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The permanert editor will take over the reins again in October.
He would like to hear from you about anything connected with

mathematics or Jameg Cook, R.N.

Send your contributions to -
Prof. B.C. Rennte,
Mathematics Department,
James Cook Univeristy of
North Queensland,
Tounsville, 4811
Ausgtralia.

JAMES COOK MATHEMATICAL NOTES

Issue No. 26, Vol. 3

September, 1981.

The Crest of James Cook University of

- North Queensland incorporating a rep-

resentation of Captain Cook's ship the
Endeavour in full sail.
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KNOWING THE ANSWER

Sometimes I tell students that to solve a difficult problem it
is a good idea to find the answer first. They think I am joking.
And in a way I am. But there is a sense in which the idea can be
taken seriously.

Last month a friend told me that in the inequality

1 1
J (f’(x))zdxj (g'(x))zdx)]”2
0 0

1 1 1 1
lI f(x)g(x)dx - I f(x)dx[ g(x)dx| < E[
0 0 0

he doubted if 1/8 was the best possible constant. Could T find out?
The problem looked difficult. I coult not even see how to prove the
given inequality, and so what hope had I of discovering 1if there was
a better one? At times like this 1t sometimes pay to fall back on
the method of finding the answer first.

Try to find what the best possible constant 1is. This is a
reasonably straightforward exercise in the calculus of variations,
to find functions f and g on the interval (0, 1) such that f minim-
izes the integral of (f')2 subject to the integrals of f and of fg
being given, while g simultaneously satisfies a similar condition.
The usual method leads to a pair of differential equations for f
and g and the solution is that f(x) and g(x) are both of the form
a+ b cos mmx (with m an integer). This indicates that the relev-
ant min{mum is with m = 1, and that the appropriate constant in
the inequality (to give equality in the critical case) is 1/"2
instead of 1/8. Such a use of the calculus of variations does not
establish an inequality, but it indicates one that should be worth

investigating.
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Consider trying to prove:

[Jaofenfon

There is a factor "—2 telling us that trigonometric functions

1/2
< n? J(f’)zdx [(g')zdx .

probably come into the calculation somewhere, and the fact that cos Tx
glves equality tells us the same thing. The method of proof is almost
obvious. Expand each of the functions f and g in a half-wave cosine
series and the Parseval identity gives what we want. The half-wave
cosine series with terms in cos n7x is the appropriate form of
Fourier series because it corresponds to a continuous periodic

function with derivative having only simple discontinuities.

PERVERSE POLYNOMIALS
C.J. Smyth

Show that

-1

(a) for all n > 2, x" - 2x"" + 1 is a factor of a polynomial Pn

all of whose coefficlients are 0 or + 1

n-1

(b) fornon > 2is X - 2x - 1 a factor of a polynomials all

of whose coefficients are O or + 1.

RANK INEQUALITY
H. Kestleman

If A Is a square matrix and n is a positive imnteger, show that

+
the rank of A" 1 ig at most %(rank of A" + rank of An+2).
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EASY HAHN-BANACH (JCMN 25, p. 3013)

If f is a real Lipschitz function on a finite subset Y of the
plane, then can it be extended to a function F on the whole plane with

the same Lipschitz constant?

Yes. W.A.J.L. Luxemburg writes to say that a general result of
§S. Banach states that if f is a function in a subset Y of a metric

space (X, d) with Lipschitz constant k, then

F(x) = inf f(y) + kd(x, y)
yeY

is an extension of f to X with the same Lipschitz constant.

The proof 1is not difficult: clearly F(y) = f(y) for y € Y, and

for Xy Xy € X, and given € > O

inf £(y) + kd(x;, y) - (inf £(y) + kd(x,, ¥))

F(x,) - F(x,)
1 2 yeY yeY

iA

inf f(y) + kd(xl, y) - (f(yl) + kd(xz, y) - €)
yeY

IA

f(yl) + kd(x, v - f(yl) - kd(x,, yl) + €

kd(xl, x2) +€ .

| A

Since this is true for every € > 0, F(x;) - F(x,) < kd(xy, Xy

Interchanging x, and x, we get lF(xl) - F(x2)|.§kd(x1. X,).

Other generalisations of the result for Lipschitz functions

between normed spaces have appeared. See T.B. Flett (J. London Math.
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Soc.(2)7 1974, pp. 604 - 608). Banach's result appears in his book

"Introduction to the theory of real functions", Monografie Mat. Tam. 17,

P.W.N. Watson, 1951.

MATRIX EQUATIONS (JCMN 24, Vol. 2, p. 146)

We were given an nxn matrix M with distinct eigenvalues, and a
polynomial f of degree k. We were asked to show that the equation

f(X) = M had between 1 and k" solutions. H. Kestelman's solution is

as follows:

By hypothesis we can diagonalize M so that

M=S diag(ll. A ceey A“)S_l, where the jth column of S spans the

2’
eigenvectors of M with eigenvalue XJ.A Choose complex numbers
Z)s Zgs vees T, 8O that f(zr) - Ar (r=1, ..., n). Then

X = S diag(zl, ooy zn)S_1

satisfies f(X) = A. This shows f(X) = M has at least one solution.
To show that there are at most K" solutions, it is enough to show
that every solution X 1s constructed in this way, since there are k
roots of f(zr) = Arbfor any r. Now every solution X commutes with
f(X) and so with A. So Ar(er) = X(Arvr) e X(Avr) e A(th) which
implies that er is a scalar multiple of Vs 83y €V . Then

XS = § diag(cl, ey cn).

One can in fact show that f(X) = M has at least kn_1 solutions.

From the above, we know that the number of solutions is
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n
N (# of distinct solutions to f(z) = Ar).
r=1

Now f(z) = Ar and f(z) = XS have no roots in common for r # s.
Further, any multiple root of f(z) = Xr will be a root of f'(z) = O.
So 1f Rr is the number of common roots of f(z) = Ar and £f'(z) = O,
counted with multiplicity, it follows that f(z) = Ar has at least
nt- Rr distinct roots. Hence f(X) = M has at least ﬁl(k - Rr)
distinct roots. Since | R <k -1, it follows that the smallest
value of H k - Rr) is kK" 1. This is attained when one of the

r=1
polfhomials f(z) - Ar is of the form c(z - u)k.

VARIATION ON A PROBLEM OF ERDéS

n
A problem of Erdos asked whether, given f(x) = I sin(x - ar),
n=1

a_ all real, the ratio of the mean to the maximum of |£(x)] is at most

This was shown by E.B. Saff and T. Sheil-Small in J. London Math.

ENLS]

Soc. (2), 9 (1972), pp. 16-22. They, however, posed another question:

1
Is the ratio of the mean of f(x) to the maximum of lf(x)lat most 7 ?

THE SURFACE AREA OF AN ELLIPSOID
Simple Simon encloses an ellipsoid of semi-axes a, b and ¢
inside one of semi-axes a + §, b + § and ¢ + §. The difference in
volume, he says, 1s A6 to first order in §, whereA is the surface

area, and therefore A = (47/3) (ab + be + ca).

Is this value too big or too small?
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TRIGONOMETRIC FUNCTIONS (JCMN 25, p. 3013)

N
We had f(x) = i]- a_ exp(ib x) (with a_ complex and b_ real),
r r r r
f(n) = 0(1/n) for n large, and were asked if this implied that sinTx

is a factor of f(x).

ALf van der Poorten comments that the fact that f(n) = 0 for n
sufficlently large follows from Turan's Second Main Theorem for power
sums. Then, since {f(n)} 1s a linear recurrence sequence of order at
most N, it follows that f(n) = O for all integers n. Finally, from
a theorem of Ritt which states that any quotient of exponential sums
which is entire is actually an exponential sum, we have that
f(x)/sin "x is an exponential sum, or sinmx is a factor of f(x). A
relevant reference to this clrcle of ideas is the survey article "On
the gprowth of recurrence sequences', Math. Proc. Camb. Phil. Soc. 81

(1977), 369-376 by J.H. Loxton and A.J, van der Poorten.

Van der Poorten suggests that a 'first principles' solution
should be possible. Here is one, based on solutions of J.B. Parker

and Chris Smyth.

Put w, = exp(ibr) (r=1, ..., n). Then, if not all the a

are 0, n
1 ... )

1 1 ajw; W 0

(1)1 (1)2 oo u)N azwz 0

w? w2 w2 . .
1 2 e v N . > ag n + o
N-1 N-1 N-1 ‘' on 6

wl wz e (uN aNmN J

say Vv_ *> 0. However det V = M (w -w), and the v_ 1lie in a
n r<g F 8 n
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compact region of CN\(Q). Hence we can find an infinite subset of the
v which tend to a limit v # 0. But then Vv = 0, so det V=0, 1l.e.
n A

the mr are not all distinct.

However, if w_=w , l.e. b_=b_ + 27k say, then
r 8 r 8
- + ib 1 -
a exp(ibrx) + a_ exp(ibsx) (ar + as) exp(ibrx) asexp( 8x) (

exp(2nikx)).

Since the second summand 1is divisible by sinnx, this identity

epables us to write f(x) as

*
f(x) = f (x) + terms divisible by sin Tx

where
*

* *
f*(x) = ZT a exp (ib x)

* * *
with the mr = exp(ibr) all distinct. But f (n) * 0 as n * <, so by
*
the above argument all the a_ must be O.

16
Generalisation. Given z =pe r (i=1, 2, ..., N) all at least one

in modulus, we shall show that if
4 = iN x (= 2 apr ex (16x))
(x) r=1 arzr r rpr P

and f(n) - 0 as n + <, then f(x) is divisible by sinmx. (Of course
if f contained terms arzi with |zr| < 1 the result would no longer be

true).

The idea of the proof is to first use the previous result to
ghow that the § arz: summed over the z, of maximum modulus is divis-

ible by sinmx. We then 'peel off’' these terms, and show that the
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x
same 18 true for Z az summed over z of second largest modulus, and

S0 on.

Assume as we can that the a are all non-zero, and let

R, > Ry > -eo > R 2 1 be the distinct moduli of the zr's. Then
defining f (x) =

x
3 % az ,we have
<R
ERES

Lemma. If fj(n) + 0 (n + «) then fj(x) -

sinnx, and fj+1(n) +0 (n+», for =1, 2, ..., k.

fj+1(x) is divisible by

-x x
Proof. Let zrj Izr/le. Then Rj fj(x) |z §|-1
x

Since R, > 1, Rj

3 “fj(n)»O(n+m). Clearly } az', »0

r'’r
znjl(l ]
(n » »), so X a z:j +0 (n + =), By the previous argument, this
2yl " |

X -x
implies that . ) N 8,2 Rj (fj(x) - fj+l(x)) is divisible by
r]

ginmx. Hence fj+1(n) - fj(n)-(h and fj+1(n) + 0 (n +» w),

k
Now f(x) = jZl(fj(x) - fj+1(x)) since £1(x) = f(x) and
+1(x) = 0, so the result follows straight from the lemma.

rk
TRIGONOMETRIC INEQUALITY
Find the best possible value (if any) of the constant k in the

proposition that if y is real and n is a natural number, then at

least one of sin y, sin 2y, ..., sin ny has modulus less than k/n.

arztj + arzrj'
=, It
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SERIES BUSINESS
C.J. Smyth

k
ny -
Let f(t) = [ T (1 - ¢ i)] 1, where the n

i=1

1 are positive integers.

R o]
Show that 4f f(t) = ] c t" for [t| <1, then
n=0

f(t_l) =) c ntn for |t} <1,

where ¢, are defined for all j by the recurrence satisfied by the <

3

. for large enough positive n. This is a lemma of Chabauty.

REAL FUNCTION THEORY

1f the continuous real function f(x) has derivative zero for all

irrational x, does it follow that f is a constant?

QUOTATION CORNER (11)

The following comes from J.B. Douglas, with the cryptic remark

that it has Alf van der Poorten's approbation:

Bartoline was as dull at drawing
inferences from the occurences
of common life as any Dutch
professor of Mathematics.

The Heart of Midlothian
W. Scott

I put two and two together and it came out iv.

Wash the blood from my toga, Wayne and Shuester.
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FERMAT ON THE BEACH
C.J. Smyth

You are standing at the water's edge of a straight beach which,
like many beaches, consists of a strip of damp firm sand in front of a
strip of soft dry sand. You want to head for the exit, which is some

way along the beach. What route do you take?

* Exit

Soft sand

Firm sand

Water RYou are here

Firm sand being easier to walk on than soft sand, you most likely
don't go in a straight line, but tend to keep more to the firm sand.
On the other hand, you don't head straight for the point p, the point
on the firm sand nearest the exit, which would give the shortest path
across the soft sand. The reason of course is that by heading towards
some point p' instead, we can make our firm path length significantly
shorter while only very slightly Increasing the soft path length.
One is clearly minimising something: perhaps total walk time, hassle,
or sand in the shoes. 1In any event, whatever it is, it is of the form
clx (firm path length) + €y x (soft path length), and so the situation
is quite analogous to a light ray travelling in two media of different
refraction Index. The interesting point is that by observing walkers
in such situations, their 'refractive index' of sin (angle of Incid-
ence)/sin (angle of refraction) gives the ratio czlcl. lience we can

estimate the walker's relative preference for the two surfaces.
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THE RIG OF A ROWING BOAT

A racing boat with n oars has the crew seated on the centre-line
of the hull with oars numbered 1, 2, ..., n from bow to stern. The
"side'" of the oar numbered j may be represented by the function s(j)
equal to one if the oar is one the starboard side and -1 if on the
port side. There are 2" ways of choosing this function , that is of
rigginé a boat, and it is often possible by moving the riggers to

change from one rig to another.
Al

Most people agree that a boat should have the same number of
oars on the two sides, that 1s Xs(j) = 0, and in fact this rule is
almost universal but not quite. Fishermen in parts of the South

coast of England have traditionally used 5-oared boats, even in races.

However racing boat builders now all follow the principle that
Zs(j) = 0, with the consequence that n must be even. The usual
values for n are 2, 4 and 8, though 6-oared boats were popular in the
nineteenth century. The constraint of having equal numbers on the two

sides reduces the possible ways of rigging an eight from 256 to 70.

Another consideration about the choice of a rig arises as
follows. For perhaps three-quarters of the time during a one-stroke
cycle the oars are out of the water; consequently their weights
together with those of the riggers set up a twisting moment in the
hull, about a fore-and-aft axis. In fact on the section of hull
between oars } and J + 1 the twisting moment is proportional to the
partial sum a(j) = Zials(r). As racing boats are lightly built this

moment has an appreciable effect, partly the temporary one that the
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boat twists according to Hooke's law of elasticity, and partly the long-

term result that after long use a boat acquires a permanent twist. How

can the sequence {s(j)} be chosen to minimize the harmful effects? Of
course the partial sums a(j) cannot all be made zero, for the values
at adjacent points must differ by one. The twists in the sections of
the boat are right-handed or left-handed according to whether a(j) is
positive or negative, and their effect is cumulative, so that we must
consider their partial sums. The quantity b(j) = Xi:;a(r) e

i~i(j - t)s(t) in fact measures how much the part of the boat at

position § 1s listing when the bow section is on an even keel, with

positive sign for a list to port and negative for starboard.

A few examples of rig are given below. 1In each case the three
functions s(j), a(}) and b(j) for j =1, 2, ..., N are set out In rows,
and staggered so that each table is like a difference table upside

down, with b(j) vertically below s(3) for each j.

Conventional four-oar

———
———

"Ttalian" four-oar

s -1 1 1 -1 ‘ l
-1 0 1 0 < T .

~3039-
Conventional eight-oar
s 1 -1 1 -1 1 -1 1 -1
a 1 0 1 0 1 0 1 0
b 0 1 1 2 2 k] k] 4
( ' i | i | i ‘ I )
tGermad'eight-oar
s -1 1 1 -1 -1 1 1 -1
a -1 0 1 0 -1 0 1 0
b 0 -1 -1 0 0 -1 -1 0
g4 Ly >

Looking at these examples, a few generalizations suggest them-
selves. There is a tendency for b(j) and s(]) to be of opposite sign:
in fact Ezb(j) s(j) is always negative. Proving this inequality is a
good exercise for the student (remember that we are considering only
the case where Xs(j) = 0). 1Is it possible to go further and show that

Ib(3) s() < -n/22

Another phenomenon sometimes thought important by rowing theoret-
icians is the fact that the force exerted by a‘blade on the water is
not exactly fore-and-aft, there is a component athwartships and so to
prevent a resulting turning moment (in the horizontal plane) on the
boat we should make b(n) as well as a(n) zero. A more practical con-

sideration is that a racing eight does not travel more than about 30
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feet per stroke, so that if s(l) and 8(8) are of the same sign (that

{s bow and stroke on the same side) stroke's blade will be put iInto

the water stirred up by bow's, that is water which not only is turb-
dent but also has a mean velocity astern. This would be mechanically
tnefficient as well as disturbing to the crew. Trial and error
indicates that the only rig for an eight to satisfy all the constraints
discussed above is the following (or of course the one obtained by

changing all the signs).

s 1 -1 -1 1 -1 1 1 -1
a 1 0 -1 0 -1 0 1 0
b 0 1 1 0 0 -1 -1 0

DISTINGUISHED INVERSE

H. Kestleman
If the rows of an mxn matrix A are linearly independent and
+
m < a, then AAT 1s invertible (A  being the hermitean transpose of A);
+, 4.1
the matrix XO equal to A (AA) is a right inverse of A, 1.e.
AXO = Im' By adding to each column of X0 an arbitrary vector v

satisfying Av = 0 we can obtain infinitely many right inverses of A.

What distingulshes XO from the others?
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THE GROUP OF ROTATIONS OF A SPHERE
C.F. Moppert

Let S denote the surface of a sphere with fixed centre. If Sl'
S2 are two positions of S then S1 can be transformed into S2 by
rotation, i.e. there is an axis A and an angle such that A“sl = SZ.
Every fotation of S has the form Aa where A is uniquely determined
and the orientated angle o is determined up to multiples of 2mw. It

B there 1is CY such that

follows then that given two rotations Aa, B
AGBB = ¢’ where C is uniquely determined and Y is determined up to a

multiple of 2n : the rotations of the sphere form a group G, say.

Everybody knows that. It is therefore rather surprising that
none of the colleagues 1 have asked : which are the generators? was

able to give me an answer.

1 shall prove the (probably well-known)

Theorem Every element ¢’ of G has a representation

o a B! , B}
¢ = algfa? - A

provided the axes A and B are perpendicular. The six angles involved
are unique up to multiples of 2m. 1f the axes A, B are not perpendic-
ular, then not all elements C of the group can be represented in

elther manner.

R

For the proof we look first at the case where Aa, B~ are
rotations of the Euclidean plane about the points A, B by the angles
o, B. Any rotation Aa can be written in the form AY = be where b, ¢

are reflections on the lines B, £ respectively and where ¥ and £
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intersect in A under an ang1e~%a.

Let A, B, D denote distinct points in the Euclidean plane and §

an orfentated angle.

8

1
= a%5Pa%’,

Problem: to find angles a, B, a' such that D

Solution:

k is the circle about A through B. ¢ is the line through D such that

D6 = dg where d 1s the line DA. El' E2 are the points of intersection

of k and §. The points C1 are the points of intersection of the

perpendiculars from A to BE, with ¢ (i = 1, 2). Put ‘i = BCi,
“l = ACi. 'The line AC1 bisects the angle BClE1 and thus aib1 = big.
@ By ay By aj
Putting A = Cbi' B = aic, A = dbi we have B A = a
1
2 By af
As ¢ is a reflection, ¢ =1 and thus B "A = albi = big. It

Bi (1'1 6 [
A = dbibig = dg = D. The angles o Bi' al, §

are the doubles of the angles ClAD, CiBA, CiAB, CiDA.

1ccbi.

ay
follows that A "B

The problem has two, one or no solutions according to whether k
)
Intersects, touches or avoids g§. In order to represent D in the form

)
BBAGBB we replace k by the circle about B through A.
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Proof of the Theorem On the surface S of the sphere, lines are

replaced by great circles. Reflections can be taken as reflections
on the planes containing these great circles. Circles on S are great
circles provided their radius is %. Any two lines intersect in two

diametrically opposite points.

The Euclidean construction described above holds - mutatis
mutandis - throughout. The construction is again possible if and

only if the circle k intersects the line ¢ and this is always the

case if and only if k is a line, {.e. iff IAB‘ = %u Then the circle

about B through A is also a line and the theorem 1s proved.

QUOTATION CORNER (12)

C.F. Moppert sends the following:

Newton ist tot, Einstein-ist tot und mir
{st es auch schon so komisch (and I have
a queer sensation too).
Studente' lavatory,

Mathematics Dept.,
Hetideglberg.




