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The James Cook Mathematical Notes is published in 3 issues
per year, dated January, May and September. °~ The history of
JCMN is that the first issue appeared in September 1975, and
others at irreqgular intervals, all the issues up to number 31
being produced and sent out by the Mathematics Department of the
James Cook University of North Queensland, of which I was then
Professor. In October 1983 this arrangement was beginning to
be unsatisfactory, and I changed to publishing the JCMN myself,
having three issues per year printed in Singapore and posted from
there. I then set a subscription price of 30 Singapore dollars
per year. When in 1985 I changed to printing in Australia I
kept the same price, for: the Singapore dollar is a stable

currency.

Since October 1992 it has become clear that the paying of
subscriptions by readers is an inefficient operation. Bank
charges for changing currency and for international transfers,
with postage, together absorb most of the initial input of money.
Therefore we have abandoned subscriptions as from the beginning
of 1993, iésue nunber 60. To those who want to give something
in return for the JCMN, I ask them to make a gift to an animal
welfare society in their own country. The animals of the world

will be grateful and so will I.

Contributors, please tell me if and how you would like your

address printed.
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FUNCTIONAL INEQUALITY (JCMN 60, p.6202)
Don Coppersmith
(Thomas J. Watson Research Center, Yorktown Heights, NY, USA)
’ ’

Find the i 1
. maximum of JO f(x)dx for f(x) > 0 satisfying
f(x) + = + L + + 1
) 5 f(x/2) 3 f(x/3) P f(x/n) < 1.

The answer is

n
>n-1+ established as follows.

For any b > 0, integrating from b to 2b gives'

2b 2b/2 2b/3
+ + 2b/n
b Jb/z b3 toooc Jb/é f(x)dx < b and so
2b ” :
Jb/n f(x) dx £ b.

Now give b the infinite set of values % 52(2n)_l *;(Zn)_2
. . PR

in the inequality above and add.

1
JO £(x) dx < 3(1 + (2n)F 4 (2m) 2+ L. ) = B
2n-1

To show that this bound is the best possible, consider

the set S consisting of the union of all the open intervals
-k -k '

(%(2n) ©, (2n) *) for k =0, 1, 2, ... , and let f(x) be the

characteristic function of the set, equal to 1 in S and zero

elsewhere. We must show that this f satisfies the
conditions.
Take any x in the unit interval. Now, for wh;t
integer i is x/i in the set S2. In other words, for
’

what i is the number i/x in the union of intervals:-

2 2
(1, 2)u(2n, 4n)u(4n”, 8n")u ...? There are certainly some
such i, let j be the smallest. We are concerned only with

i <
i € n, and there cannot be more than j of these i, namely i =

j, j+1, j+2, ... 2j-1. Therefore the sum
1 1
f(x) 3 e(x/2) + 3 E/3) 4oL+ % £(x/n)
1 1 |
< 7 + T . —-r—'—l
RS e IR~ S % = 1.
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SOME PROBLEMS

Paul Erdds

(Mathematical Institute, Hungarian Academy of Sciences)

Here is a question of Sarkoézy and nyself, in fact several

guestions:-
< ... < < +1 i < .
Let 1 = a, < a, < a i 2n be n+l integers 2n
Trivially (ai, aj) - 1 for some i < j, in fact for some

consecutive a s aj. Much less trivial is the guestion of

whether (&, aj) = 1 for some i < j with a; smn.

Is it true that a; <n is possible except in the case

of the set {n, n+l, n+2, n+3, ... 2n)?
We have proved (not trivial) that for (a;. aj) =1,

max (aj - ai) =n - £(n)

where f(n) is about log n, i.e. coprime a; and aj can be

found for which aj - a; is nearly n, but you cannot quite get

ave an exact value.

n, it is about n - log n, we do not h

Finally, determine or estimate
max{ a; + aj : (ai, aj) =1 )
We have proved that for every sedquence the inequality

ay + a. >n - o(n) is possible with (ai, aj) = 1, but we
xnow .that one can give a, < a, < a, < uue
(ai, aj) =1 ) =n - f(n), where

< a for
n+l

which max ( a, + a, 7
i J

f(n) - = (but fairly slowly)-

An old problem of sarkdzy. and nyself states: Let

a, < a, < ees < B < n be such that no a, divides the sum of

two larger a‘s. Is it then true that kX € n/3 + o(1), and

that the maximum of k is given by the n/3 largest integers?

We have no proof.
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FACTORS (JCMN 59, p.6173)

For any positive integer n, write the fraction

2n)!
n! (n + 1000)!

in its lowest terms. Let f(n) be the largest prime dividing
the denominator, except that f = 1 if there is no such prime.

Find the largest possible value of f(n).

FIRST SOLUTION

Terry Tao (Princéton, U.S.A.)
The answer is 1999, which is the largest prime < 2000.

Lemma 1 If x > 2000 then

RN e B

X X x

Proof If the non-integer part of n/x is < 1/2, then there is
equality, because the two terms on the left are equal. If
the non-integer part of n/x is 2> 1/2, then LHS < 2[n/x] + 1

= RHS.

Lemma 2 If p is a prime, then the largest i for which pi
divides m! is i= [—] + [——] + ... (This is clear)
Lemma 3 f(n) < 2000 for all n.

Rroof Take any prime p > 2000 and calculate the number of
times it occurs as a factor firstly in (2n)! and secondly in
n!(n+1000)! using Lemma 2. Lemma 1 tells us that the first
total 2 the second total, and therefore there is no factor p

of the denominator when the fraction is reduced to its lowest

ternms.

Now consider n = 999 and p = 1999. Clearly p occurs
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just once as a factor of n!(n+1000)!, -and it is not a factor

of (2n)! = 1998! The required result is thus proved.

SECOND SOLUTION

P. H. Diananda (Singapore)

1998! B 1 .
Lemma 1 f£(999) = 1999, because gggT > 1559! ~ 999! x 1999

Lemma 2 For n £ 1000, clearly f(n) < 2000, and so f(n) <
1999.

: (2n)!
Lemma 3 For n > 1000, the fraction AT(n+1000) 7

= Integer / (n+l1)(n+2) ... (n+1000), and also
= Integer / n(n-1)(n=2) ... (n-999).
Thus f(n) divides both n+a and n-b, for some integers a and b

such that 1 $ a < 1000 and 0 £ b < 299.

Hence f(n) divides (n+a)-(n-b) = a + b, and 1 < a+tb

IA

1999, therefore f(n) < 1999.

From these three results, f(n) has the largest value

1999.

2n)! .
Consider the corresporiding problem for E%TH%ETT with
integer m 2 1, the following can be proved:
If m = 1, £f(n) = 1 for all n.

If m > 1, then the largest value of f(n) is the largest

prime < 2m, it is attained when n = this prime - m.
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PRINCETON PROBLEMS

1 Five weightless charged particles are in a frictionless
hollow sphere. They have equal electric charges, and so repel
one another acccording to the inverse square law. What are the
stable positions of equilibrium? In other ‘words, in what

positions does the potential energy attain a minimum?

2 A Hausdorff space is called "regular®" when any closed seﬁ
and any point not in it can be contained in disjoint open sets.
Prove that if a connected regular space contains at least two

points it is uncountable.

3 consider the following two-person game. Player A chooses
two unequal positive numbers and puts them in sealed envelopes.
Player B chooses one of theé envelopes and opens it to see the
number. Then B has to choose either that number or the unknown
number in the other envelope. Scoring is that B scores +1 by
choosing the larger of the two numbers and -1 by choosing the
smaller. Find a strategy for B that gives a strictlyApositive
expectation of score.

There is the obvious answer that B thinks of a number k
before opening the envelope, then chooses the number if it is >
k. But to be a valid solution this strategy has to be stated
carefully; B must choose k so that there is a non-zero
probability of k being between A’s two numbers, and to do this
B must choose from a probability distribution that is non-null
on every non-trivial interval, i.e. the probability function must

be strictly monotonic in (0, «).
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NEW PROOF THAT 2 = 1

M. N. Brearley

A uniform sphere is released
from rest on a rough inclined
plane which is steep enough to
cause the sphere to slip b
initially. Notation is shown
on the figure. Let t be the
time after the start.

The principles of linear and

angular momentum give:

mdv/dt

mg sin a - @R
R = mg cos a
(2/5)ma dw/dt = pR.
Eliminate R, giving dv/dt = g(sin a - u cos a),
adw/dt = (5/2) ug cos a.

Integrate, using the fact that v and v are initially zero,

v g(sin a - 4 cos a)t

aw (5t/2) pug cos a
At the instant t when slipping ceases, v - aw = 0.
Therefore sin @ - y cos a - (5/2) pcos a = o,

i.e. (7/2) b = tén a.

In particular, if u 4/7 and a = 45", we get

2 = 1.

/LR
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DIRTY STATISTICS IN A DIRTY WORLD
John Parker
(0oak Tree Cottage, Reading Road, RG74QN, U.K.)

The World is rather a dirty place, neither pure white nor
jet black, but a sort of middling grey. So it was once when
I was asked to comment on two measurements of a certain obscure
physical constant not found in the usual reference books. It
was measured as 4+4 * .1 in one laboratory, and as 8.2 t <05 in
another laboratory. The boss presented me with this
information, saying that he wanted me to give him the best
estimate for the constant in two hours time; he hit the roof
when I enquired what the * signs represented (were they standard
deviations? probable errors? 95% errors?), of course he didn’t
know, I wonder what the authors of the figures thought they
meant. Probably it doesn’t matter anyway.

In both cases the t terms were probably based on
replications. Every good scientist likes to repeat his
experiment many times over, just to be on the safe side. After
all, if he’s got his apparatus nicely set up he might as well go
to town with a good long series of measurements.

what had happened here was that the two experimenters were
using two quite different techniques, in geographically widely
separated laboratories, and of course with different personnel.
The quoted errors do not take account of possible systematic
biases occurring at one or both stations.

So I just ignored the quoted errors and gave my boss the
answer 6+3 + 1.9, and luckily he did not ask me whether the error
term t+ 1.9 was a standard deviation, a probable error or a 95%

error. -

Another example to show the problems facing statisticians

in this dirty real world is the following. suppose that there
are 3 independent estimates of a quantity, namely 6-1, 12:4 and
13.0. It is believed that the experimental errors ({standard

deviations) are of the order of 2-0, but nobody is really
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confident about this, a typical state of affairs in a dirty
world. What is the best compromise figure to adopt and why?

Finally, a quite different problem, arising from a personal
experience. I had written a simple linear regression program,
with an option to plot out the data. An irate customer told
me the program was up the creek because it gave a ridiculous
line. He had not used the plotting option, and when he did the
matter was speedily explained, for one of the ordinates (near the
end of the range, moreover) had been keyed in wrongly. The
real bloomer was mine, for I ought to have issued a health
warning in the program write-up. ~ All this was well before the
modern era of computer graphics. The lesson is clear, always
look at your data before deciding how to analyse them (and Kkey
then in carefully).

Mathematical statistics in an ideal world (with the Gaussian
law and all that) is marvellous, and moderate departures from a
Gaussian hypothesis are often of no serious consequence (one
comes across the word "robustness").. But in the real world the
occasional blunder crops up from time to time, we hope it happens
only rarely, but nobody knows how rarely. Statistical tests
for identifying and then cutting out these whoppers exist, though
most are based on the Gaussian law and require a reasonably
precise knowledge of the internal data errors. Human
intervention in the data may or may not be possible (Snooks says
that the best way of identifying a blunder is to eyeball the
data).

We have a job here — to reconcile the statistical theory
with ordinary Dirty World common sense. Is such a
reconciliation possible?
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QUOTATION CORNER 40

Captain Cook’s first Pacific voyage was mainly to observe
the 1769 transit of Venus from Tahiti, and for this purpose the
astronomer Charles Green sailed on the Endeavour. Nevil
Maskelyne, the Astronomer Royal, afterwards made some critical
comments on the observations that Captain Cook had brought back

It must be confessed, that the results of

from Tahiti.
these observations (most of which were made by.Mr Green) differ
more from one another than they ought to do, or than those maqe
by other observers, with quadrants.of the same size, and made by
the same artist, the cause of which, if not owing to want of care

and address in the observer, I don’t know how to assign. —

Charles Green had died on the return voyage, but Captain
Cook wrote (for his Journal of his second voyage, the note was
unearthed by J. C. Beaglehole after having been deleted from the
1777 printed edition by the editor)

Mr M. might have assigned another reason, he was not
unacquainted with the quadfant having been in the Hands of the
Natives, pulled to pieces and many of the parts broke, which we
had to mend in the best possible manner we could before it could

be made use of.

Mr M. should have considered, before he took upon himself
to censure these observations, that he had put into his ‘hands the
very original book in which they were written in pencil only, the
very moment they were taken and I appeal to Mr M. himself, if it
is not highly probable that some of them, might from various
causes, b§ so doubtful to the observer, as either to be wholly
rejected or to be marked as dubious and which might have been
done had Mr Green taken the trouble to enter them in the proper
book. Mr M. should also have considered that this was,
perhaps, the only original papers of the kind ever put into his
hands; does Mr M. publish to the world all the observations he
makes good or bad or did he never make a bad observation in his

life? —
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MASS OF MERCURY (1)

Venus

Mercury

The mass of the planet Mercury has long been in doubt, for
this planet has no moon. One method of estimating the mass is
by using the fact that the gravitational attraction of Mercury
must perturb the orbit of Venus, and so give an observable effect
on the position of Venus in the sky (i.e. the altitude and
azimuth or the'right ascension and declination), as seen from
Earth. The difficulty is that the effect to be measured is
comparable with the accuracy of the best astronomical
instruments, so that the analysis of the observations involves
not only heavy computation, integrating the equations of motion,
but also involves tricky questions of mathematical statistics.
These statistical questions are hinted at, and (we hope)
clarified, by the note MASS OF MERCURY (3) in this issue.

The first attempt at this calculation was by Simon Newcombe
in 1898, he came to the concluéion that the mass of Mercury was
1/6,000,000 (with the Sun as unit of mass). Since then other
considerations have suggested the value 1/9,000,000, in fact the
1936 edition of W.M.Smart’s book Spherical Astronomy gave the
value 1/9,000,000 in the Appendix B on planetary dimensions, and
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H. Jeffreys in 1937 published a calculation giving 1/9,120,000.
See the note MASS OF MERCURY (2) below.

The following data on the planetary orbits will give some

idea of the difficulties.

Planet Semi-major axis Eccentriciéy Mass (o0 = 1)
(astronomical units)
Earth o 1-000 <017 A 1/329,000
Venus ¢ 0.723 <007 1/403,000
Mercury ¥ 0.387 ) - 206 ? .

The orbits are not quite coplanar, the planes of the orbits
of Venus and Mercury are at angles of 3° and 7° respectively to
that of Earth, we hope the sketch at the top of this note is not

misleading in this respect.

The unknown mass of Mercury not only perturbs Venus and
Earth directly by gravitational attraction, but also does so
indirectly by perturbing the Sun. These four effects are of
the same order of magnitude. The displacement of Venus is of
the order of a mile, which subtends from Earth an angle of the
order of 1/100 second of arc, but of course more when the planets

are close.

STOP PRESS There is a letter from R. A. Lyttleton in the
Journal of the British Astronomical Association, Volume 103,
1993, Issue 1, pages 8-9. He suggests that Mercury may be a
former satellite of Venus. If Venus had ever had a satellite,
the effect of the lunar tides in the heavy atmosphere would have
been to cause a steady increase in the orbital radius of the
satellite, with the final result of the satellite’s escape to an

orbit round the Sun.
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MASS OF MERCURY (2)
For the inner planets other than Mercury, and for the Moon,

we have reasonably good estimates for the radius and the mass,
and therefore for the mean density, as follows.

Mean radius Mean density 1/ Mass

miles centimetres (water = 1) (e = 1)

Moon ¢ 1080 173,800,000 334 27,158,000
Mars o 2108 339,200,000 3.95 3,093,500
Venus ¢ 3788 609,600,000 5.21 ' 403,490
Earth e 3959 637,100,000 5+53 329,390

Problem: for a gravitating sphere of uniform compressible
fluid in equilibrium in a uniform gravitational field, find a
pressure~density relation for the fluid such that the radius and
mean density fit (to within perhaps 2% or 3%) the four values
given above. The constant of gravitation is

8

G = 6-658 x 10 ° c.g.s. units.

A satisfactory answer would make plausible the supposition that
all these bodieé were made of the same material, then if Mercury
were also made of the same material we would be able to estimate
his mass and mean density from his known radius of 1504 miles or
242,000,000 centimetres. A mass of Sun/9,000,000 would
correspond to a mean density of 3.6. The density of rock near
the surface of Earth (which may or may not be relevant) is
typically between 2.2 for sandstone and 2.77 for slate, and
Bullen has taken 3-32 as the density at a depth of 35 kms. It
is thought that rock becomes fluid at pressures of the order of
50,000 atmospheres, but evidence is hard to find.

It was R. A{ Lyttleton in tlHe early 1960s who drew attention
to the mean densities of'the inner planets and the Moon, and
suggested that they might shed light on the problem of the mass
of Mercury; the outer planets, Jupiter, Saturn, Uranus and
Neptune, are all much bigger and much less densef
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THE MASS OF MERCURY (3)

(A fable with a moral)

Two research scientists, Dr Able and Dr ~Baker, were
wondering how much mercury there was in a valuable old
thermometer which they had just been given. Their colleague Dr
Charlie told them how to measure the amount. "If there were
no mercury the centre of gravity would alwayé be at the same
point of the glass, whatever the temperature," he explained "but
as the temperature rises the mercﬁfy coiumn will move aléné tﬁe
capillary tube, and so will change the centre of gravity."
After doing some calculations he added "You see how when the
temperature is shown as zero, the mercury just fills the bulb.
When the temperature rises to T, the column of mercury in the
capillary tube has length proportional to T; the centre of
gravity of the thermometer will have been moved a Aistance in
inches equal to M times the square of T, where M is the mass of
mercury in the new galactic units that we have recently been
ordered to use. And so you will have to measure very

accurately."

Dr Able and Dr Baker were confident that they had the best
instruments in the country for measuring the position of a centre
of gravity, and a week later they were able to show Dr Charlie
their results, the position y of the centre of gravity in

millionths of an inch as a function of the temperature T.

Temperature T o’ 6 12

Position y 24 2 40
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"One little difficulty" said Dr Charlie "is that if you
plot the points (y, Tz) on graph paper you cannot draw a
straight liné through them. But that is no worry, we have
two good statisticians in the Institute, Dr Dog and Dr Easy,

just ask them." Both cheerfully took on the problem.

Dr Dog reported "It was a straightforward calculation.
The best fit is the formula y = a + sz, where a and b are
chosen to minimize the sum of squares of the deviations, that
is to minimize Z(a + pT2- y)z. If we do that we find the
formula y =12 + T2/6,
and remembering that y is in millionths of an inch, we have
M 12 = 107% 1%/,

so that the mass of Mercury is M = 1/6,000,000."

Dr Easy told them "In my experience the errors in this kind
of measurement have a negative exponential distribution, and so
by the principle of maximum likelihood the best fit is given by
y =a+ bT? where a and b are chosen so as to minimize the
function E|a + bT?- yi. This gives y = 24 + T2/9, and so

the mass of Mercury must be M = 1/9,000,000."

Temperature T o’ 6° 12°
y from data 24 2 40
y by formula D 12 18 36
y by formula E 24 . 28 40
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MASS OF MERCURY (4)

There are fearsome computational problems involved in the
traditional methods of estimating the mass of Mercury by using
his perturbation of the orbit of Venus. In planning a reliable
calculation it is hard to avoid the numerical solution of the
six-body problem, for the gravitational fields of Venus, Jupiter
and Earth as well as of the Moon all cause perturbations of more
than a tenth of a second of arc (rather more than that caused by
Mercury) in the position of Venus as seen from Earth.
Consequently there might be interest in exploring an alternative
method using the theory of almost periodic functions. ’ )

§1 The gravitational field of a small planet
Consider a planet of small mass €, rotating in a circular

orbit of radius b about a sun of mass 1-€. The angular
velocity » and the constant of gravitation G are related by

b3w2 = G. Use polar coordinates (r, ¢), with the origin at
the combined centre of gravity of planet and sun, and with the
initial line through the planet. How does the gravitational

potential differ from the unperturbed potential G/r due to
unit mass at the origin? The perturbation comes from the
gravitational attraction of the planet itself and from the
fact that the sun is displaced by the planet. We work to
first order in the small parameter ¢. It is not hard to
calculate that the perturbing potential, at any point (r, 4)
with r > b, may be expressed in terms of Legendre polynomials
as:-

n, n+l

€G Z:=é (b /r ) Pn(cos 8)

§2 Perturbation of a circdlar orbit

Consider a test particle of negligible mass in a circular
orbit of radius c > b, with rate of rotation o given by
c302 = G, How will it be perturbed by the gravitational

field of ¢ = €6 £n_ B"r "1 p_(cos(s - wt))
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given by §1 above? (Now we use a fixed coordinate system)

Y X

ot

We shall calculate how the perturbation (x, y) (see the
diagram above) from the unperturbed position (c, ot) depends
on the corresponding perturbing forces (X, Y). The equations
of motion are:- '

a’rsat? - r(assat)? = -g/r? + x
and (d/dt) (r2ds/dt) = ry

Working to first order in x, y, X and Y, the first
gives dzx/dt2 - 20dy/dt - 302x = X

and, from the second, taking Y* as the indefinite integral

(with mean zero) of Y, 2x0 + dy/dt = Y*
The first equation then gives:-
dzx/dt2 + x0? = X + 20Y*

The periodic terms of the solution, the only ones we want, are
now easily found.

Next, what are X and Y?

The Legendre polynomial Pn(cos ) can be expressed as a

finite Fourier series,

Pz(cos g) = (1/4) + (?/4) cos 2¢
P3(cos 6) '= (3/8) cos ¢ + (5/8) cos 3¢
P4(cos 0) .= (9/64) + (5/16) cos 24 + (35/64) cos 44,

and in general:-
1-2n (2n) 2-2n (2n-2
n .

n-1 )cos(n—z)a + ...

Pn(cos 8) = 2 cos né + 2

The perturbing potential ¢ is therefore a sum of terms of

the form bnr-n-lcos(mo—mut), where 0 < m < n and n-n is
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even, each such term with a factor which is a known multiple

of the small parameter €. Such a term contributes to the

n-Zcos(mat«xm.;‘t:);

force X = 3&/3r an amount -(n+1)b"c”
similarly the contribution to Y* is the indefinite time-

integral of Y = (1/c)d¢%/34, which is Y* =
-n-2

(o—w)_lbnc cos(mot-mwt). Thus we come to the DE:-
c12)</dt2 + xo? = (1—n)bnc_n-2cos(mat—mwt)‘
n-1)p"c™""2
with solution X = é———l—zr————i cos{mot-mwt)
me(o-w)® ~ o7
and, for vy, dy/dt = Y* - 2x0

mz(a—w)2 - 02—2(n—1)o(a—w) bnc-n—2

(0=0)(n?(0-w)2 - o2)

cos(mot-mwt)

mz(a—w)z—az-Z(n—l)a(a-w) -n-2

2(a_w)2 _ 02)

b"c sin(mot-mwt)

ma(a—w)z(m
These displacements x and y are what we hope to detect amongst
the Fourier components of some observable function. For the
perturbation of Venus by Mércury, we note that their rates of
rotation are respectively 1-.625 and 4.15 rotations per year,
(corresponding to o and « respectively) and so by looking at
the formula above we see that the terms with m = 1 are the
only ones worth considering. The possible values of n are
therefore 3, 5, 7, ... and of these the term with n =.3 is the
most significant. Therefore let us concentrate our

attention on the perturbation potential:

eGb3r—4P3(cos(9-wt)) of which the important term is

4

(3/8)5w2b6r- cos(f-wt). The resulting displacements are

5 w

6..
€ bc o=20

cos(wt-0ot)

>
1]
W

®jw

6,5 w(w? + 200 - 402)

3 sin(wt-ot)
(w=0) (w—=20)

Yy =-%€b

These displacements have a period of 145 days. If we
consider the perturbation of Earth by Mercury, similar

|
]
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considerations apply, and we find smaller displacements, with

a period of 116 days.

§3 The unsolved problems

If we had complete knowledge of the position of Venus,
then we could compare it with the position predicted by
Kepler’s laws, and the difference would be a small uniformly
almost periodic function (caused by the masses of the planets
not being negligible) from which we could extract the
appropriate Fourier component, thereby giving the mass of

Mercury.

E

One difficulty is that what we can find by observing the
celestial longitude of Venus is (see diagram above) the ratio
(x sin 6§ + y cos §)/(length EV). The angle § and the length
EV can be calculated for each observation, but where is there
an almost periodic function from which we can extract the

Fourier components?

Another difficulty is that.although the right ascension and
declination of Venus have been observed many times over the last
200 years, the times of the observationé have not been either
uniformly or randomly distributed. They have been when there
has been no cloud, and when Venus has not been too close to the

Sun 9or the Moon, etc. Have we any theory of numerical
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integration to cope with data like this?

Our simplification of the problem by taking all the
planetary orbits to be circular and coplanar, and by taking all
planets except Mercury to be infinitesimal test particles, will

of course introduce errors, but probably not large ones.

Of some relevance, perhaps, is the note HARBOUR MASTER’S
DILEMMA, page 3148 of JCMN 30, December 1982. It asked for how
long the harbour master had to observe the water level in the
harbour before being able to predict the tides. We have not
had an answer yet. That question, like this, is one of finding
the Fourier components of an almost periodic function from

experimental observations.

Your editor is reminded of the story of the present main
runway of the airport at Townsville in North Queensland. About
30 years ago the Federal Government allocated money for building
a new runway, and the officials in the South sent orders that the
direction of the wind should be observed every morning at 9 a.m.,
and the measurements should be sent South. They presumably
analysed the results with care (did-they even use a computer?),
and finally sent orders that the runway should be aligned in the
direction 020° - 200°. Visiting air pilots sometimé; ask why
the runway was built at right angles to the prevailing wind,
which as all the local people know is from the East, though the

mornings are usually calm.
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MATHEMATICAL DEMOCRACY (JCMN 55, p. 6036)

This year (1993) democracy is 2499 years old, for it can be
said to have started in the city-state of Athens in 507 BC with
their adoption of a new method of government. That first
democratic constitution lasted for 185 years, and since 322 BC
it has never been copied in Athens or anywhere else, but the name
"democracy" has lived on, being attached to a great variety of
systems.

The (to us) unusual feature of the Athenian system was that
there was no election of representatives —— all decisions were
taken by a meeting (called the ekklesia or exxino.a) of all the
voters, this body had absolute power. What happened was that
only a small proportion of the voters turned up at the meetings,
which were every 10 days. On whether the system should be
called a success, opinions differ. In a recent article

' (Cambridge 1992) Peter Jones wrote "The philosopher Plato and the

historian Thucydides had little time for democracy. Plato for
one regarded ruling as a high skill and could see no reason to
make it open-house for any Tom, Dick or Harry (any more than we
would give anyone the chance to practice brain surgery)."

The Romans at about the time of the Athenian democracy
started their "Senate", showing the beginnings of the modern
system in which voters elect representatives who rule the
country. All over the world now there are variants of this
general idea; most readers of the JCMN will be familiar with at
least one such system and with its good and bad features.

In Australia there is a reasonably good voting system for
elections to both State and Federal parliaments, that of the
"transferable vote". In essence the election system is that
each voter puts all the candidates in order of preference; the
algorithm for processing the votes is that at each step the
candidate with the smallest number of first preferences is
eliminated from the lists of all the voters. This step is
repeated until only one candidate remains. Some Australians
may say that this method does not give good members of Parliament
or good government (your editor is trying to be impartial on this
question!), but if this is so the fault is probably more with the
voters than with the voting system. An interesting attempt to
pervert the voting system is now being made —— each party gives
to its supporters instructions on how to allocate their
preferences, and before an election the parties negotiate with
one another about this allocation of preferences, for instance
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one might say to another "We will give you our second preferences
if you give us yours". It is not known just how many voters
follow their party voting instructions, but probably most do.
If all did, then what would be the effect on the election result?
Would it give the same result as a "first past the post" system
of counting the votes? A tricky question in the theory of
games.

A system of voting to elect the members of a parliament is
an algorithm for data processing, its input is the opinions of

the voters, and its output is the elected Parliament. Like all
such algorithms it obeys the principle of "garbage in — garbage
out".

Mathematical statistics faces the same problem; it applies
algorithms to process data, and to give good answers it needs
good data. We talk of "robust" algorithms, those that can cope
with bad data to a certain extent, but there are limits to what
can be done in this direction. A simple example is when we
have many measurements of a single unknown quantity. If the
likely flaws in the data include a few big blunders then it is
a good idea to use the median of the data as the best estimate
for the true value of the unknown, but if what is wrong with the
data is a lot of small errors in all the values, then the mean
is better than the median. Traditionally the median is called
more "robust" than the mean, but it would be hard to lay down a
general definition of the word "robust". See John Parker’s
note DIRTY STATISTICS IN A DIRTY WORLD, pages 6234-6235 of this
issue.

The lesson for mathematical democrats and statisticians is
the same — to get an appropriate algorithm for any particular
problem you should have an idea of the imperfections that you
expect in the data. You can change an algorithm to guard against
one kind of fault in the data, but only at the expense of making
your algorithm more vulnerable to another kind of fault. In
order to get a good democratic election system we should look at
the nature of the voters, to what extent they are misinformed or
stupid or selfish? Not easy!

The average voter in ancient Athens probably did not have
the knowledge or wisdom or patience to make good decisions on all
the questions that came up —— taxation, road maintenance,
foreign alliances, naval ship-building policy, the design of
theatres, the major civil and criminal law cases, etc., and so
the ekklesia tended to be swayed by the speeches of orators,
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often men of ability and patriotism, the name of Pericles comes
to mind. In the modern world there are newspapers playing the
part that was played in ancient Athens by the orators, trying to
influence the voters. What are their motives? Are they as
successful at influencing voters as the Athenian orators were?
Do they influence the government through influence on the voters?
In fact the ekklesia demonstrated what has been called (by
R.A.Lyttleton) the "Gold effect", first described by Professor
T. Gold (Lying Truths Pergamon Press, Oxford, 1980): this
phenomenon is that when a lot of people come together to discuss
some controversial question on which opinions are initially
widely spread, they will change to the condition in which most
of the people are agreed on some opinion, often an extreme one.

In the Roman or modern systems of representative democracy
the voters do not have to make decisions on all those difficult
questions that arise for governments, they have only what might
seem an easier task —— to choose honest and competent
representatives; but how successful are they? Is it really
an easier task? The situation is complicated by the existence
of political parties. Many people will vote for a party rather
than for a person, so that most members of Parliament are there
not because the voters think thenm competent and honest, but
because of having been chosen by their party machine; what sort
of candidates will a party organization choose? Presumably
the ideal candidate is one likely to be loyal to the party rather
than one that wants to ensure that the country is governed well,
and probably the ideal candidate is one who will be conscious of
having been elected more because of party sponsorship than
because of personal worth.

What motivates a political party? In the language of
decision theory, what is the party’s objective function?

One of the by-products of the party system is that
newspapers tend to present elections as contests, with winners
and losers; and because the election is treated in the same way
as (and reported by the same journalists as) a football match or
a horse-race, it gets the same .treatment, that the newspapers
like to print predictions of the result before the event. Is
it that journalists understand the "Gold Effect", and therefore
try to use their predictions as a means of influencing the
results of the election? There are many interesting problems
awaiting those who try to analyse democracy.




~-6250-

ORTHIC LIMIT POINT OF AN ISOSCELES TRIANGLE
(JCMN 60, p.6209)
T. C. S. Tao (Princeton)

The orthic limit point of a triangle is the limit of the
infinite sequence of triangles, starting with the given one,
in which each is followed by its orthic triangle. To avoid
the ambiguity of degenerate triangles we define the orthic
triangle of a degenerate triangle ABC with A = B to be the
triangle with three vertices all at A. Thus the orthic

limit is defined except when the three vertices are in a line.

Now consider the case of an isosceles triangle ABC.

A >

orthic limit point

Let £(y) be the function indicated in the diagram above.
An isosceles triangle has base length = 2, with vertices at
(*¥1, 0) and (0, y), with the orthic limit at (0, f(y)). We
want to regard this as a definition of the function f for all

non-zero values of the variable. It will be sufficient to
consider just the two cases, © between 0 and 45° and between
45° and 90°. With the relation f(-y) = -f(y) these ‘cases
cover the whole real variable except zero.
A
cos26
1
- - \ t
/r 4 2 \\ -~¢0528
b
AY
sin 28 A . = AT A
\ 510 20 ~
\ ~
\ ~o.
B 4 20 ) _JH} ( (6\C

Use the fact that the orthic limit of ABC is_the orthic
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limit of its orthic triangle, then from either diagram we can
find the relation

f(tan 8) + cos 26 f(tan 28) = sin 28 ceees (1)

To find a solution for this functional equation, put
g(e) = f(tan 8) sin 26
2

giving g(®e) + %g(28) = sin“26 ... ..... (2)
with the obvious solution
.2 . 2
g(e) = sin2e - = 48 22 8¢ _ ... . (3)

This is not the only solution of (2), but is it the right
answer? From (1) we find that f(y) = f(1/y) and so g(w/2-6)
= g(8) = g(-98). Therefore g has period w/2. The geometry
tells us that f is integrable, and continuous except possibly
at zero, therefore g is the Fejér sum of its Fourier series,

™8

of the form ﬁao +
n

lan cos 4n8

From (2) it is clear that the only possible values of n in
this sum are powers of 2, and so (3) is right.

We know the orthic limit point for an equilateral triangle
and for a 45°, 45°, 90° triangle. These tell us that f(/3)
= 1//3 and f(1) = 1, agreeing with (3).

The series (3) may be written

g(e)y = 1/3 + kz (-2) Xeos(2¥"tey ... (4)
=1

This has a look of non~differentiability, for recall that
the first example (due to Weierstrass) of a continuous
function nowhere differentiable was

o

s a" cos(bnwx) where 0-< a <1 and ab > 1+3w/2.

n=0

The numerical evidence given in JCMN 60, pp. 6209-6211
hints at non-differentiability of f and g, (the function there
is x£f(1/x) in our present notation). Where is the function
g given by (3) or (4) differentiable?
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ADDING NUMBERS 2 (JCMN 60, p.6203)

This old problem of Harzheim and Erdés asks: for integer

sequences such as

R v
0 < a, < a, < .. a, <n with the sums zj=u aj all

distinct, is k = o(n)?

Consider the following sequences, the first is that
generated by the greedy algorithm, on which subject readers may
recall the comments of George Szekeres in JCMN 47, p.5125,
SEQUENCES WITHOUT ARITHMETIC PROGRESSIONS. All three

sequences satisfy the given condition with n = 40.

1 2 4 5 8 10 14 21 25 26 28 31 36 38
2 3 4 6 8 11 16 17 20 22 24 30 38
2 3 4 6 8 11 16 20 22 24 26 30 31 33 38

For each n we want to find the sequehce with the biggest
k. Of the three sequences above, the first is best for n = 10
9)

(it gives k = 6), the second is best for n = 20 (giving k
and the third for n = 40 (giving k = 15). Therefore we
cannot hope for the greedy algorithm, or any other algorithm,

to give us a "best" infinite sequence, in which we may see how

k depends on n. .

Consider the following modification of the problem.

Take an integer T 2 0 and consider integer sequences such as

0 <a; <a, <...x a3 <n for which the sums zj:u aj
with v-u < T are all distinct. For each n there is a
greatest possible k, and we define F(T) as lim sup n/(max k).
Then n/k 2 F(T) + o(1l) for large n. It is trivial that

F(0) = 1, and it is easy to show that F(1) = 3/2, the critical

sequence consists of the integers not divisible by 3.
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‘

Now let us take the case T = 2. Conjecture — is F(2)

= 2? In other words we are concerned with sequences of

integers 0 < a; <a, < ... < ap < n such that the a;,

the sums of adjacent pairs, such as a, + and the sums of

i 8541

adjacent triples such as a; + aj + are all unequal.

i+1 83427
For each n what is the largest possible k? Is it close to

n/2 for large n?

There is‘'a little evidence bearing on this conjecture

that F(2) = 2, as follows.

We know that F(2) £ 3. This is easily shown by the the
Eequence of integers = 1 or 2 or 7 or 8 (mod 12), the sum of
an adjacent pair must be = 3 or 9, and of an adjacent triple

must be 2 4 or 5 or 10 or 11. Could this bound be improved?

The following values of k are attainable (i.e. they are
the best I have been able to find), but it is hard to discover

if they are maximal.

n 10 20 40 80 160 320 640 1280

k 6 11 22 43 82 160 320 635

For example, k = 22 with n = 40 is given by the integer
sequence: -
2, 3, 4, 6, 8, 11, 12, 15, 20, 21, 22, 24,
26, 28, 29, 30, 32, 33, 36, 37, 39, A40.
and k = 43 with n = 80 is given by:-
2, 3, 4, 6, 8, 11, 12, 15, 20, 21, 22, 24,
26, 29, 30, 32, 33, 36, 37, 40, 42, 44, 45, 48,

49, 51, 52, 53, 54, 57, 58, 60, 61, 64, 66, 68,
70, 71, 74, 75, 76, 78, 80.
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POLYNOMIAL INEQUALITY 1 (JCMN 60, p.6221)

Cecil Rousseau
(Memphis State University)

Let f(x) be a real polynomial of degree n with -M < f(x)

. 2
< M in the unit interval. It was asked if [f’/(x)| < 2n“M.

This is Markoff’s inequality, due to A.A.Markoff, 1889.
In Natanson’s Constructive Function Theory, Volume 1, there
is a proof, but it fills four pages, and so we shall not

reproduce it here.

The question is given as a problem in the Aufgaben und
Lehrsatz aus der Analysis of P6lya and Szegd (Problem 83 of
Part 6 on page 85 of Volume 2 in the 1970 English

translation).

QUOTATION CORNER 41

There are two sides to every question until the truth is

known.

—— C. S. Lewis, in Transportation and other addresses.

QUOTATION CORNER 42

One of the greatest pains to human nature is the pain of

a new idea.
—— Walter Bagehot.

(Both these quotations are from R. A. Lyttleton)
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HYPERPLANES PARTITIONING N-SPACE (JCMN 60 b. 6223)
Terry Tao
(Princeton University, U.S.A.)

In the note from Mark Kisin we saw that k hyperplanes in

general position divide n-space into
_ k k K k
f(n, k) = (0) +(1) +(2) tooee +(n)
regions. How many are bounded and how many unbounded?

Let g(n, k) be the number of unbounded regions. Draw a
large hypersphere about the origin. The hyperplanes divide
the sphere into g(n, k) regions, and this number will be
unaltered if we move the hyperplanes, each parallel to itself,

«to go through the origin.

Now we choose one of the hyperplanes, and consider the

half-sphere on one side of the chosen hyperplane. This
half-sphere is divided into g(n, k)/2 regions by the other k-1
hyperplanes. Draw a hyperplane tangent to the sphere
parallel to the chosen hyperplane. Project the half-sphere
radially on to the tangent hyperplane. We have the tangent
hyperplane (a space of n-1 dimensions) divided into g(n, k)/2
regions by k-1 hyperplanes in general position. Therefore
g(n, k)/2 = f(n-1, k-1).
_ k-1 k-1 k-1

gtn, k) = 2 }TH) o+ oK)+ e (T

_ k-1 k-1 k-1 k-1 k-1

= e (090 OU)) (00 + (9)) + oo+ (30D

_ k k k k-1

= (5 (5 2 (W5 +(n1)

The number of bounded regions in the original pattern is
therefore equal to

e, ;0 -9,k = () - (R0) = ()

Is there an easier proof?
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ARITHMETIC PROGRESSIONS FROM PASCAL’S TRIANGLE
Stanley Rabinowitz
(P.O. Box 713, Westford, MA 01886, U.S.A.)

1

1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
Write down any row of Pascal’s triangle. Below it,
write the next row, omitting the initial "1v. Divide

corresponding entries of the first row by those of the second.
The result is an arithmetic progression.
For example, rows 6 and 7 yield the progression.

1 8 15 20 15 6 1
7' 1 357 357 1’ 7! 1
n k+1 [ n+1
The proof follows from (k) o+l <k+1)'

Adjacent diagonal lines have a similar property, for

1 5 15 35 70
exanmple 1 2’ 10’ 30’ 35¢ +--

PLANE TOPOLOGY

In the plane are n nodes, numbered 0,
1, ... n-1 (mod n). There are n curves {
C(j), numbered the same way. The curve
C(Jj) Jjoins'the nodes numbered j and j+1, 8
Each curve 6

and contains no other node. A

meets every other curve just once, having a node in common
with each neighbour, and crossing each of the other n-3.

Note that "crossing" is meant in the strict sense — crossing
from one side to the other. Prove that n is odd.

This problem derives from an old question of J. Conway.
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EASY QUESTION’
Paul Erdés

(Mathematical Institute, Hungarian Academy of Sciences, Budapest)

I thought that the following question was difficult:

Denote by a; <a, < the integers (1, 2, 3, 4, 6, ... )
that are of the form 2u3B. Prove that every integer can be

written in the form 5

n==3a;; a;/) ay

i.e. every n is the sum of a set of these integers, of which
no one divides any other. I was wrong, Jantzen and many
others found the trivial proof by induction, this is almost

 too easy for the JCMN. (But not quite —— Editor)

Savin and I proved the related result for integers

composed of 2, 5 and 7. Every number n > 31 can be

expressed in the form

each a = 2%87,

n=7%a; where a; )4 ay and

MEDICAL RESEARCH IN AUSTRALIA

The Australian Broadcasting Commission on 6th February
broadcast a talk by a former Director of the Florey Institute
for Medical Research in Melbourne. He described with pride
how his colleagues had investigated the nature of thirst.
They had performed a novel form of surgery on an animal to
ensure that any water that the animal drank should not enter
its stomach. Then they succeeded in obtaining the striking
result that the animal continued to try to relieve its thirst

by drinking water.




-6258-

ORTHOCENTRES IN PHOTOGRAPHY

Geometrically we may regard photography as radial projection
on to a plane. This is clear in the case of a pin-hole camera,
and for the usual camera with lenses it gives a good
approximation to the geometry. For simplicity think of a pin-
hole camera, and take Cartesian coordinates with origin at the
pin~hole, Q. Suppose that scene being photographed contains
a brick, or a rectangular block, showing edges at right angles
to one another. Then we choose our Cartesian axes parallel to the

edges of the rectangular block.

On the picture, or in the extended plane of the picture, we
see three "vanishing points", one for each of the three
directions of the edges of the block, the points where the
parallel lines meet. These points must be where the Cartesian
axes meet the plane of projection, which is the film or plate.
Let the vanishing points be A, with coordinates (i/u, 0, 0), B
with coordinates (0, 1/v, 0) and C with coordinates (0, 0, 1/w).
Then the plane on to which the picture is projected (the film or
plate) will have the equation ux + vy + wz = 1, because it is
through these three points.

It is easily verified that the foot of the perpendicular
from A to BC is (0, v/(v?+w?), w/(v3+w?)), and similarty for the
other two perpendiculars. The orthocentre H of ABC is
therefore the point (u/(u?+vi+w?), v/(u?+vi+w?), w/(ut+v+w?)),
which is the foot of the perpendicular from Q on to the plane of
projection; it is where the axis of symmetry of ﬁhe lens system
meets the plane of the film, and in most cameras it is in the

middle of the negative.

Now start from the other end, suppose that we have only the
picture, what can we find out about the ¢camera and the scene that

was photographed?
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.

We have the vanishing points A, B and C (if there was a
brick in the picture) and therefore we have also the orthocentre
H of ABC. The point Q is on the perpendicular to the plane
from H, and is at a distance from H equal to the focal length of
the lens systemn. In our notation above QH = 1//(u?+v?+w?), and
u, v and w may be related to the parameters of the triangle ABC
as follows.

a? = 1/vi+l/w?, b? = 1/u?+1/w?, c? = 1/u?+i/v?
Therefore 2/u? = b?+c?-a? = 2bc cos A, and u? = sec Av/(bc), etc.
and we can express the focal length of the lens system in terms
of the triangle parameters by:-

QH? = 1/(u?+v?+w?) = abc/(a sec A + b sec B + c sec C)

= bc/(sec A + sec B sec C)

= bc cos A cos B cos C /(sin B sin C)
= 4R? cos A cos B cos C

= -R?(1 + cos2A + cos2B + cos2C)

where R is the radius of the circumcircle of the triangle ABC.

Now recall the orthocircle or orthic circle, the circle with
respect to which the triangle is self-polar, see ORTHOCENTRES,
JCMN 51, p.5220 and TRIANGLE GEOMETRY, JCMN 58, p.6127. The
orthocircle has centre H, and the square of its radius is
-4R?cos A cos B cos C, (it is an imaginary circle when, as in
this case, the triangle ABC is acute angled). The point Q can
therefore be characterized as the point such that the sphere of

zero radius round it meets the plane of ABC in the orthocircle.

If, as sometimes happens, one of the three perpendicular
directions is known to be vertical, say the direction QA, then
the angle B between the axis of the camera and the horizontal is
easily calculated.

sin B = /(cot B cot ¢) and cos B = J(cos A cosec B cosec C).

Exercise for the student: Given a photograph of a plane
rectangle, and knowing the point H (the middle of the negative)

can you find out if the rectangle is square?
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PENDULUM CLOCKS (JCMN 57 pages 6107-6109)

As explained in JCMN 57, p.6107, the pendulum of a typical

clock is not like a rigid body pivoted about a fixed axis.
Instead of being on a pivot, it hangs by a short length of
flexible steel strip. How does this affect the time-keeping
of the clock? '
Take a simple model. A 1light
flexible rod is vertical, fixed at the top,
and has a heavy particle at the bottom, what
is the period of small vibrations? Let- M
be the mass of the particle, let K be the
ratio bending moment/curvature for the rod,
and let g = gravity.
Then /(XK/Mg) has the dimension of a length, call it k. If ¢
is the length of the rod the period of small vibrations is

2x/(€¢ - k tanh(£/K))/q
If you are teaching a mechanics class, this might make a nice
little question for them, helping to refresh their skills in
first year calculus.

In actual clocks the ratio k/¢ is small, of \4:15
the order of 1/50, in fact only the top part of
the rod is made flexible. In our next
calculation, studying a flexible pendulum with
non-small displacement, we assume £ to be large. .
We take the pendulum to be a long weightless
flexible wire with the bob, a particle of weight
W = Mg, at the bottom, the parameters K and k =
J(K/W) being as above.

Consider the static problem of the pendulum
at rest with the top fixed at an angle B to the
vertical. The wire hangs in a curve with a
vertical asymptote (thinking of ¢ as infinite).
What is the sideways displacement, x, of the bob
(or of the asymptote)? And what is the vertical #@
displacement y of the bob caused by turning the $
top through the angle B? X
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The curve has radius of curvature K/(Wx) at the top.

Consider increasing 8 to B+ds. The curve remains the same
shape except for an extra arc of length (K/Wx)dB added at the top
and an equal length removed from the bottom. Therefore dx =
(K/Wx) sinB dB. This gives us a differential equation for the
relation between x and 8. The solution is x = 2k sin(B/2).
By similar reasoning 4y = (K/Wx)(1 - cos B)dB8, and by using the
value found for x, dy = k sin B8/2 dB8. Solving this

differential equation we find that y = 2k(1 - cos (B/2)).

The elastic potential energy. in the rod is 4/KW sin®B/a,
equal to the gravitational potential energy.

Now we are in a position to consider the pendulum swinging,
and more particularly to find out how the motion differs from
that of a pivoted pendulum. In particular we want to find out
how the "circular error" factor differs from the (1 + a?/16) that
is known for the pivoted pendulum (where a is the swing from the
vertical). We are investigating the question asked in the
first contribution (page 6109) — does this suspension decrease
or increase the circular error of the pendulum?

Make the. quasi-static assumption, that the elastic
distortion of the pendulum rod is always what it would be if at
rest with the force from the bob equal to what would be predicted
by simple pendulum theory.

The simple theory tells us that if the bob has weight W and
the pendulum swings through an angle a each side of the vertical,
then the tension at the bottom of the rod when it is at an angle
B to the vertical is W(3cosB - 2cosa).

Now consider our model. - We take units so that the
acceleration of gravity, the mass of the bob and the length of
the rod are all = 1. Some readers may be worried because on
the previous two pages we have been assuming that the length is
infinite. But actually 1 is a good approximation to infinity
in the relevant sense here, of being large compared with K/W.
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For a typical grandfather clock,
the parameter k = /(K/W) is about 1/100
of the pendulum length. e

Our first calculation showed that
the main effect of having a flexible
suspension instead of a pivot is to
reduce the effective length of the
pendulum from ¢ to ¢-k, but we are more
interested in how the period depends on

the amplitude.

The parameter k, the angle £ and
the angle a (the maximum of B) are all
small, and from now on we shall discard
the higher powers of these quantities

as seems appropriate.

<L

s
From simple pendulum theory, the

force on the end of the pendulum rod is

1+ 02 - 332/2, therefore (see diagram)

w =

x = 2/(K/W) sin B/2 = KkB(l - a’/2 + 178%/24)

Yy = 2/(XK/W)(1 - cos B/2) = (kB%/4)(1 - a%/2 + 3582/48)
Elastic potential energy = (k52/4)(1 + 02/2 - 3732/48)

Height of bob = (8%/2)(1 - 8%/12 - 3k/2 + 3ka 2/4 - 31k8%/32)
The coordinates of the bob relative to fixed axes are

(sin B - x cos 8 - ysinB, 1 - cos B - x sin 8 + y cos B).
Differentiating, squaring and adding, we find the square of

the speed of the bob to be

((1-y)dB/dt - dx/dt)? + (xdB/dt - dy/dt)>2
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The second term can be discarded, every term in it being too
small for our level of approximation. Thus we have the

kinetic energy, which added to the gravitational and elastic
potential energies must give a constant, the value at the end

of the swing:; this gives us the equation: -

1

2(a8/at)%(1 - K)2(1 + ka? - 19kB2/4) = kinetic energy

1® - 85)(1 - k) (1 - o®/12 - 82,12 - k(7a® + 238%) /16).

1]

To find the period, change the variable by putting 8
a sin ¢, then (with the integrals being over 8 from 0 to a or
over ¢ from 0 to 7/2)

a2 - BZ d
dBs/dat

: _ das _
Quarter-period = EE75E = J

= 1-% % f 1 + o®(1/24 + 23k/32) + 8%(1/24 - 53k/32) de

= JT-X% (1 + (a?/16)(1 - 7x/4))

[IE]

This shows that the use of the spring suspension (instead
of a pivot) deéreases the circular error, but, in most of the
clocks that youf editor has come across, makes little difference
to it. In fact a careful designer of a pendulum clock would
hesitate to use a large value of k because it would tend to make
the timekeeping more dependent on temperature; in the factor
J(2 - k) the length 2 will increase and the k will decrease with
rising temperature except when certain rather special alloy

steels are used.
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PLATONIC SOLIDS

Consider the following three of the Platonic solids:

faces edges vertices
F E v
Tetrahedron 4 6 4
Octohedron 8 12 6
Icosahedron 20 30 12

They all have the property that 3V = E + 6, which means that
if you make a model, using lengths of plastic drinking straw for
the edges, and lengths of thin elastic threaded through the
straws to hold them together, then each becomes a rigid body.
The other two Platonic solids, the cube and the dodecahedron, do

not have this property.

Those of our readers who (like the Editor) have grand-
children living far away, may note how these models, sent in the
form of their parts, make convenient birthday presents. They
may be accompanied by little lessons in mathematics.

As the makers of plastic drinking straws often produce them
in several different colours, the idea of edge-colouring of a
graph may be introduced. For the three solids listed above,
the number of edges meeting at each vertex is 3, 4 and 5
respectively; and this is the chromatic number, in the sense
that with this number of colours it can be arranged that no two
edges of the same colour meet at a vertex.

Edge-colouring leads naturally to the idea of a Hamiltonian
circuit, that is a closed path visiting every vertex just once.
In the case of the tetrahedron ond in the case of the octohedron,
the paths that use only two of the edge colours are Hamiltonian.
What is the corresponding property of the icosahedron?



