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In Captain Cook's younger days this view
must have been welcome, the entrance toO
his home port. The reproduction is by
courtesy of the Shipwrecked Fishermen and
Mariners Royal Benevolent socity of 1,
North Pallant, Chichester, Sussex, U.K.
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TRIANGLES FROM FOUR LINES (JCMN 22, Vol.2,p.88) s from N, Q to BC.

Join NA', NQ, ND. et NU, QV be
(See Figure 1.

circumradius.
M.J.C. Baker and S.R. Mandan Join A'E, PB, PC, DE, QD-
C.F. Moppert asked whether the orthocentres of the four triangles
formed by four lines are collinear. The answer is yes. This is proved
in theorem 62 (p. 134) of C.V. Durell's Modern Geometry, Macmillan,
London 1920. Durell's proof depends on various theorems about co-axal
circles. Another way is by showing that each orthocentre is on the
directrix of the parabola that touches the four lines, for a proof by

coordinate methods see Smith's Conics, page 126, or by synthetic methods

page 133 of Askwith's Pure Geometry, this result is Exercise 7 on
page 7 of E.M. Lockwood's Book of Curves.

Four lines in general position make four triangles.
(i) The circumcircles of these triangles have a common point P.
(i1) The feet of the perpendiculars from P to the four lines are

collinear.

(i{i) The orthocentres of the triangles lie on a line which is parallel
to the line of feet and twice as far from P.
(iv) P is the focus and the line of orthocentres is the directrix of
the parabola that touches all four lines.
(v) The circumcentres of the triangles are concyclic together with P.

(vi) The centroids, nine-point centres, incentres of the triangles are

not in general either collinear or concyclic.

Proposition 1 The line joining the feet of the perpendiculars to two ; Figure 1.

of the sides of a triangle from a point on its circumcircle bisects the

{ on the nine-
line joining that point to the orthocentre of the triangle. Proof HN = %HO, HQ = MHP, SO NQ = !40P. Therefore Q lies

Given a triangle ABC with circumcentre 0, altitudes AD, BE meeting at H,

ircle.
and a point P on the circumcircle of the triangle; if PL is the from point circ ' d ZLA'EC = C.
rre of circle BEC, sO A'E = A'C an

P to BC, and Q is the mid-point of PH, and if LQ meets AB and AC in K A' is the cen

= - A'NU =
and M respectively, to prove that PK, PM are to AB, AC respectively. Thus Z. A'ED = C - B. But £

Construction Let A' be the mid-point of BC. Join OB, OA', OC, OP.

AEDB 1is cyclic, so Z:DEC = B.

154 int ci so/.A'NU = C - B.
= 'yp = £ A'ED (nine-point circle).
Let N be the mid-point of OH. N is thus the centre of the nine-point NP /.PcM - B. Thus

= 11 so Z.PBC =
circle, which passes through A', D, E, and whose radius is half the Now £.PCM = Z.PBA (PBAC cyclic),

= = A: so Z.POA' =
Zpoc - 2B - 2B. But LA'CC = 1,/ B0C = £BAC = A; s0
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= 24PCM - 2B - A. £.QNU = Z.POA’ (pairs of parallel lines) and

therefore Z.A'NQ =L A'NU ~Z_ONU = A + B + C - 24P = 7 - 2ZPeM.

L
2

mid-point of LD (PQ = QH; intercept theorem); and solﬁ-QLV = Z:QDV =

ThusliyA'DQ = A:PCM (nine-point circle). Now V is clearly the

b % - £PM. Therefore £ PiM =Z.PCM. Thus PLCM is cyclic, and so

Z.PMC is a right angle. Similarly 2 PKB is a right angle.
Q.E.D.

We have established not only the Simson's Line theorem (that the
feet of the perpendiculars to the sides of a triangle from a point on
its circumcircle are collinear, Durrell's theorem 27, p. 46), but also

that the Simson Line of P bisects PH (Durell's rider no. 67, p. 48).

Lemmna (Converse of the Simson Line theorem, see Durell p. 46). If
the feet of the perpendiculars from a point P to the sides of a triangle

ABC are collinear, then P lies on the circumcircle of ABC.
For ﬁ:PBA = ZLPBK =T - Z:PLK = LPIM = ZLPCM, so PBAC is cyclic.

Proposition 2 The orthocentres of the four triangles formed by four
lines are collinear. For let the circumcircles of two of the triangles
meet at P. The feet of the perpendiculars from P to the four lines are
on a line since this is the Simson Line of P with respect to the two
chosen triangles. It is thus the Simson Line of P with respect to the
other two triangles. By Proposition 1 the lines joining P to the
orthocentres of the four triangles are all bisected by the Simson Line,
and must therefore themselves all lie on a line parallel to it and

twice as far from P.

Corollary 1 The circumcircles of the four triangles formed by four
lines have a common peint (Durell’s rider no. 64, p. 48). By the
converse of the Simson Line theorem the point P in Proposition 2 is

on the circumcircles of the other two triangles as well.

Corollary 2 Consider the parabola that touches the four lines. It is
an elementary fact that the feet of the perpendiculars from the focus

to the tangent lines all lie on the tangent at the parabola's vertex.

IR
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Thus, by the converse of the Simson Line theorem, the focus must lie on
f

all the cir

cumcircles and so be identical with P. It follows that

each orthocentre is on the directrix of the parabola.

The fact that the four circumcircles all pass through the

focus P of the parabola may also be shown projectively (see Figure 2).

Figure 2.

The circular points are I and J, the line 1J touches the

er tangents from I and J meet at the focus P, ABC
If two

parabola, and the oth
is one of the four triangles formed by the given lines.

triangles circumscribe a conic the six vertices lie on another conic

(Poncelet's porism), and so P is on the circumcircle of ABC.

Proposition 3 The circumcentres of the four triangles formed by four
rYroposition 2

lines lie on a circle together with the peint common to the four

circumcircles.
o]

Proof Let the configuration be as shown in Figure 3 where O, 01, 02, 3

are the circumcentres of triangles ABC, AYZ, BZX, CXY respectively, and

P is the point on all four circumcircles.
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Figure 3.

We h =1 i
ave L’_POlO3 1z£POlY (PY is common chord of circles centres
0., 0y
1’ 73
Zexy (0l is centre of circle PYAZ)
4pzx

H

Thus PO

1
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= % /P0,X (0, is centre of circle PZBX)
= ZLP0203 (PX is common chord of circles centres 02,

0.0, is cyclic. Similarly O lies on the same circle.

2
’ Q.E.D.

Figure &.

-
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servatio at the ce Q or e e-point centre or
0b n 1 That th ntroids, the nine-p t o 5, the
incentres of four tria Yy ne e n n 131

e the ur triangles formed by four lines ar ot in gemeral
either collinear or concyclic can be seen by letting three of the lines

form i
an equilateral triangle and the fourth be one of its medians

O?servation 2 Four lines yleld one line of four orthocentres: so five
lines vield five lines each containing four orthocentres. In general
t?ere seems to be no special relationship between the two figures (see
F%gure 4); but if the original lines form a regular pentagran then the
lines of orthocentres form a congruent pentagram which is the'reflexion

of the original one in its ceatre (see Figure 5)

Figure 5.

(See also page 128 for further comments)
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ON UNIVERSAL COVERING SETS AND TRANSLATION COVERS IN THE PLANE

G.F.D. Duff

1. 1Introduction
A universal covering set (uc for short) is a plane set, or figure,

that can contaim any plane set of unit diameter. In the first instance

we allow translations and rotations in the plane, and reflections, for

which we must be able to fit into the UC. The

all sets of unit diameter,
was posed by Lebesgue in 1914

problem of defining a UC of minimum area

and has not yet been fully solved. In this note I describe the results

to date and also give a probable solution for a restricted version of

the problem, the universal translation cover (TC) relative to which

rotations are not permitted for the sets being covered.

2. The hexagon and its subsets

The diameter of a plane set {s the largest distance between two

of its points (or least upper pound of such distances, if the set is not

be placed on a (closed) unit

closed). Thus a set of unit diameter may
and this

strip defined bv two parallel straight lines at unit separation,

{s true whatever the direction of the straight lines. Considering two

such unit strips at right angles, ve can easily deduce that any set of

unit diameter can be placed in 2 unit square. Thus a unit square is a
UC of area 1.
p was taken by J. Pal [6] in 1920. He

An important further ste
o each other and enclosed the typical

took three strips at 60° angles t

get of unit dlameter in a hexagon with three parallel pairs of sides.

In general, the middle or centre lines of these three strips do not all

intersect at one point (Figure 1). However, pal showed that by rotation
To see this,

of the given set, such an intersection could be achieved.

consider two unit strips at a 60° angle. They intersect in 2 parallel-

ogram that is itself a UC. Within the parallelogram we can rotate the

get of unit diameter provided we also translate it so as to keep the

centre of the parallelogram fixed. Suppose that the centre of the

parallelogram was i{nitially on omne gide of the middle line of the third



-110~

Figure 1.

strip that also moves to contain the rotating set. After a rotation of
180° the centre of the parallelogram must be on the other side of the
third middle line. By continuity, there exists an angle of rotation at
which the third middle line meets the centre of the parallelogram -

that is, the three middle lines are concurrent.

This shows that every set of unit diameter can lie within a

regular hexagon with opposite sides at unit distance. The side length

;f this regular hexagonal UC is actually 53 and its area is
5 V3 = 0-866025404.

SRERERSRRREEES
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corners cut off by the sides of a

Consider now the 8ix little
ted 30° to the first (Figure 2).

/-

()

Figure 2.

Since the parallel cuts are at unit distance, every point in on such

gle is more than one unit distance from every point within

corner trian

the opposite cormer triangle. Thus either a given onme or its opposite

s no points of a given set of unit diameter. Hence at

triangle contain
least three of the cormer triangles, one of each opposite pair, are

unoccupied by the given set. Of the eight cases thus created, six

yield three consecutive unoccupied corners,
r triangles. Therefore, there are always two

and two yield equally gpaced

alternate unoccupied corne

corner triangles, neither adjacent nor opposite, that are not occupiled.

By a rotation we can bring these to a standard position. In this way,

pal showed that two corners can be removed and this gives a UC of area



~112~
2 - 2 - 08452 i )
7 9945... . S;gultaneously, in 1920 he showed that a UC
must have are IT4+22 = .
a at least g + i 0+825711786..., by considering the

superposition of a circle and a Rouleaux triangle which is a curve of

constant width. A concise account of these results is also given in [8]

3. Sets of constant width unity

The width, or breadth, of a set or curve in a given direction is

the distance between its two extreme lines of support having the

HEENE

perpendicular direction. The circle hag constant width, the same in all
directions. Surprisingly enough, there are many other closed plane
curves with the same property of constant width. We consider unit width

for simplicity. Best known beside the circle is the Rouleaux triangle

with three arcs of unit radius and three vertices with tangent angle of
60° (Figure 3). Of all curves of constant width, the Rouleaux triangle
has the sharpest corners and least area. The Rouleaux triangle has been|
used as the rotor in the Wankel engine and in other mechanical
applications. Elegant accounts of these curves are given by Bonneson
and Fenchel [1, Chap. 15], Meshkowski [5, Chap. 5] and Rademacher and
Toeplitz [7, Chap. 25].

Figure 3.

= o 5 =8
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Imagine a compass with pencils mounted on both legs: if this
compass is walked around a closed path with each step a unit circular
arc, then the closed curve so drawn is a Rouleaux polygon of constant
width containing an odd number of arcs and vertices. By a limiting
a class of other curves of constant width having curvature

process,
A curve parallel to

constructed (Flgure 4).

greater than unity can be
the Minkowski sum curve of

a curve of constant width and more generally,

two such curves, is again of constant width.

Q0

Figure &.

Useful properties of curves CW of constant width include [7]:
1 CW has exactly ome point of intersection with each supporting line

(including tangents).
th 1 has diameter 1 and arc length T.

11 CW with constant wid
arallel

s the two contact points of two P

III If a straight line join
ines of CW, the line is perpendicular to

and opposite supporting 1

the supporting lines.
ing line through every point of CW.

IV There is at least one support
v Through every point of CW, 3 unit circle can be drawn that encloses

CW and is tangent to any given supporting line at the point.
VI Every set of diameter one can be extended to a set of constant

width one [6, see also 2].
every

in view of VI, a gufficient test for uC is that it contains

From Figure 5 with cormer triangles GBG',

set of constant width 1.

FHH' removed from regular hexagon ABCDEF, we see that every curve of
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constant width 1 must have diameter 1 parallel to EC and must meet cG'
and EH' in one point each. Likewise, the curve must meet AG and AH
each in exactly one point. With centres G and H and radius 1, draw
circular arcs IK and JK intersecting at K. The small area IKJD can
now be excluded as every point interior to it is more thanm 1 unit
distant from the intersection points of the curve with AG or AH. This

reduction to area 0¢84413770... was demonstrated by Sprague [9] in 1936.

4. Recent further reductions

For many years the UC set problem then languished, but in 1975
9

Hansen (4] showed that two tiny corners of area 10“1 could be removed
around G' and H' in Figure 5. He reasoned that a curve of constant

width CW with points in one of these cormers, could be rotated by 120°
within the hexagon, and would then not cover these corners. In effect

he used properties IIL, IV and V in his proof.

Hansen also proved that his figure is a "set theoretic"
minimum UC, i.e. that no further points can be removed from it without
destroying the UC property. He achieved this result by constructing
three curves of constant width 1 that "gpan" the UC, in the sense that
their vertices occupy all vertices of the UC. The three curves are the
Rouleaux triangle, the pentagon HGLKM, and a 9-gon symmetric about
vertical axis AK, and having short (circular) sides bounding the two

excluded corners.

Despite its set theoretic minimum property, Hansen did not
consider his UC to have minimal area. His view was confirmed recently
[3]. A UC of smaller area was found with an arc V'K' sliced off but
a still smaller area bounded by an arc 8' restored to excluded
triangle FHH' (Figure 5). The arc V'K' has centre V on AG at distance
¢ = 0+00056 from G. The arc B' (also of unit radius) has centre W on
LG' at distance € from L. The area "gaved" by this construction is
2+00 % 10_6 so the new minimum known area is 0-84413570... . The
proof involves a 60° counterclockwise rotation for curves C with points
in the excluded area, and a further 60° rotation for those curves C

that meet HA below W', where W'N = €.

s SRRRRRREREER

Figure 5.

Since this latest UC is no longer symmetrical about axis AD, and
is not convex near H, one may question whether a minimal UC, if it can
be found, would have these properties. Also the effect of allowing or
not allowing reflections might then make a difference. Nor do we know

whether a UC of minimal area is unique.

5. The universal translation cover

The modified problem of finding a set of wminimal area able to
cover any plane set of unit diameter moved by tramslation only has been
suggested by Rennie. Clearly this translation cover TC must have
larger area than the earlier UC. Here we shall find a set theoretic
minimum TC within a unit square. It seems probably that this TC also

has minimum area, but this has not been proved.
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Clearly a unit square is a TC, for no rotation is needed to and
. T
enclose an arbitrary curve of comstant width in a unit square of any a-x=cos(é+ 3)
orientation. We first determine the minimal set within the square that = cos ¢ * 1. sin ¢ 12
encloses all Rouleaux triangles of differing orientations (Figure 6). 2 ?
1 V3
= (1 - x) :l—(l:—y)2

We thus find

1,1
{ ) a-1=1-x+ Y3y -1

and
b-1=1-y+3x-1) .

Since the distance from (a, 1) to (1, b) is algo unity, we have
l=(a-l)2+(b—1)2=[l-x+/3(y—l)]2+{1—y+v/3(x-1)]2

*

which reduces to
2
a-wi+ra-pi-na-na-y»-=g -

This locus of {x, y) is an ellipse centred at (1, 1) that touches the

V3 V3

axes of co-ordinates at (1 - -, 0) and 0, 1 - jz). The major axis

lies on y = x, the minor axis on x +y = 2.

Figure 6, We translate and rotate the axes to new co-ordinates

Two of the vertices always lie on adjacent sides of the square, say at
(a, 1) and (1, b) in Figure 6. Let the vertex near 0 have co-ordinates

(x, y) and let $ be the angle the unit segment joining this vertex to

(1, b) makes with a parallel to the x-axis. Then €2 ﬂz
—3 + —7 = 1 .
l+7 1'7

b-~y=sin¢ and 1~ x=cos ¢ .

; : i

Now the unit segment joining (x, y) and (a, 1) makes an angle ¢ + 3 To calculate the corner area excluded we first calculate the

area cut off this ellipse by the chord joining the two points of
(T =3

with the x-axis.
contact with the x and y axes. This area is found to be oA

Hence
1~y =sin(¢ + 3) It follows that one corner area cut off the square is
1
=sin ¢ * 5+ cos ¢ ° 5
< 1 V3.2 m™T -3
=(1 - =) - —5— = 0-003074902... .
=(b~-y) * %.+ (1 -~x) * %? 2 2 24

\
e IR SRS RESRE
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The TC with four corners removed has therefore area 0-987700392... . to the appropriate sides of the square (Figure 8).

To show that our figure is also a translation cover for all

other curves of constant width, we require the following lemma (Figure OPD E B!
Ay, N
NI
c’ ‘;> c
F' “E
//
- Y/
e
N | | :

Figure 8.

Figure 7.
By the lemma, since CW passes through A, CW meets side OF' of the

square above C' (i.e. closer to the corner than '), hence also (by III)

Lemma If P is a point within or on a curve CW of constant width and
meets side CF above C. Likewise, since CW passes through D, CW meets

L a support line of CW, then the common point of C and L (meeting L to
cide OB' to the left of E' (on segment OE') and thus also meets side EB

the right of P) lies on segment QR, where R is the foot of the perpen-
to the left of E. Since distance BC = 1, points on the side above C

dicular through P to L, and Q is the contact point of the circle of
are further than unit distance from E and from points on the side to the

radius 1 through P touching L.
left of E. This gives a contradiction for the curve CW of comstant

Proof Let Q' be the unique point of CW that lies on support line L. p width one, and the result is established.

Then CW lies within the unit circle touching L at Q' oa the side shown.

If Q' were to the right of Q, P could not belong to CW. Q.E.D.

Therefore, the unit square with four corners trimmed to the
ellipse is a universal translation cover TC. Since every point of this

Theorem No curve of constant width embedded in the square has points set is needed to cover Rouleaux triangles in the square, it is a set

between the cormer 0 and the elliptic locus of vertices of the Rouleaux theoretic minimum. However, this does not yet prove that it is a TIC
triangles. of minimum area.

Proof If P is such a point in the excluded corner, then the curve of Is there a TC of smaller area? Consideration of the possible

constant width CW must meet the ellipse in two distinct points A, D. alternatives suggests that this is not likely. Of the TC's bounded

Construct the Rouleaux triangles ABC, DEF, touching the sides of the by two pairs of parallel sides, the square has the least area. Any

square at B', ¢', E', F' where BB', CC', EE' and FF' are each parallel departure from embedding in the square seems to involve penalties of

area for the Rouleaux triangles alone. However, a complete proof must




-120-

essentially include a demonstration that the minimal TC lies within
some unit square. As in the problem of the UC, this general minimum

property remains an open problem.
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QUOTATION CORNER (6)

A good message for the working week, "Take things easy”. — A disc

jockey of the Australian Broadcasting Commission, 18th August, 1980.
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BINOMIAL IDENTITY NUMBER NINE (JCMN 22,Vol.2,p.88)
C.S. Davis

Putting b/2 = t, we may write the equation to be proved as

o © 2 -2
I (2:) /nt = I than™,

or, say, f(t) = EZt o(t),

© n _ ,2n
with £(t) = Z 0 at where a_ = ( n)/n! . Then

>

2 =
(n + 1) & 41 " 2(2n + l)an 0,

go f(t) satisfies the differential equation

tf+ (- 4n)E - 28=0,
and hence ¢(t) satisfies

B+ o/t -4 =0 .

Noting that $(0) = £(0) =1 and that ¢ is analytic, the only solution
is ¢(t) = Z; tzn/(n!)z, which in the usual notation for Bessel
See also page 127.

functions is Io(lt).

BINOMIAL IDENTITY NUMBER TEN (JCMN 22,Vol.2,p.90)

C.5. Davis
2(2m) "L 1 [Zr] 2n - 2r - 2} . ghn-3
n[n Z0 (2r+1)(2n—2r—1) l’kn-r—l
=

i {Zr] and r + s =n -1,

Denoting the sum by S, and writing a = 577 Lt

2 4n-3
this is nz{l?}s = 2",

Y 2r+l t
o
er 2r 2. -% [Zr T J dx
: = (1 - 4x7) s0 »
wer rZO “]x -he rZO AL g ya - wd)
= _ . 2
i.e Z a t2r+l = % sin 1(?_t) = £(t), say. Then if {£()}" =
r

r=0
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@ 2% n-1
= X c t we have ¢_ = Z aa = S.
n n rs
n=1 r=0

2n—Z(Zt)Zn

<«
2 1 -1 2 1
1° = ={gi = =
But {f(t)} Zlsin (2t)} 3 Z —_—E(EEI__
n=1 n n

(see, e.g., Bromwich, Infinite Series (1926), 197 (Ex. 4)), so

D i S 2(2)g _ ,hne3
2 —~7I731— » i1.e. n a .
n
n

Another solution came from J.B. Parker.

A MATRICULATION PROBLEM GIVEN IN MOSCOW
Dieter K. Ross

In a recent edition of the Notices of the American Mathematica
Society there appears, under the heading "Jewish problems", the
following question:

2 2

Let ab = 4, ¢~ + 4d” = 4. Prove the inequality

(a—c)2+ (b-d)zzl'G

This is one example of the type of problem given by examiners
to high school candidates seeking admission to the Mechanics and

Mathematics Department of Moscow University.

Clearly what is needed is an expression for the square of the

shortest distance between the hyperbola xy = 4 and the ellipse
x2 + hyz = 4. The line representing this shortest distance is normal
to both curves and this leads to the relation ac = 4bd.

Since the points (a, b) and (c, d) can be taken to lie in the

first quadrant of the cartesian plane it follows by simple algebra tha
b= 4fa, c = 16//a + 64, d = a2/vh" + 64
and that

(@a-02+ m-al = (a-16/a" +66)2 + (4/a - a*//a* + eu)?

1111
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This expression has its least value when a 1s the positive root of
the equation

4
1222 = (&* - 16)»4 + 64 .

. which leads to the final

The appropriate root is a = 2-390978..
inequality

(a = c)2 + (b - d)2 > 1-774796...
The question which remains is how a Matriculation student could be

expected to do this problem in the twenty minutes specified?

PILES OF BRICKS (JCMN 22,Vol.2,p.89)
H.0. Davies

How much overhang can be obtained piling bricks on the edge of

1 1

, 1 1 . .
a table? The obvious way gives 7(1 + 35 + §>+ coe t E) with n bricks.

Some better ways are as follows.

Overhang = l% lengths

4 bricks
L L I
2/
—1 172
i
3
5 bricks Qverhang = 116
L } |
[ T T 172
L 1/2
3/10 5
6 bricks Overhang = 175
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There does not appear to be any general pattern emerging that

could be extended to n bricks.

The percentage improvements on the overhang given by the obviou

method are -

Bricks 3 4 5 6

Percentage 9-1

S.U.M.S. COMPETITION 1980

By kind permission of D. Carturight we reprint Question 3 of

this year's Sydney University Mathematical Society Competition.

Consider finite strings of a's and b's (for example aabab). We
use the letters o and T to stand for strings. A string is called
primitive if it is of the form oo (for example abbabb). There is an
operation of deriving a string from two other strings: if we already
have 0 and 0T we can derive 1. (For example if we already have abb an
abbbabb, we can derive babb). A string is called good if it can be
obtained, starting from the primitive strings, by applying the
deriving operation a finite number of time. Is ab a good string?

Describe all good strings.

ADVANCED EDUCATION

Here is a sample from the College of Advanced Education of an
Australian State. In the first year calculus course a homework
question set in May 1980 took the problem of the motion of a rocket
fired vertically up, and told the candidates that the equation of

motion was
é%(mv) = F - mg
(where m is the instantaneous mass of the rocket, v is the velocity,

F is the engine thrust and g is gravity). From L. Bode comes the
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information that he found the same mistake in a book on gyroscopes, but
there the author always kept m constant and consequently was not led

into getting wrong answers.

BLACK AND WHITE CUBES
C.J. Smyth

A boy has a large number of black cubes and white cubes, and 1is
trying to arrange them into adjacent piles of given heights hl, ceey hn,
using as many black cubes as possible, but so that no two adjacent
cubes (horizontally or vertically) are black (see diagram).

Show that if the heights satisfy

(*) h, <h > h > ... >h forsome J 21,

... <h
) < s

2 J J+1

then one of the two ways of arranging the cubes alternately (chess—board
style) will use the maximum number of black cubes (other arrangements

may also use the maximum number) .

The result is not true if condition (*) is removed: take the

hi to be 3, 2, 1, 3, 2, 1.

Chess-board style: 6 black cubes
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ORTHOGONAIL MATRICES
If in a real nxn matrix every row and every column has sum of
squares equal to one, is it possible to make the matrix orthogonal by

appropriate changes of sign among the components?

THE DREADED ZETA THREE AGAIN (JCMN 20,Vol.2,p.47)

C.5. Davis

g5~ T 1

Show that 10J tcoth t dt = §]
3

0 n=l n

The proof depends on a couple of lemmas, in which, for real X,

X
2 dt
g(x) =J log™|1 - t|==
0
Lemma 1 For 0 < x <1,
1 2
g(]-'x)+g(1+x)=Zs<1~X)+%g(l); ........

8l - ) + g 28(1) - g(x) + log'x log(l-x) - log’x ..

(These identities are essentially due to Spence (1807), perhaps even
earlier to Euler or Abel. They are proved by elementary manipulation

of integrals).

Lemma 2 g(1) = 22(3) ; o
=1 =1 4 103
i 8 =505-1), g® $e(l) +3leg’s ...
For (3), we have
© 2 -x 1
2 1
c(3)=%f "—e—f:=%f g’ - 0% = g
t 2
0 1-~-ce 0

2
Observing that 6" + 6 -1 =0, so that 1 + 2 = %-, putting

x = 6 in (1) and (2) makes the l.h.ss. equal. Since 1 - 82 =6 and

2
1 -6 =20", equating the r.h.ss. with x = 6 gives

¢
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2 2 1 3
- Zlog’8 , and (&)
1 7 = 2g(1) - g(8) + log™8 log(8") - 3
5 g(8) + 7 g(1)

follows. t
Now to the stated result. Putting § = e in the integral,

we have

1 3 1 _ 82 7 501y - g(2) , on using (1)
=3 log™€ + Z’E(l )+ 4 g(1) &

3 using 1 - 62 = 8 and taking x = 1 in (1)

1 1.8
= - 5 log 6+ 7 g(8)

1

- é% g() = 15 Z(3) , on using (3) and 4.

BINOMIAL IDENTITY NUMBER NINE (JOMN 22,V01.2,p.88)
J.B. Parker

1f ¢ is a random angle uniformly distributed on the circle there

(2b cos’9).
are two ways to calculate the expectation of exp

- ¢ ) 26
On the one hand it is 20 1 E(cos  ¢)
5=
i 1 ieft
2 ~2s|2s t the expectation is the given lie
and E(cos”"¢) = 2 [s] so tha xp
hand side.

i by /st 82 where
On the other hand the value is e E 0 (b>/s!) E(cos 2¢)

. is
the odd numbered terms may be left out and so the expectation i

byo b7 '25{25] which is the right hand side of the given
elo ot s

identity. See also page 121.



~188~

BINOMIAL IDENTITY NUMBER ELEVEN

J.B. Parker

STOP PRESS

TRIANGLES FROM FOUR LINES (Page 102 above)

When answers to this problem of C.F. Moppert came from both
M.J.C. Baker and S.R. Mandan the editor asked the former to write a
joint paper, but collaboration has been hampered by slowness of the
mail service with Bombay. The following comments by IJr. Mandan
arrived too late to be put in the article.

For Proposition 1 there is a proof im Court's '"College
Geometry" (1952) pp. 142-143. For Proposition 2 proofs may be
found in the book “"Geometry Revisited" by Coxeter and Greitzer
(1967) p. 39 and in "Reflections on a Triangle" by S.N. Collings,
Math. Gaz. 57 (1973) pp. 291-293. To Observation 2 may be added
the comment that from five lines you get five parabolas and their
foci lie on the Miquel (1845) circle.

Another reference of interest is "The Real Projective Plane"
(1955) by H.S.M. Coxeter, page 138, there are two proofs by
synthetic methods, one by involutions as in Holgate's "Projective
Pure Geometry" (1930) p. 209 and the other by Brianchon's Theorem,
as in Salmon's "Conic Sections" (6th edition 1879) p. 247, due to
J.C. Moore.

Your editor would like to hear from you anything connected with

mathematies or with James Cook.
Prof. B.(. Rennte,

Mathematics Department,
James Cook University of

North Queensland,
Townsville, 4811
JCMN 23 Australia.



