit sphere

2 . 1, and taking (x, y, 2z) to represent the two

where x2+y2+z
diametrically opposite points where the line (from the first
picture) meets the sphere. The relation between the second and

third pictures is simply radial projection from the origin.

A linear homogeneous equation in (x. y, 2z) represents a
great circle on the sphere or a straight line in the projective
plane. A quadratic homogeneous equation (by definition,
perhaps) represents a conic in the projective plane, and so we
use the word "conic" to denote the corresponding locus on the
sphere. A small circle on the sphere is a familiar example of

a conic.

An interesting case is the conic on the sphere given by:
x2 + yz + zz = 0.

It has no points and no tangents, but it has the property that
it behaves like the familiar conic in setting up a structure of
poles and polars. It is what may be called an “elliptic
polarity" (see H.S.M. Coxeter, Introduction to Geometry, §14.7,

page 252). It is something like a grin without a cat.
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FOURIER TRANSFORM

What is the Fourier transform of log|x|//|x|? This
funcfion is not absolutely integrable, and not a member of the
Hilbert space L2(-m, ®), so that most of the usual theory found
in text-books does not apply. However, this function is
integrable in any bounded interval, and is an "ordinary function"
in the sense of Lighthill‘s book on "generalised functions", and

therefore has a Fourier transform.

®1 -2xi
The formal expression F(x) = J —%?%*l e ¢TiIXY gy

is an integral not absolutely convergent at infinity; in
these circumstances we can often get the right answer by using
B 00
lim - lim I for J
A 0B -»m» -A -0

or by using Abel or Cesaro summation, i.e. replacing

00 -] - n

J p(x) dx by lim J w(x) e x/n dx or lim I (1 - %)w(x) ax.
0 s} 0

A serious analyst may say that we need to plunge into the
theory of generalized functions, and find a transform that gives
the correct inner products with the appropriate test functions.

But never mind theory, what is the answer?

There are indications that the transform may be equal to

log|x K : -
X Tm with K 5.3721....

If this is so, then what is K exactly?
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